1
|
Pagani MA, Gomez-Casati DF. Advances in Iron Retrograde Signaling Mechanisms and Uptake Regulation in Photosynthetic Organisms. Methods Mol Biol 2023; 2665:121-145. [PMID: 37166598 DOI: 10.1007/978-1-0716-3183-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron (Fe) is an essential metal for the growth and development of different organisms, including plants and algae. This metal participates in different biological processes, among which are cellular respiration and photosynthesis. Fe is found associated with heme groups and as part of inorganic Fe-S groups as cofactors of numerous cellular proteins. Although Fe is abundant in soils, it is often not bioavailable due to soil pH. For this reason, photosynthetic organisms have developed different strategies for the uptake, the sensing of Fe intracellular levels but also different mechanisms that maintain and regulate adequate concentrations of this metal in response to physiological needs. This work focuses on discussing recent advances in the characterization of the mechanisms of Fe homeostasis and Fe retrograde signaling in photosynthetic organisms.
Collapse
Affiliation(s)
- Maria A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
2
|
Abstract
Heme (protoheme IX) is an essential cofactor for a large variety of proteins whose functions vary from one electron reactions to binding gases. While not ubiquitous, heme is found in the great majority of known life forms. Unlike most cofactors that are acquired from dietary sources, the vast majority of organisms that utilize heme possess a complete pathway to synthesize the compound. Indeed, dietary heme is most frequently utilized as an iron source and not as a source of heme. In Nature there are now known to exist three pathways to synthesize heme. These are the siroheme dependent (SHD) pathway which is the most ancient, but least common of the three; the coproporphyrin dependent (CPD) pathway which with one known exception is found only in gram positive bacteria; and the protoporphyrin dependent (PPD) pathway which is found in gram negative bacteria and all eukaryotes. All three pathways share a core set of enzymes to convert the first committed intermediate, 5-aminolevulinate (ALA) into uroporphyrinogen III. In the current review all three pathways are reviewed as well as the two known pathways to synthesize ALA. In addition, interesting features of some heme biosynthesis enzymes are discussed as are the regulation and disorders of heme biosynthesis.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602-1111, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-1111, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Fölsche V, Großmann C, Richter AS. Impact of Porphyrin Binding to GENOMES UNCOUPLED 4 on Tetrapyrrole Biosynthesis in planta. FRONTIERS IN PLANT SCIENCE 2022; 13:850504. [PMID: 35371166 PMCID: PMC8967248 DOI: 10.3389/fpls.2022.850504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Plant tetrapyrrole biosynthesis (TPS) provides the indispensable chlorophyll (Chl) and heme molecules in photosynthetic organisms. Post-translational mechanisms control the enzymes to ensure a balanced flow of intermediates in the pathway and synthesis of appropriate amounts of both endproducts. One of the critical regulators of TPS is GENOMES UNCOUPLED 4 (GUN4). GUN4 interacts with magnesium chelatase (MgCh), and its binding of the catalytic substrate and product of the MgCh reaction stimulates the insertion of Mg2+ into protoporphyrin IX. Despite numerous in vitro studies, knowledge about the in vivo function of the GUN4:porphyrin interaction for the whole TPS pathway, particularly in plants, is still limited. To address this, we focused on two highly conserved amino acids crucial for porphyrin-binding to GUN4 and analyzed GUN4-F191A, R211A, and R211E substitution mutants in vitro and in vivo. Our analysis confirmed the importance of these amino acids for porphyrin-binding and the stimulation of plant MgCh by GUN4 in vitro. Expression of porphyrin-binding deficient F191A, R211A, and R211E in the Arabidopsis gun4-2 knockout mutant background revealed that, unlike in cyanobacteria and green algae, GUN4:porphyrin interactions did not affect the stability of GUN4 or other Arabidopsis TPS pathway enzymes in vivo. In addition, although they shared diminished porphyrin-binding and MgCh activation in vitro, expression of the different GUN4 mutants in gun4-2 had divergent effects on the TPS and the accumulation of Chl and Chl-binding proteins. For instance, expression of R211E, but not R211A, induced a substantial decrease of ALA synthesis rate, lower TPS intermediate and Chl level, and strongly impaired accumulation of photosynthetic complexes compared to wild-type plants. Furthermore, the presence of R211E led to significant growth retardation and paler leaves compared to GUN4 knockdown mutants, indicating that the exchange of R211 to glutamate compromised TPS and Chl accumulation more substantially than the almost complete lack of GUN4. Extensive in vivo analysis of GUN4 point mutants suggested that F191 and R211 might also play a role beyond porphyrin-binding.
Collapse
Affiliation(s)
- Vincent Fölsche
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
| | - Christopher Großmann
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
| | - Andreas S. Richter
- Physiology of Plant Cell Organelles, Humboldt-Universität Berlin, Berlin, Germany
- Department of Plant Physiology, Humboldt-Universität Berlin, Berlin, Germany
- Physiology of Plant Metabolism, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
5
|
Amin B, Atif MJ, Wang X, Meng H, Ghani MI, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:785-796. [PMID: 33900017 DOI: 10.1111/plb.13276] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Low temperature (LT) and high humidity (HH) are important environmental factors in greenhouses and plastic tunnels during the cold season, as they hamper plant growth and development. Here, we studied the effect of LT (day/night: 9/5 °C, 25/18 °C as control) and HH (95%, 80% as control) on young cucumber plants at the 2, 4 or 6 leaf stages. LT+HH stress resulted in a decline in shoot, root and total fresh and dry weights, and decreased Pn , gs , Tr , Fv /Fm , qP, ETR and chlorophyll, and increased MDA, H2 O2 , O2 - , NPQ and Ci as compared to the control at the 2 leaf stage. SOD, POD, CAT, APX and GR were upregulated under LT+HH stress as compared to the control at the 6 leaf stage. ABA and JA increased under LT+HH stress as compared to the control at the 6 leaf stage, while IAA and GA decreased under LT+HH stress as compared to the control at the 2 leaf stage. Our results show that LT+HH stress affects young cucumber plant photosynthetic efficiency, PSII activity, antioxidant defence system, ROS and hormone profile. Plants at the 6 leaf stage were more tolerant than at the 2 and 4 leaf stages under stress conditions.
Collapse
Affiliation(s)
- B Amin
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M J Atif
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - X Wang
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - H Meng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M I Ghani
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M Ali
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - Y Ding
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - X Li
- Tianjin Kerun Cucumber Research Institute, Tianjin, 300192, China
| | - Z Cheng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| |
Collapse
|
6
|
Adhikari ND, Eriksen RL, Shi A, Mou B. Proteomics Analysis Indicates Greater Abundance of Proteins Involved in Major Metabolic Pathways in Lactuca sativa cv. Salinas than Lactuca serriola Accession US96UC23. Proteomics 2020; 20:e1900420. [PMID: 32672417 DOI: 10.1002/pmic.201900420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.
Collapse
Affiliation(s)
- Neil D Adhikari
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
- California Department of Public Health, Sacramento, CA, 95814, USA
| | - Renée L Eriksen
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
7
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
8
|
Wang C, Zhang L, Li Y, Ali Buttar Z, Wang N, Xie Y, Wang C. Single Nucleotide Mutagenesis of the TaCHLI Gene Suppressed Chlorophyll and Fatty Acid Biosynthesis in Common Wheat Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:97. [PMID: 32153608 PMCID: PMC7046076 DOI: 10.3389/fpls.2020.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 05/08/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Chlorophyll plays a vital role in plant development and crop improvement and further determines the crop productivity to a certain extent. The biosynthesis of chlorophyll remains a complex metabolic process, and fundamental biochemical discoveries have resulted from studies of plant mutants with altered leaf color. In this study, we identified a chlorophyll-deficiency mutant, referred to as chli, from the wheat cultivar Shaannong33 that exhibited an obvious pale-green leaf phenotype at the seedling stage, with significantly decreased accumulation of chlorophyll and its precursors, protoporphyrin IX and Mg-protoporphyrin IX. Interestingly, a higher protoporphyrin IX to Mg-protoporphyrin IX ratio was observed in chli. Lipid biosynthesis in chli leaves and seeds was also affected, with the mutant displaying significantly reduced total lipid content relative to Shaanong33. Genetic analysis indicated that the pale-green leaf phenotype was controlled by a single pair of recessive nuclear genes. Furthermore, sequence alignment revealed a single-nucleotide mutation (G664A) in the gene TraesCS7A01G480700.1, which encodes subunit I of the Mg-chelatase in plants. This single-nucleotide mutation resulted in an amino acid substitution (D221N) in the highly conserved domain of subunit I. As a result, mutant protein Tachli-7A lost the ability to interact with the normal protein TaCHLI-7A, as assessed by yeast two-hybrid assay. Meanwhile, Tachli-7A could not recover the chlorophyll deficiency phenotype of the Arabidopsis thaliana SALK_050029 mutant. Furthermore, we found that in Shaannong33, the protoporphyrin IX to Mg-protoporphyrin IX ratio was growth state-dependent and insensitive to environmental change. Overall, the mutation in Tachli-7A impaired the function of Mg-chelatase and blocked the conversion of protoporphyrin IX to Mg- protoporphyrin IX. Based on our results, the chli mutant represents a potentially useful resource for better understanding chlorophyll and lipid biosynthetic pathways in common wheat.
Collapse
Affiliation(s)
- Chaojie Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Lili Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yingzhuang Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Na Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yanzhou Xie
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Chengshe Wang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S, Yuan M. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Int J Mol Sci 2020; 21:ijms21041390. [PMID: 32092859 PMCID: PMC7073065 DOI: 10.3390/ijms21041390] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
Rice (Oryza sativa L.) frequently suffers in late spring from severe damage due to cold spells, which causes the block of chlorophyll biosynthesis during early rice seedling greening. However, the inhibitory mechanism by which this occurs is still unclear. To explore the responsive mechanism of rice seedlings to low temperatures during greening, the effects of chilling stress on chlorophyll biosynthesis and plastid development were studied in rice seedlings. Chlorophyll biosynthesis was obviously inhibited and chlorophyll accumulation declined under low temperatures during greening. The decrease in chlorophyll synthesis was due to the inhibited synthesis of δ-aminolevulinic acid (ALA) and the suppression of conversion from protochlorophyllide (Pchlide) into chlorophylls (Chls). Meanwhile, the activities of glutamate-1-semialdehyde transaminase (GSA-AT), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were downregulated under low temperatures. Further investigations showed that chloroplasts at 18 °C had loose granum lamellae, while the thylakoid and lamellar structures of grana could hardly develop at 12 °C after 48 h of greening. Additionally, photosystem II (PSII) and photosystem I (PSI) proteins obviously declined in the stressed seedlings, to the point that the PSII and PSI proteins could hardly be detected after 48 h of greening at 12 °C. Furthermore, the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) and cell death were all induced by low temperature. Chilling stress had no effect on the development of epidermis cells, but the stomata were smaller under chilling stress than those at 28 °C. Taken together, our study promotes more comprehensive understanding in that chilling could inhibit chlorophyll biosynthesis and cause oxidative damages during greening.
Collapse
Affiliation(s)
- Yuqing Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Qiaohong Han
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shiling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Lijun Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (S.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.Z.); (Q.H.); (C.D.); (Y.H.); (J.L.); (T.C.); (S.F.); (L.Z.); (Y.C.)
- Correspondence:
| |
Collapse
|
10
|
Peng Q, Fang X, Zong X, He Q, Zhu T, Han S, Li S. Comparative transcriptome analysis of Bambusa pervariabilis × Dendrocalamopsis grandis against Arthrinium phaeospermum under protein AP-toxin induction. Gene 2020; 725:144160. [PMID: 31639431 DOI: 10.1016/j.gene.2019.144160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.
Collapse
Affiliation(s)
- Qi Peng
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xinmei Fang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Xiaozhuo Zong
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Qianqian He
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
11
|
Schwarz EM, Ort DR. Economical synthesis of 14C-labeled aminolevulinic acid for specific in situ labeling of plant tetrapyrroles. PHOTOSYNTHESIS RESEARCH 2019; 142:241-247. [PMID: 31240593 DOI: 10.1007/s11120-019-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The application of metabolic radiolabeling techniques to plant tetrapyrroles, i.e., chlorophyll and hemes, is complicated by the difficulty of obtaining sufficient quantities of radiolabeled aminolevulinic acid (ALA). ALA, the first committed intermediate in the tetrapyrrole biosynthetic pathway, is inconvenient to synthesize chemically and is generally not produced in significant quantities in biological systems. Radiolabeled ALA is therefore usually quite expensive and available only in limited quantities. Here, we describe bulk biosynthesis and purification of 14C-labeled ALA from 14C glycine. We first cloned ALA synthase (ALAS) from Rhodobacter sphaeroides into an expression vector for expression and purification as a fusion with maltose-binding protein. We then used the purified ALAS to synthesize ALA in vitro from 14C-labeled glycine and succinyl-coenzyme A. Finally, we used ion exchange chromatography to separate the ALA product from the crude reaction. We achieved conversion and recovery efficiencies of 80-90%, and chlorophyll radiolabeling experiments with the 14C ALA product revealed no detectable non-specific incorporation into proteins. The ability to economically produce robust quantities of 14C ALA using common methodologies provides a new tool for working with tetrapyrroles, which includes both hemes and chlorophylls and their respective binding proteins. This tool allows the specific detection and quantification of the tetrapyrrole of interest from standard acrylamide gels or hybridization transfer membranes via radiographic imaging, which enables a wide array of experiments involving spatial and temporal resolution of the movement of pigments as they are synthesized, incorporated into their target binding proteins, and eventually degraded.
Collapse
Affiliation(s)
- Eliezer M Schwarz
- Department of Plant Biology, University of Illinois, Urbana, IL, 61801, USA
- , Mason, MI, 48854, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois, Urbana, IL, 61801, USA.
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- 1406 Carl R. Woese Institute of Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Fan T, Roling L, Meiers A, Brings L, Ortega-Rodés P, Hedtke B, Grimm B. Complementation studies of the Arabidopsis fc1 mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress. PLANT, CELL & ENVIRONMENT 2019; 42:618-632. [PMID: 30242849 DOI: 10.1111/pce.13448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Ferrochelatase (FC) is the final enzyme for haem formation in the tetrapyrrole biosynthesis pathway and encoded by two genes in higher plants. FC2 exists predominantly in green tissue, whereas FC1 is constitutively expressed. We intended to substantiate the specific roles of FC1. The embryo-lethal fc1-2 mutant was used to express the two genomic FC-encoding sequences under the FC1 and FC2 promoter and explore the complementation of the FC1 deficiency. Apart from the successful complementation with FC1, expression of FC2 under control of the FC1 promoter (pFC1::FC2) compensates for missing FC1 but not by FC2 promoter expression. The complementing lines pFC1FC2(fc1/fc1) succeeded under standard growth condition but failed under salt stress. The pFC1FC2(fc1/fc1) line exhibited symptoms of leaf senescence, including accelerated loss of haem and chlorophyll and elevated gene expression for chlorophyll catabolism. In contrast, ectopic FC1 expression (p35S::FC1) resulted in increased chlorophyll accumulation. The limited ability of FC2 to complement fc1 is explained by a faster turnover of FC2 mRNA during stress. It is suggested that FC1-produced haem is essential for embryogenesis and stress response. The pFC1::FC2 expression readily complements the fc1-2 embryo lethality, whereas higher FC1 transcript content contributes essentially to stress tolerance.
Collapse
Affiliation(s)
- Tingting Fan
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lena Roling
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Anna Meiers
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Lea Brings
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | | | - Boris Hedtke
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
13
|
Hey D, Ortega-Rodes P, Fan T, Schnurrer F, Brings L, Hedtke B, Grimm B. Transgenic Tobacco Lines Expressing Sense or Antisense FERROCHELATASE 1 RNA Show Modified Ferrochelatase Activity in Roots and Provide Experimental Evidence for Dual Localization of Ferrochelatase 1. PLANT & CELL PHYSIOLOGY 2016; 57:2576-2585. [PMID: 27818378 DOI: 10.1093/pcp/pcw171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In plants, two genes encode ferrochelatase (FC), which catalyzes iron chelation into protoporphyrin IX at the final step of heme biosynthesis. FERROCHELATASE1 (FC1) is continuously, but weakly expressed in roots and leaves, while FC2 is dominantly active in leaves. As a continuation of previous studies on the physiological consequences of FC2 inactivation in tobacco, we aimed to assign FC1 function in plant organs. While reduced FC2 expression leads to protoporphyrin IX accumulation in leaves, FC1 down-regulation and overproduction caused reduced and elevated FC activity in root tissue, respectively, but were not associated with changes in macroscopic phenotype, plant development or leaf pigmentation. In contrast to the lower heme content resulting from a deficiency of the dominant FC2 expression in leaves, a reduction of FC1 in roots and leaves does not significantly disturb heme accumulation. The FC1 overexpression was used for an additional approach to re-examine FC activity in mitochondria. Transgenic FC1 protein was immunologically shown to be present in mitochondria. Although matching only a small portion of total cellular FC activity, the mitochondrial FC activity in a FC1 overexpressor line increased 5-fold in comparison with wild-type mitochondria. Thus, it is suggested that FC1 contributes to mitochondrial heme synthesis.
Collapse
Affiliation(s)
- Daniel Hey
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Patricia Ortega-Rodes
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Tingting Fan
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Florian Schnurrer
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Lea Brings
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Boris Hedtke
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-University Berlin, Institute of Biology/Plant Physiology, Philippstr.13, Building 12, D-10115 Berlin, Germany
| |
Collapse
|
14
|
|
15
|
Chandna R, Ahmad A. Nitrogen stress-induced alterations in the leaf proteome of two wheat varieties grown at different nitrogen levels. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:19-33. [PMID: 25649735 PMCID: PMC4312336 DOI: 10.1007/s12298-014-0277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Inorganic nitrogen (N) is a key limiting factor of the agricultural productivity. Nitrogen utilization efficiency has significant impact on crop growth and yield as well as on the reduction in production cost. The excessive nitrogen application is accompanied with severe negative impact on environment. Thus to reduce the environmental contamination, improving NUE is need of an hour. In our study we have deployed comparative proteome analysis using 2-DE to investigate the effect of the nitrogen nutrition on differential expression pattern of leaf proteins in low-N sensitive and low-N tolerant wheat (Triticum aestivum L.) varieties. Results showed a comprehensive picture of the post-transcriptional response to different nitrogen regimes administered which would be expected to serve as a basic platform for further characterization of gene function and regulation. We detected proteins related to photosynthesis, glycolysis, nitrogen metabolism, sulphur metabolism and defence. Our results provide new insights towards the altered protein pattern in response to N stress. Through this study we suggest that genes functioning in many physiological events coordinate the response to availability of nitrogen and also for the improvement of NUE of crops.
Collapse
Affiliation(s)
- Ruby Chandna
- Department of Botany, Faculty of Science, Hamdard University, New Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Science, Hamdard University, New Delhi, India
| |
Collapse
|
16
|
Cheng D, He Q. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803. PLoS One 2014; 9:e101743. [PMID: 25010795 PMCID: PMC4092027 DOI: 10.1371/journal.pone.0101743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023] Open
Abstract
Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter), feoB (encoding a ferrous iron transporter), bfr genes (encoding bacterioferritins), ho genes (encoding heme oxygenases), isiA (encoding a chlorophyll-binding protein), and furA (encoding a ferric uptake regulator). The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| | - Qingfang He
- Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas, United States of America
| |
Collapse
|
17
|
Tome L, Schaetzel C, Dreher C, Schneider D. Fe- but not Mg-protophorphyrin IX binds to a transmembrane b-type cytochrome. Mol Membr Biol 2013; 31:37-45. [DOI: 10.3109/09687688.2013.867079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Grovenstein PB, Wilson DA, Lankford KD, Gaston KA, Perera S, Mitra M. Identification and molecular characterization of the second Chlamydomonas gun4 mutant, gun4-II. F1000Res 2013; 2:142. [PMID: 24627785 PMCID: PMC3931455 DOI: 10.12688/f1000research.2-142.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 11/20/2022] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in photosynthesis and respiration. These tetrapyrroles are synthesized via a common branched pathway that involves mainly enzymes, encoded by nuclear genes. One of the enzymes in the pathway is Mg chelatase (MgChel). MgChel catalyzes insertion of Mg (2+) into protoporphyrin IX (PPIX, proto) to form Magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. The GUN4 (genomes uncoupled 4) protein is not essential for the MgChel activity but has been shown to significantly stimulate its activity. We have isolated a light sensitive mutant, 6F14, by random DNA insertional mutagenesis. 6F14 cannot tolerate light intensities higher than 90-100 μmol photons m (-2) s (-1). It shows a light intensity dependent progressive photo-bleaching. 6F14 is incapable of photo-autotrophic growth under light intensity higher than 100 μmol photons m (-2) s (-1). PCR based analyses show that in 6F14 the insertion of the plasmid outside the GUN4 locus has resulted in a genetic rearrangement of the GUN4 gene and possible deletions in the genomic region flanking the GUN4 gene. Our gun4 mutant has a Chl content very similar to that in the wild type in the dark and is very sensitive to fluctuations in the light intensity in the environment unlike the earlier identified Chlamydomonas gun4 mutant. Complementation with a functional copy of the GUN4 gene restored light tolerance, Chl biosynthesis and photo-autotrophic growth under high light intensities in 6F14. 6F14 is the second gun4 mutant to be identified in C. reinhardtii. Additionally, we show that our two gun4 complements over-express the GUN4 protein and show a higher Chl content per cell compared to that in the wild type strain.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kelsey A Gaston
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Pediatric Infectious Diseases, Emory-Children's Center, Atlanta GA, 30322, USA
| | - Surangi Perera
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA ; Current address: Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee WI, 53204, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
19
|
Grovenstein PB, Wilson DA, Lennox CG, Smith KP, Contractor AA, Mincey JL, Lankford KD, Smith JM, Haye TC, Mitra M. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis. F1000Res 2013; 2:138. [PMID: 24555064 PMCID: PMC3901506 DOI: 10.12688/f1000research.2-138.v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 09/29/2023] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg (2+) into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis and chloroplast to nucleus retrograde signaling in Chlamydomonas, which has never been studied before.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Cameron G Lennox
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Katherine P Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Alisha A Contractor
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jonathan L Mincey
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jacqueline M Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Tashana C Haye
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
20
|
Grovenstein PB, Wilson DA, Lennox CG, Smith KP, Contractor AA, Mincey JL, Lankford KD, Smith JM, Haye TC, Mitra M. Identification and molecular characterization of a novel Chlamydomonas reinhardtii mutant defective in chlorophyll biosynthesis. F1000Res 2013; 2:138. [PMID: 24555064 PMCID: PMC3901506 DOI: 10.12688/f1000research.2-138.v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 11/20/2022] Open
Abstract
The green micro-alga Chlamydomonas reinhardtii is an elegant model organism to study all aspects of oxygenic photosynthesis. Chlorophyll (Chl) and heme are major tetrapyrroles that play an essential role in energy metabolism in photosynthetic organisms and are synthesized via a common branched tetrapyrrole biosynthetic pathway. One of the enzymes in the pathway is Mg chelatase (MgChel) which inserts Mg (2+) into protoporphyrin IX (PPIX, proto) to form magnesium-protoporphyrin IX (MgPPIX, Mgproto), the first biosynthetic intermediate in the Chl branch. MgChel is a multimeric enzyme that consists of three subunits designated CHLD, CHLI and CHLH. Plants have two isozymes of CHLI (CHLI1 and CHLI2) which are 70%-81% identical in protein sequences. Although the functional role of CHLI1 is well characterized, that of CHLI2 is not. We have isolated a non-photosynthetic light sensitive mutant 5A7 by random DNA insertional mutagenesis that is devoid of any detectable Chl. PCR based analyses show that 5A7 is missing the CHLI1 gene and at least eight additional functionally uncharacterized genes. 5A7 has an intact CHLI2 gene. Complementation with a functional copy of the CHLI1 gene restored Chl biosynthesis, photo-autotrophic growth and light tolerance in 5A7. We have identified the first chli1 (chli1-1) mutant of Chlamydomonas reinhardtii and in green algae. Our results show that in the wild type Chlamydomonas CHLI2 protein amount is lower than that of CHLI1 and the chli1-1 mutant has a drastic reduction in CHLI2 protein levels although it possesses the CHLI2 gene. Our chli1-1 mutant opens up new avenues to explore the functional roles of CHLI1 and CHLI2 in Chl biosynthesis in Chlamydomonas, which has never been studied before.
Collapse
Affiliation(s)
| | - Darryel A Wilson
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Cameron G Lennox
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Katherine P Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Alisha A Contractor
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jonathan L Mincey
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Kathryn D Lankford
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Jacqueline M Smith
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Tashana C Haye
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| | - Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton GA, 30118, USA
| |
Collapse
|
21
|
Mysliwa-Kurdziel B, Kruk J, Strzałka K. Protochlorophyllide in model systems--an approach to in vivo conditions. Biophys Chem 2013; 175-176:28-38. [PMID: 23524289 DOI: 10.1016/j.bpc.2013.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 02/01/2023]
Abstract
Absorption and fluorescence properties of protochlorophyllide (Pchlide) monomers and aggregates in various model systems are presented in this study. The absorption and fluorescence maxima, and fluorescence lifetimes of Pchlide monomers were not dependent on liposome composition. Fluorescence quenching experiments using KI and SASLs as fluorescence quenchers, revealed that Pchlide molecules entered a lipid bilayer and were localized close to the polar lipid headgroup area. The process of Pchlide aggregation was evident for high (i.e. at least 9 mol%) Pchlide content in liposomes prepared from galactolipids. To our knowledge, this is the first study of Pchlide aggregation in membrane-mimicking model systems. The aggregates showed absorption maxima at 480 and 650 nm. Fluorescence of the aggregates measured for excitation at 480 nm had a maximum at 656 nm and was characterized with two fluorescence lifetime components, i.e. 0.1 and 1-2 ns. Pchlide aggregates observed in the buffer had similar position of absorption and fluorescence bands to those observed in liposomes, although the overall fluorescence intensity was considerably lower. Some differences in the relative intensity of Soret absorption bands were observed. These results showed that the presence of liposomes decreased the efficiency of the process of Pchlide aggregation. Water bound at the interface region of AOT/isooctane/water reversed micelles induced disaggregation of the Pchlide aggregates indicating that Pchlide aggregates are buried into hydrophilic core of micelles. The results are discussed with respect to the role of lipids in Pchlide aggregation found in plant etioplasts and their significance for light-induced Pchlide photoreduction.
Collapse
Affiliation(s)
- Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, ul. Gronostajowa 7, Poland.
| | | | | |
Collapse
|
22
|
Storm P, Tibiletti T, Hall M, Funk C. Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2013; 8:e55569. [PMID: 23390541 PMCID: PMC3563542 DOI: 10.1371/journal.pone.0055569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.
Collapse
Affiliation(s)
- Patrik Storm
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Tania Tibiletti
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Michael Hall
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Christiane Funk
- Deptartment of Chemistry and Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
23
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce MR, Micol JL. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 2013; 8:e53378. [PMID: 23308205 PMCID: PMC3540089 DOI: 10.1371/journal.pone.0053378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
24
|
Albus CA, Salinas A, Czarnecki O, Kahlau S, Rothbart M, Thiele W, Lein W, Bock R, Grimm B, Schöttler MA. LCAA, a novel factor required for magnesium protoporphyrin monomethylester cyclase accumulation and feedback control of aminolevulinic acid biosynthesis in tobacco. PLANT PHYSIOLOGY 2012; 160:1923-39. [PMID: 23085838 PMCID: PMC3510121 DOI: 10.1104/pp.112.206045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/18/2012] [Indexed: 05/03/2023]
Abstract
Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis.
Collapse
Affiliation(s)
| | - Annabel Salinas
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Olaf Czarnecki
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Maxi Rothbart
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Wolfram Thiele
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | | | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Bernhard Grimm
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D–14476 Potsdam-Golm, Germany (C.A.A., S.K., W.T., W.L., R.B., M.A.S.); and Plant Physiology Group, Institute of Biology, Humboldt University Berlin, D–10115 Berlin, Germany (A.S., O.C., M.R., B.G.)
| |
Collapse
|
25
|
Liu XG, Xu H, Zhang JY, Liang GW, Liu YT, Guo AG. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85. PHYSIOLOGIA PLANTARUM 2012; 145:384-94. [PMID: 22380525 DOI: 10.1111/j.1399-3054.2012.01604.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The 'stage albinism line of winter wheat' FA85 exhibits a severe block in chlorophyll (Chl) biosynthesis with prolonged low-temperature treatment. The correlations between leaf color and low temperature provide more comprehensive understanding of low temperature as an environmental signal that regulate the metabolic changes in the entire Chl-synthesizing pathway. In this study, we investigated differences in Chl biosynthesis between leaves of Aibian1 and FA85 by measuring their Chl precursors and heme content, transcripts for key genes of Chl biosynthesis and key enzyme activities. With prolonged low-temperature treatment, the Chl content gradually decreased, but Chl precursors, including protoporphyrin IX, Mg-protoporphyrin IX and protochlorophyllide (Pchlide), simultaneously accumulated. Parallel to the decline in Chl content, the protoporphyrin IX distribution toward Chl synthesis was less than that in heme synthesis in the leaves of FA85. Corresponding to the change of protoporphyrin IX distribution, the relative changes in magnesium chelatase (EC 6.6.1.1) and ferrochelatase (EC 4.99.1.1) activities in the leaves of FA85 also indirectly reflected channeling of the metabolic flow into heme rather than Chl. A drastic loss in the transcripts for Pchlide oxidoreductase (EC 1.3.1.33) and Chl synthase (EC 2.5.1.62) accounted for a decrease in the metabolic flux and the re-direction of metabolites. The high-level accumulations of Chl precursors and traces of Chl in the leaves of FA85 suggest that a severe block between the steps from Pchlide to Chl formation during Chl biosynthesis is partially derived from the transcriptional downregulation of Pchlide oxidoreductase and Chl synthase.
Collapse
Affiliation(s)
- Xiao-Gang Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
26
|
Luo T, Fan T, Liu Y, Rothbart M, Yu J, Zhou S, Grimm B, Luo M. Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. PLANT PHYSIOLOGY 2012; 159:118-30. [PMID: 22452855 PMCID: PMC3375955 DOI: 10.1104/pp.112.195446] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/23/2012] [Indexed: 05/20/2023]
Abstract
The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes.
Collapse
Affiliation(s)
- Tao Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Tingting Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Yinan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Maxi Rothbart
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Jing Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | - Shuaixiang Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, People′s Republic of China (T.L., T.F., Y.L., J.Y., S.Z., M.L.); and Institute of Biology/Plant Physiology, Humboldt University, D–10115 Berlin, Germany (T.L., M.R., B.G.)
| | | | | |
Collapse
|
27
|
Hanf R, Fey S, Schmitt M, Hermann G, Dietzek B, Popp J. Catalytic efficiency of a photoenzyme--an adaptation to natural light conditions. Chemphyschem 2012; 13:2013-5. [PMID: 22505323 DOI: 10.1002/cphc.201200194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Robert Hanf
- Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie, Helmholtzweg 4, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Pattanayak GK, Tripathy BC. Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS One 2011; 6:e26532. [PMID: 22031838 PMCID: PMC3198771 DOI: 10.1371/journal.pone.0026532] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022] Open
Abstract
Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen (1O2). As there is no enzymatic detoxification mechanism available in plants to destroy 1O2, its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the 1O2 generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of 1O2 and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to 1O2-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5-aminolevulinicacid and tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delphi, India
- * E-mail:
| |
Collapse
|
29
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF. Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. PLANT MOLECULAR BIOLOGY 2010; 72:643-58. [PMID: 20127142 PMCID: PMC2837180 DOI: 10.1007/s11103-010-9604-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/13/2010] [Indexed: 05/12/2023]
Abstract
Two Chlamydomonas reinhardtii mutants defective in CHLM encoding Mg-protoporphyrin IX methyltransferase (MgPMT) were identified. The mutants, one with a missense mutation (chlM-1) and a second mutant with a splicing defect (chlM-2), do not accumulate chlorophyll, are yellow in the dark and dim light, and their growth is inhibited at higher light intensities. They accumulate Mg-protoporphyrin IX (MgProto), the substrate of MgPMT and this may be the cause for their light sensitivity. In the dark, both mutants showed a drastic reduction in the amounts of core proteins of photosystems I and II and light-harvesting chlorophyll a/b-binding proteins. However, LHC mRNAs accumulated above wild-type levels. The accumulation of the transcripts of the LHC and other genes that were expressed at higher levels in the mutants during dark incubation was attenuated in the initial phase of light exposure. No regulatory effects of the constitutively 7- to 18-fold increased MgProto levels on gene expression were detected, supporting previous results in which MgProto and heme in Chlamydomonas were assigned roles as second messengers only in the transient activation of genes by light.
Collapse
Affiliation(s)
- Linda Meinecke
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Ali Alawady
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Robert Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, 2109 Australia
| | - Marilyn C. Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Bernhard Grimm
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Christoph F. Beck
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Grimm B. Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Shalygo N, Czarnecki O, Peter E, Grimm B. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. PLANT MOLECULAR BIOLOGY 2009; 71:425-36. [PMID: 19680747 DOI: 10.1007/s11103-009-9532-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/18/2009] [Indexed: 05/09/2023]
Abstract
At the last step of the chlorophyll biosynthetic pathway chlorophyll synthase (CHLG) esterifies chlorophyllide a and b with phytyl or geranyl-geranyl pyrophosphate in chloroplasts. Transgenic tobacco plants expressing CHLG RNA in sense and antisense orientation were examined for the effects of excessive and reduced ectopic CHLG expression, respectively, on the chlorophyll biosynthetic pathway and the expression of chlorophyll-binding proteins. Reduced chlorophyll synthase activity does not result in accumulation of chlorophyllide and caused reduced ALA formation and Mg and ferrochelatase activity, while CHLG overexpression correlated with enhanced ALA synthesizing capacity and more chelatase activities. The transcript levels of genes expressing proteins of chlorophyll biosynthesis and chlorophyll-binding proteins were down-regulated in response to reduced CHLG expression. Thus, reduced expression and activity of chlorophyll synthase caused a feedback-controlled inactivation of the initial and rate limiting step of the pathway leading to down regulation of the metabolic flow, while overexpression can mediate a stimulation of the pathway. Chlorophyll synthase is proposed to be important for the co-regulation of the entire pathway and the coordination of synthesis of chlorophyll and the chlorophyll-binding proteins.
Collapse
Affiliation(s)
- Nikolai Shalygo
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 12, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Peter E, Grimm B. GUN4 is required for posttranslational control of plant tetrapyrrole biosynthesis. MOLECULAR PLANT 2009; 2:1198-210. [PMID: 19995725 DOI: 10.1093/mp/ssp072] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In aerobic photosynthetic organisms, GUN4 binds the chlorophyll intermediates protoporphyrin and Mg protoporphyrin, stimulates Mg chelatase activity, and is implicated in plastidic retrograde signaling. GUN4 expression is most abundant in young and greening tissues and parallels the activity of 5-aminolevulinic acid (ALA) ALA and Mg porphyrin biosynthesis during photoperiodic growth. We explored function and mode of action of GUN4 using GUN4-deficient and overexpressing plants. GUN4 overexpression leads to a general activation of the enzymes of chlorophyll biosynthesis. During photoperiodic growth GUN4 deficiency prevents ALA synthesis and chlorophyll accumulation. All these metabolic changes do not correlate with altered gene expression or changes of protein abundance in tetrapyrrole biosynthesis. While ALA feeding fails to compensate GUN4 deficiency during light-dark growth, this approach results in chlorophyll accumulation under continuous dim light. A new model defines the involvement of GUN4 in posttranslational regulation of ALA and Mg porphyrin synthesis, to sustain chlorophyll synthesis, namely under varying environmental conditions.
Collapse
Affiliation(s)
- Enrico Peter
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, D 10115 Berlin, Germany
| | | |
Collapse
|
34
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. MOLECULAR PLANT 2009; 2:1154-80. [PMID: 19969518 DOI: 10.1093/mp/ssp088] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.
Collapse
Affiliation(s)
- Jacques Joyard
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA, CNRS, INRA, Université Joseph Fourier, iRTSV, CEA-Grenoble, 38054 Grenoble-cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
36
|
Peter E, Salinas A, Wallner T, Jeske D, Dienst D, Wilde A, Grimm B. Differential requirement of two homologous proteins encoded by sll1214 and sll1874 for the reaction of Mg protoporphyrin monomethylester oxidative cyclase under aerobic and micro-oxic growth conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1458-67. [PMID: 19540827 DOI: 10.1016/j.bbabio.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/04/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
The two open reading frames in the Synechocystis sp. PCC 6803 genome, sll1214 and sll1874, here designated cycI and cycII, respectively, encode similar proteins, which are involved in the Mg protoporphyrin monomethylester (MgProtoME) cyclase reaction. The impairment of tetrapyrrole biosynthesis was examined by separate inactivation of both cyclase encoding genes followed by analysis of chlorophyll contents, MgProtoME levels and several enzyme activities of tetrapyrrole biosynthesis. We additionally addressed the question, whether the two isoforms can complement cyclase deficiency under normal aerobic and micro-oxic growth conditions in light. A cycII knock-out mutant grew without any adverse symptoms at normal air conditions, but showed MgProtoME accumulation at growth under low oxygen conditions. A complete deletion of cycI failed in spite of mixotrophic growth and low light at both ambient and low oxygen, but resulted in accumulation of 150 and 28 times more MgProtoME, respectively, and circa 60% of the wild-type chlorophyll content. The CycI deficiency induced a feedback-controlled limitation of the metabolic flow in the tetrapyrrole biosynthetic pathway by reduced ALA synthesis and Fe chelatase activity. Ectopic expression of the CycI protein restored the wild-type phenotype in cycI(-) mutant cells under ambient air as well as micro-oxic growth conditions. Overexpressed CycII protein could not compensate for cycI(-) mutation under micro-oxic and aerobic growth conditions, but complemented the cycII knock-out mutant as indicated by wild-type MgProtoME and chlorophyll levels. Our findings indicate the essential contribution of CycI to the cyclase reaction at ambient and low oxygen conditions, while low oxygen conditions additionally require CycII for the cyclase activity.
Collapse
Affiliation(s)
- Enrico Peter
- Institut für Biologie/Pflanzenphysiologie, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Li N, Chu X, Liu X, Li D. Probing the active site of rat porphobilinogen synthase using newly developed inhibitors. Bioorg Chem 2008; 37:33-40. [PMID: 19095280 DOI: 10.1016/j.bioorg.2008.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 11/24/2022]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Porphobilinogen synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. In the present study, a variety of new substrate analogs and reaction intermediate analogs were synthesized, which were used as probes for studying the active site of rat porphobilinogen synthase. The compounds 1, 3, 6, 9, 14, 16, and 28 were found to be competitive inhibitors of rat porphobilinogen synthase with inhibition constants ranging from 0.96 to 73.04mM. Compounds 7, 10, 12, 13, 15, 17, 18, and 26 were found to be irreversible enzyme inhibitors. For irreversible inhibitors, loose-binding inhibitors were found to give stronger inactivation. The amino group and carboxyl group of the analogs were found to be important for their binding to the enzyme. This study increased our understanding of the active site of porphobilinogen synthase.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, SAR, PR China
| | | | | | | |
Collapse
|
38
|
Li N, Chu X, Wu L, Liu X, Li D. Functional studies of rat hydroxymethylbilane synthase. Bioorg Chem 2008; 36:241-51. [PMID: 18760440 DOI: 10.1016/j.bioorg.2008.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/10/2008] [Accepted: 07/21/2008] [Indexed: 01/21/2023]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Hydroxymethylbilane synthase catalyzes a rate-limiting step for the biosyntheses of tetrapyrrolic natural products. We carried out extensive studies of rat hydroxymethylbilane synthase in the present investigation. The enzymatic reaction rate of the holoenzyme was found to be lower than those of the enzyme-intermediate complexes, which corrected the previous theoretical analysis result. Several mutants were constructed, purified and characterized. D44 was found to play an important role in the disassembly of the enzyme-intermediate complexes. E63 and H78 were important for maintaining the activity of the enzyme at high temperature. Four substrate analogs with variation of porphobilinogen side-chain were synthesized and incubated with the enzyme. Three analogs were found to be weak substrates of the enzyme. All four analogs can be used for the preparation of uroporphyrin I analogs.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | |
Collapse
|
39
|
Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 2008; 7:1131-49. [PMID: 18846277 DOI: 10.1039/b807210h] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the most abundant tetrapyrrole molecules essential for photosynthesis in photosynthetic organisms. After many years of intensive research, most of the genes encoding the enzymes for the pathway have been identified, and recently the underlying molecular mechanisms have been elucidated. These studies revealed that the regulation of chlorophyll metabolism includes all levels of control to allow a balanced metabolic flow in response to external and endogenous factors and to ensure adaptation to varying needs of chlorophyll during plant development. Furthermore, identification of biosynthetic genes from various organisms and genetic analysis of functions of identified genes enables us to predict the evolutionary scenario of chlorophyll metabolism. In this review, based on recent findings, we discuss the regulation and evolution of chlorophyll metabolism.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
40
|
Masuda T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. PHOTOSYNTHESIS RESEARCH 2008; 96:121-43. [PMID: 18273690 DOI: 10.1007/s11120-008-9291-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/29/2008] [Indexed: 05/20/2023]
Abstract
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg(2+) into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade--after many years of intensive research--that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
41
|
Zhao GJ, Han KL. Site-specific solvation of the photoexcited protochlorophyllide a in methanol: formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening. Biophys J 2007; 94:38-46. [PMID: 17827245 PMCID: PMC2134880 DOI: 10.1529/biophysj.107.113738] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The site-specific solvation of the photoexcited protochlorophyllide a (Pchlide a) in methanol solvent was investigated using the time-dependent density functional theory method for the first time to our knowledge. The intermolecular site-specific coordination and hydrogen-bonding interactions between Pchlide a and methanol molecules play a very important role in the steady-state and time-resolved spectra. All the calculated absorption and fluorescence spectra of the isolated Pchlide a and its coordinated and hydrogen-bonded complexes with methanol demonstrate that the novel fluorescence shoulder at approximately 690 nm of Pchlide a in methanol should be ascribed to the coordinated and hydrogen-bonded Pchlide a-(MeOH)(4) complex. This coordinated and hydrogen-bonded complex can also account for the intermediate state found in the time-resolved spectroscopic studies. Herein, we have theoretically confirmed that the intermolecular coordination and hydrogen bonds between Pchlide a and methanol molecules can be strengthened in the electronically excited state of Pchlide a. Furthermore, the site-specific solvation of the photoexcited Pchlide a can be induced by the intermolecular coordination and hydrogen-bond strengthening upon photoexcitation. Then the hydrogen-bonded intermediate state is formed in 22-27 ps timescales after the site-specific solvation. All the steady-state and time-resolved spectral features of Pchlide a in different solvents can be explained by the formation of this hydrogen-bonded intermediate state after the site-specific solvation, which is induced by the coordination and hydrogen-bond strengthening.
Collapse
Affiliation(s)
- Guang-Jiu Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| | | |
Collapse
|
42
|
Frank W, Baar KM, Qudeimat E, Woriedh M, Alawady A, Ratnadewi D, Gremillon L, Grimm B, Reski R. A mitochondrial protein homologous to the mammalian peripheral-type benzodiazepine receptor is essential for stress adaptation in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1004-18. [PMID: 17651369 DOI: 10.1111/j.1365-313x.2007.03198.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The cloning of abiotic stress-inducible genes from the moss Physcomitrella patens led to the identification of the gene PpTSPO1, encoding a protein homologous to the mammalian mitochondrial peripheral-type benzodiazepine receptor and the bacterial tryptophane-rich sensory protein. This class of proteins is involved in the transport of intermediates of the tetrapyrrole biosynthesis pathway. Like the mammalian homologue, the PpTSPO1 protein is localized to mitochondria. The generation of PpTSPO1-targeted moss knock-out lines revealed an essential function of the gene in abiotic stress adaptation. Under stress conditions, the PpTSPO1 null mutants show elevated H(2)O(2) levels, enhanced lipid peroxidation and cell death, indicating an important role of PpTSPO1 in redox homeostasis. We hypothesize that PpTSPO1 acts to direct porphyrin precursors to the mitochondria for heme formation, and is involved in the removal of photoreactive tetrapyrrole intermediates.
Collapse
Affiliation(s)
- Wolfgang Frank
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li N, Ma DL, Liu X, Wu L, Chu X, Wong KY, Li D. Characterization of His-tagged Rat Uroporphyrinogen III Synthase Wild-Type and Variant Enzymes. Protein J 2007; 26:569-76. [PMID: 17763925 DOI: 10.1007/s10930-007-9099-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Urogen III synthase catalyzes a key step in the formation of urogen III, a common intermediate for tetrapyrrolic natural products. In the present study, we cloned, purified, and characterized His-tagged rat urogen III synthase. The mechanism of enzymatic reaction was studied through site-directed mutagenesis of eight highly conserved residues with functional side chains around the active site followed with activity tests. Lys10, Asp17, Glu68, Tyr97, Asn121, Lys147, and His173 have not been studied previously, which were found to be unessential for enzymatic reaction. Tyr168 was identified as an important residue for enzymatic reaction catalyzed by rat urogen III synthase. Molecular modeling suggests the hydroxyl group of Tyr168 side chain is 3.5 A away from the D ring, and is within hydrogen bond distance (1.9 A) with acetate side chain of the D ring.
Collapse
Affiliation(s)
- Nan Li
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Dietzek B, Kiefer W, Yartsev A, Sundström V, Schellenberg P, Grigaravicius P, Hermann G, Popp J, Schmitt M. The excited-state chemistry of protochlorophyllide a: a time-resolved fluorescence study. Chemphyschem 2007; 7:1727-33. [PMID: 16841352 DOI: 10.1002/cphc.200600172] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.
Collapse
Affiliation(s)
- Benjamin Dietzek
- Institut für Physikalische Chemie, Bayerische Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carrière F, Bassi R, Grimm B, Nussaume L, Havaux M. The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:795-809. [PMID: 17553115 DOI: 10.1111/j.1365-313x.2007.03090.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The early light-induced proteins (ELIPs) belong to the multigenic family of pigment-binding light-harvesting complexes. ELIPs accumulate transiently and are believed to play a protective role in plants exposed to high levels of light. Constitutive expression of the ELIP2 gene in Arabidopsis resulted in a marked reduction of the pigment content of the chloroplasts, both in mature leaves and during greening of etiolated seedlings. The chlorophyll loss was associated with a decrease in the number of photosystems in the thylakoid membranes, but the photosystems present were fully assembled and functional. A detailed analysis of the chlorophyll-synthesizing pathway indicated that ELIP2 accumulation downregulated the level and activity of two important regulatory steps: 5-aminolevulinate synthesis and Mg-protoporphyrin IX (Mg-Proto IX) chelatase activity. The contents of glutamyl tRNA reductase and Mg chelatase subunits CHLH and CHLI were lowered in response to ELIP2 accumulation. In contrast, ferrochelatase activity was not affected and the inhibition of Heme synthesis was null or very moderate. As a result of reduced metabolic flow from 5-aminolevulinic acid, the steady state levels of various chlorophyll precursors (from protoporphyrin IX to protochlorophyllide) were strongly reduced in the ELIP2 overexpressors. Taken together, our results indicate that the physiological function of ELIPs could be related to the regulation of chlorophyll concentration in thylakoids. This seems to occur through an inhibition of the entire chlorophyll biosynthesis pathway from the initial precursor of tetrapyrroles, 5-aminolevulinic acid. We suggest that ELIPs work as chlorophyll sensors that modulate chlorophyll synthesis to prevent accumulation of free chlorophyll, and hence prevent photooxidative stress.
Collapse
Affiliation(s)
- Tzvetelina Tzvetkova-Chevolleau
- CEA/Cadarache, IBEB, Service de Biologie Végétale et de Microbiologie Environnementales, UMR 6191 CNRS-CEA-Aix Marseille Univ., F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Reinhold T, Alawady A, Grimm B, Beran KC, Jahns P, Conrath U, Bauer J, Reiser J, Melzer M, Jeblick W, Neuhaus HE. Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:293-304. [PMID: 17355434 DOI: 10.1111/j.1365-313x.2007.03049.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
When grown in short day conditions and at low light, leaves of Arabidopsis plants with mutations in the genes encoding two plastidial ATP/ADP transporters (so-called null mutants) spontaneously develop necrotic lesions. Under these conditions, the mutants also display light-induced accumulation of H(2)O(2) and constitutive expression of genes for copper/zinc superoxide dismutase 2 and ascorbate peroxidase 1. In the light phase, null mutants accumulate high levels of phototoxic protoporphyrin IX but have only slightly reduced levels of Mg protoporphyrin IX. The physiological changes are associated with reduced magnesium-chelatase activity. Since the expression of genes encoding any of the three subunits of magnesium-chelatase is similar in wild type and null mutants, decreased enzyme activity is probably due to post-translational modification which might be due to limited availability of ATP in plastids during the night. Surprisingly, the formation of necrotic lesions was absent when null mutants were grown either in long days and low light intensity or in short days and high light intensity. We ascribe the lack of lesion phenotype to increased nocturnal ATP supply due to glycolytic degradation of starch which may lead to additional substrate-level phosphorylation in the stroma. Thus, nocturnal import of ATP into chloroplasts represents a crucial, previously unknown process that is required for controlled chlorophyll biosynthesis and for preventing photooxidative damage.
Collapse
Affiliation(s)
- Thomas Reinhold
- Technische Universität Kaiserslautern, Pflanzenphysiologie, Fachbereich Biologie, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Ulf Lindh
- Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
48
|
Abstract
Tetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Higher plants contain four classes of tetrapyrroles, namely, chlorophyll, heme, siroheme, and phytochromobilin. All of the tetrapyrroles are derived from a common biosynthetic pathway. Here we review recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view. The progress consists of biochemical, structural, and genetic analyses, which contribute to our understanding of how the flow and the synthesis of tetrapyrrole molecules are regulated and how the potentially toxic intermediates of tetrapyrrole synthesis are maintained at low levels. We also describe interactions of tetrapyrrole biosynthesis and other cellular processes including the stay-green events, the cell-death program, and the plastid-to-nucleus signal transduction. Finally, we present several reports on attempts for agricultural and horticultural applications in which the tetrapyrrole biosynthesis pathway was genetically modified.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo 060-0819, Japan.
| | | |
Collapse
|
49
|
Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:499-510. [PMID: 17059408 DOI: 10.1111/j.1365-313x.2006.02894.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
Collapse
Affiliation(s)
- Inna Lermontova
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|