1
|
Rao D, Füssy Z, Brisbin MM, McIlvin MR, Moran DM, Allen AE, Follows MJ, Saito MA. Flexible B 12 ecophysiology of Phaeocystis antarctica due to a fusion B 12-independent methionine synthase with widespread homologues. Proc Natl Acad Sci U S A 2024; 121:e2204075121. [PMID: 38306482 PMCID: PMC10861871 DOI: 10.1073/pnas.2204075121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.
Collapse
Affiliation(s)
- Deepa Rao
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Zoltán Füssy
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
| | | | | | - Dawn M. Moran
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| | - Andrew E. Allen
- Microbial and Environmental Genomics Department, J.C. Venter Institute, La Jolla, CA92037
- Integrative Oceanography Division, Scripps Instition of Oceanography, University of California San Diego, La Jolla, CA92037
| | - Michael J. Follows
- Earth Atmospheric Planetary Sciences Department, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mak A. Saito
- Marine Chemistry and Geochemistry Department, Woods Hole, MA02543
| |
Collapse
|
2
|
Munteanu C, Schwartz B. B Vitamins, Glucoronolactone and the Immune System: Bioavailability, Doses and Efficiency. Nutrients 2023; 16:24. [PMID: 38201854 PMCID: PMC10780850 DOI: 10.3390/nu16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present review deals with two main ingredients of energy/power drinks: B vitamins and glucuronolactone and their possible effect on the immune system. There is a strong relationship between the recommended daily dose of selected B vitamins and a functional immune system. Regarding specific B vitamins: (1) Riboflavin is necessary for the optimization of reactive oxygen species (ROS) in the fight against bacterial infections caused by Staphylococcus aureus and Listeria monocytogenes. (2) Niacin administered within normal doses to obese rats can change the phenotype of skeletal fibers, and thereby affect muscle metabolism. This metabolic phenotype induced by niacin treatment is also confirmed by stimulation of the expression of genes involved in the metabolism of free fatty acids (FFAs) and oxidative phosphorylation at this level. (3) Vitamin B5 effects depend primarily on the dose, thus large doses can cause diarrhea or functional disorders of the digestive tract whereas normal levels are effective in wound healing, liver detoxification, and joint health support. (4) High vitamin B6 concentrations (>2000 mg per day) have been shown to exert a significant negative impact on the dorsal root ganglia. Whereas, at doses of approximately 70 ng/mL, sensory symptoms were reported in 80% of cases. (5) Chronic increases in vitamin B12 have been associated with the increased incidence of solid cancers. Additionally, glucuronolactone, whose effects are not well known, represents a controversial compound. (6) Supplementing with D-glucarates, such as glucuronolactone, may help the body's natural defense system function better to inhibit different tumor promoters and carcinogens and their consequences. Cumulatively, the present review aims to evaluate the relationship between the selected B vitamins group, glucuronolactone, and the immune system and their associations to bioavailability, doses, and efficiency.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
3
|
Guo YY, Tian ZH, Ma C, Han YC, Bai D, Jiang Z. Unlocking mild-condition benzene ring contraction using nonheme diiron N-oxygenase. Chem Sci 2023; 14:11907-11913. [PMID: 37920353 PMCID: PMC10619644 DOI: 10.1039/d3sc04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Benzene ring contractions are useful yet rare reactions that offer a convenient synthetic route to various valuable chemicals. However, the traditional methods of benzene contraction rely on noble-metal catalysts under extreme conditions with poor efficiency and uncontrollable selectivity. Mild-condition contractions of the benzene ring are rarely reported. This study presents a one-step, one-pot benzene ring contraction reaction mediated by an engineered nonheme diiron N-oxygenase. Using various aniline substrates as amine sources, the enzyme causes the phloroglucinol-benzene-ring contraction to afford a series of 4-cyclopentene-1,3-dione structures. A reaction detail study reveals that the nonheme diiron N-oxygenase first oxidizes the aromatic amine to a nitroso intermediate, which then attacks the phloroglucinol anion and causes benzene ring contraction. Besides, we have identified two potent antitumor compounds from the ring-contracted products.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ChunHua Ma
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - DaChang Bai
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ZhiYong Jiang
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
4
|
Kunkle DE, Skaar EP. Moving metals: How microbes deliver metal cofactors to metalloproteins. Mol Microbiol 2023; 120:547-554. [PMID: 37408317 PMCID: PMC10592388 DOI: 10.1111/mmi.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
First row d-block metal ions serve as vital cofactors for numerous essential enzymes and are therefore required nutrients for all forms of life. Despite this requirement, excess free transition metals are toxic. Free metal ions participate in the production of noxious reactive oxygen species and mis-metalate metalloproteins, rendering enzymes catalytically inactive. Thus, bacteria require systems to ensure metalloproteins are properly loaded with cognate metal ions to maintain protein function, while avoiding metal-mediated cellular toxicity. In this perspective we summarize the current mechanistic understanding of bacterial metallocenter maturation with specific emphasis on metallochaperones; a group of specialized proteins that both shield metal ions from inadvertent reactions and distribute them to cognate target metalloproteins. We highlight several recent advances in the field that have implicated new classes of proteins in the distribution of metal ions within bacterial proteins, while speculating on the future of the field of bacterial metallobiology.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Young TR, Deery E, Foster AW, Martini MA, Osman D, Warren MJ, Robinson NJ. Two Distinct Thermodynamic Gradients for Cellular Metalation of Vitamin B 12. JACS AU 2023; 3:1472-1483. [PMID: 37234125 PMCID: PMC10206600 DOI: 10.1021/jacsau.3c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
The acquisition of CoII by the corrin component of vitamin B12 follows one of two distinct pathways, referred to as early or late CoII insertion. The late insertion pathway exploits a CoII metallochaperone (CobW) from the COG0523 family of G3E GTPases, while the early insertion pathway does not. This provides an opportunity to contrast the thermodynamics of metalation in a metallochaperone-requiring and a metallochaperone-independent pathway. In the metallochaperone-independent route, sirohydrochlorin (SHC) associates with the CbiK chelatase to form CoII-SHC. CoII-buffered enzymatic assays indicate that SHC binding enhances the thermodynamic gradient for CoII transfer from the cytosol to CbiK. In the metallochaperone-dependent pathway, hydrogenobyrinic acid a,c-diamide (HBAD) associates with the CobNST chelatase to form CoII-HBAD. Here, CoII-buffered enzymatic assays indicate that CoII transfer from the cytosol to HBAD-CobNST must somehow traverse a highly unfavorable thermodynamic gradient for CoII binding. Notably, there is a favorable gradient for CoII transfer from the cytosol to the MgIIGTP-CobW metallochaperone, but further transfer of CoII from the GTP-bound metallochaperone to the HBAD-CobNST chelatase complex is thermodynamically unfavorable. However, after nucleotide hydrolysis, CoII transfer from the chaperone to the chelatase complex is calculated to become favorable. These data reveal that the CobW metallochaperone can overcome an unfavorable thermodynamic gradient for CoII transfer from the cytosol to the chelatase by coupling this process to GTP hydrolysis.
Collapse
Affiliation(s)
- Tessa R. Young
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Evelyne Deery
- School
of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K.
| | - Andrew W. Foster
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Maria Alessandra Martini
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Deenah Osman
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Martin J. Warren
- School
of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K.
- Quadram
Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, U.K.
| | - Nigel J. Robinson
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
6
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
7
|
Song X, Lin S, Hu Z, Liu Y, Deng Y, Tang YZ. Possible functions of CobW domain-containing (CBWD) genes in dinoflagellates using Karlodinium veneficum as a representative. HARMFUL ALGAE 2022; 117:102274. [PMID: 35944961 DOI: 10.1016/j.hal.2022.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Since > 91% of dinoflagellates are proven auxotrophs of vitamin B12 and the cobalamin synthetase W (CobW) is a key gene involved in vitamin B12 synthesis pathway, a number of CobW domain-containing (CBWD) genes in dinoflagellates (DinoCBWDs) were surprisedly found from our transcriptomic and meta-transcriptomic studies. A total of 88 DinoCBWD genes were identified from the genomes and transcriptomes of four dinoflagellates, with five being cloned for full-lengths and characterized using the cosmopolitan and ecologically-important dinoflagellates Karlodinium veneficum and Scrippsiella trochoidea (synonym of Scrippsiella acuminata). DinoCBWDs were verified being irrelevant to vitamin B12 biosynthesis due to their transcriptions irresponsive to vitamin B12 levels and their phylogenetic positions. A comprehensive phylogenetic analysis demonstrated 75 out of the 88 DinoCBWD genes identified belong to three subfamilies of COG0523 protein family, of which most prokaryotic members are reported to be metallochaperones and the eukaryotic members are ubiquitously found but mostly unknown for their functions. Our results from K. veneficum demonstrated DinoCBWDs are associated with metal homeostasis and other divergent functions, with four KvCBWDs involving in zinc homeostasis and KvCBWD1 likely functioning as Fe-type nitrile hydratase activator. In addition, conserved motif analysis revealed the structural foundation of KvCBWD proteins that are consistent with previously described CBWD proteins with GTPase activity and metal binding. Our results provide a stepping-stone toward better understanding the functions of DinoCBWDs and the COG0523 family.
Collapse
Affiliation(s)
- Xiaoying Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Hossain MN, Senaka Ranadheera C, Fang Z, Ajlouni S. Production of short chain fatty acids and vitamin B12 during the in-vitro digestion and fermentation of probiotic chocolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Morris JA, Lickey BS, Liptak MD. Insertion of cobalt into tetrapyrroles. VITAMINS AND HORMONES 2022; 119:1-22. [PMID: 35337616 DOI: 10.1016/bs.vh.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 is one of the most complex cofactors known, and this chapter will discuss current understanding with regards to the cobalt insertion step of its syntheses. Two total syntheses of vitamin B12 were reported in the 1970s, which remain two of the most exceptional achievements of natural product synthesis. In subsequent years, two distinct biosynthetic pathways were identified in aerobic and anaerobic organisms. For these biosynthetic pathways, selectivity for Co(II) over other divalent metal ions with similar ionic radii and coordination chemistry remains an open question with three competing hypotheses proposed: metal affinity, tetrapyrrole distortion, and product inhibition. A 20 step biosynthetic route to convert 5-aminolevulinic acid (ALA) to vitamin B12 was elucidated in aerobic organisms in the 1990s, where cobalt is inserted relatively late in the pathway by the CobNST multi-protein complex. This chapter includes a mechanistic proposal for this reaction, but the majority of the proposal is based upon analogy to the ChlDHI magnesium chelatase complex as critical data for the cobalt chelatase is lacking. Later, in the 2010s, a distinct 21 step pathway from ALA to vitamin B12 was reported in anaerobic organisms, where cobalt is inserted early in the pathway by the enzyme CbiK. A recent study strongly suggests that the cobalt affinity of CbiK is the origin of cobalt selectivity for CbiK, but several important mechanistic questions remain unanswered. In general, it is expected that significant insight into the cobalt insertion mechanisms of CobNST and CbiK could be derived from additional structural, spectroscopic, and computational data.
Collapse
Affiliation(s)
- J A Morris
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - B S Lickey
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - M D Liptak
- Department of Chemistry, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
10
|
Calculating metalation in cells reveals CobW acquires Co II for vitamin B 12 biosynthesis while related proteins prefer Zn II. Nat Commun 2021; 12:1195. [PMID: 33608553 PMCID: PMC7895991 DOI: 10.1038/s41467-021-21479-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/25/2021] [Indexed: 02/01/2023] Open
Abstract
Protein metal-occupancy (metalation) in vivo has been elusive. To address this challenge, the available free energies of metals have recently been determined from the responses of metal sensors. Here, we use these free energy values to develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. We use the calculator to understand the function and mechanism of GTPase CobW, a predicted CoII-chaperone for vitamin B12. Upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator also reveals that related GTPases with comparable ZnII affinities to CobW, preferentially acquire ZnII due to their relatively weaker CoII affinities. The calculator is made available here for use with other proteins.
Collapse
|
11
|
Osman D, Cooke A, Young TR, Deery E, Robinson NJ, Warren MJ. The requirement for cobalt in vitamin B 12: A paradigm for protein metalation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118896. [PMID: 33096143 PMCID: PMC7689651 DOI: 10.1016/j.bbamcr.2020.118896] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Vitamin B12, cobalamin, is a cobalt-containing ring-contracted modified tetrapyrrole that represents one of the most complex small molecules made by nature. In prokaryotes it is utilised as a cofactor, coenzyme, light sensor and gene regulator yet has a restricted role in assisting only two enzymes within specific eukaryotes including mammals. This deployment disparity is reflected in another unique attribute of vitamin B12 in that its biosynthesis is limited to only certain prokaryotes, with synthesisers pivotal in establishing mutualistic microbial communities. The core component of cobalamin is the corrin macrocycle that acts as the main ligand for the cobalt. Within this review we investigate why cobalt is paired specifically with the corrin ring, how cobalt is inserted during the biosynthetic process, how cobalt is made available within the cell and explore the cellular control of cobalt and cobalamin levels. The partitioning of cobalt for cobalamin biosynthesis exemplifies how cells assist metalation.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Anastasia Cooke
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Tessa R Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
12
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Heterologous expression of cobalamin dependent class-III enzymes. Protein Expr Purif 2021; 177:105743. [PMID: 32871253 PMCID: PMC7585037 DOI: 10.1016/j.pep.2020.105743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
The family of cobalamin class-III dependent enzymes is composed of the reductive dehalogenases (RDases) and related epoxyqueuosine reductases. RDases are crucial for the energy conserving process of organohalide respiration. These enzymes have the ability to reductively cleave carbon-halogen bonds, present in a number of environmentally hazardous pollutants, making them of significant interest for bioremediation applications. Unfortunately, it is difficult to obtain sufficient yields of pure RDase isolated from organohalide respiring bacteria for biochemical studies. Hence, robust heterologous expression systems are required that yield the active holo-enzyme which requires both iron-sulphur cluster and cobalamin incorporation. We present a comparative study of the heterologous expression strains Bacillus megaterium, Escherichia coli HMS174(DE3), Shimwellia blattae and a commercial strain of Vibrio natrigenes, for cobalamin class-III dependent enzymes expression. The Nitratireductor pacificus pht-3B reductive dehalogenase (NpRdhA) and the epoxyqueuosine reductase from Streptococcus thermophilus (StoQ) were used as model enzymes. We also analysed whether co-expression of the cobalamin transporter BtuB, supports increased cobalamin incorporation into these enzymes in E. coli. We conclude that while expression in Bacillus megaterium resulted in the highest levels of cofactor incorporation, co-expression of BtuB in E. coli presents an appropriate balance between cofactor incorporation and protein yield in both cases.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
13
|
Zhang JH, Yuan H, Wang X, Dai HE, Zhang M, Liu L. Crystal structure of the large subunit of cobaltochelatase from Mycobacterium tuberculosis. Proteins 2020; 89:462-467. [PMID: 33210347 DOI: 10.1002/prot.26023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022]
Abstract
Cobaltochelatase in aerobic cobalamin biosynthesis is a complex composed of three subunits. The large subunit CobN is a 140-kDa protein and is homologous to the ChlH subunit of magnesium chelatase. Previously we have reported the 2.5-Å structure of a cyanobacterial ChlH. Here we present the 1.8-Å structure of CobN from Mycobacterium tuberculosis. The overall structure of CobN and ChlH is similar, but significant difference occurs in the head domain. Structural comparison of domains between the two proteins unravels candidate regions for substrate binding and helps to locate a triad of residues that may be essential for metal ion binding.
Collapse
Affiliation(s)
- Jia-Hui Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Hui Yuan
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiao Wang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Huai-En Dai
- School of Life Sciences, Anhui University, Hefei, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| |
Collapse
|
14
|
Metabolic engineering and optimization of the fermentation medium for vitamin B 12 production in Escherichia coli. Bioprocess Biosyst Eng 2020; 43:1735-1745. [PMID: 32399750 DOI: 10.1007/s00449-020-02355-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 01/22/2023]
Abstract
Vitamin B12 is a crucial fine chemical that is widely used in the pharmaceutical, food and chemical industries, and its production solely dependents on microbial fermentation. We previously constructed an artificial vitamin B12 biosynthesis pathway in Escherichia coli, but the yield of the engineered strains was low. Here, we removed metabolic bottlenecks of the vitamin B12 biosynthesis pathway in engineered E. coli strains. After screening cobB genes from different sources, optimizing the expression of cobN and customizing the ribosome binding sites of cobS and cobT, the vitamin B12 yield increased to 152.29 μg/g dry cell weight (DCW). Optimization of the downstream module, which converts co(II)byrinic acid a,c-diamide into adenosylcobinamide phosphate, elevated the vitamin B12 yield to 249.04 μg/g DCW. A comparison of a variety of equivalent components indicated that glucose and corn steep liquor are optimal carbon and nitrogen sources, respectively. Finally, an orthogonal array design was applied to determine the optimal concentrations of glucose and nitrogen sources including corn steep liquor and yeast extract, through which a vitamin B12 yield of 530.29 μg/g DCW was obtained. The metabolic modifications and optimization of fermentation conditions achieved in this study offer a basis for further improving vitamin B12 production in E. coli and will hopefully accelerate its industrial application.
Collapse
|
15
|
Brewster JT, Root HD, Mangel D, Samia A, Zafar H, Sedgwick AC, Lynch VM, Sessler JL. UO 2 2+-mediated ring contraction of pyrihexaphyrin: synthesis of a contracted expanded porphyrin-uranyl complex. Chem Sci 2019; 10:5596-5602. [PMID: 31293744 PMCID: PMC6552508 DOI: 10.1039/c9sc01593k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
A new mixed hexaphyrin, pyrihexaphyrin (0.1.0.0.1.0) (1), was prepared via an acid catalyzed cyclization between 5,5′-(pyridine-2,6-diyl)bis(pyrrole-2-carbaldehyde) (2) and terpyrrole (3).
A new mixed hexaphyrin, pyrihexaphyrin (0.1.0.0.1.0) (1), was prepared via an acid catalyzed cyclization between 5,5′-(pyridine-2,6-diyl)bis(pyrrole-2-carbaldehyde) (2) and terpyrrole (3). This expanded porphyrin undergoes a ring contraction upon metallation with uranyl silylamide [UO2[N(SiMe3)2]2] under anaerobic conditions followed by purification over basic aluminum oxide exposed to air. The uranyl-contracted pyrihexaphyrin (0.0.0.0.1.0) complex (4) produced as a result contains a unique structural architecture and possesses a formally 22 π-electron globally aromatic periphery, as inferred from NMR spectroscopy, single crystal X-ray diffraction, and computational analyses. Support for the proposed contraction mechanism came from experimental data and DFT calculations. Proton NMR and mass spectroscopic analysis provided the first insight into expanded porphyrin-mediated activation of the uranyl dication (UO22+).
Collapse
Affiliation(s)
- James T Brewster
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Harrison D Root
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Daniel Mangel
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Adam Samia
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Hadiqa Zafar
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| | - Jonathan L Sessler
- Department of Chemistry , The University of Texas at Austin , 105 East 24th St., Stop A5300 , Austin , Texas 78712 , USA .
| |
Collapse
|
16
|
Khemthong S, Nuonming P, Nookabkaewb S, Sukchawalit R, Mongkolsuk S. The Agrobacterium tumefaciens atu3184 gene, a member of the COG0523 family of GTPases, is regulated by the transcriptional repressor Zur. Microbiol Res 2019; 222:14-24. [PMID: 30928026 DOI: 10.1016/j.micres.2019.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Analysis of the Agrobacterium tumefaciens C58 genome revealed a potential Zur (zinc uptake regulator) binding site (5'-GATATGTTATTACATTAC-3', the underlined letters are the center of symmetry of the inverted palindrome) located in the upstream region of atu3184, whose gene product is a member of the COG0523 subfamily of G3E GTPases. The specific interaction of the Zur protein with the 18-bp inverted repeat operator motif in the presence of zinc was demonstrated in vitro by a DNA band shift assay and a DNase I footprinting assay. A LacZ reporter fusion assay further confirmed that Zur negatively regulates atu3184 promoter activity in vivo. The expression of atu3184 was upregulated in response to zinc limitation in the wild-type strain, but the zur mutant strain exhibited high-level constitutive expression of atu3184 under all conditions, irrespective of the zinc levels. It is likely that A. tumefaciens Zur senses zinc and directly regulates the atu3184 promoter by a molecular mechanism similar to that of Escherichia coli Zur, where the operator DNA is surrounded by four Zur monomers forming two dimers bound on the opposite sides of the DNA duplex. Disruption of atu3184 did not affect cell growth under metal-limited conditions and had no effect on the total cellular zinc content. Furthermore, an A. tumefaciens strain lacking atu3184 caused a tumor disease in a host plant.
Collapse
Affiliation(s)
- Sasimaporn Khemthong
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Puttamas Nuonming
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Sumontha Nookabkaewb
- Laboratory of Pharmacology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand
| | - Rojana Sukchawalit
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Applied Biological Sciences, Chulabhorn Graduate Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand.
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand
| |
Collapse
|
17
|
Kandari D, Gopalani M, Gupta M, Joshi H, Bhatnagar S, Bhatnagar R. Identification, Functional Characterization, and Regulon Prediction of the Zinc Uptake Regulator ( zur) of Bacillus anthracis - An Insight Into the Zinc Homeostasis of the Pathogen. Front Microbiol 2019; 9:3314. [PMID: 30687290 PMCID: PMC6336718 DOI: 10.3389/fmicb.2018.03314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022] Open
Abstract
Zinc has an abounding occurrence in the prokaryotes and plays paramount roles including catalytic, structural, and regulatory. Zinc uptake regulator (Zur), a Fur family transcriptional regulator, is connoted in maintaining zinc homeostasis in the pathogenic bacteria by binding to zinc and regulating the genes involved in zinc uptake and mobilization. Zinc homeostasis has been marginally scrutinized in Bacillus anthracis, the top-rated bio-terror agent, with no decipherment of the role of Zur. Of the three Fur family regulators in B. anthracis, BAS4181 is annotated as a zinc-specific transcriptional regulator. This annotation was further substantiated by our stringent computational and experimental analyses. The residues critical for zinc and DNA binding were delineated by homology modeling and sequence/structure analysis. ba zur existed as a part of a three-gene operon. Purified BaZur prodigiously existed in the dimeric form, indicated by size exclusion chromatography and blue native-polyacrylamide gel electrophoresis (PAGE). Computational and manual strategies were employed to decipher the putative regulon of ba zur, comprising of 11 genes, controlled by six promoters, each harboring at least one Zur box. The DNA binding capability of the purified BaZur to the upstream regions of the ba zur operon, yciC, rpmG, znuA, and genes encoding a GTPase cobalamine synthesis protein and a permease was ascertained by electrophoretic mobility shift assays. The regulon genes, implicated in zinc uptake and mobilization, were mostly negatively regulated by BaZur. The ba zur expression was downregulated upon exposure of cells to an excess of zinc. Conversely, it exhibited a marked upregulation under N, N, N', N'-Tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) mediated zinc-depleted environment, adding credence to its negative autoregulation. Moreover, an increase in the transcript levels of the regulon genes znuA, rpmG, and yciC upon exposure of cells to TPEN connoted their role in combating hypo-zincemic conditions by bringing about zinc uptake and mobilization. Thus, this study functionally characterizes Zur of B. anthracis and elucidates its role in maintaining zinc homeostasis.
Collapse
Affiliation(s)
- Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Manish Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, University of Delhi, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
18
|
Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B 12. Nat Commun 2018; 9:4917. [PMID: 30464241 PMCID: PMC6249242 DOI: 10.1038/s41467-018-07412-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/30/2022] Open
Abstract
The only known source of vitamin B12 (adenosylcobalamin) is from bacteria and archaea. Here, using genetic and metabolic engineering, we generate an Escherichia coli strain that produces vitamin B12 via an engineered de novo aerobic biosynthetic pathway. In vitro and/or in vivo analysis of genes involved in adenosylcobinamide phosphate biosynthesis from Rhodobacter capsulatus suggest that the biosynthetic steps from co(II)byrinic acid a,c-diamide to adocobalamin are the same in both the aerobic and anaerobic pathways. Finally, we increase the vitamin B12 yield of a recombinant E. coli strain by more than ∼250-fold to 307.00 µg g−1 DCW via metabolic engineering and optimization of fermentation conditions. Beyond our demonstration of E. coli as a microbial biosynthetic platform for vitamin B12 production, our study offers an encouraging example of how the several dozen proteins of a complex biosynthetic pathway can be transferred between organisms to facilitate industrial production. Vitamin B12 is an essential nutrient with limited natural sources. Here the authors transfer 28 pathway synthesis genes from several bacteria including R. capsulatus to E. coli and, using metabolic engineering and optimised fermentation conditions, achieve high yields.
Collapse
|
19
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
20
|
Abstract
Vitamin B12 is synthesized only by certain bacteria and archaeon, but not by plants. The synthesized vitamin B12 is transferred and accumulates in animal tissues, which can occur in certain plant and mushroom species through microbial interaction. In particular, the meat and milk of herbivorous ruminant animals (e.g. cattle and sheep) are good sources of vitamin B12 for humans. Ruminants acquire vitamin B12, which is considered an essential nutrient, through a symbiotic relationship with the bacteria present in their stomachs. In aquatic environments, most phytoplankton acquire vitamin B12 through a symbiotic relationship with bacteria, and they become food for larval fish and bivalves. Edible plants and mushrooms rarely contain a considerable amount of vitamin B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. Thus, humans acquire vitamin B12 formed by microbial interaction via mainly ruminants and fish (or shellfish) as food sources. In this review, up-to-date information on vitamin B12 sources and bioavailability are also discussed. Impact statement To prevent vitamin B12 (B12) deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify foods that contain high levels of B12. B12 is synthesized by only certain bacteria and archaeon, but not by plants or animals. The synthesized B12 is transferred and accumulated in animal tissues, even in certain plant tissues via microbial interaction. Meats and milks of herbivorous ruminant animals are good sources of B12 for humans. Ruminants acquire the essential B12 through a symbiotic relationship with bacteria inside the body. Thus, we also depend on B12-producing bacteria located in ruminant stomachs. While edible plants and mushrooms rarely contain a considerable amount of B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. In this mini-review, we described up-to-date information on B12 sources and bioavailability with reference to the interaction of microbes as B12-producers.
Collapse
Affiliation(s)
- Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
21
|
Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME JOURNAL 2017; 11:1434-1446. [PMID: 28186498 DOI: 10.1038/ismej.2017.2] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Many microorganisms are unable to synthesize essential B vitamin-related enzyme cofactors de novo. The underlying mechanisms by which such microbes survive in multi-species communities are largely unknown. We previously reported the near-complete genome sequence of two ~18-member unicyanobacterial microbial consortia that maintain stable membership on defined medium lacking vitamins. Here we have used genome analysis and growth studies on isolates derived from the consortia to reconstruct pathways for biogenesis of eight essential cofactors and predict cofactor usage and precursor exchange in these communities. Our analyses revealed that all but the two Halomonas and cyanobacterial community members were auxotrophic for at least one cofactor. We also observed a mosaic distribution of salvage routes for a variety of cofactor precursors, including those produced by photolysis. Potentially bidirectional transporters were observed to be preferentially in prototrophs, suggesting a mechanism for controlled precursor release. Furthermore, we found that Halomonas sp. do not require cobalamin nor control its synthesis, supporting the hypothesis that they overproduce and export vitamins. Collectively, these observations suggest that the consortia rely on syntrophic metabolism of cofactors as a survival strategy for optimization of metabolic exchange within a shared pool of micronutrients.
Collapse
|
22
|
Bito T, Bito M, Asai Y, Takenaka S, Yabuta Y, Tago K, Ohnishi M, Mizoguchi T, Watanabe F. Characterization and Quantitation of Vitamin B 12 Compounds in Various Chlorella Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8516-8524. [PMID: 27776413 DOI: 10.1021/acs.jafc.6b03550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vitamin B12 was determined and characterized in 19 dried Chlorella health supplements. Vitamin contents of dried Chlorella cells varied from <0.1 μg to approximately 415 μg per 100 g of dry weight. Subsequent liquid chromatography/electrospray ionization-tandem mass spectrometry analyses showed the presence of inactive corrinoid compounds, a cobalt-free corrinoid, and 5-methoxybenzimidazolyl cyanocobamide (factor IIIm) in four and three high vitamin B12-containing Chlorella tablets, respectively. In four Chlorella tablet types with high and moderate vitamin B12 contents, the coenzyme forms of vitamin B12 5'-deoxyadenosylcobalamin (approximately 32%) and methylcobalamin (approximately 8%) were considerably present, whereas the unnaturally occurring corrinoid cyanocobalamin was present at the lowest concentrations. The species Chlorella sorokiniana (formerly Chlorella pyrenoidosa) is commonly used in dietary supplements and did not show an absolute requirement of vitamin B12 for growth despite vitamin B12 uptake from the medium being observed. In further experiments, vitamin B12-dependent methylmalonyl-CoA mutase and methionine synthase activities were detected in cell homogenates. In particular, methionine synthase activity was significantly increased following the addition of vitamin B12 to the medium. These results suggest that vitamin B12 contents of Chlorella tablets reflect the presence of vitamin B12-generating organic ingredients in the medium or the concomitant growth of vitamin B12-synthesizing bacteria under open culture conditions.
Collapse
Affiliation(s)
- Tomohiro Bito
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| | - Mariko Bito
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| | - Yusuke Asai
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| | - Shigeo Takenaka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka 598-8531 Japan
| | - Yukinori Yabuta
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| | - Kazunori Tago
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| | | | | | - Fumio Watanabe
- Faculty of Agriculture, School of Agricultural, Biological, and Environmental Sciences, Tottori University , Tottori 680-8553 Japan
| |
Collapse
|
23
|
Guo YY, Shi ZY, Fu XZ, Chen JC, Wu Q, Chen GQ. A strategy for enhanced circular DNA construction efficiency based on DNA cyclization after microbial transformation. Microb Cell Fact 2015; 14:18. [PMID: 25896825 PMCID: PMC4455692 DOI: 10.1186/s12934-015-0204-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background With the rapid development of synthetic biology, the demand for assembling multiple DNA (genes) fragments into a large circular DNA structure in one step has dramatically increased. However, for constructions of most circular DNA, there are two contradictions in the ligation/assembly and transformation steps. The ligation/assembly consists of two different reactions: 1) the ligation/assembly between any two pieces of a linear form DNA; 2) the cyclization (or self-ligation) of a single linear form DNA. The first contradiction is that the bimolecular ligation/assembly requires a higher DNA concentration while the cyclization favors a lower one; the second contradiction is that a successful transformation of a ligation/assembly product requires a relatively high DNA concentration again. This study is the first attempt to use linear plasmid and Cyclization After Transformation (CAT) strategy to neutralize those contradictions systematically. Results The linear assembly combined with CAT method was demonstrated to increase the overall construction efficiency by 3–4 times for both the traditional ligation and for the new in vitro recombination-based assembly methods including recombinant DNA, Golden Gate, SLIC (Sequence and Ligation Independent Cloning) and Gibson Isothermal Assembly. Finally, the linear assembly combined with CAT method was successfully applied to assemble a pathway of 7 gene fragments responsible for synthesizing precorrin 3A which is an important intermediate in VB12 production. Conclusion The linear assembly combined with CAT strategy method can be regarded as a general strategy to enhance the efficiency of most existing circular DNA construction technologies and could be used in construction of a metabolic pathway consisting of multiple genes. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0204-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying-Ying Guo
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Zhen-Yu Shi
- Synthenome.com, Dingley Village, VIC3172, Australia.
| | - Xiao-Zhi Fu
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,Center for Nano and Micro Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Li X, Lü ZR, Shen D, Zhan Y, Yang JM, Park YD, Zhou HM, Sheng Q, Lee J. The inhibitory role of Co2+ on α-glucosidase: Inhibition kinetics and molecular dynamics simulation integration study. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Gopinath K, Moosa A, Mizrahi V, Warner DF. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Future Microbiol 2014; 8:1405-18. [PMID: 24199800 DOI: 10.2217/fmb.13.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis is included among a select group of bacteria possessing the capacity for de novo biosynthesis of vitamin B12, the largest and most complex natural organometallic cofactor. The bacillus is also able to scavenge B12 and related corrinoids utilizing an ATP-binding cassette-type protein that is distinct from the only known bacterial B12-specific transporter, BtuFCD. Consistent with the inferred requirement for vitamin B12 for metabolic function, the M. tuberculosis genome encodes two B12 riboswitches and three B12-dependent enzymes. Two of these enzymes have been shown to operate in methionine biosynthesis (MetH) and propionate utilization (MutAB), while the function of the putative nrdZ-encoded ribonucleotide reductase remains unknown. Taken together, these observations suggest that M. tuberculosis has the capacity to regulate core metabolic functions according to B12 availability - whether acquired via endogenous synthesis or through uptake from the host environment - and, therefore, imply that there is a role for vitamin B12 in pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Krishnamoorthy Gopinath
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Center of Excellence for Biomedical TB Research, Institute of Infectious Disease & Molecular Medicine & Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | | | | | | |
Collapse
|
26
|
Padmanabhan B, Yokoyama S, Bessho Y. Crystal structure of putative CbiT from Methanocaldococcus jannaschii: an intermediate enzyme activity in cobalamin (vitamin B12) biosynthesis. BMC STRUCTURAL BIOLOGY 2013; 13:10. [PMID: 23688113 PMCID: PMC3672029 DOI: 10.1186/1472-6807-13-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the anaerobic pathway of cobalamin (vitamin B12) synthesis, the CbiT enzyme plays two roles, as a cobalt-precorrin-7 C15-methyltransferase and a C12-decarboxylase, to produce the intermediate, cobalt-precorrin 8. RESULTS The primary structure of the hypothetical protein MJ0391, from Methanocaldococcus jannaschii, suggested that MJ0391 is a putative CbiT. Here, we report the crystal structure of MJ0391, solved by the MAD procedure and refined to final R-factor and R-free values of 19.8 & 27.3%, respectively, at 2.3 Å resolution. The asymmetric unit contains two NCS molecules, and the intact tetramer generated by crystallographic symmetry may be functionally important. The overall tertiary structure and the tetrameric arrangements are highly homologous to those found in MT0146/CbiT from Methanobacterium thermoautotrophicum. CONCLUSIONS The conservation of functional residues in the binding site for the co-factor, AdoMet, and in the putative precorrin-7 binding pocket suggested that MJ0391 may also possess CbiT activity. The putative function of MJ0391 is discussed, based on structural homology.
Collapse
Affiliation(s)
- Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore 560029, India,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigeyuki Yokoyama
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan,RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
27
|
Sydor A, Jost M, Ryan KS, Turo KE, Douglas C, Drennan CL, Zamble DB. Metal binding properties of Escherichia coli YjiA, a member of the metal homeostasis-associated COG0523 family of GTPases. Biochemistry 2013; 52:1788-1801. [PMID: 24449932 PMCID: PMC3596956 DOI: 10.1021/bi301600z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
GTPases are critical molecular switches involved in a wide range of biological functions. Recent phylogenetic and genomic analyses of the large, mostly uncharacterized COG0523 subfamily of GTPases revealed a link between some COG0523 proteins and metal homeostasis pathways. In this report, we detail the bioinorganic characterization of YjiA, a representative member of COG0523 subgroup 9 and the only COG0523 protein to date with high-resolution structural information. We find that YjiA is capable of binding several types of transition metals with dissociation constants in the low micromolar range and that metal binding affects both the oligomeric structure and GTPase activity of the enzyme. Using a combination of X-ray crystallography and site-directed mutagenesis, we identify, among others, a metal-binding site adjacent to the nucleotide-binding site in the GTPase domain that involves a conserved cysteine and several glutamate residues. Mutations of the coordinating residues decrease the impact of metal, suggesting that metal binding to this site is responsible for modulating the GTPase activity of the protein. These findings point toward a regulatory function for these COG0523 GTPases that is responsive to their metal-bound state.
Collapse
Affiliation(s)
- Andrew
M. Sydor
- Department of Chemistry, University
of Toronto, 80 St. George Street, Toronto,
ON, Canada M5S 3H6
| | - Marco Jost
- ‡Department
of Chemistry, §Department of Biology, and ∥Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine S. Ryan
- ‡Department
of Chemistry, §Department of Biology, and ∥Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaitlyn E. Turo
- ‡Department
of Chemistry, §Department of Biology, and ∥Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Colin
D. Douglas
- Department of Chemistry, University
of Toronto, 80 St. George Street, Toronto,
ON, Canada M5S 3H6
| | - Catherine L. Drennan
- ‡Department
of Chemistry, §Department of Biology, and ∥Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States,C.L.D.:
telephone, (617)
253-5622; fax, (617) 258-7847; e-mail, . D.B.Z.: telephone, (416) 978-3568; e-mail,
| | - Deborah B. Zamble
- Department of Chemistry, University
of Toronto, 80 St. George Street, Toronto,
ON, Canada M5S 3H6,C.L.D.:
telephone, (617)
253-5622; fax, (617) 258-7847; e-mail, . D.B.Z.: telephone, (416) 978-3568; e-mail,
| |
Collapse
|
28
|
A first analysis of metallome biosignatures of hyperthermophilic Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:789278. [PMID: 23243390 PMCID: PMC3518089 DOI: 10.1155/2012/789278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 11/18/2022]
Abstract
To date, no experimental data has been reported for the metallome of hyperthermophilic microorganisms although their metal requirements for growth are known to be unique. Here, experiments were conducted to determine (i) cellular trace metal concentrations of the hyperthermophilic Archaea Methanococcus jannaschii and Pyrococcus furiosus, and (ii) a first estimate of the metallome for these hyperthermophilic species via ICP-MS. The metal contents of these cells were compared to parallel experiments using the mesophilic bacterium Escherichia coli grown under aerobic and anaerobic conditions. Fe and Zn were typically the most abundant metals in cells. Metal concentrations for E. coli grown aerobically decreased in the order Fe > Zn > Cu > Mo > Ni > W > Co. In contrast, M. jannaschii and P. furiosus show almost the reverse pattern with elevated Ni, Co, and W concentrations. Of the three organisms, a biosignature is potentially demonstrated for the methanogen M. jannaschii that may, in part, be related to the metallome requirements of methanogenesis. The bioavailability of trace metals more than likely has varied through time. If hyperthermophiles are very ancient, then the trace metal patterns observed here may begin to provide some insights regarding Earth's earliest cells and in turn, early Earth chemistry.
Collapse
|
29
|
Blaby-Haas CE, Flood JA, Crécy-Lagard VD, Zamble DB. YeiR: a metal-binding GTPase from Escherichia coli involved in metal homeostasis. Metallomics 2012; 4:488-97. [PMID: 22511334 DOI: 10.1039/c2mt20012k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A comparative genomic analysis predicted that many members of the under-characterized COG0523 subfamily of putative P-loop GTPases function in metal metabolism. In this work we focused on the uncharacterized Escherichia coli protein YeiR by studying both the physiology of a yeiR mutant and the in vitro biochemical properties of YeiR expressed as a fusion with the maltose-binding protein (YeiR-MBP). Our results demonstrate that deletion of yeiR increases the sensitivity of E. coli to EDTA or cadmium, and this phenotype is linked to zinc depletion. In vitro, the tagged protein binds several Zn(2+) ions with nanomolar affinity and oligomerizes in the presence of metal. The GTPase activity of YeiR is similar to that measured for other members of the group, but GTP hydrolysis is enhanced by Zn(2+) binding. These results support the predicted connection between the COG0523 P-loop GTPases and roles in metal homeostasis.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Microbiology & Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611-0700, USA.
| | | | | | | |
Collapse
|
30
|
Vitamin B12-mediated restoration of defective anaerobic growth leads to reduced biofilm formation in Pseudomonas aeruginosa. Infect Immun 2012; 80:1639-49. [PMID: 22371376 DOI: 10.1128/iai.06161-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO(3)(-)) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B(12) to be a molecule that can reinstate defective anaerobic growth of P. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B(12), an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B(12), the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B(12), further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P. aeruginosa and illustrates the ability of vitamin B(12) to modulate the biofilm-forming capacity of P. aeruginosa under such condition.
Collapse
|
31
|
Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011; 9:12. [PMID: 21291537 PMCID: PMC3048570 DOI: 10.1186/1741-7015-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. METHODS A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. RESULTS Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. CONCLUSIONS The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
32
|
Bacterial vitamin B2, B11 and B12 overproduction: An overview. Int J Food Microbiol 2009; 133:1-7. [PMID: 19467724 DOI: 10.1016/j.ijfoodmicro.2009.04.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 11/20/2022]
Abstract
Consumers are becoming increasingly health conscious and therefore more discerning in their food choices. The production of fermented food products with elevated levels of B-vitamins increase both their commercial and nutritional value, and eliminate the need for subsequent fortification with these essential vitamins. Such novel products could reduce the incidence of inadequate vitamin intake which is common in many parts of the world, not only in developing countries, but also in many industrialised countries. Moreover, the concept of in situ fortification by bacterial fermentation opens the way for development of food products targeted at specific groups in society such as the elderly and adolescents. This review looks at how vitamin overproduction strategies have been developed, some of which have successfully been tested in animal models. Such innovative strategies could be relatively easily adapted by the food industry to develop novel vitamin-enhanced functional foods with enhanced consumer appeal.
Collapse
|
33
|
Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics 2009; 10:78. [PMID: 19208259 PMCID: PMC2667541 DOI: 10.1186/1471-2164-10-78] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 02/10/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Nickel (Ni) and cobalt (Co) are trace elements required for a variety of biological processes. Ni is directly coordinated by proteins, whereas Co is mainly used as a component of vitamin B12. Although a number of Ni and Co-dependent enzymes have been characterized, systematic evolutionary analyses of utilization of these metals are limited. RESULTS We carried out comparative genomic analyses to examine occurrence and evolutionary dynamics of the use of Ni and Co at the level of (i) transport systems, and (ii) metalloproteomes. Our data show that both metals are widely used in bacteria and archaea. Cbi/NikMNQO is the most common prokaryotic Ni/Co transporter, while Ni-dependent urease and Ni-Fe hydrogenase, and B12-dependent methionine synthase (MetH), ribonucleotide reductase and methylmalonyl-CoA mutase are the most widespread metalloproteins for Ni and Co, respectively. Occurrence of other metalloenzymes showed a mosaic distribution and a new B12-dependent protein family was predicted. Deltaproteobacteria and Methanosarcina generally have larger Ni- and Co-dependent proteomes. On the other hand, utilization of these two metals is limited in eukaryotes, and very few of these organisms utilize both of them. The Ni-utilizing eukaryotes are mostly fungi (except saccharomycotina) and plants, whereas most B12-utilizing organisms are animals. The NiCoT transporter family is the most widespread eukaryotic Ni transporter, and eukaryotic urease and MetH are the most common Ni- and B12-dependent enzymes, respectively. Finally, investigation of environmental and other conditions and identity of organisms that show dependence on Ni or Co revealed that host-associated organisms (particularly obligate intracellular parasites and endosymbionts) have a tendency for loss of Ni/Co utilization. CONCLUSION Our data provide information on the evolutionary dynamics of Ni and Co utilization and highlight widespread use of these metals in the three domains of life, yet only a limited number of user proteins.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588-0664, USA.
| | | | | | | |
Collapse
|
34
|
|
35
|
Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine − implications for the reaction mechanism. FEBS J 2006; 274:563-73. [PMID: 17229157 DOI: 10.1111/j.1742-4658.2006.05611.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Tadhg P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Frank S, Brindley AA, Deery E, Heathcote P, Lawrence AD, Leech HK, Pickersgill RW, Warren MJ. Anaerobic synthesis of vitamin B12: characterization of the early steps in the pathway. Biochem Soc Trans 2005; 33:811-4. [PMID: 16042604 DOI: 10.1042/bst0330811] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The anaerobic biosynthesis of vitamin B12 is slowly being unravelled. Recent work has shown that the first committed step along the anaerobic route involves the sirohydrochlorin (chelation of cobalt into factor II). The following enzyme in the pathway, CbiL, methylates cobalt-factor II to give cobalt-factor III. Recent progress on the molecular characterization of this enzyme has given a greater insight into its mode of action and specificity. Structural studies are being used to provide insights into how aspects of this highly complex biosynthetic pathway may have evolved. Between cobalt-factor III and cobyrinic acid, only one further intermediate has been identified. A combination of molecular genetics, recombinant DNA technology and bioorganic chemistry has led to some recent advances in assigning functions to the enzymes of the anaerobic pathway.
Collapse
Affiliation(s)
- S Frank
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | | | | | | | | | |
Collapse
|