1
|
Xu T, Liu CC, Xin WJ. The Epigenetic Mechanisms Involved in Chronic Pain in Rodents: A Mini- Review. Curr Neuropharmacol 2022; 20:1011-1021. [PMID: 34561983 PMCID: PMC9886825 DOI: 10.2174/1570159x19666210924104757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic pain is a common distressing neurological disorder and about 30% of the global population suffers from it. In addition to being highly prevalent, chronic pain causes a heavy economic and social burden. Although substantial progress has been achieved to dissect the underlying mechanism of chronic pain in the past few decades, the incidence and treatment of this neurological illness is yet not properly managed in clinical practice. While nerve injury-, chemotherapy- or inflammation-induced functional regulation of gene expression in the dorsal root ganglion and spinal cord are extensively reported to be involved in the pathogenic process of chronic pain, the specific mechanism of these altered transcriptional profile still remains unclear. Recent studies have shown that epigenetic mechanisms, including DNA/RNA methylation, histone modification and circular RNAs regulation, are involved in the occurrence and development of chronic pain. In this review, we provide a description of research on the role of epigenetic mechanism in chronic pain, summarize the latest clinical and preclinical advance in this field, and propose the potential directions for further research to elucidate the molecular mechanism underlying the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,These authors contributed equally.
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China,These authors contributed equally.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; ,Address correspondence to this author at the Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Rd. 2, Guangzhou, China; E-mail:
| |
Collapse
|
2
|
Vallés AS, Barrantes FJ. Dendritic spine membrane proteome and its alterations in autistic spectrum disorder. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:435-474. [PMID: 35034726 DOI: 10.1016/bs.apcsb.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Instituto de Investigaciones Biomédicas (BIOMED), UCA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Engelberg IA, Liu J, Norris-Drouin JL, Cholensky SH, Ottavi SA, Frye SV, Kutateladze TG, James LI. Discovery of an H3K36me3-Derived Peptidomimetic Ligand with Enhanced Affinity for Plant Homeodomain Finger Protein 1 (PHF1). J Med Chem 2021; 64:8510-8522. [PMID: 33999620 DOI: 10.1021/acs.jmedchem.1c00430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plant homeodomain finger protein 1 (PHF1) is an accessory component of the gene silencing complex polycomb repressive complex 2 and recognizes the active chromatin mark, trimethylated lysine 36 of histone H3 (H3K36me3). In addition to its role in transcriptional regulation, PHF1 has been implicated as a driver of endometrial stromal sarcoma and fibromyxoid tumors. We report the discovery and characterization of UNC6641, a peptidomimetic antagonist of the PHF1 Tudor domain which was optimized through in silico modeling and incorporation of non-natural amino acids. UNC6641 binds the PHF1 Tudor domain with a Kd value of 0.96 ± 0.03 μM while also binding the related protein PHF19 with similar potency. A crystal structure of PHF1 in complex with UNC6641, along with NMR and site-directed mutagenesis data, provided insight into the binding mechanism and requirements for binding. Additionally, UNC6641 enabled the development of a high-throughput assay to identify small molecule binders of PHF1.
Collapse
Affiliation(s)
- Isabelle A Engelberg
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha A Ottavi
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Jiang YG, Wang YH, Zhang H, Wang ZY, Liu YQ. Effects of early-life zinc deficiency on learning and memory in offspring and the changes in DNA methylation patterns. Nutr Neurosci 2020; 25:1001-1010. [PMID: 33078688 DOI: 10.1080/1028415x.2020.1831259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effect of maternal zinc deficiency on learning and memory in offspring and the changes in DNA methylation patterns. METHODS Pregnant rats were divided into zinc adequate (ZA), zinc deficient (ZD), and paired fed (PF) groups. Serum zinc contents and AKP activity in mother rats and offspring at P21 (end of lactation) and P60 (weaned, adult) were detected. Cognitive ability of offspring at P21 and P60 were determined by Morris water maze. The expression of proteins including DNMT3a, DNMT1, GADD45β, MeCP2 and BDNF in the offspring hippocampus were detected by Western-blot. The methylation status of BDNF promoter region in hippocampus of offspring rats was detected by MS-qPCR. RESULTS Compared with the ZA and PF groups, pups in the ZD group had lower zinc levels and AKP activity in the serum, spent more time finding the platform and spent less time going through the platform area. Protein expression of DNMT1 and GADD45b were downregulated in the ZD group during P0 and P21 but not P60 compared with the ZA and PF group, these results were consistent with a reduction in BDNF protein at P0 (neonate), P21. However, when pups of rats in the ZD group were supplemented with zinc ion from P21 to P60, MeCP2 and GADD45b expression were significantly downregulated compared with the ZA and PF group. CONCLUSION Post-weaning zinc supplementation may improve cognitive impairment induced by early life zinc deficiency, whereas it may not completely reverse the abnormal expression of particular genes that are involved in DNA methylation, binding to methylated DNA and neurogenesis.
Collapse
Affiliation(s)
- Yu-Gang Jiang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, People's Republic of China
| | - Yong-Hui Wang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, People's Republic of China
| | - Han Zhang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, People's Republic of China.,College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zi-Yu Wang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, People's Republic of China
| | - Yan-Qiang Liu
- College of Life Sciences, Nan Kai University, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Seifi F, Niknamfar S, Akbarabadi A, Toolee H, Zarrindast MR. Transgenerational influence of parental morphine exposure on pain perception, anxiety-like behavior and passive avoidance memory among male and female offspring of Wistar rats. EXCLI JOURNAL 2019; 18:1019-1036. [PMID: 31762726 PMCID: PMC6868917 DOI: 10.17179/excli2019-1845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that epigenetic mechanisms play an important role in the formation and maintenance of memory within the brain. Moreover, the effect of parental drug-exposure before gestation on behavioral state of offspring has been little studied. The main objective of the current study is to evaluate the effect of parental morphine exposure on avoidance memory, morphine preference and anxiety-like behavior of offspring. The total of 32 males and 32 females were used for mating. The animals were treated with morphine. The offspring according to their parental morphine treatment was divided into four groups (n=16) including paternally treated, maternally treated, both of parents treated and naïve animals. The pain perception, anxiety-like behavior, and avoidance memory were evaluated in the offspring. In the current study, the total of 256 offspring was used for the experiments (4 tasks × 4 groups of offspring × 8 female offspring × 8 male offspring). The finding revealed that the avoidance memory and visceral pain were reduced significantly in male and female offspring with at least one morphine-treated parent. Moreover, anxiety-like behavior was reduced significantly in the male offspring with at least one morphine-treated parent. While anxiety-like behavior was increased significantly in female offspring that were treated by morphine either maternally or both of parents. The data revealed that the endogenous opioid system may be altered in the offspring of morphine-treated parent(s), and epigenetic role could be important. However, analysis of variance signified the important role of maternal inheritance.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Seifi
- Biology Department, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Saba Niknamfar
- Biology Department, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Heidar Toolee
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
7
|
[Chemical targeting of DNA and histone methylation in cancer: Novelties, hopes and promises]. Bull Cancer 2019; 106:823-833. [PMID: 31522746 DOI: 10.1016/j.bulcan.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
8
|
Ohashi M, Korsakova E, Allen D, Lee P, Fu K, Vargas BS, Cinkornpumin J, Salas C, Park JC, Germanguz I, Langerman J, Chronis C, Kuoy E, Tran S, Xiao X, Pellegrini M, Plath K, Lowry WE. Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence. Stem Cell Reports 2019; 10:1453-1463. [PMID: 29742391 PMCID: PMC5995366 DOI: 10.1016/j.stemcr.2018.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder. Development of a patient-specific model of human Rett syndrome Loss of function of MECP2 leads to induction of p53 MECP2 null neurons show evidence of cellular senescence Inhibition of p53 can restore dendritic branching in MECP2 null neurons
Collapse
Affiliation(s)
- Minori Ohashi
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Elena Korsakova
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Denise Allen
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Peiyee Lee
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Kai Fu
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Benni S Vargas
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jessica Cinkornpumin
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Carlos Salas
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Jenny C Park
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Igal Germanguz
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | | | - Edward Kuoy
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephen Tran
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Philippe TJ, Vahid-Ansari F, Donaldson ZR, Le François B, Zahrai A, Turcotte-Cardin V, Daigle M, James J, Hen R, Merali Z, Albert PR. Loss of MeCP2 in adult 5-HT neurons induces 5-HT1A autoreceptors, with opposite sex-dependent anxiety and depression phenotypes. Sci Rep 2018; 8:5788. [PMID: 29636529 PMCID: PMC5893553 DOI: 10.1038/s41598-018-24167-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
The 5-HT1A autoreceptor mediates feedback inhibition of serotonin (5-HT) neurons, and is implicated in major depression. The human 5-HT1A gene (HTR1A) rs6295 risk allele prevents Deaf1 binding to HTR1A, resulting in increased 5-HT1A autoreceptor transcription. Since chronic stress alters HTR1A methylation and expression, we addressed whether recruitment of methyl-binding protein MeCP2 may alter Deaf1 regulation at the HTR1A locus. We show that MeCP2 enhances Deaf1 binding to its HTR1A site and co-immunoprecipitates with Deaf1 in cells and brain tissue. Chromatin immunoprecipitation assays showed Deaf1-dependent recruitment of MeCP2 to the mouse HTR1A promoter, and MeCP2 modulated human and mouse HTR1A gene transcription in a Deaf1-dependent fashion, enhancing Deaf1-induced repression at the Deaf1 site. To address the role of MeCP2 in HTR1A regulation in vivo, mice with conditional knockout of MeCP2 in adult 5-HT neurons (MeCP2 cKO) were generated. These mice exhibited increased 5-HT1A autoreceptor levels and function, consistent with MeCP2 enhancement of Deaf1 repression in 5-HT neurons. Interestingly, female MeCP2-cKO mice displayed reduced anxiety, while males showed increased anxiety and reduced depression-like behaviors. These data uncover a novel role for MeCP2 in 5-HT neurons to repress HTR1A expression and drive adult anxiety- and depression-like behaviors in a sex-specific manner.
Collapse
Affiliation(s)
- Tristan J Philippe
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Faranak Vahid-Ansari
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Zoe R Donaldson
- Department of Molecular, Cellular, and Developmental Biology and Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Brice Le François
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Amin Zahrai
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Valérie Turcotte-Cardin
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Jonathan James
- The Royal's Institute of Mental Health, affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - René Hen
- New York State Psychiatric Institute, Columbia University Medical Center and Research Foundation for Mental Hygiene, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Zul Merali
- The Royal's Institute of Mental Health, affiliated with the University of Ottawa, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Mushtaq AU, Lee Y, Hwang E, Bang JK, Hong E, Byun Y, Song JJ, Jeon YH. Biophysical characterization of the basic cluster in the transcription repression domain of human MeCP2 with AT-rich DNA. Biochem Biophys Res Commun 2018; 495:145-150. [DOI: 10.1016/j.bbrc.2017.10.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
11
|
He CC, Wang ZY, Tian K, Liu W, Li YB, Hong Y, Yu LX, Pang W, Jiang YG, Liu YQ. DNA methylation mechanism of intracellular zinc deficiency-induced injury in primary hippocampal neurons in the rat brain. Nutr Neurosci 2017; 21:478-486. [DOI: 10.1080/1028415x.2017.1312090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cong-cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Zi-yu Wang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yi-bo Li
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan Hong
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Li-xia Yu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Wei Pang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yu-gang Jiang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, China
| | - Yan-qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
The emerging roles of MicroRNAs in autism spectrum disorders. Neurosci Biobehav Rev 2016; 71:729-738. [DOI: 10.1016/j.neubiorev.2016.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/27/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022]
|
13
|
Balachandar V, Dhivya V, Gomathi M, Mohanadevi S, Venkatesh B, Geetha B. A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investig 2016; 3:52. [PMID: 27777941 DOI: 10.21037/sci.2016.09.05] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed. As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTT-hiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Venkatesan Dhivya
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Subramaniam Mohanadevi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Balasubramanian Venkatesh
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| | - Bharathi Geetha
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-641 046, Tamil Nadu, India
| |
Collapse
|
14
|
Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma 2016; 125:75-93. [PMID: 26188466 PMCID: PMC4761009 DOI: 10.1007/s00412-015-0530-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.
Collapse
Affiliation(s)
- Anne C Mirabella
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Benjamin M Foster
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Till Bartke
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
15
|
Leong WY, Lim ZH, Korzh V, Pietri T, Goh ELK. Methyl-CpG Binding Protein 2 (Mecp2) Regulates Sensory Function Through Sema5b and Robo2. Front Cell Neurosci 2015; 9:481. [PMID: 26733807 PMCID: PMC4685056 DOI: 10.3389/fncel.2015.00481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the gene encoding the MECP2 underlies Rett syndrome, a neurodevelopmental disorder in young females. Although reduced pain sensitivity in Rett syndrome patients and in partial MeCP2 deficient mice had been reported, these previous studies focused predominantly on motor impairments. Therefore, it is still unknown how MeCP2 is involved in these sensory defects. In addition, the human disease manifestations where males with mutations in MECP2 gene normally do not survive and females show typical neurological symptoms only after 18 months of age, is profoundly different in MeCP2-deficient mouse where all animals survived, and males but not females displayed Rett syndrome phenotypes at an early age. Thus, the mecp2-deficient zebrafish serves as an additional animal model to aid in deciphering the role and mechanisms of Mecp2 in neurodevelopment. Here, we used two independent methods of silencing expression of Mecp2 in zebrafish to uncover a novel role of Mecp2 in trigeminal ganglion sensory neurons during the embryonic development. mecp2-null mutation and morpholino-mediated silencing of Mecp2 in the zebrafish embryos resulted in defects in peripheral innervation of trigeminal sensory neurons and consequently affecting the sensory function. These defects were demonstrated to be dependent on the expression of Sema5b and Robo2. The expression of both proteins together could better overcome the defects caused by Mecp2 deficiency as compared to the expression of either Sema5b or Robo2 alone. Sema5b and Robo2 were downregulated upon Mecp2 silencing or in mecp2-null embryos, and Chromatin immunoprecipitation (ChIP) assay using antibody against Mecp2 was able to pull down specific regions of both Sema5b and Robo2 promoters, showing interaction between Mecp2 and the promoters of both genes. In addition, cell-specific expression of Mecp2 can overcome the innervation and sensory response defects in Mecp2 morphants indicating that these MeCP2-mediated defects are cell-autonomous. The sensory deficits caused by Mecp2 deficiency mirror the diminished sensory response observed in Rett syndrome patients. This suggests that zebrafish could be an unconventional but useful model for this disorder manifesting defects that are not easily studied in full using rodent models.
Collapse
Affiliation(s)
- Wan Y Leong
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Zhi H Lim
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, Singapore Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, SingaporeSingapore; Department of Biological Sciences, National University of Singapore, SingaporeSingapore
| | - Thomas Pietri
- Institut de Biologie de l'École Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR 8197 Paris, France
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorder, Duke-NUS Graduate Medical School, SingaporeSingapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SingaporeSingapore; KK Research Centre, KK Women's and Children's Hospital, SingaporeSingapore
| |
Collapse
|
16
|
Manners MT, Tian Y, Zhou Z, Ajit SK. MicroRNAs downregulated in neuropathic pain regulate MeCP2 and BDNF related to pain sensitivity. FEBS Open Bio 2015; 5:733-40. [PMID: 26448907 PMCID: PMC4571540 DOI: 10.1016/j.fob.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/16/2015] [Indexed: 12/31/2022] Open
Abstract
Nerve injury induces chronic pain and dysregulation of microRNAs in dorsal root ganglia (DRG). Several downregulated microRNAs are predicted to target Mecp2. MECP2 mutations cause Rett syndrome and these patients report decreased pain perception. We confirmed MeCP2 upregulation in DRG following nerve injury and repression of MeCP2 by miRNAs in vitro. MeCP2 regulates brain-derived neurotrophic factor (BDNF) and downregulation of MeCP2 by microRNAs decreased Bdnf in vitro. MeCP2 T158A mice exhibited reduced mechanical sensitivity and Mecp2-null and MeCP2 T158A mice have decreased Bdnf in DRG. MeCP2-mediated regulation of Bdnf in the DRG could contribute to altered pain sensitivity.
Collapse
Key Words
- +/Y, male wild-type littermate control for either MeCP2 T158A knock in mouse or Mecp2-null mouse
- 3′UTR, three prime untranslated region
- ATF3, activating transcription factor 3
- BDNF
- BDNF, brain derived neurotrophic factor
- CFA, complete Freund’s adjuvant
- DRG, dorsal root ganglia
- L4/L5, 4th or 5th lumbar vertebra
- MeCP2
- MeCP2 T158A/Y, male MeCP2 T158A knock in mouse
- MeCP2, methyl-CpG-binding protein 2
- Neuropathic pain
- RTT, Rett syndrome
- SNI, spared nerve injury
- T158A, threonine 158 conversion to alanine
- TrkB, tropomyosin receptor kinase B
- miRNA
- −/Y, male Mecp2-null mouse
Collapse
Affiliation(s)
- Melissa T Manners
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Yuzhen Tian
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Seena K Ajit
- Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
17
|
Tantra M, Hammer C, Kästner A, Dahm L, Begemann M, Bodda C, Hammerschmidt K, Giegling I, Stepniak B, Castillo Venzor A, Konte B, Erbaba B, Hartmann A, Tarami A, Schulz-Schaeffer W, Rujescu D, Mannan AU, Ehrenreich H. Mild expression differences of MECP2 influencing aggressive social behavior. EMBO Mol Med 2014; 6:662-84. [PMID: 24648499 PMCID: PMC4023888 DOI: 10.1002/emmm.201303744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (∼50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3′UTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2mRNA expression differs in peripheral blood mononuclear cells by ∼50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3′UTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior.
Collapse
Affiliation(s)
- Martesa Tantra
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ma LY, Wu C, Jin Y, Gao M, Li GH, Turner D, Shen JX, Zhang SJ, Narayanan V, Jentarra G, Wu J. Electrophysiological phenotypes of MeCP2 A140V mutant mouse model. CNS Neurosci Ther 2014; 20:420-8. [PMID: 24750778 DOI: 10.1111/cns.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 11/27/2022] Open
Abstract
AIMS MeCP2 gene mutations are associated with Rett syndrome and X-linked mental retardation (XLMR), diseases characterized by abnormal brain development and function. Recently, we created a novel MeCP2 A140V mutation mouse model that exhibited abnormalities of cell packing density and dendritic branching consistent with that seen in Rett syndrome patients as well as other MeCP2 mutant mouse models. Therefore, we hypothesized that some deficits of neuronal and synaptic functions might also be present in the A140V mutant model. METHODS Here, we tested our hypothesis in hippocampal slices using electrophysiological recordings. RESULTS We found that in young A140V mutant mice (3- to 4-week-old), hippocampal CA1 pyramidal neurons exhibited more positive resting membrane potential, increased action potential (AP) firing frequency induced by injection of depolarizing current, wider AP duration, and smaller after hyperpolarization potential compared to neurons prepared from age-matched wild-type mice, suggesting a neuronal hyperexcitation. At the synaptic level, A140V mutant neurons exhibited a reduced frequency of spontaneous IPSCs (inhibitory postsynaptic potentials) and an enhanced probability of evoked glutamate release, both suggesting neuronal hyperexcitation. However, hippocampal CA1 long-term potentiation was not significantly different between A140V and WT mice. In adult mice (11- to 13-month-old), in addition to neuronal hyperexcitation, we also found significant deficits of both short-term and long-term potentiation of CA3-CA1 synapses in A140V mice compared to WT mice. CONCLUSIONS These results clearly illustrate the age-dependent abnormalities of neuronal and synaptic function in the MeCP2 A140V mutant mouse model, which provides new insights into the understanding of the pathogenesis of Rett syndrome.
Collapse
|
19
|
Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 2014; 7:17. [PMID: 25170345 PMCID: PMC4148084 DOI: 10.1186/1756-8935-7-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022] Open
Abstract
Background Methyl-CpG binding protein 2 (MECP2) is a protein that specifically binds methylated DNA, thus regulating transcription and chromatin organization. Mutations in the gene have been identified as the principal cause of Rett syndrome, a severe neurological disorder. Although the role of MECP2 has been extensively studied in nervous tissues, still very little is known about its function and cell type specific distribution in other tissues. Results Using immunostaining on tissue cryosections, we characterized the distribution of MECP2 in 60 cell types of 16 mouse neuronal and non-neuronal tissues. We show that MECP2 is expressed at a very high level in all retinal neurons except rod photoreceptors. The onset of its expression during retina development coincides with massive synapse formation. In contrast to astroglia, retinal microglial cells lack MECP2, similar to microglia in the brain, cerebellum, and spinal cord. MECP2 is also present in almost all non-neural cell types, with the exception of intestinal epithelial cells, erythropoietic cells, and hair matrix keratinocytes. Our study demonstrates the role of MECP2 as a marker of the differentiated state in all studied cells other than oocytes and spermatogenic cells. MECP2-deficient male (Mecp2-/y) mice show no apparent defects in the morphology and development of the retina. The nuclear architecture of retinal neurons is also unaffected as the degree of chromocenter fusion and the distribution of major histone modifications do not differ between Mecp2-/y and Mecp2wt mice. Surprisingly, the absence of MECP2 is not compensated by other methyl-CpG binding proteins. On the contrary, their mRNA levels were downregulated in Mecp2-/y mice. Conclusions MECP2 is almost universally expressed in all studied cell types with few exceptions, including microglia. MECP2 deficiency does not change the nuclear architecture and epigenetic landscape of retinal cells despite the missing compensatory expression of other methyl-CpG binding proteins. Furthermore, retinal development and morphology are also preserved in Mecp2-null mice. Our study reveals the significance of MECP2 function in cell differentiation and sets the basis for future investigations in this direction.
Collapse
Affiliation(s)
- Congdi Song
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Yana Feodorova
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt am Main 60438, Germany
| | - Katharina Laurence Jost
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, 565-0871 Suita, Osaka, Japan
| | - Maria Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 10, Darmstadt 64287, Germany
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, UK
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Boris Joffe
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Irina Solovei
- Department of Biology II, Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Abdala AP, Lioy DT, Garg SK, Knopp SJ, Paton JFR, Bissonnette JM. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome. Am J Respir Cell Mol Biol 2014; 50:1031-9. [PMID: 24351104 PMCID: PMC4068914 DOI: 10.1165/rcmb.2013-0372oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/10/2013] [Indexed: 01/06/2023] Open
Abstract
Disturbances in respiration are common and debilitating features of Rett syndrome (RTT). A previous study showed that the 5-HT1a receptor agonist (R)-(+)-8-hydroxy-dipropyl-2-aminotetralin hydrobromide (8-OH-DPAT) significantly reduced the incidence of apnea and the irregular breathing pattern in a mouse model of the disorder. 8-OH-DPAT, however, is not available for clinical practice. Sarizotan, a full 5-HT1a agonist and a dopamine D2-like agonist/partial agonist, has been used in clinical trials for the treatment of l-dopa-induced dyskinesia. The purpose of this study was to evaluate the effects of sarizotan on respiration and locomotion in mouse models of RTT. Studies were performed in Bird and Jaenisch strains of methyl-CpG-binding protein 2--deficient heterozygous female and Jaenisch strain Mecp2 null male mice and in knock-in heterozygous female mice of a common nonsense mutation (R168X). Respiratory pattern was determined with body plethysmography, and locomotion was determined with open-field recording. Sarizotan or vehicle was administered 20 minutes before a 30-minute recording of respiratory pattern or motor behavior. In separate studies, a crossover design was used to administer the drug for 7 and for 14 days. Sarizotan reduced the incidence of apnea in all three RTT mouse models to approximately 15% of their pretreatment levels. The irregular breathing pattern was corrected to that of wild-type littermates. When administered for 7 or 14 days, apnea decreased to 25 to 33% of the incidence seen with vehicle. This study indicates that the clinically approved drug sarizotan is an effective treatment for respiratory disorders in mouse models of RTT.
Collapse
Affiliation(s)
- Ana P. Abdala
- Department of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom; and
| | | | | | | | - Julian F. R. Paton
- Department of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol, United Kingdom; and
| | - John M. Bissonnette
- Departments of Obstetrics & Gynecology, and
- Cell & Developmental Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
21
|
Plummer JT, Evgrafov OV, Bergman MY, Friez M, Haiman CA, Levitt P, Aldinger KA. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome. Transl Psychiatry 2013; 3:e316. [PMID: 24150225 PMCID: PMC3818007 DOI: 10.1038/tp.2013.91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/04/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.
Collapse
Affiliation(s)
- J T Plummer
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - O V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - M Y Bergman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Friez
- Greenwood Genetic Center, Greenwood, SC, USA
| | - C A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Levitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K A Aldinger
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, Seattle, 98101 WA, USA. E-mail:
| |
Collapse
|
22
|
Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 2012; 53:59-87. [PMID: 23020296 DOI: 10.1146/annurev-pharmtox-010611-134540] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic mechanisms, which control chromatin structure and function, mediate changes in gene expression that occur in response to diverse stimuli. Recent research has established that environmental events and behavioral experience induce epigenetic changes at particular gene loci and that these changes help shape neuronal plasticity and function and hence behavior. Some of these changes can be stable and can even persist for a lifetime. Increasing evidence supports the hypothesis that aberrations in chromatin remodeling and subsequent effects on gene expression within limbic brain regions contribute to the pathogenesis of depression and other stress-related disorders such as post-traumatic stress disorder and other anxiety syndromes. Likewise, the gradually developing but persistent therapeutic effects of antidepressant medications may be achieved in part via epigenetic mechanisms. This review discusses recent advances in our understanding of the epigenetic regulation of stress-related disorders and focuses on three distinct aspects of stress-induced epigenetic pathology: the effects of stress and antidepressant treatment during adulthood, the lifelong effects of early-life stress on subsequent stress vulnerability, and the possible transgenerational transmission of stress-induced abnormalities.
Collapse
Affiliation(s)
- Vincent Vialou
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
23
|
Movassagh M, Vujic A, Foo R. Genome-wide DNA methylation in human heart failure. Epigenomics 2012; 3:103-9. [PMID: 22126157 DOI: 10.2217/epi.10.70] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rapidly advancing high-throughput sequencing technology is now bringing attention to many basic biological aspects of the human genome. DNA methylation refers to the epigenetic modification of cytosine nucleotides by a methyl group that occurs throughout the genome. Owing to its significant influence on protein-DNA interactions and subsequent gene-expression control, some scientists call methylated-cytosines 'the 5th nucleotide'. We recently reported the first evidence of differential DNA methylation in human heart failure. Altered DNA methylation and a change in the expression of proximal genes have also been demonstrated in atherosclerotic plaques. For other diseases such as psychosis and cancer, the role of DNA methylation on disease pathogenesis and progression has already been shown and forms the target for new drug therapy. Understanding this aspect of disease biology may therefore contribute to the heart failure drug discovery pipeline. In this article, we summarize the basic biology of DNA methylation and discuss its implications in complex diseases such as heart failure.
Collapse
Affiliation(s)
- Mehregan Movassagh
- Division of Cardiovascular Medicine, University of Cambridge, ACCI Building Level 6, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | | |
Collapse
|
24
|
Xu X, Jin H, Liu Y, Liu L, Wu Q, Guo Y, Yu L, Liu Z, Zhang T, Zhang X, Dong X, Quan C. The expression patterns and correlations of claudin-6, methy-CpG binding protein 2, DNA methyltransferase 1, histone deacetylase 1, acetyl-histone H3 and acetyl-histone H4 and their clinicopathological significance in breast invasive ductal carcinomas. Diagn Pathol 2012; 7:33. [PMID: 22455563 PMCID: PMC3349567 DOI: 10.1186/1746-1596-7-33] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/29/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Claudin-6 is a candidate tumor suppressor gene in breast cancer, and has been shown to be regulated by DNA methylation and histone modification in breast cancer lines. However, the expression of claudin-6 in breast invasive ductal carcinomas and correlation with clinical behavior or expression of other markers is unclear. We considered that the expression pattern of claudin-6 might be related to the expression of DNA methylation associated proteins (methyl-CpG binding protein 2 (MeCP2) and DNA methyltransferase 1 (DNMT1)) and histone modification associated proteins (histone deacetylase 1 (HDAC1), acetyl-histone H3 (H3Ac) and acetyl- histone H4 (H4Ac)). METHODS We have investigated the expression of claudin-6, MeCP2, HDAC1, H3Ac and H4Ac in 100 breast invasive ductal carcinoma tissues and 22 mammary gland fibroadenoma tissues using immunohistochemistry. RESULTS Claudin-6 protein expression was reduced in breast invasive ductal carcinomas (P < 0.001). In contrast, expression of MeCP2 (P < 0.001), DNMT1 (P = 0.001), HDAC1 (P < 0.001) and H3Ac (P = 0.004) expressions was increased. Claudin-6 expression was inversely correlated with lymph node metastasis (P = 0.021). Increased expression of HDAC1 was correlated with histological grade (P < 0.001), age (P = 0.004), clinical stage (P = 0.007) and lymph node metastasis (P = 0.001). H3Ac expression was associated with tumor size (P = 0.044) and clinical stage of cancers (P = 0.034). MeCP2, DNMT1 and H4Ac expression levels did not correlate with any of the tested clinicopathological parameters (P > 0.05). We identified a positive correlation between MeCP2 protein expression and H3Ac and H4Ac protein expression. CONCLUSIONS Our results show that claudin-6 protein is significantly down-regulated in breast invasive ductal carcinomas and is an important correlate with lymphatic metastasis, but claudin-6 down-regulation was not correlated with upregulation of the methylation associated proteins (MeCP2, DNMT1) or histone modification associated proteins (HDAC1, H3Ac, H4Ac). Interestingly, the expression of MeCP2 was positively correlated with the expression of H3Ac and H3Ac protein expression was positively correlated with the expression of H4Ac in breast invasive ductal carcinoma VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4549669866581452.
Collapse
Affiliation(s)
- Xiaoming Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Huiying Jin
- Department of Pathology, Jilin Oil Field General Hospital, Songyuan, Jilin, China
| | - Yafang Liu
- Department of Pathology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Li Liu
- Department of Pathology, Jilin Oil Field General Hospital, Songyuan, Jilin, China
| | - Qiong Wu
- Department of Pathology, The Third Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Yaxiong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Lina Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Zhijing Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Ting Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Xiaowei Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Xueyan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, Changchun, Jilin, China
- The Key Laboratory of Pathobiology, Ministry of Education, Bethune Medical College, Jilin University, 126 Xinmin street, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
25
|
Vermehren-Schmaedick A, Jenkins VK, Knopp SJ, Balkowiec A, Bissonnette JM. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice. Neuroscience 2012; 206:1-6. [PMID: 22297041 DOI: 10.1016/j.neuroscience.2012.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 01/08/2012] [Indexed: 11/28/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2). One of its targets is the gene encoding brain-derived neurotrophic factor (bdnf). In vitro studies using cultured neurons have produced conflicting results with respect to the role of MeCP2 in BDNF expression. Acute intermittent hypoxia (AIH) induces plasticity in the respiratory system characterized by long-term facilitation of phrenic nerve amplitude. This paradigm induces an increase in BDNF protein. We hypothesized that AIH leads to augmentation of BDNF transcription in respiratory-related areas of the brainstem and that MeCP2 is necessary for this process. Wild-type and mecp2 null (mecp2(-/y)) mice were subjected to three 5-min episodes of exposure to 8% O(2)/4% CO(2)/88% N(2), delivered at 5-min intervals. Normoxia control wild-type and mecp2 null mice were exposed to room air for the total length of time, that is, 30 min. Following a recovery in room air, the pons and medulla were rapidly removed. Expression of BDNF protein and transcripts were determined by ELISA and quantitative PCR, respectively. AIH induced a significant increase in BDNF protein in the pons and medulla, and in mRNA transcript levels in the pons of wild-type animals. In contrast, there were no significant changes in either BDNF protein or transcripts in the pons or medulla of mice lacking MeCP2. The results indicate that MeCP2 is required for regulation of BDNF expression by acute intermittent hypoxia in vivo.
Collapse
Affiliation(s)
- A Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Abuhatzira L, Shamir A, Schones DE, Schäffer AA, Bustin M. The chromatin-binding protein HMGN1 regulates the expression of methyl CpG-binding protein 2 (MECP2) and affects the behavior of mice. J Biol Chem 2011; 286:42051-42062. [PMID: 22009741 PMCID: PMC3234940 DOI: 10.1074/jbc.m111.300541] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Indexed: 11/06/2022] Open
Abstract
High mobility group N1 protein (HMGN1), a nucleosomal-binding protein that affects the structure and function of chromatin, is encoded by a gene located on chromosome 21 and is overexpressed in Down syndrome, one of the most prevalent genomic disorders. Misexpression of HMGN1 affects the cellular transcription profile; however, the biological function of this protein is still not fully understood. We report that HMGN1 modulates the expression of methyl CpG-binding protein 2 (MeCP2), a DNA-binding protein known to affect neurological functions including autism spectrum disorders, and whose alterations in HMGN1 levels affect the behavior of mice. Quantitative PCR and Western analyses of cell lines and brain tissues from mice that either overexpress or lack HMGN1 indicate that HMGN1 is a negative regulator of MeCP2 expression. Alterations in HMGN1 levels lead to changes in chromatin structure and histone modifications in the MeCP2 promoter. Behavior analyses by open field test, elevated plus maze, Reciprocal Social Interaction, and automated sociability test link changes in HMGN1 levels to abnormalities in activity and anxiety and to social deficits in mice. Targeted analysis of the Autism Genetic Resource Exchange genotype collection reveals a non-random distribution of genotypes within 500 kbp of HMGN1 in a region affecting its expression in families predisposed to autism spectrum disorders. Our results reveal that HMGN1 affects the behavior of mice and suggest that epigenetic changes resulting from altered HMGN1 levels could play a role in the etiology of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liron Abuhatzira
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, Bethesda, Maryland 20892
| | | | | | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, NCI, Bethesda, Maryland 20892.
| |
Collapse
|
27
|
De Felice C, Maffei S, Signorini C, Leoncini S, Lunghetti S, Valacchi G, D'Esposito M, Filosa S, Della Ragione F, Butera G, Favilli R, Ciccoli L, Hayek J. Subclinical myocardial dysfunction in Rett syndrome. Eur Heart J Cardiovasc Imaging 2011; 13:339-45. [PMID: 22113206 DOI: 10.1093/ejechocard/jer256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Rett syndrome (RTT) is a rare neurodevelopmental disorder frequently linked to methyl-CpG-binding protein 2 (MeCP2) gene mutations. RTT is associated with a 300-fold increased risk of sudden cardiac death. Rhythm abnormalities and cardiac dysautonomia do not to fully account for cardiac mortality. Conversely, heart function in RTT has not been explored to date. Recent data indicate a previously unrecognized role of MeCP2 in cardiomyocytes development. Besides, increased oxidative stress markers (OS) have been found in RTT. We hypothesized that (i) RTT patients present a subclinical biventricular dysfunction and (ii) the myocardial dysfunction correlate with OS. METHODS AND RESULTS We evaluated typical (n = 72) and atypical (n = 20) RTT female and healthy controls (n = 92). Main outcome measurements were (i) echocardiographic biventricular systo-diastolic parameters; (ii) correlation between echocardiographic measures and OS levels, i.e. plasma and intra-erythrocyte non-protein-bound iron (NPBI) and plasma F2-Isoprostanes (F2-IsoPs). A significant reduction in longitudinal biventricular function (tricuspid annular plane systolic excursion, mitral annular plane systolic excursion, S' of lateral and septal mitral annulus, S' of tricuspidal annulus) was evidenced in RTT patients vs. controls. No significant changes in the LV ejection fraction were found. Peak-early filling parameters (E, E' of lateral mitral annulus, E' of tricuspidal annulus) and right ventricular systolic pressure were reduced. A-wave, E/A, and E/E' were normal. OS markers were increased, but only F2-IsoPs correlated to LV systolic dysfunction. CONCLUSION These data indicate a previously unrecognized subclinical systo-diastolic biventricular myocardial dysfunction in typical and atypical RTT patients. A reduced preload is evidenced. The biventricular dysfunction is partially related to OS damage.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Investigations of long-term changes in brain structure and function that accompany chronic exposure to drugs of abuse suggest that alterations in gene regulation contribute substantially to the addictive phenotype. Here, we review multiple mechanisms by which drugs alter the transcriptional potential of genes. These mechanisms range from the mobilization or repression of the transcriptional machinery - including the transcription factors ΔFOSB, cyclic AMP-responsive element binding protein (CREB) and nuclear factor-κB (NF-κB) - to epigenetics - including alterations in the accessibility of genes within their native chromatin structure induced by histone tail modifications and DNA methylation, and the regulation of gene expression by non-coding RNAs. Increasing evidence implicates these various mechanisms of gene regulation in the lasting changes that drugs of abuse induce in the brain, and offers novel inroads for addiction therapy.
Collapse
|
29
|
Abstract
Autism is an etiologically and clinically heterogeneous group of disorders, diagnosed solely by the complex behavioral phenotype. On the basis of the high-heritability index, geneticists are confident that autism will be the first behavioral disorder for which the genetic basis can be well established. Although it was initially assumed that major genome-wide and candidate gene association studies would lead most directly to common autism genes, progress has been slow. Rather, most discoveries have come from studies of known genetic disorders associated with the behavioral phenotype. New technology, especially array chromosomal genomic hybridization, has both increased the identification of putative autism genes and raised to approximately 25%, the percentage of children for whom an autism-related genetic change can be identified. Incorporating clinical geneticists into the diagnostic and autism research arenas is vital to the field. Interpreting this new technology and deciphering autism's genetic montage require the skill set of the clinical geneticist including knowing how to acquire and interpret family pedigrees, how to analyze complex morphologic, neurologic, and medical phenotypes, sorting out heterogeneity, developing rational genetic models, and designing studies. The current emphasis on deciphering autism spectrum disorders has accelerated the field of neuroscience and demonstrated the necessity of multidisciplinary research that must include clinical geneticists both in the clinics and in the design and implementation of basic, clinical, and translational research.
Collapse
|
30
|
Landi S, Putignano E, Boggio EM, Giustetto M, Pizzorusso T, Ratto GM. The short-time structural plasticity of dendritic spines is altered in a model of Rett syndrome. Sci Rep 2011; 1:45. [PMID: 22355564 PMCID: PMC3216532 DOI: 10.1038/srep00045] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/04/2011] [Indexed: 11/09/2022] Open
Abstract
The maturation of excitatory transmission comes about through a developmental period in which dendritic spines are highly motile and their number, form and size are rapidly changing. Surprisingly, although these processes are crucial for the formation of cortical circuitry, little is known about possible alterations of these processes in brain disease. By means of acute in vivo 2-photon imaging we show that the dynamic properties of dendritic spines of layer V cortical neurons are deeply affected in a mouse model of Rett syndrome (RTT) at a time around P25 when the neuronal phenotype of the disease is still mild. Then, we show that 24h after a subcutaneous injection of IGF-1 spine dynamics is restored. Our study demonstrates that spine dynamics in RTT mice is severely impaired early during development and suggest that treatments for RTT should be started very early in order to reestablish a normal period of spine plasticity.
Collapse
Affiliation(s)
- Silvia Landi
- NEST, Scuola Normale Superiore, Pisa, Italy; NEST Institute Nanoscience CNR, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Lioy DT, Wu WW, Bissonnette JM. Autonomic dysfunction with mutations in the gene that encodes methyl-CpG-binding protein 2: insights into Rett syndrome. Auton Neurosci 2011; 161:55-62. [PMID: 21316312 DOI: 10.1016/j.autneu.2011.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/12/2011] [Accepted: 01/18/2011] [Indexed: 11/30/2022]
Abstract
Rett syndrome (RTT) is an autism spectrum disorder with an incidence of ~1:10,000 females (reviewed in Bird, 2008; Chahrour et al., 2007; Francke, 2006). Affected individuals are apparently normal at birth. Between 6-18 months of age, however, RTT patients begin to exhibit deceleration of head growth, replacement of purposeful hand movements with stereotypic hand wringing, loss of speech, social withdrawal and other autistic features. RTT is caused by loss of function mutations in the gene that encodes methyl-CpG-binding protein 2 (Mecp2) (Amir et al., 1999), a transcriptional repressor that targets genes essential for neuronal survival, dendritic growth, synaptogenesis, and activity dependent plasticity. MECP2 is X-linked, and males die soon after birth. Included in the RTT phenotype are cardiorespiratory disorders involving the autonomic nervous system. The respiratory disorders, including the roles of bioaminergic and brain derived neurotrophic factor (BDNF) signaling in the respiratory pathophysiology of RTT have been recently reviewed (Bissonnette et al., 2007a; Ogier et al., 2008; Katz et al., 2009). Here we will cover the work on RTT regarding respiration that has appeared since 2009 as well as cardiovascular abnormalities.
Collapse
Affiliation(s)
- Daniel T Lioy
- Vollum Institute and Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
32
|
Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain 2011; 4:5. [PMID: 21247469 PMCID: PMC3033800 DOI: 10.1186/1756-6606-4-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/19/2011] [Indexed: 12/20/2022] Open
Abstract
Animals constantly receive and respond to external or internal stimuli, and these experiences are learned and memorized in their brains. In animals, this is a crucial feature for survival, by making it possible for them to adapt their behavioral patterns to the ever-changing environment. For this learning and memory process, nerve cells in the brain undergo enormous molecular and cellular changes, not only in the input-output-related local subcellular compartments but also in the central nucleus. Interestingly, the DNA methylation pattern, which is normally stable in a terminally differentiated cell and defines the cell type identity, is emerging as an important regulatory mechanism of behavioral plasticity. The elucidation of how this covalent modification of DNA, which is known to be the most stable epigenetic mark, contributes to the complex orchestration of animal behavior is a fascinating new research area. We will overview the current understanding of the mechanism of modifying the methyl code on DNA and its impact on learning and memory.
Collapse
Affiliation(s)
- Nam-Kyung Yu
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
33
|
Chromatin mechanisms regulating gene expression in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:12-25. [PMID: 21627039 DOI: 10.1007/978-1-4419-8216-2_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that the interplay of sequence-specific DNA binding proteins with chromatin components and the subsequent expression of differential genetic programs is the major determinant of developmental decisions. The last years have seen an explosion of basic research that has significantly enhanced our understanding of the basic principles of gene expression control. While many questions are still open, we are now at the stage where we can exploit this knowledge to address questions of how deregulated gene expression and aberrant chromatin programming contributes to disease processes. This chapter will give a basic introduction into the principles of epigenetics and the determinants of chromatin structure and will discuss the molecular mechanisms of aberrant gene regulation in blood cell diseases, such as inflammation and leukemia.
Collapse
|
34
|
Shapiro JR, Bibat G, Hiremath G, Blue ME, Hundalani S, Yablonski T, Kantipuly A, Rohde C, Johnston M, Naidu S. Bone mass in Rett syndrome: association with clinical parameters and MECP2 mutations. Pediatr Res 2010; 68:446-51. [PMID: 20661168 PMCID: PMC3074246 DOI: 10.1203/pdr.0b013e3181f2edd2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene. In 49 female RTT children, aged 1.9-17 y, bone mass was assessed and correlated with clinical parameters and mutations involving the MECP2 gene. We also studied five adult females, aged 20-33 y, and one male child, aged 6 y. Lumbar spine bone mineral content (BMC) and bone mineral density (BMD) were correlated with weight, height, BMI, clinical severity, degree of scoliosis, use of anticonvulsants, and ambulatory status. L1-L4 BMD and BMC showed that 48.9% of them had BMD values >2 SD below age-related norms. BMD values were in the osteoporotic range in the five adult females with RTT. Eleven percent of the children and adults with RTT experienced fractures. Low bone mass was correlated with marginal significance to clinical severity and ambulation but not to scoliosis or anticonvulsant use. Lowest bone mass occurred in patients with T158M or R270X mutations but without statistical significance. Studies in a murine model of RTT confirmed low bone mass as an inherent component of this syndrome. MECP2 mutations and clinical parameters impact bone mass in RTT, but an association with a specific mutation was not demonstrable.
Collapse
Affiliation(s)
- Jay R Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institution, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2010; 107:18161-6. [PMID: 20921386 DOI: 10.1073/pnas.1005595107] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function as posttranscriptional regulators of gene expression. Many miRNAs are expressed in the developing brain and regulate multiple aspects of neural development, including neurogenesis, dendritogenesis, and synapse formation. Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). Although Mecp2 is known to act as a global transcriptional regulator, miRNAs that are directly regulated by Mecp2 in the brain are not known. Using massively parallel sequencing methods, we have identified miRNAs whose expression is altered in cerebella of Mecp2-null mice before and after the onset of severe neurological symptoms. In vivo genome-wide analyses indicate that promoter regions of a significant fraction of dysregulated miRNA transcripts, including a large polycistronic cluster of brain-specific miRNAs, are DNA-methylated and are bound directly by Mecp2. Functional analysis demonstrates that the 3' UTR of messenger RNA encoding Brain-derived neurotrophic factor (Bdnf) can be targeted by multiple miRNAs aberrantly up-regulated in the absence of Mecp2. Taken together, these results suggest that dysregulation of miRNAs may contribute to RTT pathoetiology and also may provide a valuable resource for further investigations of the role of miRNAs in RTT.
Collapse
|
36
|
Correction of respiratory disorders in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2010; 107:18208-13. [PMID: 20921395 DOI: 10.1073/pnas.1012104107] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder caused by mutations in the X-linked gene that encodes the transcription factor methyl-CpG-binding protein 2 (MeCP2). A major debilitating phenotype in affected females is frequent apneas, and heterozygous Mecp2-deficient female mice mimic the human respiratory disorder. GABA defects have been demonstrated in the brainstem of Mecp2-deficient mice. Here, using an intact respiratory network, we show that apnea in RTT mice is characterized by excessive excitatory activity in expiratory cranial and spinal nerves. Augmenting GABA markedly improves the respiratory phenotype. In addition, a serotonin 1a receptor agonist that depresses expiratory neuron activity also reduces apnea, corrects the irregular breathing pattern, and prolongs survival in MeCP2 null males. Combining a GABA reuptake blocker with a serotonin 1a agonist in heterozygous females completely corrects their respiratory defects. The results indicate that GABA and serotonin 1a receptor activity are candidates for treatment of the respiratory disorders in Rett syndrome.
Collapse
|
37
|
Abstract
The study of CpG methylation of genomic DNA in neurons has emerged from the shadow of cancer biology into a fundamental investigation of neuronal physiology. This advance began with the discovery that catalytic and receptor proteins related to the insertion and recognition of this chemical mark are robustly expressed in neurons. At the smallest scale of analysis is the methylation of a single cytosine base within a regulatory cognate sequence. This singular alteration in a nucleotide can profoundly modify transcription factor binding with a consequent effect on the primary 'transcript'. At the single promoter level, the methylation-demethylation of CpG islands and associated alterations in local chromatin assemblies creates a type of cellular 'memory' capable of long-term regulation of transcription particularly in stages of brain development, differentiation, and maturation. Finally, at the genome-wide scale, methylation studies from post-mortem brains suggest that CpG methylation may serve to cap the genome into active and inactive territories introducing a 'masking' function. This may facilitate rapid DNA-protein interactions by ambient transcriptional proteins onto actively networked gene promoters. Beyond this broad portrayal, there are vast gaps in our understanding of the pathway between neuronal activity and CpG methylation. These include the regulation in post-mitotic neurons of the executor proteins, such as the DNA methyltransferases, the elusive and putative demethylases, and the interactions with histone modifying enzymes.
Collapse
|
38
|
Abstract
Cell-free circulating DNA carries not only tumor-specific changes in its sequence but also distinctive epigenetic marks, namely DNA methylation, in certain GC-rich fragments. These fragments are usually located within the promoters and first exons of many genes, comprising CpG islands. Analysis of DNA methylation using cell-free circulating DNA can facilitate development of very accurate biomarkers for detection, diagnosis, prediction of response to therapy and prognosis of outcomes. Recent data suggest that benign and inflammatory diseases have very specific methylation patterns within cell-free circulating DNA, which are different from the pattern of a malignant tumor of the same organ. In addition, specific methylation patterns have been detected for cancers of different organs, so a differential diagnosis of site-specific cancer appears feasible. Currently, cancer-related applications dominate the field, although methylation-based biomarkers may also be possible for other diseases, including neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Reversibility of functional deficits in experimental models of Rett syndrome. Biochem Soc Trans 2010; 38:498-506. [DOI: 10.1042/bst0380498] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in the X-linked MECP2 gene are the primary cause of the severe autism spectrum disorder RTT (Rett syndrome). Deletion of Mecp2 in mice recapitulates many of the overt neurological features seen in humans, and the delayed onset of symptoms is accompanied by deficits in neuronal morphology and synaptic physiology. Recent evidence suggests that reactivation of endogenous Mecp2 in young and adult mice can reverse aspects of RTT-like pathology. In the current perspective, we discuss these findings as well as other genetic, pharmacological and environmental interventions that attempt phenotypic rescue in RTT. We believe these studies provide valuable insights into the tractability of RTT and related conditions and are useful pointers for the development of future therapeutic strategies.
Collapse
|
40
|
Currenti SA. Understanding and determining the etiology of autism. Cell Mol Neurobiol 2010; 30:161-71. [PMID: 19774457 DOI: 10.1007/s10571-009-9453-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/28/2009] [Indexed: 01/22/2023]
Abstract
Worldwide, the rate of autism has been steadily rising. There are several environmental factors in concert with genetic susceptibilities that are contributing to this rise. Impaired methylation and mutations of mecp2 have been associated with autistic spectrum disorders, and related Rett syndrome. Genetic polymorphisms of cytochrome P450 enzymes have also been linked to autism, specifically CYP27B1 that is essential for proper vitamin D metabolism. Vitamin D is important for neuronal growth and neurodevelopment, and defects in metabolism or deficiency have been implicated in autistic individuals. Other factors that have been considered include: maternally derived antibodies, maternal infection, heavy metal exposure, folic acid supplementation, epigenetics, measles, mumps, rubella vaccination, and even electromagnetic radiation. In each case, the consequences, whether direct or indirect, negatively affect the nervous system, neurodevelopment, and environmental responsive genes. The etiology of autism is a topic of controversial debate, while researchers strive to achieve a common objective. The goal is to identify the cause(s) of autism to understand the complex interplay between environment and gene regulation. There is optimism that specific causes and risk factors will be identified. The results of future investigations will facilitate enhanced screening, prevention, and therapy for "at risk" and autistic patients.
Collapse
Affiliation(s)
- Salvatore A Currenti
- Center for Nanoscale Science and Engineering (CNSE), State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
41
|
Abstract
Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here we report the identification and characterization of a novel heterochromatinization factor in vertebrates, bromo adjacent homology domain-containing protein 1 (BAHD1). This nuclear protein interacts with HP1, MBD1, HDAC5, and several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes the formation of large heterochromatic domains, which lack acetyl histone H4 and are enriched in H3 trimethylated at lysine 27 (H3K27me3). Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic inactive X chromosome (Xi). The BAH domain is required for BAHD1 colocalization with H3K27me3, but not with the Xi chromosome. As highlighted by whole genome microarray analysis of BAHD1 knockdown cells, BAHD1 represses several proliferation and survival genes, in particular the insulin-like growth factor II gene (IGF2). When overexpressed, BAHD1 specifically binds the CpG-rich P3 promoter of IGF2, which increases MBD1 and HDAC5 targeting at this locus. This region contains DNA-binding sequences for the transcription factor SP1, with which BAHD1 coimmunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting at specific promoters a set of proteins that coordinate heterochromatin assembly.
Collapse
|
42
|
Understanding what determines the frequency and pattern of human germline mutations. Nat Rev Genet 2009; 10:478-88. [PMID: 19488047 DOI: 10.1038/nrg2529] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surprising findings about human germline mutation have come from applying new technologies to detect rare mutations in germline DNA, from analysing DNA sequence divergence between humans and closely related species, and from investigating human polymorphic variation. In this Review we discuss how these approaches affect our current understanding of the roles of sex, age, mutation hot spots, germline selection and genomic factors in determining human nucleotide substitution mutation patterns and frequencies. To enhance our understanding of mutation and disease, more extensive molecular data on the human germ line with regard to mutation origin, DNA repair, epigenetic status and the effect of newly arisen mutations on gamete development are needed.
Collapse
|
43
|
Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 2009; 514:240-58. [PMID: 19296534 DOI: 10.1002/cne.22009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (approximately 11%), CA1 (14-22%), and motor cortex (approximately 16%). A decreased spine head size (approximately 9%) and an increased spine neck length (approximately 12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14-26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT.
Collapse
Affiliation(s)
- Pavel V Belichenko
- Neuroscience Institute at Stanford University, Stanford, CA 94305-5489, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
Collapse
Affiliation(s)
- Geneviève P Delcuve
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
45
|
Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics 2008; 9:1809-23. [DOI: 10.2217/14622416.9.12.1809] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Individuals with neuropsychiatric diseases have epigenetic programming disturbances, both in the brain, which is the primary affected organ, and in secondary tissues. Epigenetic modulations are molecular modifications made to DNA, RNA and proteins that fine-tune genotype into phenotype and do not include DNA base changes. For instance, gene-expression modulation is linked to epigenetic codes in chromatin that consist of post-replication DNA methylation and histone protein modifications (e.g., methylation, acetylation and so on), particularly in gene-promoter regions. Epigenetic coding is modulated globally, and in a gene-specific manner by environmental exposures that include nutrition, toxins, drugs and so on. Analysis of epigenetic aberrations in diseases helps to identify dysfunctional genes and pathways, establish more robust cause–effect relationships than genetic studies alone, and identify new pharmaceutical targets and drugs, including nucleic acid reagents such as inhibitory RNAs. The emerging science of pharmacoepigenomics can impact the treatment of psychiatric and other complex diseases. In fact, some therapeutics now in use target epigenetic programming. In the near future, epigenetic interventions should help stabilize affected individuals and lead to prevention strategies.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, USA
- Biomedical Engineering Department, Boston University, USA
- Department of Medicine, Genetics & Genomics, Boston University School of Medicine, USA
- Department of Psychiatry and Tehran Psychiatric Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Jin-Rong Zhou
- Laboratory of Nutrition and Metabolism at BIDMC, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine, Genetics & Genomics, Boston University School of Medicine, USA
| | | |
Collapse
|