1
|
Lo CY, Ung AR, Koley T, Nelson SW, Gao Y. Cryo-EM structures of the Plasmodium falciparum apicoplast DNA polymerase. J Mol Biol 2024:168842. [PMID: 39490679 DOI: 10.1016/j.jmb.2024.168842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The apicoplast DNA polymerase (apPol) from Plasmodium falciparum is essential for the parasite's survival, making it a prime target for antimalarial therapies. Here, we present cryo-electron microscopy structures of the apPol in complex with DNA and incoming nucleotide, offering insights into its molecular mechanisms. Our structural analysis reveals that apPol contains critical residues for high-fidelity DNA synthesis, but lacks certain structural elements to confer processive DNA synthesis during replication, suggesting the presence of additional accessory factors. The enzyme exhibits large-scale conformational changes transitioning upon DNA and nucleotide binding, particularly within the fingers and thumb subdomains. These movements reveal potential allosteric sites that could serve as targets for drug design. Our findings provide a foundation for advancing the understanding of apPol's unique functional mechanisms and potentially offering new avenues for the development of novel inhibitors and therapeutic interventions against malaria.
Collapse
Affiliation(s)
- Chen-Yu Lo
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Adron R Ung
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Tirthankar Koley
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Scott W Nelson
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Yang Gao
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
3
|
Kannan S, Gillespie SW, Picking WL, Picking WD, Lorson CL, Singh K. Inhibitors against DNA Polymerase I Family of Enzymes: Novel Targets and Opportunities. BIOLOGY 2024; 13:204. [PMID: 38666816 PMCID: PMC11048162 DOI: 10.3390/biology13040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerases replicate cellular genomes and/or participate in the maintenance of genome integrity. DNA polymerases sharing high sequence homology with E. coli DNA polymerase I (pol I) have been grouped in Family A. Pol I participates in Okazaki fragment maturation and in bacterial genome repair. Since its discovery in 1956, pol I has been extensively studied, primarily to gain deeper insights into the mechanism of DNA replication. As research on DNA polymerases advances, many novel functions of this group of polymerases are being uncovered. For example, human DNA polymerase θ (a Family A DNA pol) has been shown to synthesize DNA using RNA as a template, a function typically attributed to retroviral reverse transcriptase. Increased interest in drug discovery against pol θ has emerged due to its roles in cancer. Likewise, Pol I family enzymes also appear attractive as drug-development targets against microbial infections. Development of antimalarial compounds targeting apicoplast apPOL, an ortholog of Pol I, further extends the targeting of this family of enzymes. Here, we summarize reported drug-development efforts against Family A polymerases and future perspective regarding these enzymes as antibiotic targets. Recently developed techniques, such as artificial intelligence, can be used to facilitate the development of new drugs.
Collapse
Affiliation(s)
- Saathvik Kannan
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Samuel W. Gillespie
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
| | - Wendy L. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - William D. Picking
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Christian L. Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; (S.K.); (S.W.G.); (W.L.P.); (W.D.P.); (C.L.L.)
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Kaur S, Nieto NS, McDonald P, Beck JR, Honzatko RB, Roy A, Nelson SW. Discovery of small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase. J Enzyme Inhib Med Chem 2022; 37:1320-1326. [PMID: 35514163 PMCID: PMC9090415 DOI: 10.1080/14756366.2022.2070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/01/2022] Open
Abstract
Malaria is caused by infection with protozoan parasites of the Plasmodium genus, which is part of the phylum Apicomplexa. Most organisms in this phylum contain a relic plastid called the apicoplast. The apicoplast genome is replicated by a single DNA polymerase (apPOL), which is an attractive target for anti-malarial drugs. We screened small-molecule libraries (206,504 compounds) using a fluorescence-based high-throughput DNA polymerase assay. Dose/response analysis and counter-screening identified 186 specific apPOL inhibitors. Toxicity screening against human HepaRG human cells removed 84 compounds and the remaining were subjected to parasite killing assays using chloroquine resistant P. falciparum parasites. Nine compounds were potent inhibitors of parasite growth and may serve as lead compounds in efforts to discover novel malaria drugs.
Collapse
Affiliation(s)
- Supreet Kaur
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Nieto NS, Parrott EE, Nelson SW. Ribonucleotide Misincorporation and Reverse Transcriptase Activities of Plasmodium falciparum Apicoplast DNA Polymerase. Biochemistry 2022; 61:2742-2750. [DOI: 10.1021/acs.biochem.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Eric E. Parrott
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
6
|
GAPDH mediates drug resistance and metabolism in Plasmodium falciparum malaria parasites. PLoS Pathog 2022; 18:e1010803. [PMID: 36103572 PMCID: PMC9512246 DOI: 10.1371/journal.ppat.1010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 09/26/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Efforts to control the global malaria health crisis are undermined by antimalarial resistance. Identifying mechanisms of resistance will uncover the underlying biology of the Plasmodium falciparum malaria parasites that allow evasion of our most promising therapeutics and may reveal new drug targets. We utilized fosmidomycin (FSM) as a chemical inhibitor of plastidial isoprenoid biosynthesis through the methylerythritol phosphate (MEP) pathway. We have thus identified an unusual metabolic regulation scheme in the malaria parasite through the essential glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Two parallel genetic screens converged on independent but functionally analogous resistance alleles in GAPDH. Metabolic profiling of FSM-resistant gapdh mutant parasites indicates that neither of these mutations disrupt overall glycolytic output. While FSM-resistant GAPDH variant proteins are catalytically active, they have reduced assembly into the homotetrameric state favored by wild-type GAPDH. Disrupted oligomerization of FSM-resistant GAPDH variant proteins is accompanied by altered enzymatic cooperativity and reduced susceptibility to inhibition by free heme. Together, our data identifies a new genetic biomarker of FSM-resistance and reveals the central role of GAPDH in MEP pathway control and antimalarial sensitivity. Malaria is a life-threatening mosquito-borne infection that remains an enormous public health threat worldwide, with over 600,000 deaths reported in 2020 alone. The parasites that cause malaria invade and replicate within human red blood cells. This unique environment provides the malaria parasite with almost unlimited supply of sugar in the form of glucose, which the parasite uses for energy and as building blocks to grow and divide. Parasites break down glucose, and must use these breakdown products to make new molecules, including a very important class of compounds called isoprenoids. Malaria parasites normally die when they are treated with a drug, called fosmidomycin, that inhibits this process. To understand how parasites regulate this critical function, in this study we identified parasites that were resistant to fosmidomycin. These fosmidomycin-resistant cells had mutations in an enzyme that is critical for sugar breakdown, called glyceraldehyde phosphate dehydrogenase (GAPDH). We find that parasites with mutant GAPDH enzymes still break down sugar normally, but are not inhibited by other changes in the cell that happen upon fosmidomycin treatment. These results reveal a new and important role for the enzyme GAPDH as a control-point for downstream metabolism in malaria parasites.
Collapse
|
7
|
Quevedo-Tumailli V, Ortega-Tenezaca B, González-Díaz H. IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds. Int J Mol Sci 2021; 22:13066. [PMID: 34884870 PMCID: PMC8657696 DOI: 10.3390/ijms222313066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The parasite species of genus Plasmodium causes Malaria, which remains a major global health problem due to parasite resistance to available Antimalarial drugs and increasing treatment costs. Consequently, computational prediction of new Antimalarial compounds with novel targets in the proteome of Plasmodium sp. is a very important goal for the pharmaceutical industry. We can expect that the success of the pre-clinical assay depends on the conditions of assay per se, the chemical structure of the drug, the structure of the target protein to be targeted, as well as on factors governing the expression of this protein in the proteome such as genes (Deoxyribonucleic acid, DNA) sequence and/or chromosomes structure. However, there are no reports of computational models that consider all these factors simultaneously. Some of the difficulties for this kind of analysis are the dispersion of data in different datasets, the high heterogeneity of data, etc. In this work, we analyzed three databases ChEMBL (Chemical database of the European Molecular Biology Laboratory), UniProt (Universal Protein Resource), and NCBI-GDV (National Center for Biotechnology Information-Genome Data Viewer) to achieve this goal. The ChEMBL dataset contains outcomes for 17,758 unique assays of potential Antimalarial compounds including numeric descriptors (variables) for the structure of compounds as well as a huge amount of information about the conditions of assays. The NCBI-GDV and UniProt datasets include the sequence of genes, proteins, and their functions. In addition, we also created two partitions (cassayj = caj and cdataj = cdj) of categorical variables from theChEMBL dataset. These partitions contain variables that encode information about experimental conditions of preclinical assays (caj) or about the nature and quality of data (cdj). These categorical variables include information about 22 parameters of biological activity (ca0), 28 target proteins (ca1), and 9 organisms of assay (ca2), etc. We also created another partition of (cprotj = cpj) including categorical variables with biological information about the target proteins, genes, and chromosomes. These variables cover32 genes (cp0), 10 chromosomes (cp1), gene orientation (cp2), and 31 protein functions (cp3). We used a Perturbation-Theory Machine Learning Information Fusion (IFPTML) algorithm to map all this information (from three databases) into and train a predictive model. Shannon's entropy measure Shk (numerical variables) was used to quantify the information about the structure of drugs, protein sequences, gene sequences, and chromosomes in the same information scale. Perturbation Theory Operators (PTOs) with the form of Moving Average (MA) operators have been used to quantify perturbations (deviations) in the structural variables with respect to their expected values for different subsets (partitions) of categorical variables. We obtained three IFPTML models using General Discriminant Analysis (GDA), Classification Tree with Univariate Splits (CTUS), and Classification Tree with Linear Combinations (CTLC). The IFPTML-CTLC presented the better performance with Sensitivity Sn(%) = 83.6/85.1, and Specificity Sp(%) = 89.8/89.7 for training/validation sets, respectively. This model could become a useful tool for the optimization of preclinical assays of new Antimalarial compounds vs. different proteins in the proteome of Plasmodium.
Collapse
Affiliation(s)
- Viviana Quevedo-Tumailli
- Grupo RNASA-IMEDIR, Department of Computer Science, University of A Coruña, 15071 A Coruña, Spain; (V.Q.-T.); (B.O.-T.)
- Research Department, Puyo Campus, Universidad Estatal Amazónica, Puyo 160150, Ecuador
| | - Bernabe Ortega-Tenezaca
- Grupo RNASA-IMEDIR, Department of Computer Science, University of A Coruña, 15071 A Coruña, Spain; (V.Q.-T.); (B.O.-T.)
- Information and Communications Technology Management Department, Puyo Campus, Universidad Estatal Amazónica, Puyo 160150, Ecuador
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- BIOFISIKA, Basque Centre for Biophysics, CSIC-UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
8
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
9
|
Abstract
Malaria parasites have three genomes: a nuclear genome, a mitochondrial genome, and an apicoplast genome. Since the apicoplast is a plastid organelle of prokaryotic origin and has no counterpart in the human host, it can be a source of novel targets for antimalarials. Plasmodium falciparum DNA gyrase (PfGyr) A and B subunits both have apicoplast-targeting signals. First, to test the predicted localization of this enzyme in the apicoplast and the breadth of its function at the subcellular level, nuclear-encoded PfGyrA was disrupted using CRISPR/Cas9 gene editing. Isopentenyl pyrophosphate (IPP) is known to rescue parasites from apicoplast inhibitors. Indeed, successful growth and characterization of PfΔGyrA was possible in the presence of IPP. PfGyrA disruption was accompanied by loss of plastid acyl-carrier protein (ACP) immunofluorescence and the plastid genome. Second, ciprofloxacin, an antibacterial gyrase inhibitor, has been used for malaria prophylaxis, but there is a need for a more detailed description of the mode of action of ciprofloxacin in malaria parasites. As predicted, PfΔGyrA clone supplemented with IPP was less sensitive to ciprofloxacin but not to the nuclear topoisomerase inhibitor etoposide. At high concentrations, however, ciprofloxacin continued to inhibit IPP-rescued PfΔGyrA, possibly suggesting that ciprofloxacin may have an additional nonapicoplast target in P. falciparum. Overall, we confirm that PfGyrA is an apicoplast enzyme in the malaria parasite, essential for blood-stage parasites, and a possible target of ciprofloxacin but perhaps not the only target.
Collapse
|
10
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
11
|
Glaza P, Ranaweera CB, Shiva S, Roy A, Geisbrecht BV, Schoenen FJ, Zolkiewski M. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system. J Biol Chem 2021; 296:100079. [PMID: 33187983 PMCID: PMC7948422 DOI: 10.1074/jbc.ra120.015413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The ClpB-DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 μM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 μM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 μM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB-DnaK bichaperone system in vitro with an IC50∼5 μM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK.
Collapse
Affiliation(s)
- Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA; Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Frank J Schoenen
- Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
12
|
García-Mauriño SM, Díaz-Quintana A, Rivero-Rodríguez F, Cruz-Gallardo I, Grüttner C, Hernández-Vellisca M, Díaz-Moreno I. A putative RNA binding protein from Plasmodium vivax apicoplast. FEBS Open Bio 2017; 8:177-188. [PMID: 29435408 PMCID: PMC5794462 DOI: 10.1002/2211-5463.12351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/30/2023] Open
Abstract
Malaria is caused by Apicomplexa protozoans from the Plasmodium genus entering the bloodstream of humans and animals through the bite of the female mosquitoes. The annotation of the Plasmodium vivax genome revealed a putative RNA binding protein (apiRBP) that was predicted to be trafficked into the apicoplast, a plastid organelle unique to Apicomplexa protozoans. Although a 3D structural model of the apiRBP corresponds to a noncanonical RNA recognition motif with an additional C‐terminal α‐helix (α3), preliminary protein production trials were nevertheless unsuccessful. Theoretical solvation analysis of the apiRBP model highlighted an exposed hydrophobic region clustering α3. Hence, we used a C‐terminal GFP‐fused chimera to stabilize the highly insoluble apiRBP and determined its ability to bind U‐rich stretches of RNA. The affinity of apiRBP toward such RNAs is highly dependent on ionic strength, suggesting that the apiRBP–RNA complex is driven by electrostatic interactions. Altogether, apiRBP represents an attractive tool for apicoplast transcriptional studies and for antimalarial drug design.
Collapse
Affiliation(s)
- Sofía M García-Mauriño
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Francisco Rivero-Rodríguez
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | | | - Christian Grüttner
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Marian Hernández-Vellisca
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja) Universidad de Sevilla Consejo Superior de Investigaciones Científicas (CSIC) Sevilla Spain
| |
Collapse
|
13
|
Exploiting the apicoplast: apicoplast-targeting drugs and malaria vaccine development. Microbes Infect 2017; 20:477-483. [PMID: 29287981 DOI: 10.1016/j.micinf.2017.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/12/2017] [Indexed: 02/04/2023]
Abstract
The apicoplast, a relic plastid found in most Apicomplexan parasites, is a notable drug target. Certain antibiotics elicit a delayed death phenotype by targeting this organelle. Here, we review apicoplast-targeting drugs and their targets, particularly those that cause delayed death, and highlight its potential uses in malaria vaccine development.
Collapse
|
14
|
Abstract
Malaria is caused in humans by five species of single-celled eukaryotic Plasmodium parasites (mainly Plasmodium falciparum and Plasmodium vivax) that are transmitted by the bite of Anopheles spp. mosquitoes. Malaria remains one of the most serious infectious diseases; it threatens nearly half of the world's population and led to hundreds of thousands of deaths in 2015, predominantly among children in Africa. Malaria is managed through a combination of vector control approaches (such as insecticide spraying and the use of insecticide-treated bed nets) and drugs for both treatment and prevention. The widespread use of artemisinin-based combination therapies has contributed to substantial declines in the number of malaria-related deaths; however, the emergence of drug resistance threatens to reverse this progress. Advances in our understanding of the underlying molecular basis of pathogenesis have fuelled the development of new diagnostics, drugs and insecticides. Several new combination therapies are in clinical development that have efficacy against drug-resistant parasites and the potential to be used in single-dose regimens to improve compliance. This ambitious programme to eliminate malaria also includes new approaches that could yield malaria vaccines or novel vector control strategies. However, despite these achievements, a well-coordinated global effort on multiple fronts is needed if malaria elimination is to be achieved.
Collapse
Affiliation(s)
- Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | | | | - Wesley C Van Voorhis
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Center for Emerging and Re-emerging Infectious Diseases, Seattle, Washington, USA
| | | |
Collapse
|
15
|
Chaudhari R, Dey V, Narayan A, Sharma S, Patankar S. Membrane and luminal proteins reach the apicoplast by different trafficking pathways in the malaria parasite Plasmodium falciparum. PeerJ 2017; 5:e3128. [PMID: 28462015 PMCID: PMC5410153 DOI: 10.7717/peerj.3128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF4− and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Vishakha Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Aishwarya Narayan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J 2016; 36:475-486. [PMID: 28007896 PMCID: PMC5694952 DOI: 10.15252/embj.201695959] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo‐EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid‐specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid‐specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light‐ and temperature‐dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A‐site and P‐site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non‐rotated state, in which the intersubunit bridges to the large subunit are stabilized.
Collapse
Affiliation(s)
- Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Milton ME, Nelson SW. Replication and maintenance of the Plasmodium falciparum apicoplast genome. Mol Biochem Parasitol 2016; 208:56-64. [PMID: 27338018 DOI: 10.1016/j.molbiopara.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 12/18/2022]
Abstract
Members of the phylum Apicomplexa are responsible for many devastating diseases including malaria (Plasmodium spp.), toxoplasmosis (Toxoplasma gondii), babesiosis (Babesia bovis), and cyclosporiasis (Cyclospora cayetanensis). Most Apicomplexans contain a unique and essential organelle called the apicoplast. Derived from an ancient chloroplast, the apicoplast replicates and maintains a 35 kilobase (kb) circular genome. Due to its essential nature within the parasite, drugs targeted to proteins involved in DNA replication and repair of the apicoplast should be potent and specific. This review summarizes the current knowledge surrounding the replication and repair of the Plasmodium falciparum apicoplast genome and identifies several putative proteins involved in replication and repair pathways.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames IA 50011, USA
| | - Scott W Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames IA 50011, USA.
| |
Collapse
|
18
|
Abstract
Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the ‘apicoplast’, which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle’s function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.
Collapse
Affiliation(s)
- Avinaba Mukherjee
- Department of Pharmaceutical Technology, Natural Science Laboratory, Jadavpur University, Kolkata, India
| | | |
Collapse
|
19
|
Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:772-792. [PMID: 27230797 PMCID: PMC5111744 DOI: 10.1002/wrna.1365] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| | - Dorothea Droll
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Harder M, Schäfer E, Kümin T, Illarionov B, Bacher A, Fischer M, Diederich F, Bernet B. 8-Substituted, syn-Configured Adenosine Derivatives as Potential Inhibitors of the Enzyme IspE from the Non-Mevalonate Pathway of Isoprenoid Biosynthesis. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Tang Girdwood SC, Nenortas E, Shapiro TA. Targeting the gyrase of Plasmodium falciparum with topoisomerase poisons. Biochem Pharmacol 2015; 95:227-37. [PMID: 25881748 DOI: 10.1016/j.bcp.2015.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022]
Abstract
Drug-resistant malaria poses a major public health problem throughout the world and the need for new antimalarial drugs is growing. The apicoplast, a chloroplast-like organelle essential for malaria parasite survival and with no counterpart in humans, offers an attractive target for selectively toxic new therapies. The apicoplast genome (plDNA) is a 35 kb circular DNA that is served by gyrase, a prokaryotic type II topoisomerase. Gyrase is poisoned by fluoroquinolone antibacterials that stabilize a catalytically inert ternary complex of enzyme, its plDNA substrate, and inhibitor. We used fluoroquinolones to study the gyrase and plDNA of Plasmodium falciparum. New methods for isolating and separating plDNA reveal four topologically different forms and permit a quantitative exam of perturbations that result from gyrase poisoning. In keeping with its role in DNA replication, gyrase is most abundant in late stages of the parasite lifecycle, but several lines of evidence indicate that even in these cells the enzyme is present in relatively low abundance: about 1 enzyme for every two plDNAs or a ratio of 1 gyrase: 70 kb DNA. For a spectrum of quinolones, correlation was generally good between antimalarial activity and gyrase poisoning, the putative molecular mechanism of drug action. However, in P. falciparum there is evidence for off-target toxicity, particularly for ciprofloxacin. These studies highlight the utility of the new methods and of fluoroquinolones as a tool for studying the in situ workings of gyrase and its plDNA substrate.
Collapse
Affiliation(s)
- Sonya C Tang Girdwood
- Division of Clinical Pharmacology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, United States; Malaria Research Institute, The Johns Hopkins University, Baltimore, MD, United States; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States(1).
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, United States; Malaria Research Institute, The Johns Hopkins University, Baltimore, MD, United States.
| | - Theresa A Shapiro
- Division of Clinical Pharmacology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, United States; Malaria Research Institute, The Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
22
|
Milton ME, Choe JY, Honzatko RB, Nelson SW. Crystallization and preliminary X-ray analysis of the Plasmodium falciparum apicoplast DNA polymerase. Acta Crystallogr F Struct Biol Commun 2015; 71:333-7. [PMID: 25760711 PMCID: PMC4356312 DOI: 10.1107/s2053230x15002423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022] Open
Abstract
Infection by the parasite Plasmodium falciparum is the leading cause of malaria in humans. The parasite has a unique and essential plastid-like organelle called the apicoplast. The apicoplast contains a genome that undergoes replication and repair through the action of a replicative polymerase (apPOL). apPOL has no direct orthologs in mammalian polymerases and is therefore an attractive antimalarial drug target. No structural information exists for apPOL, and the Klenow fragment of Escherichia coli DNA polymerase I, which is its closest structural homolog, shares only 28% sequence identity. Here, conditions for the crystallization of and preliminary X-ray diffraction data from crystals of P. falciparum apPOL are reported. Data complete to 3.5 Å resolution were collected from a single crystal (2 × 2 × 5 µm) using a 5 µm beam. The space group P6522 (unit-cell parameters a = b = 141.8, c = 149.7 Å, α = β = 90, γ = 120°) was confirmed by molecular replacement. Refinement is in progress.
Collapse
Affiliation(s)
- Morgan E. Milton
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, IA 50011, USA
| | - Jun-yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, IL 60064, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, IA 50011, USA
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, IA 50011, USA
| |
Collapse
|
23
|
Abstract
The ATG genes are highly conserved in eukaryotes including yeasts, plants, and mammals. However, these genes appear to be only partially present in most protists. Recent studies demonstrated that, in the apicomplexan parasites Plasmodium (malaria parasites) and Toxoplasma, ATG8 localizes to the apicoplast, a unique nonphotosynthetic plastid with 4 limiting membranes. In contrast to this established localization, it remains unclear whether these parasites can induce canonical macroautophagy and if ATG8 localizes to autophagosomes. Furthermore, the molecular function of ATG8 in its novel workplace, the apicoplast, is totally unknown. Here, we review recent studies on ATG8 in Plasmodium and Toxoplasma, summarize both consensus and controversial findings, and discuss its potential role in these parasites.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; University of Tokyo; Tokyo, Japan
| | - Mayurbhai Himatbhai Sahani
- Department of Biochemistry and Molecular Biology; Graduate School and Faculty of Medicine; University of Tokyo; Tokyo, Japan
| |
Collapse
|
24
|
Miller ME, Parrott EE, Singh R, Nelson SW. A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. ACTA ACUST UNITED AC 2014; 19:966-72. [DOI: 10.1177/1087057114528738] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
Infection by Plasmodium falciparum is the leading cause of malaria in humans. The parasite contains a unique and essential plastid-like organelle called the apicoplast that, similar to the mitochondria and chloroplast, houses its own genome that must undergo replication and repair. The putative apicoplast replicative DNA polymerase, POM1, has no direct orthologs in mammals, making the P. falciparum POM1 an attractive antimalarial drug target. Here, we report on a fluorescent high-throughput DNA polymerase assay that relies on the ability of POM1 to perform strand-displacement synthesis through the stem of a DNA hairpin substrate, thereby separating a Cy3 dye from a quencher. Assay-validation experiments were performed using 384-well plates and resulted in a signal window of 7.90 and a Z’ factor of 0.71. A pilot screen of a 2880-compound library identified 62 possible inhibitors that cause more than 50% inhibition of polymerase activity. The simplicity and statistical robustness of the assay suggest it is well suited for the screening of novel apicoplast polymerase inhibitors that may serve as lead compounds in antimalarial drug-discovery efforts.
Collapse
Affiliation(s)
- Morgan E. Miller
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Eric E. Parrott
- Biochemistry B.S./M.S. Program at Iowa State University, Ames, IA, USA
| | - Risham Singh
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
- Ames Senior High School, Ames, IA, USA
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Botté CY, Maréchal E. Plastids with or without galactoglycerolipids. TRENDS IN PLANT SCIENCE 2014; 19:71-78. [PMID: 24231068 DOI: 10.1016/j.tplants.2013.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
In structural, functional, and evolutionary terms, galactoglycerolipids are signature lipids of chloroplasts. Their presence in nongreen plastids has been demonstrated in angiosperms and diatoms. Thus, galactoglycerolipids are considered as a landmark of green and nongreen plastids, deriving from either a primary or secondary endosymbiosis. The discovery of a plastid in Plasmodium falciparum, the causative agent of malaria, fueled the search for galactoglycerolipids as possible targets for treatments. However, recent data have provided evidence that the Plasmodium plastid does not contain any galactoglycerolipids. In this opinion article, we discuss questions raised by the loss of galactoglycerolipids during evolution: how have galactoglycerolipids been lost? How does the Plasmodium plastid maintain four membranes without these lipids? What are the main constituents instead of galactoglycerolipids?
Collapse
Affiliation(s)
- Cyrille Y Botté
- ApicoLipid Group, Laboratoire Adapation et Pathogenie des Microorganismes; CNRS, Université de Grenoble-Alpes, UMR 5163, Institut Jean Roget, F-38042 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; CNRS, CEA, INRA, Université de Grenoble-Alpes, UMR 5168, Institut de Recherches en Sciences et Technologies pour le Vivant, CEA Grenoble, F-38054 Grenoble, France.
| |
Collapse
|
26
|
Uhrig RG, Kerk D, Moorhead GB. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. PLANT PHYSIOLOGY 2013; 163:1829-43. [PMID: 24108212 PMCID: PMC3850205 DOI: 10.1104/pp.113.224378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Collapse
|
27
|
Wingert BM, Parrott EE, Nelson SW. Fidelity, mismatch extension, and proofreading activity of the Plasmodium falciparum apicoplast DNA polymerase. Biochemistry 2013; 52:7723-30. [PMID: 24147857 DOI: 10.1021/bi400708m] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasmodium falciparum, a parasitic organism and one of the causative agents of malaria, contains an unusual organelle called the apicoplast. The apicoplast is a nonphotosynthetic plastid responsible for supplying the parasite with isoprenoid units and is therefore indispensable. Like mitochondria and the chloroplast, the apicoplast contains its own genome and harbors the enzymes responsible for its replication. In this report, we determine the relative probabilities of nucleotide misincorporation by the apicoplast polymerase (apPOL), examine the kinetics and sequence dependence of mismatch extension, and determine the rates of mismatch removal by the 3' to 5' proofreading activity of the DNA polymerase. While the intrinsic polymerase fidelity varies by >50-fold for the 12 possible nucleotide misincorporations, the most dominant selection step for overall polymerase fidelity is conducted at the level of mismatch extension, which varies by >350-fold. The efficiency of mismatch extension depends on both the nature of the DNA mismatch and the templating base. The proofreading activity of the 12 possible mismatches varies <3-fold. The data for these three determinants of polymerase-induced mutations indicate that the overall mutation frequency of apPOL is highly dependent on both the intrinsic fidelity of the polymerase and the identity of the template surrounding the potential mismatch.
Collapse
Affiliation(s)
- Bentley M Wingert
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | | | | |
Collapse
|
28
|
Biochemical characterization of the apicoplast-targeted AAA+ ATPase ClpB from Plasmodium falciparum. Biochem Biophys Res Commun 2013; 439:191-5. [PMID: 23994135 DOI: 10.1016/j.bbrc.2013.08.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
ClpB is a molecular chaperone from the AAA+ superfamily of ATPases, which reactivates aggregated proteins in cooperation with the DnaK chaperone system. ClpB is essential for infectivity and in-host survival of a number of pathogenic microorganisms, but systematic studies on ClpB from pathogens have not been reported yet. We purified and characterized one of the two ClpB isoforms from the malaria parasite Plasmodium falciparum, PfClpB1. PfClpB1 is targeted to the apicoplast, an essential plastid organelle that is a promising anti-malaria drug target. PfClpB1 contains all characteristic AAA+ sequence motifs, but the middle domain of PfClpB1 includes a 52-residue long non-conserved insert. Like in most AAA+ ATPases, ATP induces self-association of PfClpB1 into hexamers. PfClpB1 catalyzes the hydrolysis of ATP and its ATPase activity is activated in the presence of casein and poly-lysine. Similar to Escherichia coli ClpB, PfClpB1 reactivates aggregated firefly luciferase, but the PfClpB1-mediated aggregate reactivation is inhibited in the presence of E. coli DnaK, DnaJ, and GrpE. The lack of effective cooperation between PfClpB1 and the bacterial DnaK system may arise from the Plasmodium-specific sequence of the ClpB middle domain. Our results indicate that the chaperone activity of PfClpB1 may support survival of Plasmodium falciparum by maintaining the folding status and activity of apicoplast proteins.
Collapse
|
29
|
Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C. P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PLoS One 2013; 8:e53909. [PMID: 23326533 PMCID: PMC3542282 DOI: 10.1371/journal.pone.0053909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 02/05/2023] Open
Abstract
Human malaria is among the most ubiquitous and destructive tropical, parasitic diseases in the world today. The causative agent, Plasmodium falciparum, contains an unusual, essential organelle known as the apicoplast. Inhibition of this degenerate chloroplast results in second generation death of the parasite and is the mechanism by which antibiotics function in treating malaria. In order to better understand the biochemistry of this organelle, we have cloned a putative, 20 kDa, co-chaperonin protein, Pf-cpn20, which localizes to the apicoplast. Although this protein is homologous to the cpn20 that is found in plant chloroplasts, its ability to function as a co-chaperonin was questioned in the past. In the present study, we carried out a structural analysis of Pf-cpn20 using circular dichroism and analytical ultracentrifugation and then used two different approaches to investigate the ability of this protein to function as a co-chaperonin. In the first approach, we purified recombinant Pf-cpn20 and tested its ability to act as a co-chaperonin for GroEL in vitro, while in the second, we examined the ability of Pf-cpn20 to complement an E. coli depletion of the essential bacterial co-chaperonin GroES. Our results demonstrate that Pf-cpn20 is fully functional as a co-chaperonin in vitro. Moreover, the parasitic co-chaperonin is able to replace GroES in E. coli at both normal and heat-shock temperatures. Thus, Pf-cpn20 functions as a co-chaperonin in chaperonin-mediated protein folding. The ability of the malarial protein to function in E. coli suggests that this simple system can be used as a tool for further analyses of Pf-cpn20 and perhaps other chaperone proteins from P. falciparum.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- George E. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
Talevich E, Tobin AB, Kannan N, Doerig C. An evolutionary perspective on the kinome of malaria parasites. Philos Trans R Soc Lond B Biol Sci 2012; 367:2607-18. [PMID: 22889911 DOI: 10.1098/rstb.2012.0014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome.
Collapse
Affiliation(s)
- Eric Talevich
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | | | | | | |
Collapse
|
31
|
Abstract
INTRODUCTION The relict plastid, or apicoplast, is a characteristic feature of Plasmodium spp. and reflects the unusual evolutionary origins of these parasites. The essential role this organelle plays in the life of the parasite, and its unusual, non-mammalian metabolism, make the apicoplast an excellent drug target. AREAS COVERED This review focuses on the biological role of the apicoplast in the erythrocytic life cycle and what that reveals about existing drug targets. We also discuss the future of the apicoplast in the development of anti-malarials, emphasizing those pathways with greatest potential as a source of novel drug targets and emphasizing the need to understand in vitro drug responses to optimize eventual use of these drugs to treat malaria. EXPERT OPINION More than a decade of research on the apicoplast has confirmed the promise of this organelle as a source of drug targets. It is now possible to rationally assess the value of existing drugs and new drug targets, and to understand the role these drugs can play in the arsenal of anti-malarial treatments.
Collapse
Affiliation(s)
- Christopher D Goodman
- University of Melbourne, School of Botany, Professor's Walk, Parkville, Vic, 3010, Australia.
| | | |
Collapse
|
32
|
Storm J, Müller S. Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 2012; 18:3480-9. [PMID: 22607141 PMCID: PMC3426790 DOI: 10.2174/138161212801327266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria.
Collapse
Affiliation(s)
- Janet Storm
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | |
Collapse
|
33
|
Abstract
Quinine (QN) and quinidine (QND) have been commonly used as effective and affordable antimalarials for over many years. Quinine primarily is used for severe malaria treatment. However, plasmodia resistance to these drugs and poor patient compliance limits their administration to the patients. The declining sensitivity of the parasite to the drugs can thus be dealt with by combining with a suitable partner drug. In the present study QN/QND was assessed in combination with clarithromycin (CLTR), an antibiotic of the macrolide family. In vitro interactions of these drugs with CLTR against Plasmodium falciparum (P. falciparum) have shown a synergistic response with mean sum fractional inhibitory concentrations (ΣFICs) of ≤1 (0.85 ± 0.11 for QN + CLTR and 0.64 ± 0.09 for QND + CLTR) for all the tested combination ratios. Analysis of this combination of QN/QND with CLTR in mouse model against Plasmodium yoelii nigeriensis multi-drug resistant (P. yoelii nigeriensis MDR) showed that a dose of 200 mg/kg/day for 4 days of QN or QND produces 100% curative effect with 200 mg/kg/day for 7 days and 150 mg/kg/day for 7 days CLTR respectively, while the same dose of individual drugs could produce only up to a maximum 20% cure. It is postulated that CLTR, a CYP3A4 inhibitor, might have caused reduced CYP3A4 activity leading to increased plasma level of the QN/QND to produce enhanced antimalarial activity. Further, parasite apicoplast disruption by CLTR synergies the antimalarial action of QN and QND.
Collapse
|
34
|
Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N, Mizushima N. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS One 2012; 7:e42977. [PMID: 22900071 PMCID: PMC3416769 DOI: 10.1371/journal.pone.0042977] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/16/2012] [Indexed: 01/24/2023] Open
Abstract
Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8). PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.
Collapse
Affiliation(s)
- Kei Kitamura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chieko Kishi-Itakura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takafumi Tsuboi
- Cell-Free Science and Technology Research Center and Venture Business Laboratory, Ehime University, Matsuyama, Ehime, Japan
| | - Shigeharu Sato
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (NO); (NM)
| | - Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (NO); (NM)
| |
Collapse
|
35
|
Abstract
Lipids from microalgae have become an important commodity in the last 20 years, biodiesel and supplementing human diets with ω-3 fatty acids are just two of the many applications. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the lipid synthesis pathway. In general, ACCases consist of four functional domains: the biotin carboxylase (BC), the biotin carboxyl binding protein (BCCP), and α-and β-carboxyltransferases (α-and β-CT). In algae, like in plants, lipid synthesis is another function of the chloroplast. Despite being well researched in plants and animals, there is a distinct lack of information about this enzyme in the taxonomically diverse algae. In plastid-containing organisms, ACCases are present in the cytosol and the plastid (chloroplasts) and two different forms exist, the heteromeric (prokaryotic) and homomeric (eukaryotic) form. Despite recognition of the existence of the two ACCase forms, generalized published statements still list the heteromeric form as the one present in algal plastids. In this study, the authors show this is not the case for all algae. The presence of heteromeric or homomeric ACCase is dependent on the origin of plastid. The authors used ACCase amino acid sequence comparisons to show that green (Chlorophyta) and red (Rhodophyta) algae, with the exception of the green algal class Prasinophyceae, contain heteromeric ACCase in their plastids, which are of primary symbiotic origin and surrounded by two envelope membranes. In contrast, algal plastids surrounded by three to four membranes were derived through secondary endosymbiosis (Heterokontophyta and Haptophyta), as well as apicoplast containing Apicomplexa, contain homomeric ACCase in their plastids. Distinctive differences in the substrate binding regions of heteromeric and homomeric α-CT and β-CT were discovered, which can be used to distinguish between the two ACCase types. Furthermore, the acetyl-CoA binding region of homomeric α-CT can be used to distinguish between cytosolic and plastidial ACCase. The information provided here will be of fundamental importance in ACCase expression and activity research to unravel impacts of environmental and physicochemical parameters on lipid content and productivity.
Collapse
Affiliation(s)
- Roger Huerlimann
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | | |
Collapse
|
36
|
Uhrig RG, Moorhead GB. Okadaic acid and microcystin insensitive PPP-family phosphatases may represent novel biotechnology targets. PLANT SIGNALING & BEHAVIOR 2011; 6:2057-9. [PMID: 22112445 PMCID: PMC3337206 DOI: 10.4161/psb.6.12.18541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Reversible protein phosphorylation is of central importance to the proper cellular functioning of all living organisms. Catalyzed by the opposing reactions of protein kinases and phosphatases, dysfunction in reversible protein phosphorylation can result in a wide variety of cellular aberrations. In eukaryotic organisms there exists four classes of protein phosphatases, of which the PPP-family protein phosphatases have documented susceptibility to a range of protein and small molecule inhibitors. These inhibitors have been of great importance to the biochemical characterization of PPP-family protein phosphatases since their discovery, but also maintain in natura biological significance with their endogenous regulatory properties (protein inhibitors) and toxicity (small molecule inhibitors). Recently, two unique PPP-family protein phosphatases, named the Shewanella-like protein phosphatases (SLP phosphatases), from Arabidopsis thaliana were characterized and found to be phylogenetically similar to the PPP-family protein phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A), while completely lacking sensitivity to the classic PPP-family phosphatase small molecule inhibitors okadaic acid and microcystin-LR. SLP phosphatases were also found to be absent in metazoans, but present in a wide range of bacteria, fungi and protozoa responsible for human disease. The unique biochemical properties and evolutionary heritage of SLP phosphatases suggests they could not only be potential biotechnology targets for agriculture, but may also prove to be of interest for future therapeutic drug development.
Collapse
|
37
|
In vitro and in vivo activity of solithromycin (CEM-101) against Plasmodium species. Antimicrob Agents Chemother 2011; 56:703-7. [PMID: 22083475 DOI: 10.1128/aac.05039-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
With the emergence of Plasmodium falciparum infections exhibiting increased parasite clearance times in response to treatment with artemisinin-based combination therapies, the need for new therapeutic agents is urgent. Solithromycin, a potent new fluoroketolide currently in development, has been shown to be an effective, broad-spectrum antimicrobial agent. Malarial parasites possess an unusual organelle, termed the apicoplast, which carries a cryptic genome of prokaryotic origin that encodes its own translation and transcription machinery. Given the similarity of apicoplast and bacterial ribosomes, we have examined solithromycin for antimalarial activity. Other antibiotics known to target the apicoplast, such as the macrolide azithromycin, demonstrate a delayed-death effect, whereby treated asexual blood-stage parasites die in the second generation of drug exposure. Solithromycin demonstrated potent in vitro activity against the NF54 strain of P. falciparum, as well as against two multidrug-resistant strains, Dd2 and 7G8. The dramatic increase in potency observed after two generations of exposure suggests that it targets the apicoplast. Solithromycin also retained potency against azithromycin-resistant parasites derived from Dd2 and 7G8, although these lines did demonstrate a degree of cross-resistance. In an in vivo model of P. berghei infection in mice, solithromycin demonstrated a 100% cure rate when administered as a dosage regimen of four doses of 100 mg/kg of body weight, the same dose required for artesunate or chloroquine to achieve 100% cure rates in this rodent malaria model. These promising in vitro and in vivo data support further investigations into the development of solithromycin as an antimalarial agent.
Collapse
|
38
|
Botté CY, Dubar F, McFadden GI, Maréchal E, Biot C. Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem Rev 2011; 112:1269-83. [PMID: 22026508 DOI: 10.1021/cr200258w] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cyrille Y Botté
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CNRS, CEA, INRA, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
39
|
McNamara C, Winzeler EA. Target identification and validation of novel antimalarials. Future Microbiol 2011; 6:693-704. [PMID: 21707315 DOI: 10.2217/fmb.11.45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been recognized that new antimalarials with a novel mode of action are critical to combat the continued emergence and dissemination of drug-resistant parasites that threaten the efficacy of current malaria treatments. Thus, recent high-throughput screening campaigns have been initiated using asexual intraerythrocytic stage cell-based assays of Plasmodium falciparum. These have led to the unprecedented identification of over 10,000 new antimalarial compounds. Inherently, novel compounds identified by cell-based assays will have poorly defined modes of action. While some of these compounds may have recognizable targets, the majority of cell-based hits are comprised of unique chemical scaffolds usually lacking cross-resistance with known drugs. It is likely that these novel antimalarial scaffolds will reveal new targets. A challenge for the community will be to assign these small molecules to their targets. In this article, we review methodologies to assist in the determination of a compound's mode of action.
Collapse
Affiliation(s)
- Case McNamara
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
40
|
Kořený L, Sobotka R, Janouškovec J, Keeling PJ, Oborník M. Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. THE PLANT CELL 2011; 23:3454-3462. [PMID: 21963666 PMCID: PMC3203424 DOI: 10.1105/tpc.111.089102] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/07/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Most photosynthetic eukaryotes synthesize both heme and chlorophyll via a common tetrapyrrole biosynthetic pathway starting from glutamate. This pathway was derived mainly from cyanobacterial predecessor of the plastid and differs from the heme synthesis of the plastid-lacking eukaryotes. Here, we show that the coral-associated alveolate Chromera velia, the closest known photosynthetic relative to Apicomplexa, possesses a tetrapyrrole pathway that is homologous to the unusual pathway of apicomplexan parasites. We also demonstrate that, unlike other eukaryotic phototrophs, Chromera synthesizes chlorophyll from glycine and succinyl-CoA rather than glutamate. Our data shed light on the evolution of the heme biosynthesis in parasitic Apicomplexa and photosynthesis-related biochemical processes in their ancestors.
Collapse
Affiliation(s)
- Luděk Kořený
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 37981 Třeboň, Czech Republic
| | - Jan Janouškovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 37981 Třeboň, Czech Republic
| |
Collapse
|
41
|
Fernández Robledo JA, Caler E, Matsuzaki M, Keeling PJ, Shanmugam D, Roos DS, Vasta GR. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol 2011; 41:1217-29. [PMID: 21889509 DOI: 10.1016/j.ijpara.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/11/2022]
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a protozoan parasite that has devastated natural and farmed oyster populations in the USA, significantly affecting the shellfish industry and the estuarine environment. The other two genera in the phylum, Parvilucifera and Rastrimonas, are parasites of microeukaryotes. The Perkinsozoa occupies a key position at the base of the dinoflagellate branch, close to its divergence from the Apicomplexa, a clade that includes parasitic protista, many harbouring a relic plastid. Thus, as a taxon that has also evolved toward parasitism, the Perkinsozoa has attracted the attention of biologists interested in the evolution of this organelle, both in its ultrastructure and the conservation, loss or transfer of its genes. A review of the recent literature reveals mounting evidence in support of the presence of a relic plastid in P. marinus, including the presence of multimembrane structures, characteristic metabolic pathways and proteins with a bipartite N-terminal extension. Further, these findings raise intriguing questions regarding the potential functions and unique adaptation of the putative plastid and/or plastid genes in the Perkinsozoa. In this review we analyse the above-mentioned evidence and evaluate the potential future directions and expected benefits of addressing such questions. Given the rapidly expanding molecular/genetic resources and methodological toolbox for Perkinsus spp., these organisms should complement the currently established models for investigating plastid evolution within the Chromalveolata.
Collapse
Affiliation(s)
- José A Fernández Robledo
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, IMET, Baltimore, MD 21202-3101, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ekland EH, Schneider J, Fidock DA. Identifying apicoplast-targeting antimalarials using high-throughput compatible approaches. FASEB J 2011; 25:3583-93. [PMID: 21746861 DOI: 10.1096/fj.11-187401] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Malarial parasites have evolved resistance to all previously used therapies, and recent evidence suggests emerging resistance to the first-line artemisinins. To identify antimalarials with novel mechanisms of action, we have developed a high-throughput screen targeting the apicoplast organelle of Plasmodium falciparum. Antibiotics known to interfere with this organelle, such as azithromycin, exhibit an unusual phenotype whereby the progeny of drug-treated parasites die. Our screen exploits this phenomenon by assaying for "delayed death" compounds that exhibit a higher potency after two cycles of intraerythrocytic development compared to one. We report a primary assay employing parasites with an integrated copy of a firefly luciferase reporter gene and a secondary flow cytometry-based assay using a nucleic acid stain paired with a mitochondrial vital dye. Screening of the U.S. National Institutes of Health Clinical Collection identified known and novel antimalarials including kitasamycin. This inexpensive macrolide, used for agricultural applications, exhibited an in vitro IC(50) in the 50 nM range, comparable to the 30 nM activity of our control drug, azithromycin. Imaging and pharmacologic studies confirmed kitasamycin action against the apicoplast, and in vivo activity was observed in a murine malaria model. These assays provide the foundation for high-throughput campaigns to identify novel chemotypes for combination therapies to treat multidrug-resistant malaria.
Collapse
Affiliation(s)
- Eric H Ekland
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, 701 W. 168th St., New York, NY 10032, USA.
| | | | | |
Collapse
|
43
|
Botté CY, Yamaryo-Botté Y, Janouskovec J, Rupasinghe T, Keeling PJ, Crellin P, Coppel RL, Maréchal E, McConville MJ, McFadden GI. Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J Biol Chem 2011; 286:29893-903. [PMID: 21712377 PMCID: PMC3191030 DOI: 10.1074/jbc.m111.254979] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Cyrille Y Botté
- School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tilley L, Dixon MWA, Kirk K. The Plasmodium falciparum-infected red blood cell. Int J Biochem Cell Biol 2011; 43:839-42. [PMID: 21458590 DOI: 10.1016/j.biocel.2011.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/27/2011] [Accepted: 03/24/2011] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum, the most virulent of the human malaria parasites, causes up to one million deaths per year. The parasite spends part of its lifecycle inside the red blood cells (RBCs) of its host. As it grows it ingests the RBC cytoplasm, digesting it in an acidic vacuole. Free haem released during haemoglobin digestion is detoxified by conversion to inert crystals of haemozoin. Malaria pathology is evident during the blood stage of the infection and is exacerbated by adhesion of infected RBCs to blood vessel walls, which prevents splenic clearance of the infected cells. Cytoadherence is mediated by surface-exposed virulence proteins that bind to endothelial cell receptors. These 'adhesins' are exported to the RBC surface via an exomembrane system that is established outside the parasite in the host cell cytoplasm. Antimalarial drugs that interfere with haem detoxification, or target other parasite-specific processes, have been effective in the treatment of malaria, but their use has been dogged by the development of resistance. Similarly, efforts to develop an effective blood vaccine are hindered by the variability of surface-exposed antigens.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry, La Trobe University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
45
|
Intraerythrocytic stages of Plasmodium falciparum biosynthesize menaquinone. FEBS Lett 2010; 584:4761-4768. [PMID: 21036171 DOI: 10.1016/j.febslet.2010.10.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 11/23/2022]
Abstract
Herein, we show that intraerythrocytic stages of Plasmodium falciparum have an active pathway for biosynthesis of menaquinone. Kinetic assays confirmed that plasmodial menaquinone acts at least in the electron transport. Similarly to Escherichia coli, we observed increased levels of menaquinone in parasites kept under anaerobic conditions. Additionally, the mycobacterial inhibitor of menaquinone synthesis Ro 48-8071 also suppressed menaquinone biosynthesis and growth of parasites, although off-targets may play a role in this growth-inhibitory effect. Due to its absence in humans, the menaquinone biosynthesis can be considered an important drug target for malaria.
Collapse
|
46
|
Organelle biogenesis and positioning in plants. Biochem Soc Trans 2010; 38:729-32. [PMID: 20491657 DOI: 10.1042/bst0380729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biogenesis and positioning of organelles involves complex interacting processes and precise control. Progress in our understanding is being made rapidly as advances in analysing the nuclear and organellar genome and proteome combine with developments in live-cell microscopy and manipulation at the subcellular level. This paper introduces the collected papers resulting from Organelle Biogenesis and Positioning in Plants, the 2009 Biochemical Society Annual Symposium. Including papers on the nuclear envelope and all major organelles, it considers current knowledge and progress towards unifying themes that will elucidate the mechanisms by which cells generate the correct complement of organelles and adapt and change it in response to environmental and developmental signals.
Collapse
|