1
|
Salassa BN, Cueto JA, Vanrell MC, López MB, Descoteaux A, Labriola CA, Romano PS. The host Rab9a/Rab32 axis is actively recruited to the Trypanosoma cruzi parasitophorous vacuole and benefits the infection cycle. Mol Microbiol 2024; 122:643-659. [PMID: 38193389 DOI: 10.1111/mmi.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/26/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoan parasite that infects phagocytic and non-phagocytic mammalian cells. At early stages of infection, trypomastigotes, the infective forms of this parasite, localize in a vesicular compartment called the T. cruzi parasitophorous vacuole until the exit of parasites to the host cell cytoplasm where continue their infective cycle. Rab proteins participate in the membrane traffic's molecular machinery, functioning as central regulators of vesicle recognition and transport. In previous work, we demonstrated that endocytic Rabs are key factors of the T. cruzi infection process in non-phagocytic cells, regulating the formation and the maturation of the vacuole. In this work, we identified and characterized other molecular components of the vesicular transport pathways and their participation in the T. cruzi infection. We found that Rab9a and Rab32, two regulators of the endocytic and autophagic pathways, were actively recruited to the T. cruzi vacuoles and favored the late stages of the infective process. The recruitment was specific and dependent on T. cruzi protein synthesis. Interestingly, Rab32 association depends on the presence of Rab9a in the vacuolar membrane, while the inhibition of the cysteine-protease cruzipain, a T. cruzi virulence factor, significantly decreases both Rab9a and Rab32 association with the vacuole. In summary, this work showed for the first time that specific molecules produced and secreted by the parasite can subvert intracellular components of host cells to benefit the infection. These new data shed light on the complex map of interactions between T. cruzi and the host cell and introduce concepts that can be useful in finding new forms of intervention against this parasite in the future.
Collapse
Affiliation(s)
- Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Área Biología celular y molecular, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Belén López
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Área Biología celular y molecular, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Quebec, Canada
- Infectiopole INRS, Laval, Quebec, Canada
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Área Biología celular y molecular, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Rollins KR, Blankenship JT. Dysregulation of the endoplasmic reticulum blocks recruitment of centrosome-associated proteins resulting in mitotic failure. Development 2023; 150:dev201917. [PMID: 37971218 PMCID: PMC10690056 DOI: 10.1242/dev.201917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
The endoplasmic reticulum (ER) undergoes a remarkable transition in morphology during cell division to aid in the proper portioning of the ER. However, whether changes in ER behaviors modulate mitotic events is less clear. Like many animal embryos, the early Drosophila embryo undergoes rapid cleavage cycles in a lipid-rich environment. Here, we show that mitotic spindle formation, centrosomal maturation, and ER condensation occur with similar time frames in the early syncytium. In a screen for Rab family GTPases that display dynamic function at these stages, we identified Rab1. Rab1 disruption led to an enhanced buildup of ER at the spindle poles and produced an intriguing 'mini-spindle' phenotype. ER accumulation around the mitotic space negatively correlates with spindle length/intensity. Importantly, centrosomal maturation is defective in these embryos, as mitotic recruitment of key centrosomal proteins is weakened after Rab1 disruption. Finally, division failures and ER overaccumulation is rescued by Dynein inhibition, demonstrating that Dynein is essential for ER spindle recruitment. These results reveal that ER levels must be carefully tuned during mitotic processes to ensure proper assembly of the division machinery.
Collapse
Affiliation(s)
| | - J. Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
3
|
Sun Y, Zheng H, Qian L, Liu Y, Zhu D, Xu Z, Chang W, Xu J, Wang L, Sun B, Gu L, Yuan H, Lou H. Targeting GDP-Dissociation Inhibitor Beta (GDI2) with a Benzo[ a]quinolizidine Library to Induce Paraptosis for Cancer Therapy. JACS AU 2023; 3:2749-2762. [PMID: 37885576 PMCID: PMC10598831 DOI: 10.1021/jacsau.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Inducing paraptosis, a nonapoptotic form of cell death, has great therapeutic potential in cancer therapy, especially for drug-resistant tumors. However, the specific molecular target(s) that trigger paraptosis have not yet been deciphered yet. Herein, by using activity-based protein profiling, we identified the GDP-dissociation inhibitor beta (GDI2) as a manipulable target for inducing paraptosis and uncovered benzo[a]quinolizidine BQZ-485 as a potent inhibitor of GDI2 through the interaction with Tyr245. Comprehensive target validation revealed that BQZ-485 disrupts the intrinsic GDI2-Rab1A interaction, thereby abolishing vesicular transport from the endoplasmic reticulum (ER) to the Golgi apparatus and initiating subsequent paraptosis events including ER dilation and fusion, ER stress, the unfolded protein response, and cytoplasmic vacuolization. Based on the structure of BQZ-485, we created a small benzo[a]quinolizidine library by click chemistry and discovered more potent GDI2 inhibitors using a NanoLuc-based screening platform. Leveraging the engagement of BQZ-485 with GDI2, we developed a selective GDI2 degrader. The optimized inhibitor (+)-37 and degrader 21 described in this study exhibited excellent in vivo antitumor activity in two GDI2-overexpressing pancreatic xenograft models, including an AsPc-1 solid tumor model and a transplanted human PDAC tumor model. Altogether, our findings provide a promising strategy for targeting GDI2 for paraptosis in the treatment of pancreatic cancers, and these lead compounds could be further optimized to be effective chemotherapeutics.
Collapse
Affiliation(s)
- Yong Sun
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Lilin Qian
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Yue Liu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Deyu Zhu
- Department
of Biochemistry and Molecular Biology, School of Basic Medical Sciences,
Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zejun Xu
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Wenqiang Chang
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Jianwei Xu
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Lei Wang
- Department
of General Surgery, Qilu Hospital of Shandong
University, Jinan 250012, China
| | - Bin Sun
- National
Glycoengineering Research Center, Shandong
University, Jinan 250100, China
| | - Lichuan Gu
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huiqing Yuan
- Key
Laboratory
of Experimental Teratology of the Ministry of Education, Institute
of Medical Sciences, The Second Hospital
of Shandong University, Jinan 250013, China
| | - Hongxiang Lou
- Department
of Natural Products Chemistry, Key Laboratory of Natural Products
& Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Sarkar H, Lahne M, Nair N, Moosajee M. Oxidative and Endoplasmic Reticulum Stress Represent Novel Therapeutic Targets for Choroideremia. Antioxidants (Basel) 2023; 12:1694. [PMID: 37759997 PMCID: PMC10525549 DOI: 10.3390/antiox12091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia (CHM) is a rare X-linked chorioretinal dystrophy, affecting the photoreceptors, retinal pigment epithelium (RPE) and choroid, with no approved therapy. CHM is caused by mutations in the CHM gene, which encodes the ubiquitously expressed Rab escort protein 1 (REP1). REP1 is involved in prenylation, a post-translational modification of Rab proteins, and plays an essential role in intracellular trafficking. In this study, we examined oxidative and endoplasmic reticulum (ER) stress pathways in chmru848 zebrafish and CHMY42X patient fibroblasts, and screened a number of neuroprotectants for their ability to reduce stress. The expression of the oxidative stress markers txn, cat and sod3a, and the ER stress markers bip, atf4 and atf6, were dysregulated in chmru848 fish. The expression of SOD2 was also reduced in CHMY42X fibroblasts, along with reduced BIP and increased CHOP expression. The lack of REP1 is associated with defects in vesicular trafficking, photoreceptor outer segment phagocytosis and melanosome transport, leading to increased levels of stress within the retina and RPE. Drugs targeting oxidative and ER stress pathways represent novel therapeutic avenues.
Collapse
Affiliation(s)
- Hajrah Sarkar
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| | | | - Neelima Nair
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
5
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Tapia D, Cavieres VA, Burgos PV, Cancino J. Impact of interorganelle coordination between the conventional early secretory pathway and autophagy in cellular homeostasis and stress response. Front Cell Dev Biol 2023; 11:1069256. [PMID: 37152281 PMCID: PMC10160633 DOI: 10.3389/fcell.2023.1069256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
The conventional early secretory pathway and autophagy are two essential interconnected cellular processes that are crucial for maintaining cellular homeostasis. The conventional secretory pathway is an anabolic cellular process synthesizing and delivering proteins to distinct locations, including different organelles, the plasma membrane, and the extracellular media. On the other hand, autophagy is a catabolic cellular process that engulfs damaged organelles and aberrant cytosolic constituents into the double autophagosome membrane. After fusion with the lysosome and autolysosome formation, this process triggers digestion and recycling. A growing list of evidence indicates that these anabolic and catabolic processes are mutually regulated. While knowledge about the molecular actors involved in the coordination and functional cooperation between these two processes has increased over time, the mechanisms are still poorly understood. This review article summarized and discussed the most relevant evidence about the key molecular players implicated in the interorganelle crosstalk between the early secretory pathway and autophagy under normal and stressful conditions.
Collapse
Affiliation(s)
- Diego Tapia
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Viviana A. Cavieres
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V. Burgos
- Organelle Phagy Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Jorge Cancino
- Cell Biology of Interorganelle Signaling Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
7
|
Rab32 promotes glioblastoma migration and invasion via regulation of ERK/Drp1-mediated mitochondrial fission. Cell Death Dis 2023; 14:198. [PMID: 36922509 PMCID: PMC10017813 DOI: 10.1038/s41419-023-05721-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023]
Abstract
The highly widespread and infiltrative nature of glioblastoma multiforme (GBM) makes complete surgical resection hard, causing high recurrence rate and poor patients' prognosis. However, the mechanism underlying GBM migration and invasion is still unclear. In this study, we investigated the role of a Ras-related protein Rab32 on GBM and uncovered its underlying molecular and subcellular mechanisms that contributed to GBM aggressiveness. The correlation of Rab32 expression with patient prognosis and tumor grade was investigated by public dataset analysis and clinical specimen validation. The effect of Rab32 on migration and invasion of GBM had been evaluated using wound healing assay, cell invasion assay, as well as protein analysis upon Rab32 manipulations. Mitochondrial dynamics of cells upon Rab32 alterations were detected by immunofluorescence staining and western blotting. Both the subcutaneous and intracranial xenograft tumor model were utilized to evaluate the effect of Rab32 on GBM in vivo. The expression level of Rab32 is significantly elevated in the GBM, especially in the most malignant mesenchymal subtype, and is positively correlated with tumor pathological grade and poor prognosis. Knockdown of Rab32 attenuated the capability of GBM's migration and invasion. It also suppressed the expression levels of invasion-related proteins (MMP2 and MMP9) as well as mesenchymal transition markers (N-cadherin, vimentin). Interestingly, Rab32 transported Drp1 to mitochondrial from the cytoplasm and modulated mitochondrial fission in an ERK1/2 signaling-dependent manner. Furthermore, silencing of Rab32 in vivo suppressed tumor malignancy via ERK/Drp1 axis. Rab32 regulates ERK1/2/Drp1-dependent mitochondrial fission and causes mesenchymal transition, promoting migration and invasion of GBM. It serves as a novel therapeutic target for GBM, especially for the most malignant mesenchymal subtype. Schematic of Rab32 promotes GBM aggressiveness via regulation of ERK/Drp1-mediated mitochondrial fission. Rab32 transports Drp1 from the cytoplasm to the mitochondria and recruits ERK1/2 to activate the ser616 site of Drp1, which in turn mediates mitochondrial fission and promotes mesenchymal transition, migration and invasion of GBM.
Collapse
|
8
|
Ireton K, Gyanwali GC, Herath TUB, Lee N. Exploitation of the host exocyst complex by bacterial pathogens. Mol Microbiol 2023. [PMID: 36717381 DOI: 10.1111/mmi.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Intracellular bacterial pathogens remodel the plasma membrane of eukaryotic cells in order to establish infection. A common and well-studied mechanism of plasma membrane remodelling involves bacterial stimulation of polymerization of the host actin cytoskeleton. Here, we discuss recent results showing that several bacterial pathogens also exploit the host vesicular trafficking pathway of 'polarized exocytosis' to expand and reshape specific regions in the plasma membrane during infection. Polarized exocytosis is mediated by an evolutionarily conserved octameric protein complex termed the exocyst. We describe examples in which the bacteria Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Shigella flexneri co-opt the exocyst to promote internalization into human cells or intercellular spread within host tissues. We also discuss results showing that Legionella pneumophila or S. flexneri manipulate exocyst components to modify membrane vacuoles to favour intracellular replication or motility of bacteria. Finally, we propose potential ways that pathogens manipulate exocyst function, discuss how polarized exocytosis might promote infection and highlight the importance of future studies to determine how actin polymerization and polarized exocytosis are coordinated to achieve optimal bacterial infection.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Thilina U B Herath
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicole Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Liu Y, Wang W, Li C, Li M, Zhang C, Dong M, Wang L, Song L. CgRab1 regulates Cgcathepsin L1 expression and participates in the phagocytosis of haemocytes in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 120:536-546. [PMID: 34952195 DOI: 10.1016/j.fsi.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Rab protein plays an important role in a variety of cellular activities, especially the fusion process of the inner membrane during endocytosis. In the present study, a Rab1 protein (CgRab1) was identified from the Pacific oyster Crassostrea gigas. The full-length cDNA sequence of CgRab1 was of 2248 bp with an open reading frame of 618 bp, encoding a polypeptide of 205 amino acids containing a Rab domain. The deduced amino acid sequence of CgRab1 shared 94.2% and 89.3% identity with Rab1 from Pomacea canaliculata and Homo sapiens respectively. In the phylogenetic tree, CgRab1 was firstly clustered with the Rab1s from Aplysia californica and Pomacea canaliculata to form a sister group with Rab1 from invertebrates. The recombinant CgRab1 protein (rCgRab1) was able to bind GTP. The mRNA transcripts of CgRab1 were highly expressed in oyster haemocytes, and its expression level in oyster haemocytes was significantly up-regulated at 24 h after the stimulations with Vibro splendidus, which was 2.43-fold (p < 0.01) of that in the control group. After the expression of CgRab1 was knocked down (0.38-fold of that in EGFP-RNAi experimental group) by RNAi,the protein expression of Cgcathepsin L1 were reduced (0.63-fold, p < 0.01) compared with that in EGFP-RNAi experimental group. The phagocytic rate and phagocytic index of haemocytes in CgRab1-RNAi oysters decreased after V. splendidus stimulation, which was 0.50-fold (p < 0.01) and 0.58-fold (p < 0.01) of that in EGFP-RNAi experimental group. These results indicated that CgRab1 was involved in the process of haemocytes phagocytosis by regulating the expression of Cgcathepsin L1 in oyster C. gigas.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
10
|
Herrera-Cruz MS, Yap MC, Tahbaz N, Phillips K, Thomas L, Thomas G, Simmen T. Rab32 uses its effector reticulon 3L to trigger autophagic degradation of mitochondria-associated membrane (MAM) proteins. Biol Direct 2021; 16:22. [PMID: 34743744 PMCID: PMC8573869 DOI: 10.1186/s13062-021-00311-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rab32 is a small GTPase associated with multiple organelles but is particularly enriched at the endoplasmic reticulum (ER). Here, it controls targeting to mitochondria-ER contacts (MERCs), thus influencing composition of the mitochondria-associated membrane (MAM). Moreover, Rab32 regulates mitochondrial membrane dynamics via its effector dynamin-related protein 1 (Drp1). Rab32 has also been reported to induce autophagy, an essential pathway targeting intracellular components for their degradation. However, no autophagy-specific effectors have been identified for Rab32. Similarly, the identity of the intracellular membrane targeted by this small GTPase and the type of autophagy it induces are not known yet. RESULTS To investigate the target of autophagic degradation mediated by Rab32, we tested a large panel of organellar proteins. We found that a subset of MERC proteins, including the thioredoxin-related transmembrane protein TMX1, are specifically targeted for degradation in a Rab32-dependent manner. We also identified the long isoform of reticulon-3 (RTN3L), a known ER-phagy receptor, as a Rab32 effector. CONCLUSIONS Rab32 promotes degradation of mitochondrial-proximal ER membranes through autophagy with the help of RTN3L. We propose to call this type of selective autophagy "MAM-phagy".
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Megan C Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Nasser Tahbaz
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Keelie Phillips
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G2H7, Canada.
| |
Collapse
|
11
|
Singh A, Sen P. Lipid droplet: A functionally active organelle in monocyte to macrophage differentiation and its inflammatory properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158981. [PMID: 34119681 DOI: 10.1016/j.bbalip.2021.158981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) perform several important functions like inflammatory responses, membrane trafficking, acts as secondary messengers, etc. rather than simply working as an energy reservoir. LDs have been implicated as a controlling factor in the progression of atherosclerosis followed by foam cell formation that derives from macrophages during the differentiation process. However, the role of LDs in monocyte differentiation or its further immunological function is still an area that mandates in-depth investigation. We report that LD dynamics is important for differentiation of monocytes and is absolutely required for sustained and prolonged functional activity of differentiated macrophages. In THP-1 cell line model system, we elucidated that increase in total LD content in monocyte by external lipid supplements, can induce monocyte differentiation independent of classical stimuli, PMA. Differential expression of PLIN2 and ATGL during the event, together with abrogation of de novo lipogenesis further confirmed the fact. Besides, an increase in LD content by free fatty acid supplement was able to exert a synergistic effect with PMA on differentiation and phagocytic activity compared to when they are used alone. Additionally, we have shown Rab5a to play a vital role in LDs biosynthesis/maturation in monocytes and thereby directly affecting differentiation of monocytes into macrophages via AKT pathway. Thus our study reveals the multi-faceted function of LDs during the process of monocyte to macrophage differentiation and thereby helping to maintain the functional activity.
Collapse
Affiliation(s)
- Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
12
|
Beavo JA, Golkowski M, Shimizu-Albergine M, Beltejar MC, Bornfeldt KE, Ong SE. Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions. Mol Pharmacol 2021; 99:342-357. [PMID: 33574048 PMCID: PMC8058506 DOI: 10.1124/molpharm.120.000197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, highly sensitive mass spectrometry-based phosphoproteomic analysis is beginning to be applied to identification of protein kinase substrates altered downstream of increased cAMP. Such studies identify a very large number of phosphorylation sites regulated in response to increased cAMP. Therefore, we now are tasked with the challenge of determining how many of these altered phosphorylation sites are relevant to regulation of function in the cell. This minireview describes the use of phosphoproteomic analysis to monitor the effects of cyclic nucleotide phosphodiesterase (PDE) inhibitors on cAMP-dependent phosphorylation events. More specifically, it describes two examples of this approach carried out in the authors' laboratories using the selective PDE inhibitor approach. After a short discussion of several likely conclusions suggested by these analyses of cAMP function in steroid hormone-producing cells and also in T-cells, it expands into a discussion about some newer and more speculative interpretations of the data. These include the idea that multiple phosphorylation sites and not a single rate-limiting step likely regulate these and, by analogy, many other cAMP-dependent pathways. In addition, the idea that meaningful regulation requires a high stoichiometry of phosphorylation to be important is discussed and suggested to be untrue in many instances. These new interpretations have important implications for drug design, especially for targeting pathway agonists. SIGNIFICANCE STATEMENT: Phosphoproteomic analyses identify thousands of altered phosphorylation sites upon drug treatment, providing many possible regulatory targets but also highlighting questions about which phosphosites are functionally important. These data imply that multistep processes are regulated by phosphorylation at not one but rather many sites. Most previous studies assumed a single step or very few rate-limiting steps were changed by phosphorylation. This concept should be changed. Previous interpretations also assumed substoichiometric phosphorylation was not of regulatory importance. This assumption also should be changed.
Collapse
Affiliation(s)
- Joseph A Beavo
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Martin Golkowski
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Masami Shimizu-Albergine
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Michael-Claude Beltejar
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Karin E Bornfeldt
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| | - Shao-En Ong
- Departments of Pharmacology and Medicine (J.A.B., M.G., M.S.-A., M.-C.B., S.-E.O.), and Division of Metabolism, Endocrinology and Nutrition (K.E.B.), University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Ma CIJ, Brill JA. Endosomal Rab GTPases regulate secretory granule maturation in Drosophila larval salivary glands. Commun Integr Biol 2021; 14:15-20. [PMID: 33628358 PMCID: PMC7889263 DOI: 10.1080/19420889.2021.1874663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Secretory granules (SGs) are organelles responsible for regulated exocytosis of biologically active molecules in professional secretory cells. Maturation of SGs is a crucial process in which cargoes of SGs are processed and activated, allowing them to exert their function upon secretion. Nonetheless, the intracellular trafficking pathways required for SG maturation are not well defined. We recently performed an RNA interference (RNAi) screen in Drosophila larval salivary glands to identify trafficking components needed for SG maturation. From the screen, we identified several Rab GTPases (Rabs) that affect SG maturation. Expression of constitutively active (CA) and dominant-negative (DN) forms narrowed down the Rabs important for this process to Rab5, Rab9 and Rab11. However, none of these Rabs localizes to the limiting membrane of SGs. In contrast, examination of endogenously YFP-tagged Rabs (YRabs) in larval salivary glands revealed that YRab1 and YRab6 localize to the limiting membrane of immature SGs (iSGs) and SGs. These findings provide new insights into how Rab GTPases contribute to the process of SG maturation.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Medical Sciences Building, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Toronto, ON, Canada
| |
Collapse
|
14
|
Lu Q, Wang PS, Yang L. Golgi-associated Rab GTPases implicated in autophagy. Cell Biosci 2021; 11:35. [PMID: 33557950 PMCID: PMC7869216 DOI: 10.1186/s13578-021-00543-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Autophagy is a conserved cellular degradation process in eukaryotes that facilitates the recycling and reutilization of damaged organelles and compartments. It plays a pivotal role in cellular homeostasis, pathophysiological processes, and diverse diseases in humans. Autophagy involves dynamic crosstalk between different stages associated with intracellular vesicle trafficking. Golgi apparatus is the central organelle involved in intracellular vesicle trafficking where Golgi-associated Rab GTPases function as important mediators. This review focuses on the recent findings that highlight Golgi-associated Rab GTPases as master regulators of autophagic flux. The scope for future research in elucidating the role and mechanism of Golgi-associated Rab GTPases in autophagy and autophagy-related diseases is discussed further.
Collapse
Affiliation(s)
- Qingchun Lu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Po-Shun Wang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 3440 N Broad St, Kresge Hall, Rm. 624, Philadelphia, PA19140, USA.
| |
Collapse
|
15
|
Wei R, Sugiyama A, Sato Y, Nozumi M, Nishino H, Takahashi M, Saito T, Ando K, Fukuda M, Tomomura M, Igarashi M, Hisanaga SI. Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their roles in axon outgrowth and spine formation. J Biochem 2021; 168:23-32. [PMID: 32044995 DOI: 10.1093/jb/mvaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Lemur kinase 1 (LMTK1) is a membrane-bound Ser/Thr kinase that is expressed in neurons. There are two splicing variants of LMTK1 with different membrane binding modes, viz., cytosolic LMTK1A that binds to membranes through palmitoylation at the N-terminal cysteines and LMTK1B, an integral membrane protein with transmembrane sequences. We recently reported that LMTK1A regulates axon outgrowth and spine formation in neurons. However, data about LMTK1B are scarce. We analysed the expression and cellular localization of LMTK1B along with its role in axon and spine formation. We found that both LMTK1B and LMTK1A were expressed equally in the cerebral cortex and cerebellum of the mouse brain. Similar to LMTK1A, the wild type of LMTK1B was localized to Rab11-positive pericentrosomal compartment. The kinase negative (kn) mutant of LMTK1B was found to be associated with an increase in the tubular form of endoplasmic reticulum (ER), which was not the case with LMTK1A kn. Furthermore, unlike LMTK1A kn, LMTK1B kn did not stimulate the axon outgrowth and spine formation. These results suggest that while LMTK1A and LMTK1B share a common function in recycling endosomal trafficking at the pericentrosomal compartment, LMTK1B has an additional unique function in vesicle transport in the ER region.
Collapse
Affiliation(s)
- Ran Wei
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Arika Sugiyama
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yuta Sato
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Motohiro Nozumi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Hironori Nishino
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Miyuki Takahashi
- Miyuki Takahashi, Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo 162-8480
| | - Taro Saito
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Chiba 279-9950, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Chuo-ku, Niigata 951-8510, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Faculty of Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
16
|
Role of Armadillo repeat 2 and kinesin-II motor subunit Klp64D for wingless signaling in Drosophila. Sci Rep 2020; 10:13864. [PMID: 32807823 PMCID: PMC7431425 DOI: 10.1038/s41598-020-70759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
Armadillo (Arm) is crucial for transducing Wingless (Wg) signaling. Previously, we have shown that Klp64D, a motor subunit of Drosophila kinesin-II, interacts with Arm for Wg signaling. Molecular basis for this interaction has remained unknown. Here we identify a critical Arm repeat (AR) required for binding Klp64D and Wg signaling. Arm/\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{\beta}}$$\end{document}β-catenin family proteins contain a conserved domain of 12 Arm repeats (ARs). Five of these ARs can interact with Klp64D, but only the second AR (AR2) binds to the cargo/tail domain of Klp64D. Overexpression of AR2 in wing imaginal disc is sufficient to cause notched wing margin. This phenotype by AR2 is enhanced or suppressed by reducing or increasing Klp64D expression, respectively. AR2 overexpression inhibits Wg signaling activity in TopFlash assay, consistent with its dominant-negative effects on Klp64D-dependent Wg signaling. Overexpression of the Klp64D cargo domain also results in dominant-negative wing notching. Genetic rescue data indicate that both AR2 and Klp64D cargo regions are required for the function of Arm and Klp64D, respectively. AR2 overexpression leads to an accumulation of Arm with GM130 Golgi marker in Klp64D knockdown. This study suggests that Wg signaling for wing development is regulated by specific interaction between AR2 and the cargo domain of Klp64D.
Collapse
|
17
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
18
|
Zhao Y, Wu TY, Zhao MF, Li CJ. The balance of protein farnesylation and geranylgeranylation during the progression of nonalcoholic fatty liver disease. J Biol Chem 2020; 295:5152-5162. [PMID: 32139507 DOI: 10.1074/jbc.rev119.008897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein prenylation is an essential posttranslational modification and includes protein farnesylation and geranylgeranylation using farnesyl diphosphate or geranylgeranyl diphosphate as substrates, respectively. Geranylgeranyl diphosphate synthase is a branch point enzyme in the mevalonate pathway that affects the ratio of farnesyl diphosphate to geranylgeranyl diphosphate. Abnormal geranylgeranyl diphosphate synthase expression and activity can therefore disrupt the balance of farnesylation and geranylgeranylation and alter the ratio between farnesylated and geranylgeranylated proteins. This change is associated with the progression of nonalcoholic fatty liver disease (NAFLD), a condition characterized by hepatic fat overload. Of note, differential accumulation of farnesylated and geranylgeranylated proteins has been associated with differential stages of NAFLD and NAFLD-associated liver fibrosis. In this review, we summarize key aspects of protein prenylation as well as advances that have uncovered the regulation of associated metabolic patterns and signaling pathways, such as Ras GTPase signaling, involved in NAFLD progression. Additionally, we discuss unique opportunities for targeting prenylation in NAFLD/hepatocellular carcinoma with agents such as statins and bisphosphonates to improve clinical outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| | - Tian-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Meng-Fei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China .,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Neufeldt CJ, Cortese M, Scaturro P, Cerikan B, Wideman JG, Tabata K, Moraes T, Oleksiuk O, Pichlmair A, Bartenschlager R. ER-shaping atlastin proteins act as central hubs to promote flavivirus replication and virion assembly. Nat Microbiol 2019; 4:2416-2429. [PMID: 31636417 PMCID: PMC6881184 DOI: 10.1038/s41564-019-0586-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Flaviviruses, including dengue virus (DV) and Zika virus, extensively remodel the cellular endomembrane network to generate replication organelles that promote viral genome replication and virus production. However, it remains unclear how these membranes and associated cellular proteins act during the virus cycle. Here, we show that atlastins (ATLs), a subset of ER resident proteins involved in neurodegenerative diseases, have dichotomous effects on flaviviruses with ATL2 depletion leading to replication organelle defects and ATL3 depletion to changes in virus production pathways. We characterized non-conserved functional domains in ATL paralogues and show that the ATL interactome is profoundly reprogrammed upon DV infection. Screen analysis confirmed non-redundant ATL functions and identified a specific role for ATL3, and its interactor ARF4, in vesicle trafficking and virion maturation. Our data identify ATLs as central hubs targeted by flaviviruses to establish their replication organelle and to achieve efficient virion maturation and secretion.
Collapse
Affiliation(s)
- Christopher J Neufeldt
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Pietro Scaturro
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany
| | - Berati Cerikan
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Jeremy G Wideman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Thaís Moraes
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Olga Oleksiuk
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany.,German Center for Infection Research (DZIF), (Munich Partner Site), Munich, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany. .,German Center for Infection Research (DZIF), (Heidelberg Partner Site), Heidelberg, Germany. .,Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
20
|
Lima NCR, Melo TQ, Sakugawa AYS, Melo KP, Ferrari MFR. Restoration of Rab1 Levels Prevents Endoplasmic Reticulum Stress in Hippocampal Cells during Protein Aggregation Triggered by Rotenone. Neuroscience 2019; 419:5-13. [PMID: 31491505 DOI: 10.1016/j.neuroscience.2019.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/31/2023]
Abstract
Disrupted neuronal intracellular trafficking is often related with protein aggregates present in the brain during neurodegenerative diseases such as Alzheimer's. Impairment of intracellular transport may be related to Rab proteins, a class of small GTPases responsible for trafficking of organelles and vesicles. Deficit in trafficking between the endoplasmic reticulum (ER) and Golgi apparatus mediated by Rab1 and 6 may lead to increased unfolded protein response (UPR) and ER stress and remodeling. Thus, the objective of this study is to analyze the levels of Rabs 1 and 6 in the hippocampus of aged rats and in vitro during protein aggregation promoted by exposure to rotenone. Levels of Rabs 1 and 6, ATF6 and CHOP were measured by western blotting. PDI immunolabeling and ER-Tracker were employed to study ER morphology. MTT was used to analyze cell metabolism. Rab1 levels and cell viability decreased, whereas Rab6, UPR proteins and ER remodeling increased during protein aggregation, which were restored to normal levels after exogenous expression of Rab1.These results suggest that decrease of Rab1 levels contributes to ER stress and remodeling, while maintaining the elevated expression of Rab1 prevented impairment of cell viability during protein aggregation. In conclusion, Rab1 is a significant player to maintain intracellular homeostasis and its expression may mitigate ER dysfunction in the context of neurodegeneration-related protein inclusions.
Collapse
Affiliation(s)
- Nathan C R Lima
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Thaiany Q Melo
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andressa Y S Sakugawa
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karla P Melo
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
21
|
Pang J, Peng H, Wang S, Xu X, Xu F, Wang Q, Chen Y, Barton LA, Chen Y, Zhang Y, Ren J. Mitochondrial ALDH2 protects against lipopolysaccharide-induced myocardial contractile dysfunction by suppression of ER stress and autophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1627-1641. [PMID: 30946956 DOI: 10.1016/j.bbadis.2019.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/13/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Lipopolysaccharide (LPS), an essential component of outer membrane of the Gram-negative bacteria, plays a pivotal role in myocardial anomalies in sepsis. Recent evidence depicted an essential role for mitochondrial aldehyde dehydrogenase (ALDH2) in cardiac homeostasis. This study examined the effect of ALDH2 on endotoxemia-induced cardiac anomalies. Echocardiographic, cardiac contractile and intracellular Ca2+ properties were examined. Our results indicated that LPS impaired cardiac contractile function (reduced fractional shortening, LV end systolic diameter, peak shortening, maximal velocity of shortening/relengthening, prolonged relengthening duration, oxidation of SERCA, and intracellular Ca2+ mishandling), associated with ER stress, inflammation, O2- production, increased autophagy, CAMKKβ, phosphorylated AMPK and suppressed phosphorylation of mTOR, the effects of which were significantly attenuated or negated by ALDH2. LPS promoted early endosomal formation (as evidenced by RAB4 and RAB5a), apoptosis and necrosis (MTT and LDH) while decreasing late endosomal formation (RAB7 and RAB 9), the effects were reversed by ALDH2. In vitro study revealed that LPS-induced SERCA oxidation, autophagy and cardiac dysfunction were abrogated by ALDH2 activator Alda-1, the ER chaperone TUDCA, the autophagy inhibitor 3-MA, or the AMPK inhibitor Compound C. The beneficial effect of Alda-1 against LPS was nullified by AMPK activator AICAR or rapamycin. CAMKKβ inhibition failed to rescue LPS-induced ER stress. Tunicamycin-induced cardiomyocyte dysfunction was ameliorated by Alda-1 and autophagy inhibition, the effect of which was abolished by rapamycin. These data suggested that ALDH2 protected against LPS-induced cardiac anomalies via suppression of ER stress, autophagy in a CAMKKβ/AMPK/mTOR-dependent manner.
Collapse
Affiliation(s)
- Jiaojiao Pang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Shuyi Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Xihui Xu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Qiurong Wang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yuanzhuo Chen
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China
| | - Linzi A Barton
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yingmei Zhang
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China.
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China.
| |
Collapse
|
22
|
Depaoli MR, Hay JC, Graier WF, Malli R. The enigmatic ATP supply of the endoplasmic reticulum. Biol Rev Camb Philos Soc 2018; 94:610-628. [PMID: 30338910 PMCID: PMC6446729 DOI: 10.1111/brv.12469] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a functionally and morphologically complex cellular organelle largely responsible for a variety of crucial functions, including protein folding, maturation and degradation. Furthermore, the ER plays an essential role in lipid biosynthesis, dynamic Ca2+ storage, and detoxification. Malfunctions in ER‐related processes are responsible for the genesis and progression of many diseases, such as heart failure, cancer, neurodegeneration and metabolic disorders. To fulfill many of its vital functions, the ER relies on a sufficient energy supply in the form of adenosine‐5′‐triphosphate (ATP), the main cellular energy source. Despite landmark discoveries and clarification of the functional principles of ER‐resident proteins and key ER‐related processes, the mechanism underlying ER ATP transport remains somewhat enigmatic. Here we summarize ER‐related ATP‐consuming processes and outline our knowledge about the nature and function of the ER energy supply.
Collapse
Affiliation(s)
- Maria R Depaoli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Jesse C Hay
- Division of Biological Sciences and Center for Structural and Functional Neuroscience, The University of Montana, 32 Campus Drive, HS410, Missoula, MT 59812-4824, U.S.A
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.,BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
23
|
Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol 2018; 233:6483-6494. [PMID: 29377137 DOI: 10.1002/jcp.26503] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
Rab GTPases are key regulators of eukaryotic membrane traffic, and their functions and activities are limited to particular intracellular transport steps and their membrane localization is by and large restricted. Some Rabs do participate in more than one transport steps, but broadly speaking, there is a clear demarcation between exocytic and endocytic Rabs. One Rab protein, Rab10, however, appears to be anomalous in this regard and has a diverse array of functions and subcellular localizations. Rab10 has been implicated in a myriad of activities ranging from polarized exocytosis and endosomal sorting in polarized cells, insulin-dependent Glut4 transport in adipocytes, axonal growth in neurons, and endo-phagocytic processes in macrophages. It's reported subcellular localizations include the endoplasmic reticulum (ER), Golgi/TGN, the endosomes/phagosomes and the primary cilia. In this review, we summarize and discuss the multitude of known roles of Rab10 in cellular membrane transport and the molecular players and mechanisms associated with these roles.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
24
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
25
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
26
|
Yuan Q, Ren C, Xu W, Petri B, Zhang J, Zhang Y, Kubes P, Wu D, Tang W. PKN1 Directs Polarized RAB21 Vesicle Trafficking via RPH3A and Is Important for Neutrophil Adhesion and Ischemia-Reperfusion Injury. Cell Rep 2017; 19:2586-2597. [PMID: 28636945 PMCID: PMC5548392 DOI: 10.1016/j.celrep.2017.05.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023] Open
Abstract
Polarized vesicle transport plays an important role in cell polarization, but the mechanisms underlying this process and its role in innate immune responses are not well understood. Here, we describe a phosphorylation-regulated polarization mechanism that is important for neutrophil adhesion to endothelial cells during inflammatory responses. We show that the protein kinase PKN1 phosphorylates RPH3A, which enhances binding of RPH3A to guanosine triphosphate (GTP)-bound RAB21. These interactions are important for polarized localization of RAB21 and RPH3A in neutrophils, which leads to PIP5K1C90 polarization. Consistent with the roles of PIP5K1C90 polarization, the lack of PKN1 or RPH3A impairs neutrophil integrin activation, adhesion to endothelial cells, and infiltration in inflammatory models. Furthermore, myeloid-specific loss of PKN1 decreases tissue injury in a renal ischemia-reperfusion model. Thus, this study characterizes a mechanism for protein polarization in neutrophils and identifies a potential protein kinase target for therapeutic intervention in reperfusion-related tissue injury.
Collapse
Affiliation(s)
- Qianying Yuan
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chunguang Ren
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Wenwen Xu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Björn Petri
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jiasheng Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yong Zhang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA
| | - Paul Kubes
- Snyder Institute for Chronic Diseases Mouse Phenomics Resource Laboratory, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
27
|
Abstract
Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Patrizia D'Adamo
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
28
|
Abstract
The Golgi apparatus and its resident proteins are utilized and regulated by viruses to facilitate their proliferation. In this study, we investigated Classical swine fever virus (CSFV) proliferation when the function of the Golgi was disturbed. Golgi function was disturbed using chemical inhibitors, namely, brefeldin A (BFA) and golgicide A (GCA), and RNA interfering targets, such as the Golgi-specific BFA-resistance guanine nucleotide exchange factor 1 (GBF1) and Rab2 GTPases. CSFV proliferation was significantly inhibited during RNA replication and viral particle generation after BFA and GCA treatment. CSFV multiplication dynamics were retarded in cells transfected with GBF1 and Rab2 shRNA. Furthermore, CSFV proliferation was promoted by GBF1 and Rab2 overexpression using a lentiviral system. Hence, Golgi function is important for CSFV multiplication, and GBF1 and Rab2 participate in CSFV proliferation. Further studies must investigate Golgi-resident proteins to elucidate the mechanism underlying CSFV replication.
Collapse
|
29
|
Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P, Giuliani F, Simmen T. Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 2017; 14:19. [PMID: 28115010 PMCID: PMC5260063 DOI: 10.1186/s12974-016-0788-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/29/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is a hallmark of neurodegenerative diseases such as multiple sclerosis (MS). However, this physiological mechanism has multiple manifestations that range from impaired clearance of unfolded proteins to altered mitochondrial dynamics and apoptosis. While connections between the triggering of the unfolded protein response (UPR) and downstream mitochondrial dysfunction are poorly understood, the membranous contacts between the ER and mitochondria, called the mitochondria-associated membrane (MAM), could provide a functional link between these two mechanisms. Therefore, we investigated whether the guanosine triphosphatase (GTPase) Rab32, a known regulator of the MAM, mitochondrial dynamics, and apoptosis, could be associated with ER stress as well as mitochondrial dysfunction. METHODS We assessed Rab32 expression in MS patient and experimental autoimmune encephalomyelitis (EAE) tissue, via observation of mitochondria in primary neurons and via monitoring of survival of neuronal cells upon increased Rab32 expression. RESULTS We found that the induction of Rab32 and other MAM proteins correlates with ER stress proteins in MS brain, as well as in EAE, and occurs in multiple central nervous system (CNS) cell types. We identify Rab32, known to increase in response to acute brain inflammation, as a novel unfolded protein response (UPR) target. High Rab32 expression shortens neurite length, alters mitochondria morphology, and accelerates apoptosis/necroptosis of human primary neurons and cell lines. CONCLUSIONS ER stress is strongly associated with Rab32 upregulation in the progression of MS, leading to mitochondrial dysfunction and neuronal death.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Present address: Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Xiaodan Deng
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | | | - Nasser Tahbaz
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | - Jian-Qiang Lu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| | - Nicholas J Gutowski
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Janet E Holley
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Paul Eggleton
- University of Exeter Medical School & Neurology Department, Royal Devon & Exeter Hospital, Exeter, UK
| | - Fabrizio Giuliani
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
30
|
Li C, Yu SSB. Rab proteins as regulators of lipid droplet formation and lipolysis. Cell Biol Int 2016; 40:1026-32. [PMID: 27453349 DOI: 10.1002/cbin.10650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are highly dynamic organelles that not only store neutral lipids but also are involved in multiple cellular processes. Dysregulation of lipogenesis or lipolysis greatly contributes to the pathogenesis of several human diseases, including obesity, diabetes, and fatty liver disease. Rab proteins have been found to be associated with LDs in proteomic studies and are also known to extensively regulate intracellular membrane traffic, suggesting that LDs actively communicate with other membrane compartments to maintain energy homeostasis. This review discusses recent studies that provide mechanistic insights into the regulation of LD formation and catabolism by Rab proteins in mammalian cells.
Collapse
Affiliation(s)
- Chunman Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Sidney S B Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China. .,Epithelial Cell Biology Research Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
31
|
Li Y, Wang Y, Zou L, Tang X, Yang Y, Ma L, Jia Q, Ni Q, Liu S, Tang L, Lin R, Wong E, Sun W, Wang L, Wei Q, Ran H, Zhang L, Lian H, Huang W, Wu Y, Li QJ, Wan Y. Analysis of the Rab GTPase Interactome in Dendritic Cells Reveals Anti-microbial Functions of the Rab32 Complex in Bacterial Containment. Immunity 2016; 44:422-37. [PMID: 26885862 DOI: 10.1016/j.immuni.2016.01.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) orchestrate complex membrane trafficking through an interconnected transportation network linked together by Rab GTPases. Through a tandem affinity purification strategy and mass spectrometry, we depicted an interactomic landscape of major members of the mammalian Rab GTPase family. When complemented with imaging tools, this proteomic analysis provided a global view of intracellular membrane organization. Driven by this analysis, we investigated dynamic changes to the Rab32 subnetwork in DCs induced by L. monocytogenes infection and uncovered an essential role of this subnetwork in controlling the intracellular proliferation of L. monocytogenes. Mechanistically, Rab32 formed a persistent complex with two interacting proteins, PHB and PHB2, to encompass bacteria both during early phagosome formation and after L. monocytogenes escaped the original containment vacuole. Collectively, we have provided a functional compartmentalization overview and an organizational framework of intracellular Rab-mediated vesicle trafficking that can serve as a resource for future investigations.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Yu Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiangyu Tang
- Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300000 China
| | - Yi Yang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Li Ma
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Qingzhu Jia
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Qingshan Ni
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Siqi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lizhang Tang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Regina Lin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth Wong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Wei Sun
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Quanfang Wei
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Haiying Ran
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Liqun Zhang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Hengning Lian
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Wei Huang
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Yuzhang Wu
- Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qi-Jing Li
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing 400038, China.
| |
Collapse
|
32
|
Qiu J, Sheedlo MJ, Yu K, Tan Y, Nakayasu ES, Das C, Liu X, Luo ZQ. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors. Nature 2016; 533:120-4. [PMID: 27049943 PMCID: PMC4905768 DOI: 10.1038/nature17657] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Signaling by ubiquitination regulates virtually every cellular process in eukaryotes. Covalent attachment of ubiquitin to a substrate is catalyzed by the E1, E2 and E3 three-enzyme cascade 1, which links the C terminus of ubiquitin via an isopeptide bond mostly to the ε-amino group of a lysine of the substrate. Given the essential roles of ubiquitination in the regulation of the immune system, it is not surprising that the ubiquitination network is a common target for diverse infectious agents 2. For example, many bacterial pathogens exploit ubiquitin signaling using virulence factors that function as E3 ligases, deubiquitinases 3 or as enzymes that directly attack ubiquitin 4. The bacterial pathogen Legionella pneumophila utilizes approximately 300 effectors that modulate diverse host processes to create a niche permissive for its replication in phagocytes 5. Here we demonstrate that members of the SidE effector family (SidEs) of L. pneumophila ubiquitinate multiple Rab small GTPases associated with the endoplasmic reticulum (ER). Moreover, we show that these proteins are capable of catalyzing ubiquitination without the need for the E1 and E2 enzymes. A putative mono ADP-ribosyltransferase (mART) motif critical for the ubiquitination activity is also essential for the role of SidEs in intracellular bacterial replication in a protozoan host. The E1/E2-independent ubiquitination catalyzed by these enzymes is energized by NAD which activates ubiquitin by the formation of ADP-ribosylated ubiquitin (ADPR-Ub). These results establish that ubiquitination can be catalyzed by a single enzyme whose activity does not require ATP.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Michael J Sheedlo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Kaiwen Yu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yunhao Tan
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ernesto S Nakayasu
- Biological Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
33
|
Abstract
The Rab family of small GTPases play fundamental roles in the regulation of trafficking pathways between intracellular membranes in eukaryotic cells. In this short commentary we highlight a recent high-content screening study that investigates the roles of Rab proteins in retrograde trafficking from the Golgi complex to the endoplasmic reticulum, and we discuss how the findings of this work and other literature might influence our thoughts on how the architecture of the Golgi complex is regulated.
Collapse
Affiliation(s)
- George Galea
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| | - Jeremy C Simpson
- a School of Biology and Environmental Science & UCD Conway Institute of Biomolecular and Biomedical Research; University College Dublin ; Dublin , Ireland
| |
Collapse
|
34
|
Connor MG, Pulsifer AR, Price CT, Abu Kwaik Y, Lawrenz MB. Yersinia pestis Requires Host Rab1b for Survival in Macrophages. PLoS Pathog 2015; 11:e1005241. [PMID: 26495854 PMCID: PMC4619670 DOI: 10.1371/journal.ppat.1005241] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. Yersinia pestis is the bacterial agent that causes the human disease known as plague. While often considered a historic disease, Y. pestis is endemic in rodent populations on several continents and the World Health Organization considers plague to be a reemerging disease. Much of the success of this pathogen comes from its ability to evade clearance by the innate immune system of its host. One weapon in the Y. pestis arsenal is its ability to resist killing when engulfed by macrophages. Upon invasion of macrophages, Y. pestis actively manipulates the cell to generate a protective vacuolar compartment, called the Yersinia containing vacuole (YCV) that allows the bacterium to evade the normal pathogen killing mechanisms of the macrophage. Here we demonstrate that the host protein Rab1b is recruited to the YCV and is required for Y. pestis to inhibit both the acidification and normal maturation of the phagosome to establish a protective niche within the cell. Rab1b is the first protein, either from the host or Y. pestis, shown to contribute to the biogenesis of the YCV. Furthermore, our data suggest a previously unknown impact of Rab1b recruitment in the phagosome maturation pathway.
Collapse
Affiliation(s)
- Michael G. Connor
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Amanda R. Pulsifer
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Christopher T. Price
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lipid droplets and associated proteins in the skin: basic research and clinical perspectives. Arch Dermatol Res 2015; 308:1-6. [PMID: 26437897 DOI: 10.1007/s00403-015-1599-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
Lipid droplets (LDs), the major organelles handling fat storage, comprise a hydrophobic neutral lipid core surrounded by a phospholipid monolayer embedded with a protein miscellany. Although lipids of the stratum corneum are essential for the skin barrier, and progressive lipid accumulation culminating in cell disruption is the hallmark of sebaceous differentiation, only a few studies touched on skin LD and associated proteins so far. Here, after briefly introducing the basic facts about LD and associated proteins, we discuss how forthcoming studies may unveil novel players in skin lipid metabolism and candidate target proteins for treating skin diseases.
Collapse
|
36
|
Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015; 25:545-55. [PMID: 26159692 DOI: 10.1016/j.tcb.2015.06.002] [Citation(s) in RCA: 584] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
The class I phosphoinositide 3-kinase (PI3K)-mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling network directs cellular metabolism and growth. Activation of mTORC1 [composed of mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8(mLST8), 40-kDa proline-rich Akt substrate (PRAS40), and DEP domain-containing mTOR-interacting protein (DEPTOR)] depends on the Ras-related GTPases (Rags) and Ras homolog enriched in brain (Rheb) GTPase and requires signals from amino acids, glucose, oxygen, energy (ATP), and growth factors (including cytokines and hormones such as insulin). Here we discuss the signal transduction mechanisms through which growth factor-responsive PI3K signaling activates mTORC1. We focus on how PI3K-dependent activation of Akt and spatial regulation of the tuberous sclerosis complex (TSC) complex (TSC complex) [composed of TSC1, TSC2, and Tre2-Bub2-Cdc16-1 domain family member 7 (TBC1D7)] switches on Rheb at the lysosome, where mTORC1 is activated. Integration of PI3K- and amino acid-dependent signals upstream of mTORC1 at the lysosome is detailed in a working model. A coherent understanding of the PI3K-mTORC1 network is imperative as its dysregulation has been implicated in diverse pathologies including cancer, diabetes, autism, and aging.
Collapse
Affiliation(s)
- Christian C Dibble
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
37
|
Nevalainen M, Metsikkö K. Fluvastatin delays propagation of viral infection in isolated rat FDB myofibers but does not affect exocytic membrane trafficking. Cell Biol Int 2015; 39:1307-16. [PMID: 26123964 DOI: 10.1002/cbin.10509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/25/2015] [Indexed: 11/06/2022]
Abstract
We have utilized the enveloped viral model to study the effect of fluvastatin on membrane trafficking in isolated rat myofibers. Our immunofluorescence studies constantly showed that infections in myofibers, which were treated with fluvastatin prior and during the infection with either vesicular stomatitis virus (VSV) or influenza A virus, propagated more slowly than in control myofibers without drug treatment. Experiments with a virus expressing Dad1 tagged with green fluorescent protein (GFP-Dad1) showed that fluvastatin did not affect its distribution within the ER/SR network and immunofluorescence staining for GM130 did not show any marked effect on the structure of the Golgi components. Furthermore, fluvastatin did not inhibit trafficking of the chimeric transport marker VSV temperature sensitive G protein (tsG-GFP) from the ER to the Golgi. We next subjected VSV infected myofibers for pulse-chase labeling experiments and found that fluvastatin did not slow down the ER-to-Golgi trafficking or Golgi to plasma membrane trafficking of the viral glycoprotein. These studies show that fluvastatin inhibited the propagation of viral infection in skeletal myofibers but no adverse effect on the exocytic trafficking could be demonstrated. These results suggest that other effects of statins rather than inhibition of ER-to-Golgi trafficking might be behind the myotoxic effects of the statins.
Collapse
Affiliation(s)
- Mika Nevalainen
- Division of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Kalervo Metsikkö
- Division of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Galea G, Bexiga MG, Panarella A, O'Neill ED, Simpson JC. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 2015; 128:2339-49. [PMID: 25999475 DOI: 10.1242/jcs.167973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Here, we describe a high-content microscopy-based screen that allowed us to systematically assess and rank proteins involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport in mammalian cells. Using a cell line stably expressing a GFP-tagged Golgi enzyme, we used brefeldin A treatment to stimulate the production of Golgi-to-ER carriers and then quantitatively analysed populations of cells for changes in this trafficking event. Systematic RNA interference (RNAi)-based depletion of 58 Rab GTPase proteins and 12 Rab accessory proteins of the PRAF, YIPF and YIF protein families revealed that nine of these were strong regulators. In addition to demonstrating roles for Rab1a, Rab1b, Rab2a, and Rab6a or Rab6a' in this transport step, we also identified Rab10 and Rab11a as playing a role and being physically present on a proportion of the Golgi-to-ER tubular intermediates. Combinatorial depletions of Rab proteins also revealed previously undescribed functional co-operation and physical co-occurrence between several Rab proteins. Our approach therefore provides a novel and robust strategy for a more complete investigation of the molecular components required to regulate Golgi-to-ER transport in mammalian cells.
Collapse
Affiliation(s)
- George Galea
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mariana G Bexiga
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Angela Panarella
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Elaine D O'Neill
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
39
|
Schlacht A, Dacks JB. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol Evol 2015; 7:1098-109. [PMID: 25747251 PMCID: PMC4419792 DOI: 10.1093/gbe/evv045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The coat protein complex II (COPII) is responsible for the transport of protein cargoes from the Endoplasmic Reticulum (ER) to the Golgi apparatus. COPII has been functionally characterized extensively in vivo in humans and yeast. This complex shares components with the nuclear pore complex and the Seh1-Associated (SEA) complex, inextricably linking its evolution with that of the nuclear pore and other protocoatomer domain-containing complexes. Importantly, this is one of the last coat complexes to be examined from a comparative genomic and phylogenetic perspective. We use homology searching of eight components across 74 eukaryotic genomes, followed by phylogenetic analyses, to assess both the distribution of the COPII components across eukaryote diversity and to assess its evolutionary history. We report that Sec12, but not Sed4 was present in the Last Eukaryotic Common Ancestor along with Sec16, Sar1, Sec13, Sec31, Sec23, and Sec24. We identify a previously undetected paralog of Sec23 that, at least, predates the archaeplastid clade. We also describe three Sec24 paralogs likely present in the Last Eukaryotic Common Ancestor, including one newly detected that was anciently present but lost from both opisthokonts and excavates. Altogether, we report previously undescribed complexity of the COPII coat in the ancient eukaryotic ancestor and speculate on models for the evolution, not only of the complex, but its relationship to other protocoatomer-derived complexes.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Havrylov S, Park M. MS/MS-based strategies for proteomic profiling of invasive cell structures. Proteomics 2014; 15:272-86. [PMID: 25303514 DOI: 10.1002/pmic.201400220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/19/2014] [Accepted: 10/01/2014] [Indexed: 12/29/2022]
Abstract
Acquired capacity of cancer cells to penetrate through the extracellular matrix of surrounding tissues is a prerequisite for tumour metastatic spread - the main source of cancer-associated mortality. Through combined efforts of many research groups, we are beginning to understand that the ability of cells to invade through the extracellular matrix is a multi-faceted phenomenon supported by variety of specialised protrusive cellular structures, primarily pseudopodia, invadopodia and podosomes. Additionally, secreted extracellular vesicles are being increasingly recognised as important mediators of invasive cell phenotypes and therefore may be considered bona fide invasive cell structures. Dissection of the molecular makings underlying biogenesis and function of all of these structures is crucial to identify novel targets for specific anti-metastatic therapies. Rapid advances and growing accessibility of MS/MS-based protein identification made this family of techniques a suitable and appropriate choice for proteomic profiling of invasive cell structures. In this review, we provide a summary of current progress in the characterisation of protein composition and topology of protein interaction networks of pseudopodia, invadopodia, podosomes and extracellular vesicles, as well as outline challenges and perspectives of the field.
Collapse
Affiliation(s)
- Serhiy Havrylov
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Medicine, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
41
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones and oxidoreductases: critical regulators of tumor cell survival and immunorecognition. Front Oncol 2014; 4:291. [PMID: 25386408 PMCID: PMC4209815 DOI: 10.3389/fonc.2014.00291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed “bulk flow,” ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER by their substrates. Solid tumors are characterized by the increased production of reactive oxygen species (ROS), combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response upregulate their target genes. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the folding of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an “eat-me” signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI), Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
42
|
Ortiz-Sandoval CG, Hughes SC, Dacks JB, Simmen T. Interaction with the effector dynamin-related protein 1 (Drp1) is an ancient function of Rab32 subfamily proteins. CELLULAR LOGISTICS 2014; 4:e986399. [PMID: 25767741 PMCID: PMC4355727 DOI: 10.4161/21592799.2014.986399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
The mitochondria-associated membrane (MAM) is an endoplasmic reticulum (ER) domain that forms contacts with mitochondria and accommodates Ca2+ transfer between the two organelles. The GTPase Rab32 regulates this function of the MAM via determining the localization of the Ca2+ regulatory transmembrane protein calnexin to the MAM. Another function of the MAM is the regulation of mitochondrial dynamics mediated by GTPases such as dynamin-related protein 1 (Drp1). Consistent with the importance of the MAM for mitochondrial dynamics and the role of Rab32 in MAM enrichment, the inactivation of Rab32 leads to mitochondrial collapse around the nucleus. However, Rab32 and related Rabs also perform intracellular functions at locations other than the MAM including melanosomal trafficking, autophagosome formation and maturation, and retrograde trafficking to the trans-Golgi network (TGN). This plethora of functions raises questions concerning the original cellular role of Rab32 in the last common ancestor of animals and its possible role in the last eukaryotic common ancestor (LECA). Our results now shed light on this conundrum and identify a role in Drp1-mediated mitochondrial dynamics as one common denominator of this group of Rabs, which includes the paralogues Rab32A and Rab32B, as well as the more recently derived Rab29 and Rab38 proteins. Moreover, we provide evidence that this mitochondrial function is dictated by the extent of ER-association of Rab32 family proteins.
Collapse
Affiliation(s)
- Carolina G Ortiz-Sandoval
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Sarah C Hughes
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada ; Faculty of Medicine and Dentistry; Department of Medical Genetics; University of Alberta ; Edmonton, Alberta, Canada
| | - Joel B Dacks
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry; Department of Cell Biology; University of Alberta ; Edmonton, Alberta, Canada
| |
Collapse
|
43
|
A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways. Int J Cardiol 2014; 176:746-52. [DOI: 10.1016/j.ijcard.2014.07.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/01/2014] [Accepted: 07/26/2014] [Indexed: 12/13/2022]
|
44
|
Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB. Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 2014; 6:a016048. [PMID: 25274701 PMCID: PMC4176009 DOI: 10.1101/cshperspect.a016048] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.
Collapse
Affiliation(s)
- Alexander Schlacht
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mary J Klute
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, Scotland DD1 5EH, United Kingdom
| | - Joel B Dacks
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
45
|
Li W, Hu Y, Jiang T, Han Y, Han G, Chen J, Li X. Rab27A regulates exosome secretion from lung adenocarcinoma cells A549: involvement of EPI64. APMIS 2014; 122:1080-7. [PMID: 24673604 DOI: 10.1111/apm.12261] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
Abstract
Exosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. The unique composition of exosomes can be transported to other cells which allow cells to exert biological functions at distant sites. However, in lung cancer, the regulation of exosome secretion was poorly understood. In this study, we employed human lung adenocarcinoma A549 cells to determine the exosome secretion and involved regulation mechanism. We found that Rab27A was expressed in A549 cells and the reduction of Rab27A by Rab27A-specific shRNA could significantly decrease the secretion of exosome by A549 cells. EPI64, a candidate GAP that is specific for Rab27, was also detected in A549 cells. By pull-down assay, we found that EPI64 participated in the exosome secretion of A549 cells by acting as a specific GAP for Rab27A, not Rab27B. Overexpression of EPI64 enhanced exosome secretion. Taken together, in A549 cells, EPI64 could regulate the exosome secretion by functioning as a GAP specific for Rab27A.
Collapse
Affiliation(s)
- Wenhai Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Goyal U, Blackstone C. Untangling the web: mechanisms underlying ER network formation. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2492-8. [PMID: 23602970 PMCID: PMC3729797 DOI: 10.1016/j.bbamcr.2013.04.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/16/2022]
Abstract
The ER is a continuous membrane system consisting of the nuclear envelope, flat sheets often studded with ribosomes, and a polygonal network of highly-curved tubules extending throughout the cell. Although protein and lipid biosynthesis, protein modification, vesicular transport, Ca(2+)dynamics, and protein quality control have been investigated in great detail, mechanisms that generate the distinctive architecture of the ER have been uncovered only recently. Several protein families including the reticulons and REEPs/DP1/Yop1p harbor hydrophobic hairpin domains that shape high-curvature ER tubules and mediate intramembrane protein interactions. Members of the atlastin/RHD3/Sey1p family of dynamin-related GTPases interact with the ER-shaping proteins and mediate the formation of three-way junctions responsible for the polygonal structure of the tubular ER network, with Lunapark proteins acting antagonistically. Additional classes of tubular ER proteins including some REEPs and the M1 spastin ATPase interact with the microtubule cytoskeleton. Flat ER sheets possess a different complement of proteins such as p180, CLIMP-63 and kinectin implicated in shaping, cisternal stacking and cytoskeletal interactions. The ER is also in constant motion, and numerous signaling pathways as well as interactions among cytoskeletal elements, the plasma membrane, and organelles cooperate to position and shape the ER dynamically. Finally, many proteins involved in shaping the ER network are mutated in the most common forms of hereditary spastic paraplegia, indicating a particular importance for proper ER morphology and distribution in large, highly-polarized cells such as neurons. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Uma Goyal
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Abstract
The endoplasmic reticulum (ER) is a heterogeneous organelle with distinct morphologies of sheets and an interconnected network of tubules sharing a common lumen. An ER domain marked by the Rab10 GTPase and several lipid-synthesizing enzymes is implicated in dynamic ER tubule formation and fusion events in cells.
Collapse
|