1
|
Sun X, Zhou Y, Sun S, Qiu S, Peng M, Gong H, Guo J, Wen C, Zhang Y, Xie Y, Li H, Liang L, Luo G, Wu W, Liu J, Tan W, Ye M. Cancer cells sense solid stress to enhance metastasis by CKAP4 phase separation-mediated microtubule branching. Cell Discov 2024; 10:114. [PMID: 39528501 PMCID: PMC11554681 DOI: 10.1038/s41421-024-00737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Solid stress, originating from rigid and elastic components of extracellular matrix and cells, is a typical physical hallmark of tumors. Mounting evidence indicates that elevated solid stress drives metastasis and affects prognosis. However, the molecular mechanism of how cancer cells sense solid stress, thereby exacerbating malignancy, remains elusive. In this study, our clinical data suggest that elevated stress in metastatic solid tumors is highly associated with the expression of cytoskeleton-associated protein 4 (CKAP4). Intriguingly, CKAP4, as a sensitive intracellular mechanosensor, responds specifically to solid stress in a subset of studied tumor micro-environmental elements through liquid-liquid phase separation. These micron-scaled CKAP4 puncta adhere tightly onto microtubules and dramatically reorchestrate their curvature and branching to enhance cell spreading, which, as a result, boosts cancer cell motility and facilitates distant metastasis in vivo. Mechanistically, the intrinsically disordered region 1 (IDR1) of CKAP4 binds to microtubules, while IDR2 governs phase separation due to the Cav1.2-dependent calcium influx, which collectively remodels microtubules. These findings reveal an unprecedented mechanism of how cancer cells sense solid stress for cancer malignancy and bridge the gap between cancer physics and cancer cell biology.
Collapse
Grants
- 92253201, 22334005, 21890744, 82203880, 82404104, 82100137, and 32350026 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (2021YFA0909400), the fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740, and BX2021096), the Natural Science Foundation of Hunan Province for Distinguished Young Scholars (2023JJ10096), the Science and Technology Innovation Program of Hunan Province (2022RC1215), Natural Science Foundation of Hunan Province (2022JJ30183, 2024JJ6492, and 2024JJ3037), and the Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0572).
- fellowship of the China Postdoctoral Science Foundation (2022M720174, 2023T160740)
Collapse
Affiliation(s)
- Xing Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yangyang Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Shengjie Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Siyuan Qiu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Yibin Zhang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
- Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Anwar MU, van der Goot FG. Refining S-acylation: Structure, regulation, dynamics, and therapeutic implications. J Cell Biol 2023; 222:e202307103. [PMID: 37756661 PMCID: PMC10533364 DOI: 10.1083/jcb.202307103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
With a limited number of genes, cells achieve remarkable diversity. This is to a large extent achieved by chemical posttranslational modifications of proteins. Amongst these are the lipid modifications that have the unique ability to confer hydrophobicity. The last decade has revealed that lipid modifications of proteins are extremely frequent and affect a great variety of cellular pathways and physiological processes. This is particularly true for S-acylation, the only reversible lipid modification. The enzymes involved in S-acylation and deacylation are only starting to be understood, and the list of proteins that undergo this modification is ever-increasing. We will describe the state of knowledge on the enzymes that regulate S-acylation, from their structure to their regulation, how S-acylation influences target proteins, and finally will offer a perspective on how alterations in the balance between S-acylation and deacylation may contribute to disease.
Collapse
Affiliation(s)
- Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Sandoz PA, Denhardt-Eriksson RA, Abrami L, Abriata LA, Spreemann G, Maclachlan C, Ho S, Kunz B, Hess K, Knott G, S Mesquita F, Hatzimanikatis V, van der Goot FG. Dynamics of CLIMP-63 S-acylation control ER morphology. Nat Commun 2023; 14:264. [PMID: 36650170 PMCID: PMC9844198 DOI: 10.1038/s41467-023-35921-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
The complex architecture of the endoplasmic reticulum (ER) comprises distinct dynamic features, many at the nanoscale, that enable the coexistence of the nuclear envelope, regions of dense sheets and a branched tubular network that spans the cytoplasm. A key player in the formation of ER sheets is cytoskeleton-linking membrane protein 63 (CLIMP-63). The mechanisms by which CLIMP-63 coordinates ER structure remain elusive. Here, we address the impact of S-acylation, a reversible post-translational lipid modification, on CLIMP-63 cellular distribution and function. Combining native mass-spectrometry, with kinetic analysis of acylation and deacylation, and data-driven mathematical modelling, we obtain in-depth understanding of the CLIMP-63 life cycle. In the ER, it assembles into trimeric units. These occasionally exit the ER to reach the plasma membrane. However, the majority undergoes S-acylation by ZDHHC6 in the ER where they further assemble into highly stable super-complexes. Using super-resolution microscopy and focused ion beam electron microscopy, we show that CLIMP-63 acylation-deacylation controls the abundance and fenestration of ER sheets. Overall, this study uncovers a dynamic lipid post-translational regulation of ER architecture.
Collapse
Affiliation(s)
- Patrick A Sandoz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Luciano A Abriata
- Laboratory for Biomolecular Modelling, Institute of Bioengineering, EPFL and Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Protein Production and Structure Core Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | | | - Sylvia Ho
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Kathryn Hess
- Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Graham Knott
- BioEM Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | | | | |
Collapse
|
4
|
The endoplasmic reticulum adopts two distinct tubule forms. Proc Natl Acad Sci U S A 2022; 119:e2117559119. [PMID: 35471903 PMCID: PMC9170160 DOI: 10.1073/pnas.2117559119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is one of the most structurally visible and functionally important organelles in the cell. Utilizing superresolution microscopy, we here unveil that in the mammalian cell, the peripheral ER adopts two distinct, well-defined tubule forms of contrasting structures, molecular signatures, and functions, with one of the two curiously being ribbon-like, ultranarrow sheets of fixed widths. With fast multicolor microscopy, we further show how the two tubule forms dynamically interconvert while differentially accommodating proteins in the living cell. The endoplasmic reticulum (ER) is a versatile organelle with diverse functions. Through superresolution microscopy, we show that the peripheral ER in the mammalian cell adopts two distinct forms of tubules. Whereas an ultrathin form, R1, is consistently covered by ER-membrane curvature-promoting proteins, for example, Rtn4 in the native cell, in the second form, R2, Rtn4 and analogs are arranged into two parallel lines at a conserved separation of ∼105 nm over long ranges. The two tubule forms together account for ∼90% of the total tubule length in the cell, with either one being dominant in different cell types. The R1–R2 dichotomy and the final tubule geometry are both coregulated by Rtn4 (and analogs) and the ER sheet–maintaining protein Climp63, which, respectively, define the edge curvature and lumen height of the R2 tubules to generate a ribbon-like structure of well-defined width. Accordingly, the R2 tubule width correlates positively with the Climp63 intraluminal size. The R1 and R2 tubules undergo active remodeling at the second/subsecond timescales as they differently accommodate proteins, with the former effectively excluding ER-luminal proteins and ER-membrane proteins with large intraluminal domains. We thus uncover a dynamic structural dichotomy for ER tubules with intriguing functional implications.
Collapse
|
5
|
Elucidation of CKAP4-remodeled cell mechanics in driving metastasis of bladder cancer through aptamer-based target discovery. Proc Natl Acad Sci U S A 2022; 119:e2110500119. [PMID: 35412892 PMCID: PMC9169774 DOI: 10.1073/pnas.2110500119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis generally leads to a dismal prognosis in bladder cancer (BLCA). The mechanical status of the cell membrane has been reported to reflect the potential of the metastatic capacity of cancer cells. However, the molecular profile and corresponding mechanical traits underlying BLCA metastasis remain largely elusive. Our study demonstrates the significance of cytoskeleton-associated protein 4 (CKAP4) in BLCA malignancy through aptamer selection, emphasizes the mechanical dominance of the central-to-peripheral gradient over simply softening or stiffening in cell migration, and shows the role of exosomes in mediating mechanical signaling in BLCA metastasis. Altogether, our work verifies the promising advantages of an aptamer-based approach in cancer research, which ranges from biomarker discovery to the elucidation of biological functions. Metastasis contributes to the dismal prognosis of bladder cancer (BLCA). The mechanical status of the cell membrane is expected to mirror the ability of cell migration to promote cancer metastasis. However, the mechanical characteristics and underlying molecular profile associated with BLCA metastasis remain obscure. To study the unique cellular architecture and traits associated with cell migration, using a process called cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) we generated an aptamer-based molecular probe, termed spl3c, which identified cytoskeleton-associated protein 4 (CKAP4). CKAP4 was associated with tumor metastasis in BLCA, but we also found it to be a mechanical regulator of BLCA cells through the maintenance of a central-to-peripheral gradient of stiffness on the cell membrane. Notably, such mechanical traits were transportable through exosome-mediated intercellular CKAP4 trafficking, leading to significant enhancement of migration in recipient cells and, consequently, aggravating metastatic potential in vivo. Taken together, our study shows the robustness of this aptamer-based molecular tool for biomarker discovery, revealing the dominance of a CKAP4-induced central-to-peripheral gradient of membrane stiffness that benefits cell migration and delineating the role of exosomes in mediating mechanical signaling in BLCA metastasis.
Collapse
|
6
|
Parlakgül G, Arruda AP, Pang S, Cagampan E, Min N, Güney E, Lee GY, Inouye K, Hess HF, Xu CS, Hotamışlıgil GS. Regulation of liver subcellular architecture controls metabolic homeostasis. Nature 2022; 603:736-742. [PMID: 35264794 DOI: 10.1038/s41586-022-04488-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/31/2022] [Indexed: 12/28/2022]
Abstract
Cells display complex intracellular organization by compartmentalization of metabolic processes into organelles, yet the resolution of these structures in the native tissue context and their functional consequences are not well understood. Here we resolved the three-dimensional structural organization of organelles in large (more than 2.8 × 105 µm3) volumes of intact liver tissue (15 partial or full hepatocytes per condition) at high resolution (8 nm isotropic pixel size) using enhanced focused ion beam scanning electron microscopy1,2 imaging followed by deep-learning-based automated image segmentation and 3D reconstruction. We also performed a comparative analysis of subcellular structures in liver tissue of lean and obese mice and found substantial alterations, particularly in hepatic endoplasmic reticulum (ER), which undergoes massive structural reorganization characterized by marked disorganization of stacks of ER sheets3 and predominance of ER tubules. Finally, we demonstrated the functional importance of these structural changes by monitoring the effects of experimental recovery of the subcellular organization on cellular and systemic metabolism. We conclude that the hepatic subcellular organization of the ER architecture are highly dynamic, integrated with the metabolic state and critical for adaptive homeostasis and tissue health.
Collapse
Affiliation(s)
- Güneş Parlakgül
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ana Paula Arruda
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Nutritional Sciences and Toxicology, UC Berkeley, Berkeley, CA, USA
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Erika Cagampan
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nina Min
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ekin Güney
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Inouye
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center of Metabolic Research and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Trott JF, Schennink A, Horigan KC, Lemay DG, Cohen JR, Famula TR, Dragon JA, Hovey RC. Unique Transcriptomic Changes Underlie Hormonal Interactions During Mammary Histomorphogenesis in Female Pigs. Endocrinology 2022; 163:bqab256. [PMID: 34918063 PMCID: PMC10409904 DOI: 10.1210/endocr/bqab256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/19/2022]
Abstract
Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17β-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.
Collapse
Affiliation(s)
- Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Anke Schennink
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Katherine C Horigan
- Department of Animal Science, University of Vermont, Burlington, Vermont 05405, USA
| | - Danielle G Lemay
- US Department of Agriculture ARS Western Human Nutrition Research Center, Davis, California 95616, USA
| | - Julia R Cohen
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Thomas R Famula
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| | - Julie A Dragon
- Vermont Integrative Genomics Resource, University of Vermont, Burlington, Vermont 05405, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
8
|
Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med 2022; 8:773573. [PMID: 35004889 PMCID: PMC8733325 DOI: 10.3389/fcvm.2021.773573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored. Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples. Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium. Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshang Xie
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Zang J, Kriechbaumer V, Wang P. Plant cytoskeletons and the endoplasmic reticulum network organization. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153473. [PMID: 34298331 DOI: 10.1016/j.jplph.2021.153473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Plant endoplasmic reticulum (ER) remodelling is likely to be important for its function in targeted protein secretion, organelle interaction and signal exchange. It has been known for decades that the structure and movement of the ER network is mainly regulated by the actin cytoskeleton through actin motor proteins and membrane-cytoskeleton adaptors. Recent discoveries also revealed alternative pathways that influence ER movement, through a microtubule-based machinery. Therefore, plants utilize both cytoskeletal components to drive ER dynamics, a process that is likely to be dependent on the cell type and the developmental stages. On the other hand, the ER membrane also has a direct effect towards the organization of the cytoskeletal network and disrupting the tethering factors at the ER-PM interface also rearranges the cytoskeletal structure. However, the influence of the ER network on the cytoskeleton organization has not been studied. In this review, we will provide an overview of the ER-cytoskeleton network in plants, and discuss the most recent discoveries in the field.
Collapse
Affiliation(s)
- Jingze Zang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Verena Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
10
|
Czeti Á, Szalóki G, Varga G, Szita VR, Komlósi ZI, Takács F, Márk Á, Timár B, Matolcsy A, Barna G. Limitations of VS38c labeling in the detection of plasma cell myeloma by flow cytometry. Cytometry A 2021; 101:159-166. [PMID: 34296508 DOI: 10.1002/cyto.a.24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/15/2021] [Accepted: 07/15/2021] [Indexed: 11/06/2022]
Abstract
Plasma cell myeloma (multiple myeloma [MM]) is a malignant neoplasm originating from the plasma cells. Besides other methods, flow cytometric analysis of the patient's bone marrow aspirate has an important role in the diagnosis and also in the response assessment. Since the cell surface markers, used for identifying abnormal plasma cells, are expressed diversely and the treatment can also alter the phenotype of the plasma cells, there is an increasing demand for new plasma cell markers. VS38c is a monoclonal antibody that recognizes the CLIMP-63 protein in the membrane of the endoplasmic reticulum. CLIMP-63 is known to be expressed at high levels in normal and pathologic plasma cells in the bone marrow, thus VS38c antibody can be used to identify them. Although VS38c staining of plasma cells is reported to be constant and strong even in myeloma, we were wondering whether sample preparation can affect the staining. We have investigated the effect of different permeabilization agents and washing of the cells on the quality of the VS38c staining and found that in many cases the staining is inadequate to identify the plasma cells. We measured the VS38c staining of the bone marrow aspirates of 196 MM patients and observed that almost all cases showed bright staining with VS38c. However, permeabilization with mild detergent resulted in the appearance of a significant VS38cdim subpopulation, which showed increased sensitivity to mechanical stress (centrifugation). Our results indicate that VS38cdim MM cells can appear due to the improper permeabilization of the endoplasmic reticulum and this finding raises the possibility of the existence of a plasma cell subpopulation with different membrane properties. The significance of this population is unclear yet, but these cells can be easily missed with VS38c staining and can be lost due to centrifugation-induced lysis during sample preparation.
Collapse
Affiliation(s)
- Ágnes Czeti
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szalóki
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Varga
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Virág Réka Szita
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt István Komlósi
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Takács
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Botond Timár
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Matolcsy
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Barna
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Li SX, Li J, Dong LW, Guo ZY. Cytoskeleton-Associated Protein 4, a Promising Biomarker for Tumor Diagnosis and Therapy. Front Mol Biosci 2021; 7:552056. [PMID: 33614703 PMCID: PMC7892448 DOI: 10.3389/fmolb.2020.552056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) is located in the rough endoplasmic reticulum (ER) and plays an important role in stabilizing the structure of ER. Meanwhile, CKAP4 is also found to act as an activated receptor at the cell surface. The multifunction of CKAP4 was gradually discovered with growing research evidence. In addition to the involvement in various physiological events including cell proliferation, cell migration, and stabilizing the structure of ER, CKAP4 has been implicated in tumorigenesis. However, the role of CKAP4 is still controversial in tumor biology, which may be related to different signal transduction pathways mediated by binding to different ligands in various microenvironments. Interestingly, CKAP4 has been recently recognized as a serological marker of several tumors and CKAP4 is expected to be a tumor therapeutic target. Therefore, deciphering the gene status, expression regulation, functions of CKAP4 in different diseases may shed new light on CKAP4-based cancer diagnosis and therapeutic strategy. This review discusses the publications that describe CKAP4 in various diseases, especially on tumor promotion and suppression, and provides a detailed discussion on the discrepancy.
Collapse
Affiliation(s)
- Shuang-Xi Li
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| | - Juan Li
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Navy Military Medical University, Shanghai, China.,National Center for Liver Cancer, Shanghai, China
| | - Zhi-Yong Guo
- Department of Nephrology, Changhai Hospital, The Navy Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Zhao J, Hu J. Self-Association of Purified Reconstituted ER Luminal Spacer Climp63. Front Cell Dev Biol 2020; 8:500. [PMID: 32612999 PMCID: PMC7308479 DOI: 10.3389/fcell.2020.00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Membranes of the endoplasmic reticulum (ER) are shaped into cisternal sheets and cylindrical tubules. How ER sheets are generated and maintained is not clear. ER membrane protein Climp63 is enriched in sheets and routinely used as a marker of this structure. The luminal domain (LD) of Climp63 is predicted to be highly helical, and it may form bridges between parallel membranes, regulating the abundance and width of ER sheets. Here, we purified the LD and full-length (FL) Climp63 to analyze their homotypic interactions. The N-terminal tagged LD formed low-order oligomers in solution, but was extremely aggregation-prone when the GST tag was removed. Purified FL Climp63 formed detectable but moderate interactions with both the FL protein and the LD. When Climp63 was reconstituted into proteoliposomes with its LD facing out, the homotypic interactions were retained and could be competed by soluble LD, though vesicle clustering was not observed. These results demonstrate a direct self-association of Climp63, supporting its role as an ER luminal spacer.
Collapse
Affiliation(s)
- Jinghua Zhao
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Junjie Hu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Shen B, Zheng P, Qian N, Chen Q, Zhou X, Hu J, Chen J, Teng J. Calumenin-1 Interacts with Climp63 to Cooperatively Determine the Luminal Width and Distribution of Endoplasmic Reticulum Sheets. iScience 2019; 22:70-80. [PMID: 31751826 PMCID: PMC6931119 DOI: 10.1016/j.isci.2019.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/06/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
The ER is composed of distinct structures like tubules, matrices, and sheets, all of which are important for its various functions. However, how these distinct ER structures, especially the perinuclear ER sheets, are formed remains unclear. We report here that the ER membrane protein Climp63 and the ER luminal protein calumenin-1 (Calu1) collaboratively maintain ER sheet morphology. We show that the luminal length of Climp63 is positively correlated with the luminal width of ER sheets. Moreover, the lumen-only mutant of Climp63 dominant-negatively narrows the lumen of ER sheets, demonstrating that Climp63 acts as an ER luminal bridge. We also reveal that Calu1 specifically interacts with Climp63 and antagonizes Climp63 in terms of both ER sheet distribution and luminal width. Together, our data provide insight into how the structure of ER sheets is maintained and regulated. Climp63 determines the luminal width of ER sheets ER luminal protein Calumenin-1 (Calu1) interacts with Climp63 Knockout of Calu1 triggers ER sheet accumulation and wider sheet lumen Calu1 regulates ER sheet morphology in a Climp63-dependent manner
Collapse
Affiliation(s)
- Birong Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pengli Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Nannan Qian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; College of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingzhou Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules and CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University and Tianjin Key Laboratory of Protein Sciences, Tianjin 300071, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Peking University, Beijing 100871, China.
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Fowler PC, Garcia-Pardo ME, Simpson JC, O'Sullivan NC. NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. Front Neurosci 2019; 13:1051. [PMID: 31680803 PMCID: PMC6801308 DOI: 10.3389/fnins.2019.01051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative conditions whose characteristic feature is degeneration of the longest axons within the corticospinal tract which leads to progressive spasticity and weakness of the lower limbs. Though highly genetically heterogeneous, the majority of HSP cases are caused by mutations in genes encoding proteins that are responsible for generating and organizing the tubular endoplasmic reticulum (ER). Despite this, the role of the ER within neurons, particularly the long axons affected in HSP, is not well understood. Throughout axons, ER tubules make extensive contacts with other organelles, the cytoskeleton and the plasma membrane. At these ER contacts, protein complexes work in concert to perform specialized functions including organelle shaping, calcium homeostasis and lipid biogenesis, all of which are vital for neuronal survival and may be disrupted by HSP-causing mutations. In this article we summarize the proteins which mediate ER contacts, review the functions these contacts are known to carry out within neurons, and discuss the potential contribution of disruption of ER contacts to axonopathy in HSP.
Collapse
Affiliation(s)
- Philippa C Fowler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Paxman R, Plate L, Blackwood EA, Glembotski C, Powers ET, Wiseman RL, Kelly JW. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 2018; 7:37168. [PMID: 30084354 PMCID: PMC6080950 DOI: 10.7554/elife.37168] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pharmacologic arm-selective unfolded protein response (UPR) signaling pathway activation is emerging as a promising strategy to ameliorate imbalances in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. The small molecule N-(2-hydroxy-5-methylphenyl)-3-phenylpropanamide (147) was previously identified (Plate et al., 2016) to preferentially activate the ATF6 arm of the UPR, promoting protective remodeling of the ER proteostasis network. Here we show that 147-dependent ATF6 activation requires metabolic oxidation to form an electrophile that preferentially reacts with ER proteins. Proteins covalently modified by 147 include protein disulfide isomerases (PDIs), known to regulate ATF6 activation. Genetic depletion of PDIs perturbs 147-dependent induction of the ATF6-target gene, BiP, implicating covalent modifications of PDIs in the preferential activation of ATF6 afforded by treatment with 147. Thus, 147 is a pro-drug that preferentially activates ATF6 signaling through a mechanism involving localized metabolic activation and selective covalent modification of ER resident proteins that regulate ATF6 activity.
Collapse
Affiliation(s)
- Ryan Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Chris Glembotski
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
16
|
De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol 2018; 97:319-338. [DOI: 10.1016/j.ejcb.2018.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/08/2023] Open
|
17
|
Hsu JCC, Reid DW, Hoffman AM, Sarkar D, Nicchitta CV. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs. RNA (NEW YORK, N.Y.) 2018; 24:688-703. [PMID: 29438049 PMCID: PMC5900566 DOI: 10.1261/rna.063313.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/30/2018] [Indexed: 05/04/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease.
Collapse
Affiliation(s)
- Jack C-C Hsu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David W Reid
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Alyson M Hoffman
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University Massey Cancer Center, Virginia Commonwealth University Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Christopher V Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
18
|
Johnston HE, Carter MJ, Larrayoz M, Clarke J, Garbis SD, Oscier D, Strefford JC, Steele AJ, Walewska R, Cragg MS. Proteomics Profiling of CLL Versus Healthy B-cells Identifies Putative Therapeutic Targets and a Subtype-independent Signature of Spliceosome Dysregulation. Mol Cell Proteomics 2018; 17:776-791. [PMID: 29367434 PMCID: PMC5880099 DOI: 10.1074/mcp.ra117.000539] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous B-cell cancer exhibiting a wide spectrum of disease courses and treatment responses. Molecular characterization of RNA and DNA from CLL cases has led to the identification of important driver mutations and disease subtypes, but the precise mechanisms of disease progression remain elusive. To further our understanding of CLL biology we performed isobaric labeling and mass spectrometry proteomics on 14 CLL samples, comparing them with B-cells from healthy donors (HDB). Of 8694 identified proteins, ∼6000 were relatively quantitated between all samples (q<0.01). A clear CLL signature, independent of subtype, of 544 significantly overexpressed proteins relative to HDB was identified, highlighting established hallmarks of CLL (e.g. CD5, BCL2, ROR1 and CD23 overexpression). Previously unrecognized surface markers demonstrated overexpression (e.g. CKAP4, PIGR, TMCC3 and CD75) and three of these (LAX1, CLEC17A and ATP2B4) were implicated in B-cell receptor signaling, which plays an important role in CLL pathogenesis. Several other proteins (e.g. Wee1, HMOX1/2, HDAC7 and INPP5F) were identified with significant overexpression that also represent potential targets. Western blotting confirmed overexpression of a selection of these proteins in an independent cohort. mRNA processing machinery were broadly upregulated across the CLL samples. Spliceosome components demonstrated consistent overexpression (p = 1.3 × 10-21) suggesting dysregulation in CLL, independent of SF3B1 mutations. This study highlights the potential of proteomics in the identification of putative CLL therapeutic targets and reveals a subtype-independent protein expression signature in CLL.
Collapse
Affiliation(s)
- Harvey E Johnston
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Matthew J Carter
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK
| | - Marta Larrayoz
- ¶Cancer Genomics, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Clarke
- ‖Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Spiro D Garbis
- §Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
- **Clinical and Experimental Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Oscier
- ‡‡Department of Molecular Pathology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Jonathan C Strefford
- ¶Cancer Genomics, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andrew J Steele
- §§Leukemia and Lymphoma Molecular Mechanisms and Therapy Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Renata Walewska
- ¶¶Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - Mark S Cragg
- From the ‡Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, General Hospital, University of Southampton, Southampton, UK;
| |
Collapse
|
19
|
Purification of Highly Active Alphavirus Replication Complexes Demonstrates Altered Fractionation of Multiple Cellular Membranes. J Virol 2018; 92:JVI.01852-17. [PMID: 29367248 DOI: 10.1128/jvi.01852-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 01/26/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes in membrane-associated structures; alphaviruses and many other groups induce membrane invaginations called spherules. Here, we established a protocol to purify these membranous replication complexes (RCs) from cells infected with Semliki Forest virus (SFV). We isolated SFV spherules located on the plasma membrane and further purified them using two consecutive density gradients. This revealed that SFV infection strongly modifies cellular membranes. We removed soluble proteins, the Golgi membranes, and most of the mitochondria, but plasma membrane, endoplasmic reticulum (ER), and late endosome markers were retained in the membrane fraction that contained viral RNA synthesizing activity, replicase proteins, and minus- and plus-strand RNA. Electron microscopy revealed that the purified membranes displayed spherule-like structures with a narrow neck. This membrane enrichment was specific to viral replication, as such a distribution of membrane markers was only observed after infection. Besides the plasma membrane, SFV infection remodeled the ER, and the cofractionation of the RC-carrying plasma membrane and ER suggests that SFV recruits ER proteins or membrane to the site of replication. The purified RCs were highly active in synthesizing both genomic and subgenomic RNA. Detergent solubilization destroyed the replication activity, demonstrating that the membrane association of the complex is essential. Most of the newly made RNA was in double-stranded replicative molecules, but the purified complexes also produced single-stranded RNA as well as released newly made RNA. This indicates that the purification established here maintained the functionality of RCs and thus enables further structural and functional studies of active RCs.IMPORTANCE Similar to all positive-strand RNA viruses, the arthropod-borne alphaviruses induce membranous genome factories, but little is known about the arrangement of viral replicase proteins and the presence of host proteins in these replication complexes. To improve our knowledge of alphavirus RNA-synthesizing complexes, we isolated and purified them from infected mammalian cells. Detection of viral RNA and in vitro replication assays revealed that these complexes are abundant and highly active when located on the plasma membrane. After multiple purification steps, they remain functional in synthesizing and releasing viral RNA. Besides the plasma membrane, markers for the endoplasmic reticulum and late endosomes were enriched with the replication complexes, demonstrating that alphavirus infection modified cellular membranes beyond inducing replication spherules on the plasma membrane. We have developed here a gentle purification method to obtain large quantities of highly active replication complexes, and similar methods can be applied to other positive-strand RNA viruses.
Collapse
|
20
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
21
|
Hookway ES, Orosz Z, Uchihara Y, Grigoriadis A, Hassan AB, Oppermann U, Athanasou NA. Utility of VS38c in the diagnostic and prognostic assessment of osteosarcoma and other bone tumours/tumour-like lesions. Clin Sarcoma Res 2017; 7:17. [PMID: 28936339 PMCID: PMC5603185 DOI: 10.1186/s13569-017-0083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background VS38c is a monoclonal antibody that recognises a rough endoplasmic reticulum (rER) intracellular antigen termed cytoskeleton-linking membrane protein 63. rER is typically found in viable tumour cells and is abundant in osteosarcoma cells. The aim of this study was to determine the diagnostic and prognostic utility of VS38c in the histological assessment of osteosarcoma and other bone tumours/tumour-like leisons. Methods Immunohistochemical staining with VS38c was carried out on formalin-fixed specimens of osteosarcoma (pre/post-chemotherapy) and a wide range of benign and malignant bone lesions. In addition, VS38c staining of cultures of MG63 and Sa0S2 osteosarcoma cell cultures. (±cisplatin and actinomycin D-treatment) was analysed. Results VS38c strongly stained tumour cells in all low-grade and high-grade osteosarcomas and in undifferentiated sarcomas and high-grade chondrosarcomas. There was little or no VS38c staining of low-grade chondrosarcomas or chordomas and variable staining of Ewing sarcomas. Osteoblasts in benign bone-forming tumours and mononuclear stromal cells in chondroblastomas, giant cell tumours and non-ossifying fibromas strongly stained for VS38c. VS38c staining was absent in cisplatin and actinomycin D treated Sa0S2 and MG63 cells. In specimens of osteosarcoma post-neoadjuvant therapy, VS38c staining was absent in most morphologically necrotic areas of tumor although some cells with pyknotic nuclei stained for VS38c in these areas. Most tumour cells exhibiting atypical nuclear forms were not stained by VS38c. Conclusions Our findings show that VS38c is a sensitive but not specific diagnostic marker of osteosarcoma. Staining with VS38c identifies viable osteosarcoma cells, a feature which may be useful in the assessment of percentage tumour necrosis post-neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- E S Hookway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - Z Orosz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - Y Uchihara
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - A Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College, London, UK
| | - A B Hassan
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - U Oppermann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| | - N A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE UK
| |
Collapse
|
22
|
Papizan JB, Garry GA, Brezprozvannaya S, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. J Clin Invest 2017; 127:3730-3740. [PMID: 28872460 DOI: 10.1172/jci93445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/19/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of muscle structure and function depends on the precise organization of contractile proteins into sarcomeres and coupling of the contractile apparatus to the sarcoplasmic reticulum (SR), which serves as the reservoir for calcium required for contraction. Several members of the Kelch superfamily of proteins, which modulate protein stability as substrate-specific adaptors for ubiquitination, have been implicated in sarcomere formation. The Kelch protein Klhl31 is expressed in a muscle-specific manner under control of the transcription factor MEF2. To explore its functions in vivo, we created a mouse model of Klhl31 loss of function using the CRISPR-Cas9 system. Mice lacking Klhl31 exhibited stunted postnatal skeletal muscle growth, centronuclear myopathy, central cores, Z-disc streaming, and SR dilation. We used proteomics to identify several candidate Klhl31 substrates, including Filamin-C (FlnC). In the Klhl31-knockout mice, FlnC protein levels were highly upregulated with no change in transcription, and we further demonstrated that Klhl31 targets FlnC for ubiquitination and degradation. These findings highlight a role for Klhl31 in the maintenance of skeletal muscle structure and provide insight into the mechanisms underlying congenital myopathies.
Collapse
|
23
|
Cao P, Renna L, Stefano G, Brandizzi F. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis. Curr Biol 2016; 26:3245-3254. [DOI: 10.1016/j.cub.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|