1
|
Gialama V, Siokas V, Liampas I, Tsouris Z, Stamati P, Aslanidou P, Provatas A, Tsimourtou V, Xiromerisiou G, Bogdanos DP, Dardiotis E. Alzheimer's Disease and Effects of ABCA7 Polymorphisms: A Review. J Integr Neurosci 2024; 23:164. [PMID: 39344232 DOI: 10.31083/j.jin2309164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the main cause of dementia. Its etiology remains largely unclear, though genetic and environmental factors appear to confer susceptibility to AD development. This study assessed the role of ATP-binding Cassette A Subfamily 7 (ABCA7) genetic polymorphisms, as ongoing research suggests they have a role in the development of AD. We conducted a PubMed, Google Scholar, and Scopus search to identify and assess all AD studies examining ABCA7 variants in different populations and ethnicities. The last search was conducted on February 8, 2023. Inclusion and exclusion criteria were applied and only the studies that met the inclusion criteria were included in this review. Seventeen studies were finally included. According to the results, ABCA7 variants infer different risks for AD among populations with different ancestries. African American populations show a higher risk for AD, carrying the five novel variants rs115550680, rs142076058, rs10405305, rs3764647, and rs567222111. Asian populations also have an increased risk for AD, harboring three variants. ABCA7 genetic variability contributes to AD development and shows racial disparities. African American and Asian populations seem to be at greater risk of developing AD. These results may assist future research efforts for the early and accurate diagnosis of AD. Moreover, further exploration of the mechanisms of ABCA7 in the context of AD could identify potential therapeutic targets.
Collapse
Affiliation(s)
- Vaia Gialama
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Polyxeni Stamati
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Paraskevi Aslanidou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Antonios Provatas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Vana Tsimourtou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece
| |
Collapse
|
2
|
Han T, Xu Y, Sun L, Hashimoto M, Wei J. Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases. Neural Regen Res 2024; 19:1241-1248. [PMID: 37905870 PMCID: PMC11467914 DOI: 10.4103/1673-5374.385845] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging; they have a great impact on the aging process and are the main risk factors for neurodegeneration. Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases. This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and Parkinson's disease. This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states. Therefore, inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Lin Sun
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan Province, China
| | - Makoto Hashimoto
- Department of Basic Technology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
3
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
4
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
5
|
Kawatani K, Holm ML, Starling SC, Martens YA, Zhao J, Lu W, Ren Y, Li Z, Jiang P, Jiang Y, Baker SK, Wang N, Roy B, Parsons TM, Perkerson RB, Bao H, Han X, Bu G, Kanekiyo T. ABCA7 deficiency causes neuronal dysregulation by altering mitochondrial lipid metabolism. Mol Psychiatry 2024; 29:809-819. [PMID: 38135757 PMCID: PMC11153016 DOI: 10.1038/s41380-023-02372-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
ABCA7 loss-of-function variants are associated with increased risk of Alzheimer's disease (AD). Using ABCA7 knockout human iPSC models generated with CRISPR/Cas9, we investigated the impacts of ABCA7 deficiency on neuronal metabolism and function. Lipidomics revealed that mitochondria-related phospholipids, such as phosphatidylglycerol and cardiolipin were reduced in the ABCA7-deficient iPSC-derived cortical organoids. Consistently, ABCA7 deficiency-induced alterations of mitochondrial morphology accompanied by reduced ATP synthase activity and exacerbated oxidative damage in the organoids. Furthermore, ABCA7-deficient iPSC-derived neurons showed compromised mitochondrial respiration and excess ROS generation, as well as enlarged mitochondrial morphology compared to the isogenic controls. ABCA7 deficiency also decreased spontaneous synaptic firing and network formation in iPSC-derived neurons, in which the effects were rescued by supplementation with phosphatidylglycerol or NAD+ precursor, nicotinamide mononucleotide. Importantly, effects of ABCA7 deficiency on mitochondria morphology and synapses were recapitulated in synaptosomes isolated from the brain of neuron-specific Abca7 knockout mice. Together, our results provide evidence that ABCA7 loss-of-function contributes to AD risk by modulating mitochondria lipid metabolism.
Collapse
Affiliation(s)
- Keiji Kawatani
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Marie-Louise Holm
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Skylar C Starling
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SciNeuro Pharmaceuticals, Rockville, MD, 20850, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yangying Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Samantha K Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ni Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Bhaskar Roy
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tammee M Parsons
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ralph B Perkerson
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
6
|
Fu M, Tran T, Eskin E, Lajonchere C, Pasaniuc B, Geschwind DH, Vossel K, Chang TS. Multi-class Modeling Identifies Shared Genetic Risk for Late-onset Epilepsy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302353. [PMID: 38370677 PMCID: PMC10871371 DOI: 10.1101/2024.02.05.24302353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Background Previous studies have established a strong link between late-onset epilepsy (LOE) and Alzheimer's disease (AD). However, their shared genetic risk beyond the APOE gene remains unclear. Our study sought to examine the shared genetic factors of AD and LOE, interpret the biological pathways involved, and evaluate how AD onset may be mediated by LOE and shared genetic risks. Methods We defined phenotypes using phecodes mapped from diagnosis codes, with patients' records aged 60-90. A two-step Least Absolute Shrinkage and Selection Operator (LASSO) workflow was used to identify shared genetic variants based on prior AD GWAS integrated with functional genomic data. We calculated an AD-LOE shared risk score and used it as a proxy in a causal mediation analysis. We used electronic health records from an academic health center (UCLA Health) for discovery analyses and validated our findings in a multi-institutional EHR database (All of Us). Results The two-step LASSO method identified 34 shared genetic loci between AD and LOE, including the APOE region. These loci were mapped to 65 genes, which showed enrichment in molecular functions and pathways such as tau protein binding and lipoprotein metabolism. Individuals with high predicted shared risk scores have a higher risk of developing AD, LOE, or both in their later life compared to those with low-risk scores. LOE partially mediates the effect of AD-LOE shared genetic risk on AD (15% proportion mediated on average). Validation results from All of Us were consistent with findings from the UCLA sample. Conclusions We employed a machine learning approach to identify shared genetic risks of AD and LOE. In addition to providing substantial evidence for the significant contribution of the APOE-TOMM40-APOC1 gene cluster to shared risk, we uncovered novel genes that may contribute. Our study is one of the first to utilize All of Us genetic data to investigate AD, and provides valuable insights into the potential common and disease-specific mechanisms underlying AD and LOE, which could have profound implications for the future of disease prevention and the development of targeted treatment strategies to combat the co-occurrence of these two diseases.
Collapse
Affiliation(s)
- Mingzhou Fu
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, CA 90095, USA
| | - Thai Tran
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, CA 90095, USA
| | - Eleazar Eskin
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
| | - Clara Lajonchere
- Institute of Precision Health, University of California, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
| | - Daniel H. Geschwind
- Institute of Precision Health, University of California, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Timothy S Chang
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Duchateau L, Küҫükali F, De Roeck A, Wittens MMJ, Temmerman J, Weets I, Timmers M, Engelborghs S, Bjerke M, Sleegers K. CSF biomarker analysis of ABCA7 mutation carriers suggests altered APP processing and reduced inflammatory response. Alzheimers Res Ther 2023; 15:195. [PMID: 37946268 PMCID: PMC10634183 DOI: 10.1186/s13195-023-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The Alzheimer's disease (AD) risk gene ABCA7 has suggested functions in lipid metabolism and the immune system. Rare premature termination codon (PTC) mutations and an expansion of a variable number of tandem repeats (VNTR) polymorphism in the gene, both likely cause a lower ABCA7 expression and hereby increased risk for AD. However, the exact mechanism of action remains unclear. By studying CSF biomarkers reflecting different types of AD-related pathological processes, we aim to get a better insight in those processes and establish a biomarker profile of mutation carriers. METHODS The study population consisted of 229 AD patients for whom CSF was available and ABCA7 sequencing and VNTR genotyping had been performed. This included 28 PTC mutation and 16 pathogenic expansion carriers. CSF levels of Aβ1-42, Aβ1-40, P-tau181, T-tau, sAPPα, sAPPβ, YKL-40, and hFABP were determined using ELISA and Meso Scale Discovery assays. We compared differences in levels of these biomarkers and the Aβ ratio between AD patients with or without an ABCA7 PTC mutation or expansion using linear regression on INT-transformed data with APOE-status, age and sex as covariates. RESULTS Carriers of ABCA7 expansion mutations had significantly lower Aβ1-42 levels (P = 0.022) compared with non-carrier patients. The effect of the presence of ABCA7 mutations on CSF levels was especially pronounced in APOE ε4-negative carriers. In addition, VNTR expansion carriers had reduced Aβ1-40 (P = 0.023), sAPPα (P = 0.047), sAPPβ (P = 0.016), and YKL-40 (P = 0.0036) levels. CONCLUSIONS Our results are suggestive for an effect on APP processing by repeat expansions given the changes in the amyloid-related CSF biomarkers that were found in carriers. The decrease in YKL-40 levels in expansion carriers moreover suggests that these patients potentially have a reduced inflammatory response to AD damage. Moreover, our findings suggest the existence of a mechanism, independent of lowered expression, affecting neuropathology in expansion carriers.
Collapse
Affiliation(s)
- Lena Duchateau
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Fahri Küҫükali
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
| | - Arne De Roeck
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Present Address: Argenx, Ghent, Belgium
| | - Mandy M J Wittens
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Joke Temmerman
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Ilse Weets
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Experimental Pharmacology (EFAR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, 2340, Belgium
| | - Sebastiaan Engelborghs
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Department of Neurology and Bru-BRAIN, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
| | - Maria Bjerke
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium
- Clinical Neurochemistry Laboratory, Department of Clinical Biology, University Hospital Brussels, Generaal Jacqueslaan 137, Elsene, Brussels, 1050, Belgium
- Neuroprotection & Neuromodulation (NEUR) Research Group, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Jette, Brussels, 1090, Belgium
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB-UAntwerp Center for Molecular Neurology, VIB, Building V, Universiteitsplein 1, Wilrijk, Antwerp, B-2610, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp, 2610, Belgium.
| |
Collapse
|
8
|
Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. DNA Methylation: A Promising Approach in Management of Alzheimer's Disease and Other Neurodegenerative Disorders. BIOLOGY 2022; 11:90. [PMID: 35053088 PMCID: PMC8773419 DOI: 10.3390/biology11010090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer's disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer's disease, Parkinson's disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.
Collapse
Affiliation(s)
- Gagandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Suraj Singh S. Rathod
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Kamrup 781101, Assam, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Jonas LA, Jain T, Li YM. Functional insight into LOAD-associated microglial response genes. Open Biol 2022; 12:210280. [PMID: 35078351 PMCID: PMC8790339 DOI: 10.1098/rsob.210280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), neuronal and synaptic loss and inflammation of the central nervous system (CNS). The majority of AD research has been dedicated to the understanding of two major AD hallmarks (i.e. Aβ and NFTs); however, recent genome-wide association studies (GWAS) data indicate neuroinflammation as having a critical role in late-onset AD (LOAD) development, thus unveiling a novel avenue for AD therapeutics. Recent evidence has provided much support to the innate immune system's involvement with AD progression; however, much remains to be uncovered regarding the role of glial cells, specifically microglia, in AD. Moreover, numerous variants in immune and/or microglia-related genes have been identified in whole-genome sequencing and GWAS analyses, including such genes as TREM2, CD33, APOE, API1, MS4A, ABCA7, BIN1, CLU, CR1, INPP5D, PICALM and PLCG2. In this review, we aim to provide an insight into the function of the major LOAD-associated microglia response genes.
Collapse
Affiliation(s)
- Lauren A. Jonas
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanya Jain
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Weill Cornell, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Namasivayam V, Stefan K, Pahnke J, Stefan SM. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer's disease therapeutics. Comput Struct Biotechnol J 2021; 19:6490-6504. [PMID: 34976306 PMCID: PMC8666613 DOI: 10.1016/j.csbj.2021.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine-triphosphate-(ATP)-binding cassette (ABC) transporter ABCA7 is a genetic risk factor for Alzheimer's disease (AD). Defective ABCA7 promotes AD development and/or progression. Unfortunately, ABCA7 belongs to the group of 'under-studied' ABC transporters that cannot be addressed by small-molecules. However, such small-molecules would allow for the exploration of ABCA7 as pharmacological target for the development of new AD diagnostics and therapeutics. Pan-ABC transporter modulators inherit the potential to explore under-studied ABC transporters as novel pharmacological targets by potentially binding to the proposed 'multitarget binding site'. Using the recently reported cryogenic-electron microscopy (cryo-EM) structures of ABCA1 and ABCA4, a homology model of ABCA7 has been generated. A set of novel, diverse, and potent pan-ABC transporter inhibitors has been docked to this ABCA7 homology model for the discovery of the multitarget binding site. Subsequently, application of pharmacophore modelling identified the essential pharmacophore features of these compounds that may support the rational drug design of innovative diagnostics and therapeutics against AD.
Collapse
Key Words
- ABC transporter (ABCA1, ABCA4, ABCA7)
- ABC, ATP-binding cassette
- AD, Alzheimer’s disease
- APP, amyloid precursor protein
- ATP, Adenosine-triphosphate
- Alzheimer’s disease (AD)
- BBB, blood-brain barrier
- BODIPY-cholesterol, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-cholesterol
- ECD, extracellular domain
- EH, extracellular helix
- GSH, reduced glutathione
- HTS, high-throughput screening
- IC, intracellular helix
- MOE, Molecular Operating Environment
- MSD, membrane spanning domain
- Multitarget modulation (PANABC)
- NBD, nucleotide binding domain
- NBD-cholesterol, 7-nitro-2-1,3-benzoxadiazol-4-yl-cholesterol
- PDB, protein data bank
- PET tracer (PETABC)
- PET, positron emission tomography
- PLIF, protein ligand interaction
- PSO, particle swarm optimization
- Polypharmacology
- R-domain/region, regulatory domain/region
- RMSD, root mean square distance
- Rational drug design and development
- SNP, single-nucleotide polymorphism
- TM, transmembrane helix
- cryo-EM, cryogenic-electron microscopy
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- LIED, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Jelgavas iela 1, 1004 Rīga, Latvia
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
11
|
Wang F, Xu J, Xu SJ, Guo JJ, Wang F, Wang QW. Analysis and Identification Genetic Effect of SARS-CoV-2 Infections to Alzheimer's Disease Patients by Integrated Bioinformatics. J Alzheimers Dis 2021; 85:729-744. [PMID: 34776447 DOI: 10.3233/jad-215086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 pandemic is a global crisis which results in millions of deaths and causes long-term neurological sequelae, such as Alzheimer's disease (AD). OBJECTIVE We aimed to explore the interaction between COVID-19 and AD by integrating bioinformatics to find the biomarkers which lead to AD occurrence and development with COVID-19 and provide early intervention. METHODS The differential expressed genes (DEGs) were found by GSE147507 and GSE132903, respectively. The common genes between COVID-19 and AD were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPI) network analysis were carried out. Hub genes were found by cytoscape. A multivariate logistic regression model was constructed. NetworkAnalyst was used for the analysis of TF-gene interactions, TF-miRNA coregulatory network, and Protein-chemical Interactions. RESULTS Forty common DEGs for AD and COVID-19 were found. GO and KEGG analysis indicated that the DEGs were enriched in the calcium signal pathway and other pathways. A PPI network was constructed, and 5 hub genes were identified (ITPR1, ITPR3, ITPKB, RAPGEF3, MFGE8). Four hub genes (ITPR1, ITPR3, ITPKB, RAPGEF3) which were considered as important factors in the development of AD that were affected by COVID-19 were shown by nomogram. Utilizing NetworkAnalyst, the interaction network of 4 hub genes and TF, miRNA, common AD risk genes, and known compounds is displayed, respectively. CONCLUSION COVID-19 patients are at high risk of developing AD. Vaccination is required. Four hub genes can be considered as biomarkers for prediction and treatment of AD development caused by COVID-19. Compounds with neuroprotective effects can be used as adjuvant therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Fang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Pharmaceutical College, Ningbo, China
| | - Jia Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Shu-Jun Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Zhejiang, China
| | - Feiming Wang
- Cixi Institute of BioMedical Engineering, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Wang Z, Zhang Q, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Zhang ZD. Deep post-GWAS analysis identifies potential risk genes and risk variants for Alzheimer's disease, providing new insights into its disease mechanisms. Sci Rep 2021; 11:20511. [PMID: 34654853 PMCID: PMC8519945 DOI: 10.1038/s41598-021-99352-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms-e.g., the complement and coagulation cascade and phosphorylation and activation of immune response-and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes-e.g., IL1RAP, PMAIP1, LAMTOR4-as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.
Collapse
Affiliation(s)
- Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Femminella GD, Harold D, Scott J, Williams J, Edison P. The Differential Influence of Immune, Endocytotic, and Lipid Metabolism Genes on Amyloid Deposition and Neurodegeneration in Subjects at Risk of Alzheimer's Disease. J Alzheimers Dis 2020; 79:127-139. [PMID: 33216025 DOI: 10.3233/jad-200578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Over 20 single-nucleotide polymorphisms (SNPs) are associated with increased risk of Alzheimer's disease (AD). We categorized these loci into immunity, lipid metabolism, and endocytosis pathways, and associated the polygenic risk scores (PRS) calculated, with AD biomarkers in mild cognitive impairment (MCI) subjects. OBJECTIVE The aim of this study was to identify associations between pathway-specific PRS and AD biomarkers in patients with MCI and healthy controls. METHODS AD biomarkers ([18F]Florbetapir-PET SUVR, FDG-PET SUVR, hippocampal volume, CSF tau and amyloid-β levels) and neurocognitive tests scores were obtained in 258 healthy controls and 451 MCI subjects from the ADNI dataset at baseline and at 24-month follow up. Pathway-related (immunity, lipid metabolism, and endocytosis) and total polygenic risk scores were calculated from 20 SNPs. Multiple linear regression analysis was used to test predictive value of the polygenic risk scores over longitudinal biomarker and cognitive changes. RESULTS Higher immune risk score was associated with worse cognitive measures and reduced glucose metabolism. Higher lipid risk score was associated with increased amyloid deposition and cortical hypometabolism. Total, immune, and lipid scores were associated with significant changes in cognitive measures, amyloid deposition, and brain metabolism. CONCLUSION Polygenic risk scores highlights the influence of specific genes on amyloid-dependent and independent pathways; and these pathways could be differentially influenced by lipid and immune scores respectively.
Collapse
Affiliation(s)
| | | | - James Scott
- Imperial College London, London, United Kingdom
| | - Julie Williams
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul Edison
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
14
|
Vesicular ATP-binding cassette transporters in human disease: relevant aspects of their organization for future drug development. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Venkatachalam N, Bakavayev S, Engel D, Barak Z, Engel S. Primate differential redoxome (PDR) - A paradigm for understanding neurodegenerative diseases. Redox Biol 2020; 36:101683. [PMID: 32829254 PMCID: PMC7451816 DOI: 10.1016/j.redox.2020.101683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/18/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite different phenotypic manifestations, mounting evidence points to similarities in the molecular basis of major neurodegenerative diseases (ND). CNS has evolved to be robust against hazard of ROS, a common perturbation aerobic organisms are confronted with. The trade-off of robustness is system's fragility against rare and unexpected perturbations. Identifying the points of CNS fragility is key for understanding etiology of ND. We postulated that the 'primate differential redoxome' (PDR), an assembly of proteins that contain cysteine residues present only in the primate orthologues of mammals, is likely to associate with an added level of regulatory functionalities that enhanced CNS robustness against ROS and facilitated evolution. The PDR contains multiple deterministic and susceptibility factors of major ND, which cluster to form coordinated redox networks regulating various cellular processes. The PDR analysis revealed a potential CNS fragility point, which appears to associates with a non-redundant PINK1-PRKN-SQSTM1(p62) axis coordinating protein homeostasis and mitophagy.
Collapse
Affiliation(s)
- Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
16
|
Chang YT, Hsu SW, Huang SH, Huang CW, Chang WN, Lien CY, Lee JJ, Lee CC, Chang CC. ABCA7 polymorphisms correlate with memory impairment and default mode network in patients with APOEε4-associated Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:103. [PMID: 31831047 PMCID: PMC6909474 DOI: 10.1186/s13195-019-0563-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Background Since both APOE and ABCA7 protein expression may independently reduce neuritic plaque burden and reorganize fibrillar amyloid burden-mediated disruption of functional connectivity in the default mode network, we aimed to investigate the effect of the APOE-ABCA7 interaction on default mode network in Alzheimer’s disease. Methods Two hundred and eighty-seven individuals with a diagnosis of typical Alzheimer’s disease were included in this study. Memory was characterized and compared between APOE-ε4+ carriers and APOE-ε4 non-carriers within ABCA7 rs3764650T allele homozygous carriers and ABCA7 rs3764650G allele carriers, respectively. Two-way analysis of variance was used to identify a significant interaction effect between APOE (APOE-ε4+ carriers versus APOE-ε4 non-carriers) and ABCA7 (ABCA7 rs3764650T allele homozygous versus ABCA7 rs3764650G allele carriers) on memory scores and functional connectivity in each default mode network subsystem. Results In ABCA7 rs3764650G allele carriers, APOE-ε4+ carriers had lower memory scores (t (159) = − 4.879; P < 0.001) compared to APOE-ε4 non-carriers, but APOE-ε4+ carriers and APOE-ε4 non-carriers did not have differences in memory (P > 0.05) within ABCA7 rs3764650T allele homozygous carriers. There was a significant APOE-ABCA7 interaction effect on the memory (F3, 283 = 4.755, P = 0.030). In the default mode network anchored by the entorhinal seed, the peak neural activity of the cluster that was significantly associated with APOE-ABCA7 interaction effects (P = 0.00002) was correlated with the memory (ρ = 0.129, P = 0.030). Conclusions Genetic-biological systems may impact disease presentation and therapy. Clarifying the effect of APOE-ABCA7 interactions on the default mode network and memory is critical to exploring the complex pathogenesis of Alzheimer’s disease and refining a potential therapy.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan.
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chia-Yi Lien
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Jun-Jun Lee
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Institute of translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123, Ta-Pei Road, Niaosung, Kaohsiung, 833, Taiwan.
| |
Collapse
|
17
|
Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC Transporter-Mediated Multidrug-Resistant Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:549-580. [PMID: 31571174 DOI: 10.1007/978-981-13-7647-4_12] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters are involved in active pumping of many diverse substrates through the cellular membrane. The transport mediated by these proteins modulates the pharmacokinetics of many drugs and xenobiotics. These transporters are involved in the pathogenesis of several human diseases. The overexpression of certain transporters by cancer cells has been identified as a key factor in the development of resistance to chemotherapeutic agents. In this chapter, the localization of ABC transporters in the human body, their physiological roles, and their roles in the development of multidrug resistance (MDR) are reviewed. Specifically, P-glycoprotein (P-GP), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP/ABCG2) are described in more detail. The potential of ABC transporters as therapeutic targets to overcome MDR and strategies for this purpose are discussed as well as various explanations for the lack of efficacy of ABC drug transporter inhibitors to increase the efficiency of chemotherapy.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hong-May Sim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 2019; 138:201-220. [PMID: 30903345 PMCID: PMC6660495 DOI: 10.1007/s00401-019-01994-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) originally identified ATP-binding cassette, sub-family A, member 7 (ABCA7), as a novel risk gene of Alzheimer’s disease (AD). Since then, accumulating evidence from in vitro, in vivo, and human-based studies has corroborated and extended this association, promoting ABCA7 as one of the most important risk genes of both early-onset and late-onset AD, harboring both common and rare risk variants with relatively large effect on AD risk. Within this review, we provide a comprehensive assessment of the literature on ABCA7, with a focus on AD-related human -omics studies (e.g. genomics, transcriptomics, and methylomics). In European and African American populations, indirect ABCA7 GWAS associations are explained by expansion of an ABCA7 variable number tandem repeat (VNTR), and a common premature termination codon (PTC) variant, respectively. Rare ABCA7 PTC variants are strongly enriched in AD patients, and some of these have displayed inheritance patterns resembling autosomal dominant AD. In addition, rare missense variants are more frequent in AD patients than healthy controls, whereas a common ABCA7 missense variant may protect from disease. Methylation at several CpG sites in the ABCA7 locus is significantly associated with AD. Furthermore, ABCA7 contains many different isoforms and ABCA7 splicing has been shown to associate with AD. Besides associations with disease status, these genetic and epigenetic ABCA7 markers also showed significant correlations with AD endophenotypes; in particular amyloid deposition and brain morphology. In conclusion, human-based –omics studies provide converging evidence of (partial) ABCA7 loss as an AD pathomechanism, and future studies should make clear if interventions on ABCA7 expression can serve as a valuable therapeutic target for AD.
Collapse
Affiliation(s)
- Arne De Roeck
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
19
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
20
|
Bisht K, Sharma K, Tremblay MÈ. Chronic stress as a risk factor for Alzheimer's disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol Stress 2018; 9:9-21. [PMID: 29992181 PMCID: PMC6035903 DOI: 10.1016/j.ynstr.2018.05.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Microglia are the predominant immune cells of the central nervous system (CNS) that exert key physiological roles required for maintaining CNS homeostasis, notably in response to chronic stress, as well as mediating synaptic plasticity, learning and memory. The repeated exposure to stress confers a higher risk of developing neurodegenerative diseases including sporadic Alzheimer's disease (AD). While microglia have been causally linked to amyloid beta (Aβ) accumulation, tau pathology, neurodegeneration, and synaptic loss in AD, they were also attributed beneficial roles, notably in the phagocytic elimination of Aβ. In this review, we discuss the interactions between chronic stress and AD pathology, overview the roles played by microglia in AD, especially focusing on chronic stress as an environmental risk factor modulating their function, and present recently-described microglial phenotypes associated with neuroprotection in AD. These microglial phenotypes observed under both chronic stress and AD pathology may provide novel opportunities for the development of better-targeted therapeutic interventions.
Collapse
Key Words
- ABCA7, ATP-binding cassette transporter A7
- AD, Alzheimer's disease
- APOE, Apolipoprotein E
- APP, amyloid precursor protein
- Alzheimer's disease
- Aβ, Amyloid beta
- BDNF, brain derived neurotrophic factor
- CD11b, cluster of differentiation molecule 11B
- CD33, cluster of differentiation 33
- CNS, central nervous system
- CR, complement receptor
- CRF, corticotropin releasing factor
- DAM, disease associated microglia
- DAP12, DNAX-activation protein 12
- Dark microglia
- FAD, Familial Alzheimer's disease
- FCRLS, Fc receptor-like S scavenger receptor
- GR, glucocorticoid receptor
- HPA axis, hypothalamic pituitary adrenocortical axis
- IBA1, ionized calcium-binding adapter molecule 1
- IL, interleukin
- LTP, long-term potentiation
- MGnD, microglia with a neurodegenerative phenotype
- MR, mineralocorticoid receptor
- Microglia
- Microglial phenotypes
- NADPH, nicotinamide adenine dinucleotide phosphate
- NFT, neurofibrillary tangles
- Neurodegeneration
- Neuroinflammation
- PS, presenilin
- ROS, reactive oxygen species
- Stress
- Synaptic remodeling
- TGFβ, transforming growth factor β
- TLR, Toll-like receptors
- TMEM119, transmembrane protein 119
- TNFα, tumor necrosis factor-α
- TREM2, triggering receptor expressed in myeloid cells 2
- TYROBP, TYRO protein tyrosine kinase binding protein
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Kanchan Bisht
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, CRCHU de Québec-Université Laval, Québec, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| |
Collapse
|
21
|
Vasquez JB, Simpson JF, Harpole R, Estus S. Alzheimer's Disease Genetics and ABCA7 Splicing. J Alzheimers Dis 2018; 59:633-641. [PMID: 28655137 DOI: 10.3233/jad-170872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Both common and rare polymorphisms within ABCA7 have been associated with Alzheimer's disease (AD). In particular, the rare AD associated polymorphism rs200538373 was associated with altered ABCA7 exon 41 splicing and an AD risk odds ratio of ∼1.9. To probe the role of this polymorphism in ABCA7 splicing, we used minigene studies and qPCR of human brain RNA. We report aberrant ABCA7 exon 41 splicing in the brain of a carrier of the rs200538373 minor C allele. Moreover, minigene studies show that rs200538373 acts as a robust functional variant in vitro. Lastly, although the ABCA7 isoform with an extended exon 41 is predicted to undergo nonsense mediated RNA decay, this was not supported by qPCR analyses, which showed relatively normal ABCA7 mRNA levels in the carrier of the rs200538373 minor C allele. In summary, rs200538373 is a functional polymorphism that alters ABCA7 exon 41 splicing without grossly altering the level of ABCA7 mRNA.
Collapse
Affiliation(s)
- Jared B Vasquez
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - James F Simpson
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ryan Harpole
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
22
|
Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: Study on proliferating and post-mitotic LUHMES cells. Mech Ageing Dev 2018; 171:7-14. [DOI: 10.1016/j.mad.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
|
23
|
May P, Pichler S, Hartl D, Bobbili DR, Mayhaus M, Spaniol C, Kurz A, Balling R, Schneider JG, Riemenschneider M. Rare ABCA7 variants in 2 German families with Alzheimer disease. NEUROLOGY-GENETICS 2018; 4:e224. [PMID: 29577078 PMCID: PMC5863691 DOI: 10.1212/nxg.0000000000000224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Objective The aim of this study was to identify variants associated with familial late-onset Alzheimer disease (AD) using whole-genome sequencing. Methods Several families with an autosomal dominant inheritance pattern of AD were analyzed by whole-genome sequencing. Variants were prioritized for rare, likely pathogenic variants in genes already known to be associated with AD and confirmed by Sanger sequencing using standard protocols. Results We identified 2 rare ABCA7 variants (rs143718918 and rs538591288) with varying penetrance in 2 independent German AD families, respectively. The single nucleotide variant (SNV) rs143718918 causes a missense mutation, and the deletion rs538591288 causes a frameshift mutation of ABCA7. Both variants have previously been reported in larger cohorts but with incomplete segregation information. ABCA7 is one of more than 20 AD risk loci that have so far been identified by genome-wide association studies, and both common and rare variants of ABCA7 have previously been described in different populations with higher frequencies in AD cases than in controls and varying penetrance. Furthermore, ABCA7 is known to be involved in several AD-relevant pathways. Conclusions We conclude that both SNVs might contribute to the development of AD in the examined family members. Together with previous findings, our data confirm ABCA7 as one of the most relevant AD risk genes.
Collapse
Affiliation(s)
- Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Sabrina Pichler
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Daniela Hartl
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Dheeraj R Bobbili
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Manuel Mayhaus
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Christian Spaniol
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Alexander Kurz
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| | - Matthias Riemenschneider
- Luxembourg Centre for Systems Biomedicine (LCSB) (P.M., D.R.B., R.B., J.G.S.), University of Luxembourg, Esch-sur-Alzette; Department of Psychiatry and Psychotherapy (S.P., D.H., M.M., C.S., M.R.), Saarland University Hospital, Saarland University, Homburg; and Department of Psychiatry and Psychotherapy (A.K.), Klinikum Rechts der Isar, TU-Muenchen, Munich, Germany
| |
Collapse
|
24
|
Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, Do TM, Grotts J, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ. Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis. JAMA Neurol 2018; 75:328-341. [PMID: 29340569 PMCID: PMC5885860 DOI: 10.1001/jamaneurol.2017.4198] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
Abstract
Importance Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown. Objective To investigate the association of the top 20 AD risk variants with brain amyloidosis. Design, Setting, and Participants This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005. Main Outcomes and Measures The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01. Results This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition (χ2 = 8.38, false discovery rate-corrected P < .001), after apolioprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis (FERMT2 × diagnosis χ2 = 3.53, false discovery rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage. Conclusions and Relevance This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages.
Collapse
Affiliation(s)
- Liana G. Apostolova
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Tugce Duran
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Eddie C. Stage
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jonathan Grotts
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Meredith Phillips
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| |
Collapse
|
25
|
Ramachandran S, Coffin SL, Tang TY, Jobaliya CD, Spengler RM, Davidson BL. Cis-acting single nucleotide polymorphisms alter MicroRNA-mediated regulation of human brain-expressed transcripts. Hum Mol Genet 2018; 25:4939-4950. [PMID: 28171541 PMCID: PMC5418741 DOI: 10.1093/hmg/ddw317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
Substantial variability exists in the presentation of complex neurological disorders, and the study of single nucleotide polymorphisms (SNPs) has shed light on disease mechanisms and pathophysiological variability in some cases. However, the vast majority of disease-linked SNPs have unidentified pathophysiological relevance. Here, we tested the hypothesis that SNPs within the miRNA recognition element (MRE; the region of the target transcript to which the miRNA binds) can impart changes in the expression of those genes, either by enhancing or reducing transcript and protein levels. To test this, we cross-referenced 7,153 miRNA-MRE brain interactions with the SNP database (dbSNP) to identify candidates, and functionally assessed 24 SNPs located in the 3’UTR or the coding sequence (CDS) of targets. For over half of the candidates tested, SNPs either enhanced (4 genes) or disrupted (10 genes) miRNA binding and target regulation. Additionally, SNPs causing a shift from a common to rare codon within the CDS facilitated miRNA binding downstream of the SNP, dramatically repressing target gene expression. The biological activity of the SNPs on miRNA regulation was also confirmed in induced pluripotent stem cell (iPSC) lines. These studies strongly support the notion that SNPs in the 3’UTR or the coding sequence of disease-relevant genes may be important in disease pathogenesis and should be reconsidered as candidate modifiers.
Collapse
Affiliation(s)
- Shyam Ramachandran
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Stephanie L Coffin
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Tin-Yun Tang
- Howard Hughes Medical Institute Medical Research Fellow, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chintan D Jobaliya
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA.,Human Pluripotent Stem Cell Core, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan M Spengler
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, USA.,The Department of Pathology & Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Aikawa T, Holm ML, Kanekiyo T. ABCA7 and Pathogenic Pathways of Alzheimer's Disease. Brain Sci 2018; 8:E27. [PMID: 29401741 PMCID: PMC5836046 DOI: 10.3390/brainsci8020027] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) reporter family functions to regulate the homeostasis of phospholipids and cholesterol in the central nervous system, as well as peripheral tissues. ABCA7 belongs to the A subfamily of ABC transporters, which shares 54% sequence identity with ABCA1. While ABCA7 is expressed in a variety of tissues/organs, including the brain, recent genome-wide association studies (GWAS) have identified ABCA7 gene variants as susceptibility loci for late-onset Alzheimer's disease (AD). More important, subsequent genome sequencing analyses have revealed that premature termination codon mutations in ABCA7 are associated with the increased risk for AD. Alzheimer's disease is a progressive neurodegenerative disease and the most common cause of dementia, where the accumulation and deposition of amyloid-β (Aβ) peptides cleaved from amyloid precursor protein (APP) in the brain trigger the pathogenic cascade of the disease. In consistence with human genetic studies, increasing evidence has demonstrated that ABCA7 deficiency exacerbates Aβ pathology using in vitro and in vivo models. While ABCA7 has been shown to mediate phagocytic activity in macrophages, ABCA7 is also involved in the microglial Aβ clearance pathway. Furthermore, ABCA7 deficiency results in accelerated Aβ production, likely by facilitating endocytosis and/or processing of APP. Taken together, current evidence suggests that ABCA7 loss-of-function contributes to AD-related phenotypes through multiple pathways. A better understanding of the function of ABCA7 beyond lipid metabolism in both physiological and pathological conditions becomes increasingly important to explore AD pathogenesis.
Collapse
Affiliation(s)
- Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Marie-Louise Holm
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
27
|
|
28
|
Kjeldsen EW, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. ABCA7 and risk of dementia and vascular disease in the Danish population. Ann Clin Transl Neurol 2017; 5:41-51. [PMID: 29376091 PMCID: PMC5771325 DOI: 10.1002/acn3.506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
Objective ATP‐binding‐cassette transporter A7(ABCA7) is suggested to be involved in lipid transport as well as in phagocytosis of amyloid‐β in the brain. We tested the hypothesis that a common genetic variant in ABCA7 is associated with dementia, ischemic heart disease, ischemic cerebrovascular disease, and with lipid levels in the general population, independent of the common apolipoprotein E(APOE) genotype. Methods For this purpose, we genotyped a common genetic variant in ABCA7, identified in genome‐wide‐association‐studies of Alzheimer's disease, in 104,258 individuals from the Danish general population, and also meta‐analyzed our results with publicly available consortia data. Results Multifactorially adjusted hazard ratios for Alzheimer's disease were 1.07 (95% confidence interval:0.93–1.23) and 1.72 (1.24–2.40) for GA and AA versus GG genotype. Results were similar after APOE genotype adjustment and when only APOE ɛ33 carriers were studied. Including 178,304 individuals, the meta‐analyzed odds ratio for Alzheimer's disease per one allele ABCA7 rs4147929 increase was 1.15 (1.12–1.18). ABCA7 genotype was not convincingly associated with vascular dementia, ischemic heart disease, ischemic cerebrovascular disease, or with lipid levels. Including 288,563 individuals, meta‐analyzed odds ratios for ischemic heart disease per one allele ABCA7 rs4147929 increase was 1.01 (0.99–1.03). Interpretation A common genetic variant in ABCA7 was associated with high risk of Alzheimer's disease independent of APOE genotype. The lack of association with vascular dementia, ischemic heart disease, ischemic cerebrovascular disease, and with lipid levels suggests that ABCA7 is not important for atherosclerosis. Thus, our findings support the suggested role of ABCA7 in Alzheimer's disease pathology and phagocytic clearance of amyloid‐β in the brain.
Collapse
Affiliation(s)
- Emilie W Kjeldsen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark.,The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark.,The Copenhagen City Heart Study Frederiksberg Hospital Frederiksberg Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark.,The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark.,The Copenhagen City Heart Study Frederiksberg Hospital Frederiksberg Denmark.,Department of Clinical Biochemistry Herlev and Gentofte Hospital Herlev Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark.,The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark
| |
Collapse
|
29
|
Bhatia S, Fu Y, Hsiao JHT, Halliday GM, Kim WS. Deletion of Alzheimer's Disease Risk Gene ABCA7 Alters White Adipose Tissue Development and Leptin Levels. J Alzheimers Dis Rep 2017; 1:237-247. [PMID: 30480241 PMCID: PMC6159609 DOI: 10.3233/adr-170029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
ATP-binding cassette A7 (ABCA7) is a genetic risk factor for late-onset Alzheimer’s disease (AD). It belongs to a group of transporter genes that specializes in regulating lipid transport in the periphery as well as in the brain. ABCA7 has been implicated in a number of roles relating to AD pathology, including phagocytic clearance of amyloid-β peptides. We have discovered that deletion of ABCA7 in mouse causes a dramatic reduction in white adipose tissue (WAT) in female mice. WAT is important in AD context because it is the primary producer of leptin, which is a hormone that is known to modulate AD neuropathology. WAT in male Abca7–/– mice was not altered. The pathological link between ABCA7 and WAT that impacts on AD is unknown. Our transcription analysis revealed that lipin-1 expression was significantly upregulated in female Abca7–/– mice, indicating that ABCA7 affects WAT development. The circulating leptin level was significantly reduced in female Abca7–/– mice without any change in WAT leptin mRNA or protein expression, indicating that ABCA7 does not affect leptin production, but alters the circulating leptin level indirectly by affecting WAT development. Insulin is a key hormone that regulates WAT development, i.e., adipogenesis, and it was significantly reduced in female Abca7–/– mice. These data when put together suggest that ABCA7 plays a role in regulating WAT development and consequently circulating leptin levels, which are known to modulate AD neuropathology.
Collapse
Affiliation(s)
- Surabhi Bhatia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jen-Hsiang T Hsiao
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Randwick, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Randwick, NSW, Australia
| | - Woojin Scott Kim
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
30
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|
31
|
Sun Q, Xie N, Tang B, Li R, Shen Y. Alzheimer's Disease: From Genetic Variants to the Distinct Pathological Mechanisms. Front Mol Neurosci 2017; 10:319. [PMID: 29056900 PMCID: PMC5635057 DOI: 10.3389/fnmol.2017.00319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Being the most common cause of dementia, AD is a polygenic and neurodegenerative disease. Complex and multiple factors have been shown to be involved in its pathogenesis, of which the genetics play an indispensable role. It is widely accepted that discovery of potential genes related to the pathogenesis of AD would be of great help for the understanding of neurodegeneration and thus further promote molecular diagnosis in clinic settings. Generally, AD could be clarified into two types according to the onset age, the early-onset AD (EOAD) and the late-onset AD (LOAD). Progresses made by genetic studies on both EOAD and LOAD are believed to be essential not only for the revolution of conventional ideas but also for the revelation of new pathological mechanisms underlying AD pathogenesis. Currently, albeit the genetics of LOAD is much less well-understood compared to EOAD due to its complicated and multifactorial essence, Genome-wide association studies (GWASs) and next generation sequencing (NGS) approaches have identified dozens of novel genes that may provide insight mechanism of LOAD. In this review, we analyze functions of the genes and summarize the distinct pathological mechanisms of how these genes would be involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States
| | - Nina Xie
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rena Li
- Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States.,National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yong Shen
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,Center for Advanced Therapeutic Strategies for Brain Disorders and Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, United States.,Neurodegenerative Disorder Research Center, University of Science and Technology of China School of Life Sciences, Hefei, China.,Hefei Material Science at Microscale National Laboratory, Hefei, China
| |
Collapse
|
32
|
A complex association between ABCA7 genotypes and blood lipid levels in Southern Chinese Han patients of sporadic Alzheimer's disease. J Neurol Sci 2017; 382:13-17. [PMID: 29111006 DOI: 10.1016/j.jns.2017.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive cognitive decline. It can be divided into familial AD (FAD) and sporadic AD (SAD) based on the family history. Recently dysregulation of cholesterol homeostasis has been implicated in the development of late-onset AD. ATP-binding cassette transporter A7 (ABCA7) gene, regulating the transport of cholesterol, has been recently identified as a susceptible gene of AD by several large genome-wide association studies. To test the genetic effect of ABCA7 rs3764650 on blood lipid levels in Southern Chinese Han population and investigate the risk factors of SAD, a total of 118 SAD patients and 120 healthy matched controls were recruited and the genotyping in ABCA7 rs3764650 was conducted on the Sequenom MassARRAY iPLEX platform. Meanwhile, the levels of fasting lipid profile and mini-mental state examination (MMSE) scores were tested. There was significant difference in genotype distribution between SAD patients and controls (p=0.001). While the difference of ABCA7 rs3764650 allele distribution between SAD patients and controls was only significant in APOEε4-noncarriers (p=0.039). The association between blood lipid levels and ABCA7 rs3764650 genotypes was influenced by APOEε4 status. In APOEε4-noncarriers of SAD, the total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in GG genotype group were significantly lower than those in GT and TT genotype groups (all p<0.05). Whereas no significant difference of blood lipid levels was found among three genotypes in APOEε4-carriers of SAD and controls. Additionally, logistic regression analysis showed that lower high-density lipoprotein cholesterol (HDL-C) levels (p=0.015, OR=5.669) and GG genotype (p=0.013, OR=8.318) were positively associated with SAD. Our results suggest that GG genotype of ABCA7 rs3764650 was a risk factor of SAD in Southern Chinese Han population as well as lipid homeostasis.
Collapse
|
33
|
De Roeck A, Van den Bossche T, van der Zee J, Verheijen J, De Coster W, Van Dongen J, Dillen L, Baradaran-Heravi Y, Heeman B, Sanchez-Valle R, Lladó A, Nacmias B, Sorbi S, Gelpi E, Grau-Rivera O, Gómez-Tortosa E, Pastor P, Ortega-Cubero S, Pastor MA, Graff C, Thonberg H, Benussi L, Ghidoni R, Binetti G, de Mendonça A, Martins M, Borroni B, Padovani A, Almeida MR, Santana I, Diehl-Schmid J, Alexopoulos P, Clarimon J, Lleó A, Fortea J, Tsolaki M, Koutroumani M, Matěj R, Rohan Z, De Deyn P, Engelborghs S, Cras P, Van Broeckhoven C, Sleegers K. Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease. Acta Neuropathol 2017; 134:475-487. [PMID: 28447221 PMCID: PMC5563332 DOI: 10.1007/s00401-017-1714-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
Collapse
|
34
|
Yokoyama AS, Rutledge JC, Medici V. DNA methylation alterations in Alzheimer's disease. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx008. [PMID: 29492310 PMCID: PMC5804548 DOI: 10.1093/eep/dvx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 05/24/2023]
Abstract
The observation that Alzheimer's disease (AD) patients with similar and even identical genetic backgrounds often present with heterogeneous pathologies has prompted the hypothesis that epigenetics may contribute to AD. While the study of epigenetics encompasses a variety of modifications including histone modifications and non-coding RNAs, much of the research on how epigenetics might impact AD pathology has been focused on DNA methylation. To this end, several studies have characterized DNA methylation alterations in various brain regions of individuals with AD, with conflicting results. This review examines the results of studies analyzing both global and gene-specific DNA methylation changes in AD and also assesses the results of studies analyzing DNA hydroxymethylation in patients with AD.
Collapse
Affiliation(s)
- Amy S. Yokoyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
35
|
Chang TY, Yamauchi Y, Hasan MT, Chang C. Cellular cholesterol homeostasis and Alzheimer's disease. J Lipid Res 2017; 58:2239-2254. [PMID: 28298292 DOI: 10.1194/jlr.r075630] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.
Collapse
Affiliation(s)
- Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Yoshio Yamauchi
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mazahir T Hasan
- Laboratory of Memory Circuits, Achucarro Basque Center for Neuroscience, Zamudio, Spain
| | - Catherine Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
36
|
Abstract
Cholesterol export from cells to extracellular acceptors represents the first step of the reverse cholesterol transport process and is an essential part of the multifaceted pathway for cells to control their cholesterol levels. Malfunction of this pathway leads to cholesterol accumulation in cells such as macrophages, which can form the basis of conditions like atherosclerosis. A number of ATP-binding cassette (ABC) transporters, namely ABCA1, ABCA7, ABCG1, and ABCG4, play an essential role in this process. In this chapter, we describe methods utilizing radiolabeled sterols for measuring ABC-transporter mediated sterol export, utilizing endogenously expressed transporters as well as overexpression systems.
Collapse
Affiliation(s)
- Alryel Yang
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Pharmacy Bank Building A15, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Stage E, Duran T, Risacher SL, Goukasian N, Do TM, West JD, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ, Apostolova LG. The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 5:53-66. [PMID: 28054028 PMCID: PMC5198883 DOI: 10.1016/j.dadm.2016.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.
Collapse
Affiliation(s)
- Eddie Stage
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tugce Duran
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meredith Phillips
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Indiana University Network Science Institute, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
38
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
39
|
Abca7 deletion does not affect adult neurogenesis in the mouse. Biosci Rep 2016; 36:BSR20150308. [PMID: 26792809 PMCID: PMC4793298 DOI: 10.1042/bsr20150308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 01/28/2023] Open
Abstract
ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and linked with Alzheimer's disease. Since other ABC transporters regulate adult neurogenesis, we assessed neurogenesis in wild-type (WT) and Abca7 deficient mice. Abca7 deletion did not affect adult neurogenesis in the mouse. ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer's disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.
Collapse
|
40
|
Abstract
In most organisms, ABC transporters constitute one of the largest families of membrane proteins. In humans, their functions are diverse and underpin numerous key physiological processes, as well as being causative factors in a number of clinically relevant pathologies. Advances in our understanding of these diseases have come about through combinations of genetic and protein biochemical investigations of these transporters and the power of in vitro and in vivo investigations is helping to develop genotype–phenotype understanding. However, the importance of ABC transporter research goes far beyond human biology; microbial ABC transporters are of great interest in terms of understanding virulence and drug resistance and industrial biotechnology researchers are exploring the potential of prokaryotic ABC exporters to increase the capacity of synthetic biology systems. Plant ABC transporters play important roles in transport of hormones, xenobiotics, metals and secondary metabolites, pathogen responses and numerous aspects of development, all of which are important in the global food security area. For 3 days in Chester, this Biochemical Society Focused Meeting brought together researchers with diverse experimental approaches and with different fundamental questions, all of which are linked by the commonality of ABC transporters.
Collapse
|