1
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
2
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Petrella C, Zingaropoli MA, Ceci FM, Pasculli P, Latronico T, Liuzzi GM, Ciardi MR, Angeloni A, Ettorre E, Menghi M, Barbato C, Ferraguti G, Minni A, Fiore M. COVID-19 Affects Serum Brain-Derived Neurotrophic Factor and Neurofilament Light Chain in Aged Men: Implications for Morbidity and Mortality. Cells 2023; 12:cells12040655. [PMID: 36831321 PMCID: PMC9954454 DOI: 10.3390/cells12040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND AND METHODS Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Evaristo Ettorre
- Department of Clinical, Internal Medicine, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Michela Menghi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, Viale Kennedy, 02100 Rieti, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (C.P.); (M.F.)
| |
Collapse
|
4
|
Ferraguti G, Terracina S, Micangeli G, Lucarelli M, Tarani L, Ceccanti M, Spaziani M, D'Orazi V, Petrella C, Fiore M. NGF and BDNF in pediatrics syndromes. Neurosci Biobehav Rev 2023; 145:105015. [PMID: 36563920 DOI: 10.1016/j.neubiorev.2022.105015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Neurotrophins (NTs) as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) play multiple roles in different settings including neuronal development, function and survival in both the peripheral and the central nervous systems from early stages. This report aims to provide a summary and subsequent review of evidences on the role of NTs in rare and non-common pediatric human diseases associated with changes in neurodevelopment. A variety of diseases has been analyzed and many have been linked to NTs neurobiological effects, including chronic granulomatous disease, hereditary sensory and autonomic neuropathy, Duchenne muscular dystrophy, Bardet-Biedl syndrome, Angelman syndrome, fragile X syndrome, trisomy 16, Williams-Beuren syndrome, Prader-Willi syndrome, WAGR syndrome, fetal alcohol spectrum disorders, Down syndrome and Klinefelter Syndrome. NTs alterations have been associated with numerous pathologic manifestations including cognitive defects, behavioral abnormalities, epilepsy, obesity, tumorigenesis as well as muscle-skeletal, immunity, bowel, pain sensibility and cilia diseases. In this report, we discuss that further studies are needed to clear a possible therapeutic role of NTs in these still often uncurable diseases.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valerio D'Orazi
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| |
Collapse
|
5
|
Tarani L, Ceci FM, Carito V, Ferraguti G, Petrella C, Greco A, Ralli M, Minni A, Spaziani M, Isidori AM, Certo MGD, Barbato C, Putotto C, Fiore M. Neuroimmune Dysregulation in Prepubertal and Adolescent Individuals Affected by Klinefelter Syndrome. Endocr Metab Immune Disord Drug Targets 2023; 23:105-114. [PMID: 35794745 DOI: 10.2174/1871530322666220704101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The syndrome Klinefelter syndrome (KS) is a genetic disorder due to an extra X chromosome in males. Many cases remain undiagnosed until the onset of major manifestations, which include hypergonadotropic hypogonadism and infertility. This condition is associated with many comorbidities that involve the cardiovascular, endocrine, and immune systems. Last but not the least, individuals with KS show a high risk of developing psychiatric and mood disorders in adult age. OBJECTIVE While many studies are accessible on KS in adult individuals, the neuroinflammatory condition in adolescent and prepubertal KS individuals is not fully known. METHODS Our study aims to evaluate in prepubertal and adolescent KS individuals, for the first time, the levels of the serum of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), cytokines having subtle roles in oxidative processes, and neuroinflammation with respect to the levels of TNF-α, TGF-β, MCP-1, IL-1α, IL-2, IL-6, IL-10, and IL-12 and oxidative stress by employing free oxygen radicals defense and free oxygen radicals test. RESULTS We found no changes in NGF and oxidative stress parameters, but BDNF decreased compared to healthy children. Quite interestingly, our data showed reduced levels of IL-2, IL-1α, IL- 12, IL-10, and IL-6 in prepubertal KS children. CONCLUSION The present study discloses disrupted immune system and neurotrophin pathways in KS children.
Collapse
Affiliation(s)
- Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Rome, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University Hospital of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
6
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
7
|
Petrella C, Nenna R, Petrarca L, Tarani F, Paparella R, Mancino E, Di Mattia G, Conti MG, Matera L, Bonci E, Ceci FM, Ferraguti G, Gabanella F, Barbato C, Di Certo MG, Cavalcanti L, Minni A, Midulla F, Tarani L, Fiore M. Serum NGF and BDNF in Long-COVID-19 Adolescents: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12051162. [PMID: 35626317 PMCID: PMC9140550 DOI: 10.3390/diagnostics12051162] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 (COronaVIrus Disease 19) is an infectious disease also known as an acute respiratory syndrome caused by the SARS-CoV-2. Although in children and adolescents SARS-CoV-2 infection produces mostly mild or moderate symptoms, in a certain percentage of recovered young people a condition of malaise, defined as long-COVID-19, remains. To date, the risk factors for the development of long-COVID-19 are not completely elucidated. Neurotrophins such as NGF (Nerve Growth Factor) and BDNF (Brain-Derived Neurotrophic Factor) are known to regulate not only neuronal growth, survival and plasticity, but also to influence cardiovascular, immune, and endocrine systems in physiological and/or pathological conditions; to date only a few papers have discussed their potential role in COVID-19. In the present pilot study, we aimed to identify NGF and BDNF changes in the serum of a small cohort of male and female adolescents that contracted the infection during the second wave of the pandemic (between September and October 2020), notably in the absence of available vaccines. Blood withdrawal was carried out when the recruited adolescents tested negative for the SARS-CoV-2 (“post-infected COVID-19”), 30 to 35 days after the last molecular test. According to their COVID-19 related outcomes, the recruited individuals were divided into three groups: asymptomatics, acute symptomatics and symptomatics that over time developed long-COVID-19 symptoms (“future long-COVID-19”). As a control group, we analyzed the serum of age-matched healthy controls that did not contract the infection. Inflammatory biomarkers (TNF-α, TGF-β), MCP-1, IL-1α, IL-2, IL-6, IL-10, IL-12) were also analyzed with the free oxygen radicals’ presence as an oxidative stress index. We showed that NGF serum content was lower in post-infected-COVID-19 individuals when compared to healthy controls; BDNF levels were found to be higher compared to healthy individuals only in post-infected-COVID-19 symptomatic and future long-COVID-19 girls, leaving the BDNF levels unchanged in asymptomatic individuals if compared to controls. Oxidative stress and inflammatory biomarkers were unchanged in male and female adolescents, except for TGF-β that, similarly to BDNF, was higher in post-infected-COVID-19 symptomatic and future long-COVID-19 girls. We predicted that NGF and/or BDNF could be used as early biomarkers of COVID-19 morbidity in adolescents.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (C.P.); (F.G.); (C.B.); (M.G.D.C.)
| | - Raffaella Nenna
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Laura Petrarca
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Enrica Mancino
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Greta Di Mattia
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Maria Giulia Conti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Luigi Matera
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Enea Bonci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (E.B.); (F.M.C.); (G.F.)
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (E.B.); (F.M.C.); (G.F.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy; (E.B.); (F.M.C.); (G.F.)
| | - Francesca Gabanella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (C.P.); (F.G.); (C.B.); (M.G.D.C.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (C.P.); (F.G.); (C.B.); (M.G.D.C.)
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (C.P.); (F.G.); (C.B.); (M.G.D.C.)
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (L.C.); (A.M.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (L.C.); (A.M.)
| | - Fabio Midulla
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy; (R.N.); (L.P.); (F.T.); (R.P.); (E.M.); (G.D.M.); (M.G.C.); (L.M.); (F.M.); (L.T.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy; (C.P.); (F.G.); (C.B.); (M.G.D.C.)
- Correspondence:
| |
Collapse
|
8
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
9
|
Fiore M, Petrella C, Coriale G, Rosso P, Fico E, Ralli M, Greco A, De Vincentiis M, Minni A, Polimeni A, Vitali M, Messina MP, Ferraguti G, Tarani F, de Persis S, Ceccanti M, Tarani L. Markers of Neuroinflammation in the Serum of Prepubertal Children with Fetal Alcohol Spectrum Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:854-868. [PMID: 34852752 DOI: 10.2174/1871527320666211201154839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are the manifestation of the damage caused by alcohol consumption during pregnancy. Children with Fetal Alcohol Syndrome (FAS), the extreme FASD manifestation, show both facial dysmorphology and mental retardation. Alcohol consumed during gestational age prejudices brain development by reducing, among others, the synthesis and release of neurotrophic factors and neuroinflammatory markers. Alcohol drinking also induces oxidative stress. HYPOTHESIS/OBJECTIVE The present study aimed to investigate the potential association between neurotrophins, neuroinflammation, and oxidative stress in 12 prepubertal male and female FASD children diagnosed as FAS or partial FAS (pFAS). METHODS Accordingly, we analyzed, in the serum, the level of BDNF and NGF and the oxidative stress, as Free Oxygen Radicals Test (FORT) and Free Oxygen Radicals Defense (FORD). Moreover, serum levels of inflammatory mediators (IL-1α, IL-2, IL-6, IL-10, IL-12, MCP-1, TGF-β, and TNF-α) involved in neuroinflammatory and oxidative processes have been investigated. RESULTS We demonstrated low serum levels of NGF and BDNF in pre-pubertal FASD children with respect to healthy controls. These changes were associated with higher serum presence of TNF- α and IL-1α. Quite interestingly, an elevation in the FORD was also found despite normal FORT levels. Moreover, we found a potentiation of IL-1α, IL-2, IL-10, and IL-1α1 in the analyzed female compared to male children. CONCLUSION The present investigation shows an imbalance in the peripheral neuroimmune pathways that could be used in children as early biomarkers of the deficits observed in FASD.
Collapse
Affiliation(s)
- Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | | | | | | | - Francesca Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| | | | - Mauro Ceccanti
- SITAC, Societa' Italiana per il Trattamento dell'Alcolismo, Roma Italy SIFASD, Società Italiana Sindrome Feto-Alcolica, Roma, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| |
Collapse
|
10
|
Tarani L, Rasio D, Tarani F, Parlapiano G, Valentini D, Dylag KA, Spalice A, Paparella R, Fiore M. Pediatrics for Disability: A Comprehensive Approach to Children with Syndromic Psychomotor Delay. Curr Pediatr Rev 2022; 18:110-120. [PMID: 34844545 DOI: 10.2174/1573396317666211129093426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022]
Abstract
Intellectual disability is the impairment of cognitive, linguistic, motor and social skills that occurs in the pediatric age and is also described by the term "mental retardation". Intellectual disability occurs in 3-28 % of the general population due to a genetic cause, including chromosome aberrations. Among people with intellectual disabilities, the cause of the disability was identified as a single gene disorder in up to 12 %, multifactorial disorders in up to 4 %, and genetic disorders in up to 8.5 %. Children affected by a malformation syndrome associated with mental retardation or intellectual disability represent a care challenge for the pediatrician. A multidisciplinary team is essential to manage the patient, thereby controlling the complications of the syndrome and promoting the correct psychophysical development. This requires continuous follow-up of these children by the pediatrician, which is essential for both the clinical management of the syndrome and facilitating the social integration of these children.
Collapse
Affiliation(s)
- Luigi Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Debora Rasio
- Department of Pediatry, Sarn Raffaele Hospital, Rome, Italy
| | - Francesca Tarani
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Giovanni Parlapiano
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | | | - Katarzyna Anna Dylag
- Department of Pediatric Nephrology, Jagiellonian University Medical College, Krakow, Poland.,St. Louis Children Hospital, Krakow, Poland
| | - Alberto Spalice
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Roberto Paparella
- Department of Pediatrics, Medical Faculty, Sapienza University of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
11
|
Fiore M, Tarani L, Radicioni A, Spaziani M, Ferraguti G, Putotto C, Gabanella F, Maftei D, Lattanzi R, Minni A, Greco A, Tarani F, Petrella C. Serum Prokineticin-2 in Prepubertal and Adult Klinefelter Individuals. Can J Physiol Pharmacol 2021; 100:151-157. [PMID: 34614364 DOI: 10.1139/cjpp-2021-0457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prokineticin-2 (PROK2) is a small peptide belonging to the prokineticin family. In humans and rodents this chemokine is primarily involved in the control of central and peripheral reproductive processes. Klinefelter's syndrome (KS) is the first cause of male genetic infertility, due to an extra X chromosome, which may occur with a classical karyotype (47, XXY) or mosaic forms (46, XY/47, XXY). In affected subjects, pubertal maturation usually begins at an adequate chronological age, but when development is almost complete, they display a primary gonadal failure, with early spermatogenesis damage, and later onset of testosterone insufficiency. Thus, the main aim of the present study was to investigate the serum levels of PROK2 in prepubertal and adult KS patients, comparing them with healthy subjects. We showed for the first time the presence of PROK2 in the children serum but with significant changes in KS individuals. Indeed, compared to healthy subjects characterized by PROK2 serum elevation during the growth, KS individuals showed constant serum levels during the sexual maturation phase (higher during the prepubertal phase but lower during the adult age). In conclusion, these data indicate that in KS individuals PROK2 may be considered a biomarker for investigating the SK infertility process.
Collapse
Affiliation(s)
- Marco Fiore
- IBCN-CNR, Institute of Cell Biology and Neurobiology, Roma, Italy;
| | - Luigi Tarani
- "Sapienza" University of Rome, Department of Pediatrics, Rome, Italy;
| | - Antonio Radicioni
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Matteo Spaziani
- Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy;
| | - Giampiero Ferraguti
- Sapienza University of Rome, Department of Cellular Biotechnologies and Hematology, Rome, Italy;
| | - Carolina Putotto
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | - Francesca Gabanella
- IBBC-CNR), Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM-CNR), Rome, Italy;
| | - Daniela Maftei
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Roberta Lattanzi
- Sapienza University of Rome, Department of Physiology and Pharmacology "Vittorio Erspamer", Rome, Italy;
| | - Antonio Minni
- Sapienza University of Rome, Department of Sense Organs, Rome, Italy;
| | - Antonio Greco
- University of Rome La Sapienza, 9311, Rome, Lazio, Italy;
| | - Francesca Tarani
- "Sapienza" University of Rome, Department of Pediatrics, rome, Italy;
| | | |
Collapse
|
12
|
Messina MP, Battagliese G, D’Angelo A, Ciccarelli R, Pisciotta F, Tramonte L, Fiore M, Ferraguti G, Vitali M, Ceccanti M. Knowledge and Practice towards Alcohol Consumption in a Sample of University Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9528. [PMID: 34574453 PMCID: PMC8467782 DOI: 10.3390/ijerph18189528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 01/09/2023]
Abstract
Objective: Alcohol affects many human systems and is involved in the pathogenesis of other diseases. Particular attention must be paid to alcohol consumption among young people. It has been shown that 25% of young people's deaths are attributable to alcohol, and around 35 million people aged over 11 had consumed at least one alcoholic beverage in 2015. Study Design: Young people aged 18-24 were the most vulnerable to binge drinking in Italy, and 50.6% of teenagers drunk alcohol. Only a few studies in the literature have investigated those habits in university students. This study aims to examine alcohol use habits in a population of university students in Italy. Methods: Between 2018 and 2019, an anonymous online questionnaire was randomly sent to university students from 17 different universities in a network of research centres to study alcohol use disorders. The survey included socio-demographic information, questions about alcohol use, knowledge about alcohol consumption, and related risks. Used questionnaires were the Alcohol Use Disorders Identification Test-Consumption (AUDIT-C) and the Drinking Motive Questionnaire-Revised (DMQ-R). Results: the AUDIT-C revealed that 53.3% of students were high-risk drinkers. Regarding binge drinking habits, 13.1% of students admitted to binge drinking behavior at least once a month. In our sample, male students are more likely to be low-risk drinkers than female peers (p < 0.008). Students from northern Italy are more likely to be high-risk drinkers (p = 0.003). Beer (65.9%) and wine (60.9%) were the most consumed alcoholic beverages. The most common places to drink alcohol were pubs (85.5%). The most likely motivations to drink alcohol were enhancement (40.43%), social (38.39%), coping (15.63%), and social pressure or conformity (5.55%). Only 43.8% of participants reported having attended an educational course on alcohol. Conclusions: University students were not fully aware of the implications of alcohol misuse and will be part of the adult society as critical figures and future leaders. It is imperative to inform students about alcohol consumption risks and investigate the motivations to drink. Stress, anxiety, and social pressure are only a few issues young people are exposed to. Special attention must be paid to young people and their coping strategies that involve substance abuse by using educative, preventive, and motivational approaches.
Collapse
Affiliation(s)
- Marisa Patrizia Messina
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, 00185 Rome, Italy; (M.P.M.); (A.D.)
| | - Gemma Battagliese
- Centro di Riferimento Alcologico della Regione Lazio, Mental Health Department, ASL Roma 1, 00185 Rome, Italy;
| | - Alessio D’Angelo
- Department of Gynecology, Obstetrics and Urology, Sapienza University of Rome, 00185 Rome, Italy; (M.P.M.); (A.D.)
| | - Rosaria Ciccarelli
- Centro di Riferimento Alcologico della Regione Lazio, Mental Health Department, ASL Roma 1, 00185 Rome, Italy;
| | - Fabiola Pisciotta
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, 00185 Rome, Italy; (R.C.); (F.P.)
| | - Luigi Tramonte
- Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBCN-CNR), 00185 Rome, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Mauro Ceccanti
- Centro di Riferimento Alcologico della Regione Lazio, Mental Health Department, ASL Roma 1, 00185 Rome, Italy;
| |
Collapse
|
13
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Tirassa P, Iannitelli A, Ralli M, Vitali M, Ceccanti M, Chaldakov GN, Versacci P, Fiore M. Nerve Growth Factor, Stress and Diseases. Curr Med Chem 2021; 28:2943-2959. [PMID: 32811396 DOI: 10.2174/0929867327999200818111654] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Stress is a constant threat for homeostasis and is represented by different extrinsic and intrinsic stimuli (stressors, Hans Selye's "noxious agents"), such as aggressive behavior, fear, diseases, physical activity, drugs, surgical injury, and environmental and physiological changes. Our organisms respond to stress by activating the adaptive stress system to activate compensatory responses for restoring homeostasis. Nerve Growth Factor (NGF) was discovered as a signaling molecule involved in survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons. NGF mediates stress with an important role in translating environmental stimuli into physiological and pathological feedbacks since NGF levels undergo important variations after exposure to stressful events. Psychological stress, lifestyle stress, and oxidative stress are well known to increase the risk of mental disorders such as schizophrenia, major depressive disorders, bipolar disorder, alcohol use disorders and metabolic disorders such as metabolic syndrome. This review reports recent works describing the activity of NGF in mental and metabolic disorders related to stress.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, and Institute for Advanced Study, Varna, Bulgaria
| | - Paolo Versacci
- Department of Pediatrics, Sapienza University Hospital of Rome, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
14
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
15
|
Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020; 118:654-668. [PMID: 32976915 DOI: 10.1016/j.neubiorev.2020.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Ethanol exposure during gestation is an early life stressor that profoundly dysregulates structure and functions of the embryonal nervous system, altering the cognitive and behavioral development. Such dysregulation is also achieved by epigenetic mechanisms, which, altering the chromatin structure, redraw the entire pattern of gene expression. In parallel, an oxidative stress response at the cellular level and a global upregulation of neuroendocrine stress response, regulated by the HPA axis, exist and persist in adulthood. This neurobehavioral framework matches those observed in other psychiatric diseases such as mood diseases, depression, autism; those early life stressing events, although probably triggered by specific and different epigenetic mechanisms, give rise to largely overlapping neurobehavioral phenotypes. An early diagnosis of prenatal alcohol exposure, using reliable markers of ethanol intake, together with a deeper understanding of the pathogenic mechanisms, some of them reversible by their nature, can offer a temporal "window" of intervention. Supplementing a mother's diet with protective and antioxidant substances in addition to supportive psychological therapies can protect newborns from being affected.
Collapse
|
16
|
Rosso P, Iannitelli A, Pacitti F, Quartini A, Fico E, Fiore M, Greco A, Ralli M, Tirassa P. Vagus nerve stimulation and Neurotrophins: a biological psychiatric perspective. Neurosci Biobehav Rev 2020; 113:338-353. [PMID: 32278791 DOI: 10.1016/j.neubiorev.2020.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Since 2004, vagus nerve stimulation (VNS) has been used in treatment-resistant or treatment-intolerant depressive episodes. Today, VNS is suggested as possible therapy for a larger spectrum of psychiatric disorders, including schizophrenia, obsessive compulsive disorders, and panic disorders. Despite a large body of literature supports the application of VNS in patients' treatment, the exact mechanism of action of VNS remains not fully understood. In the present study, the major knowledges on the brain areas and neuronal pathways regulating neuroimmune and autonomic response subserving VNS effects are reviewed. Furthermore, the involvement of the neurotrophins (NTs) Nerve Growth Factor (NGF) and Brain Derived Neurotrophic Factor (BDNF) in vagus nerve (VN) physiology and stimulation is revised. The data on brain NGF/BDNF synthesis and in turn on the activity-dependent plasticity, connectivity rearrangement and neurogenesis, are presented and discussed as potential biomarkers for optimizing stimulatory parameters for VNS. A vagus nerve-neurotrophin interaction model in the brain is finally proposed as a working hypothesis for future studies addressed to understand pathophysiology of psychiatric disturbance.
Collapse
Affiliation(s)
- Pamela Rosso
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Psychiatry Unit San Salvatore Hospital, L'Aquila, Italy
| | - Adele Quartini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elena Fico
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Marco Fiore
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- National Research Council (CNR), Institute of Biochemistry & Cell Biology (IBBC), Rome, Italy.
| |
Collapse
|
17
|
Neuroinflammatory Markers in the Serum of Prepubertal Children with Down Syndrome. J Immunol Res 2020; 2020:6937154. [PMID: 32280719 PMCID: PMC7125499 DOI: 10.1155/2020/6937154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Down Syndrome (DS) is the most common chromosomal disorder. Although DS individuals are mostly perceived as characterized by some distinct physical features, cognitive disabilities, and cardiac defects, they also show important dysregulations of immune functions. While critical information is available for adults with DS, little literature is available on the neuroinflammation in prepubertal DS children. We aimed to evaluate in prepubertal DS children the serum levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), oxidative stress as free oxygen radicals defense (FORD), free oxygen radicals test (FORT), and cytokines playing key roles in neuroinflammation and oxidative processes as TNF-α, TGF-β, MCP-1, IL-1α, IL-2, IL-6, IL-10, and IL-12. No differences were found in NGF between DS children and controls. However, BDNF was higher in DS subjects compared to controls. We also did not reveal changes in FORD and FORT. Quite interestingly, the serum of DS children disclosed a marked decrease in all analyzed cytokines with evident differences in serum cytokine presence between male and female DS children. In conclusion, the present study evidences in DS prepubertal children a disruption in the neurotrophins and immune system pathways.
Collapse
|
18
|
D'Angelo A, Ceccanti M, Petrella C, Greco A, Tirassa P, Rosso P, Ralli M, Ferraguti G, Fiore M, Messina MP. Role of neurotrophins in pregnancy, delivery and postpartum. Eur J Obstet Gynecol Reprod Biol 2020; 247:32-41. [PMID: 32058187 DOI: 10.1016/j.ejogrb.2020.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are a family of polypeptides whose functions have been extensively studied in the past two decades. In particular, Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF) play a major role in the development, nutrition and growth of the central and peripheral nervous system and in the pathogenesis of neurodegenerative, cardiometabolic and (auto)immune diseases. However, NGF and BDNF have subtle functions for follicular development, implantation, and placentation. This short narrative review summarizes the existing evidence, published between 2000 and 2019, about the role of NTs in many different conditions that might affect women during and after pregnancy such as preeclampsia, gestational diabetes, obesity, depression, anxiety, smoking and alcohol abuse. Literature suggests that the dysregulation of synthesis and release of NTs may lead to decisive effects on both maternal and fetal health. Some piece of evidences was found about a possible association between NGF/BDNF and breastfeeding. Additional studies on human models are necessary to further characterize the role of NTs in life-changing experiences like labor and delivery.
Collapse
Affiliation(s)
- Alessio D'Angelo
- Department of Gynecology, Obstetric, and Urology, Sapienza University of Rome, Italy
| | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy.
| | | |
Collapse
|
19
|
Abstract
Bell’s palsy is the most common condition involving a rapid and unilateral onset of peripheral paresis/paralysis of the seventh cranial nerve. It affects 11.5–53.3 per 100,000 individuals a year across different populations. Bell’s palsy is a health issue causing concern and has an extremely negative effect on both patients and their families. Therefore, diagnosis and prompt cause determination are key for early treatment. However, the etiology of Bell’s palsy is unclear, and this affects its treatment. Thus, it is critical to determine the causes of Bell’s palsy so that targeted treatment approaches can be developed and employed. This article reviews the literature on the diagnosis of Bell’s palsy and examines possible etiologies of the disorder. It also suggests that the diagnosis of idiopathic facial palsy is based on exclusion and is most often made based on five factors including anatomical structure, viral infection, ischemia, inflammation, and cold stimulation responsivity.
Collapse
|
20
|
Colitti M, Boschi F, Montanari T. Dynamic of lipid droplets and gene expression in response to β-aminoisobutyric acid treatment on 3T3-L1 cells. Eur J Histochem 2018; 62. [PMID: 30482005 PMCID: PMC6280065 DOI: 10.4081/ejh.2018.2984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022] Open
Abstract
Research on adipobiology has recognized the browning process of white adipocytes as a potential therapeutic strategy for the treatment of obesity and related morbidities. Physical exercise stimulates the secretion of myokines, such as b-aminoisobutyric acid (BAIBA), which in turn promotes adaptive thermogenesis. White adipocyte conversion to brown cells involves dynamic changes in lipid droplet (LD) dimension and in the transcription of brown-specific marker genes. This study analyzes the effect of different doses of BAIBA and at different days of development on 3T3-L1 cells by evaluating morphological changes in LDs and the expression of browning gene markers. Results suggested that the highest concentration of BAIBA after 4 days of differentiation produced the most significant effects. The number of LDs per cell increased in comparison to control cells, whereas the surface area significantly decreased. Brown adipocyte markers were up-regulated, but the effect of treatment was lost at 10 days of differentiation. The thermogenic program induced by BAIBA may reflect a rapid adaptation of adipose tissue to physical exercise. This connection stresses the beneficial impact of physical exercise on metabolic health. The thermogenic program induced by BAIBA may reflect a rapid adaptation of adipose tissue to physical exercise. This connection stresses the beneficial impact of physical exercise on metabolic health.
Collapse
Affiliation(s)
- Monica Colitti
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences.
| | | | | |
Collapse
|
21
|
Ciafrè S, Carito V, Ferraguti G, Greco A, Chaldakov GN, Fiore M, Ceccanti M. How alcohol drinking affects our genes: an epigenetic point of view. Biochem Cell Biol 2018; 97:345-356. [PMID: 30412425 DOI: 10.1139/bcb-2018-0248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work highlights recent studies in epigenetic mechanisms that play a role in alcoholism, which is a complex multifactorial disorder. There is a large body of evidence showing that alcohol can modify gene expression through epigenetic processes, namely DNA methylation and nucleosomal remodeling via histone modifications. In that regard, chronic exposure to ethanol modifies DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol-mediated chromatin remodeling in the brain promotes the transition from use to abuse and addiction. Unravelling the multiplex pattern of molecular modifications induced by ethanol could support the development of new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
- Stefania Ciafrè
- a Institute of Translational Pharmacology, IFT-CNR, 100 via del Fosso del Cavaliere, Rome 00133, Italy
| | - Valentina Carito
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Giampiero Ferraguti
- c Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Antonio Greco
- d Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - George N Chaldakov
- e Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, BG-9002 Varna, Bulgaria
| | - Marco Fiore
- b Institute of Cell Biology and Neurobiology, IBCN-CNR, c/o Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| | - Mauro Ceccanti
- f Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Viale del Policlinico, 155 (00161), Rome, Italy
| |
Collapse
|
22
|
Pruszyńska-Oszmałek E, Kołodziejski PA, Sassek M, Sliwowska JH. Kisspeptin-10 inhibits proliferation and regulates lipolysis and lipogenesis processes in 3T3-L1 cells and isolated rat adipocytes. Endocrine 2017; 56:54-64. [PMID: 28194651 DOI: 10.1007/s12020-017-1248-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Kisspeptin, which is encoded by the KISS1 gene and acts via GPR54, plays a role in the regulation of reproductive functions. Expression of KISS1 and GRPR54 has been found in peripheral tissues, including adipose tissue, and was shown to be influenced by metabolic status. PURPOSE We hypothesized that kisspeptin could be involved in regulation of lipid metabolism in the mouse 3T3-L1 cell line and in isolated rat adipocytes. METHODS First, we characterized expression profiles of KISS1 and GPR54 mRNA and proteins in adipose cells isolated from male rats. Secondly, we studied the effects of kisspeptin-10 on cell proliferation and survival in 3T3-L1 cells. Thirdly, we assessed the rapid action of kisspeptin-10 on lipid metabolism and glucose uptake using 3T3-L1 cells and rat primary adipocytes. Finally, we examined the effects of kisspeptin-10 on the secretion of leptin and adiponectin in rat adipocytes. RESULTS We have found that: (1) KISS1 and GPR54 were expressed in mouse 3T3-L1 cells and isolated rat adipocytes; (2) kisspeptin-10: (i) inhibited cell proliferation, viability and adipogenesis in 3T3-L1 and decreased expression of PPAR-γ and CEBPβ-genes, which are involved in the differentiation processes and adipogenesis; (ii) increased lipolysis in 3T3-L1 cells and rat adipocytes by enhancing expression of periliphin and hormone-sensitive lipase; (iii) modulated glucose uptake and lipogenesis; (iv) stimulated leptin and decreased adiponectin secretion from rat adipocytes. CONCLUSION Kisspeptin-10 could play a role in the regulation of lipid metabolism in mouse 3T3-L1 cells and rat adipocytes.
Collapse
Affiliation(s)
- Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625, Poznan, Poland
| | - Paweł A Kołodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625, Poznan, Poland
| | - Maciej Sassek
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Wołynska 33, 60-625, Poznan, Poland
| | - Joanna H Sliwowska
- Laboratory of Neurobiology, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznan, Poland.
| |
Collapse
|
23
|
Identification of Central Nervous System Proteins in Human Blood Serum and Plasma. Bull Exp Biol Med 2015; 160:35-9. [PMID: 26612625 DOI: 10.1007/s10517-015-3092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 10/22/2022]
Abstract
Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.
Collapse
|
24
|
Expression of NGF, BDNF and their receptors in subcutaneous adipose tissue of lactating cows. Res Vet Sci 2015; 102:196-9. [DOI: 10.1016/j.rvsc.2015.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/18/2015] [Accepted: 08/25/2015] [Indexed: 01/09/2023]
|
25
|
Leptin as a Neuroprotector and a Central Nervous System Functional Stability Factor. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0120-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Abstract
In 1924, mesenteric panniculitis was first described in the medical literature by Jura et al. as 'retractile mesenteritis.' It represents a spectrum of disease processes characterized by degeneration, inflammation and scarring of the adipose tissue of the mesentery. The clinical presentations vary according to the stage of the disease and they include abdominal pain, weight loss, nausea and vomiting. Computed tomography findings are usually diagnostic. The gross findings include thickening of the mesentery, mass lesions and adhesion to the surrounding organs. Histologically, there is a chronic inflammatory process involving the adipose tissue with fat necrosis, inflammation and fibrosis. Herein, the authors address the clinicopathological features, course, treatment and pathogenetic mechanisms of mesenteric panniculitis.
Collapse
|
27
|
Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Ranćić G, Tunçel N, Aloe L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 2014; 5:130. [PMID: 24782857 PMCID: PMC3986561 DOI: 10.3389/fimmu.2014.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
Understanding how the precise interactions of nerves, immune cells, and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae): intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue (PAAT), we recently designated tunica adiposa (in brief, adiposa like intima, media, and adventitia). Today, atherosclerosis is considered an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy, and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. PAAT expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic) signaling proteins collectively dubbed adipokines. However, the role of vascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro-immune-adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease.
Collapse
Affiliation(s)
- George Nikov Chaldakov
- Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, Varna, Bulgaria
| | - Marco Fiore
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| | - Peter I. Ghenev
- Department of General and Clinical Pathology, Medical University, Varna, Bulgaria
| | - Jerzy Beltowski
- Department of Pathophysiology, Medical University, Lublin, Poland
| | - Gorana Ranćić
- Department of Histology and Embryology, University Medical Faculty, Niš, Serbia
| | - Neşe Tunçel
- Department of Physiology, Medical Faculty, Eskişehir University, Eskişehir, Turkey
| | - Luigi Aloe
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| |
Collapse
|
28
|
Yanev S, Aloe L, Fiore M, Chaldakov GN. Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: Linking cardiometabolic and neuropsychiatric diseases. World J Pharmacol 2013; 2:92-99. [DOI: 10.5497/wjp.v2.i4.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/20/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
One of biggest recent achievements of neurobiology is the study on neurotrophic factors. The neurotrophins are exciting examples of these factors. They belong to a family of proteins consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5, NT-6, and NT-7. Today, NGF and BDNF are well recognized to mediate a dizzying number of trophobiological effects, ranging from neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. These are implicated in the pathogenesis of various diseases. In the same vein, recent studies in adipobiology reveal that this tissue is the body’s largest endocrine and paracrine organ producing multiple signaling proteins collectively termed adipokines, with NGF and BDNF being also produced from adipose tissue. Altogether, neurobiology and adipobiology contribute to the improvement of our knowledge on diseases beyond obesity such as cardiometabolic (atherosclerosis, type 2 diabetes, and metabolic syndrome) and neuropsychiatric (e.g., Alzheimer’s disease and depression) diseases. The present review updates evidence for (1) neurotrophic and metabotrophic potentials of NGF and BDNF linking the pathogenesis of these diseases, and (2) NGF- and BDNF-mediated effects in ampakines, NMDA receptor antagonists, antidepressants, selective deacetylase inhibitors, statins, peroxisome proliferator-activated receptor gamma agonists, and purinergic P2X3 receptor up-regulation. This may help to construct a novel paradigm in the field of translational pharmacology of neuro-metabotrophins, particularly NGF and BDNF.
Collapse
|
29
|
Hristova MG. Metabolic syndrome--from the neurotrophic hypothesis to a theory. Med Hypotheses 2013; 81:627-34. [PMID: 23899630 DOI: 10.1016/j.mehy.2013.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is a complex and heterogeneous disease characterized by central obesity, impaired glucose metabolism, dyslipidemia, arterial hypertension, insulin resistance and high-sensitivity C-reactive protein. In 2006, a neurotrophic hypothesis of the etiopathogenesis of MetS was launched. This hypothesis considered the neurotrophins a key factor in MetS development. Chronic inflammatory and/or psychoemotional distress provoke a series of neuroimmunoendocrine interactions such as increased tissue and plasma levels of proinflammatory cytokines and neurotrophins, vegetodystonia, disbalance of neurotransmitters, hormones and immunity markers, activation of the hypothalamo-pituitary-adrenal axis, insulin resistance, and atherosclerosis. An early and a late clinical stage in the course of MetS are defined. Meanwhile, evidence of supporting results from the world literature accumulates. This enables the transformation of the definition of the neurotrophic hypothesis into a neurotrophic theory of MetS. The important role of two neurotrophic factors, i.e. the nerve growth factor and brain-derived neurotrophic factor as well as of the proinflammatory cytokines, neurotransmitters, adipokines and, especially, of leptin for the development of MetS, obesity and type 2 diabetes mellitus is illustrated. There are reliable scientific arguments that the metabotrophic deficit due to reduced neurotrophins could be implicated in the pathogenesis of MetS, type 2 diabetes mellitus, and atherosclerosis as well. A special attention is paid to the activity of the hypothalamo-pituitary-adrenal axis after stress. The application of the neurotrophic theory of MetS could contribute to the etiological diagnosis and individualized management of MetS by eliminating the chronic distress, hyponeurotrophinemia and consequent pathology. It helps estimating the risk, defining the prognosis and implementing the effective prevention of this socially significant disease as evidenced by the dramatic recent growth of the world publication output on this interdisciplinary topic.
Collapse
Affiliation(s)
- M G Hristova
- Division of Endocrinology, Medical Centre of Varna, Varna, Bulgaria.
| |
Collapse
|
30
|
Aloe L, Chaldakov GN. Homage to Rita Levi-Montalcini, the queen of modern neuroscience. Cell Biol Int 2013; 37:761-5. [PMID: 23520136 DOI: 10.1002/cbin.10098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
The first cell growth factor, nerve growth factor (NGF), was discovered by Rita Levi-Montalcini (RLM) in the early 1950s. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that non-neuronal cells, including immune cells, endothelial cells, cardiomyocytes, pancreatic beta cells, prostate epithelial and adipose tissue cells, were also targets for and/or sources of NGF. Nerve growth factor is well recognised as mediating multiple biological phenomena, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. Consequently, NGF and other members of the neurotrophin family are implicated in the pathogenesis of a large spectrum of neuronal and non-neuronal diseases, ranging from Alzheimer's and other neurodegenerative diseases to atherosclerosis and cardiometabolic disorders. Recent studies have demonstrated the therapeutic potentials of NGF in these conditions, including ocular and cutaneous diseases. NGF TrkA receptor antagonists emerged as novel drugs for pain, prostate and breast cancer, melanoma and urinary bladder syndromes. Here, we briefly describe the 'unpredictable' ideogenesis of the discovery of NGF, a eureka in the neuroscience.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy.
| | | |
Collapse
|
31
|
Aloe L, Chaldakov GN. The multiple life of nerve growth factor: tribute to rita levi-montalcini (1909-2012). Balkan Med J 2013; 30:4-7. [PMID: 25207059 DOI: 10.5152/balkanmedj.2013.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/06/2013] [Indexed: 12/12/2022] Open
Abstract
At the end of the 19(th) century, it was envisaged by Santiago Ramon y Cajal, but not, proven, that life at the neuronal level requires trophic support. The proof was obtained in the early 1950's by work initiated by Rita Levi-Montalcini (RLM) discovering the nerve growth factor (NGF). Today, NGF and its relatives, collectively designated neurotrophins, are well recognized as mediators of multiple biological phenomena in health and disease, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. Consequently, NGF and other neurotrophins are implicated in the pathogenesis of a large spectrum of neuronal and non-neuronal diseases, from Alzheimer's and other neurodegenerative diseases to atherosclerosis and other cardiometabolic diseases. Recent studies demonstrated the therapeutic potentials of NGF in these diseases, including ocular and cutaneous diseases. Furthermore, NGF TrkA receptor antagonists emerged as novel drugs for pain, prostate and breast cancer, melanoma, and urinary bladder syndromes. Altogether, NGF's multiple potential in health and disease is briefly described here.
Collapse
Affiliation(s)
- Luigi Aloe
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Rome, Italy
| | | |
Collapse
|
32
|
Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie 2012; 94:2075-81. [PMID: 22980196 DOI: 10.1016/j.biochi.2012.02.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/17/2012] [Indexed: 12/15/2022]
Abstract
Adipose tissue plays a dynamic role in whole-body energy homeostasis by acting as an endocrine organ. Collective evidence indicates a strong link between neural influences and adipocyte expression and secretion of leptin. Developmental changes in these relationships are considered important for pubertal transition in reproductive function. Leptin augments secretion of gonadotropin hormones, which are essential for initiation and maintenance of normal reproductive function, by acting centrally at the hypothalamus to regulate gonadotropin-releasing hormone (GnRH) neuronal activity and secretion. The effects of leptin on GnRH are mediated through interneuronal pathways involving neuropeptide-Y, proopiomelanocortin and kisspeptin. Increased infertility associated with diet induced obesity or central leptin resistance are likely mediated through the kisspeptin-GnRH pathway. Furthermore, Leptin regulates reproductive function by altering the sensitivity of the pituitary gland to GnRH and acting at the ovary to regulate follicular and luteal steroidogenesis. Thus leptin serves as a putative signal that links metabolic status with the reproductive axis. The intent of this review is to examine the biological role of leptin with energy metabolism, and reproduction.
Collapse
Affiliation(s)
- Gary J Hausman
- USDA, ARS, Richard B. Russell Research Center, RRC, 950 College Station Rd, Athens, GA 30605, USA.
| | | | | |
Collapse
|