1
|
Joyce RL, Tibbs GR, David Warren J, Costa CJ, Aromolaran K, Lea Sanford R, Andersen OS, Li Z, Zhang G, Willis DE, Goldstein PA. Probucol is anti-hyperalgesic in a mouse peripheral nerve injury model of neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100141. [PMID: 38099280 PMCID: PMC10719523 DOI: 10.1016/j.ynpai.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2023]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.
Collapse
Affiliation(s)
- Rebecca L. Joyce
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Gareth R. Tibbs
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - J. David Warren
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | | | - Kelly Aromolaran
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - R. Lea Sanford
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Olaf S. Andersen
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Zhucui Li
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E. Willis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Peter A. Goldstein
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Dept. of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Altrocchi C, Van Ammel K, Steemans M, Kreir M, Tekle F, Teisman A, Gallacher DJ, Lu HR. Evaluation of chronic drug-induced electrophysiological and cytotoxic effects using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Front Pharmacol 2023; 14:1229960. [PMID: 37492082 PMCID: PMC10364322 DOI: 10.3389/fphar.2023.1229960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction: Cardiotoxicity is one of the leading causes of compound attrition during drug development. Most in vitro screening platforms aim at detecting acute cardio-electrophysiological changes and drug-induced chronic functional alterations are often not studied in the early stage of drug development. Therefore, we developed an assay using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that evaluates both drug-induced acute and delayed electrophysiological and cytotoxic effects of reference compounds with clinically known cardiac outcomes. Methods: hiPSC-CMs were seeded in 48-well multielectrode array (MEA) plates and were treated with four doses of reference compounds (covering and exceeding clinical free plasma peak concentrations -fCmax values) and MEA recordings were conducted for 4 days. Functional-electrophysiological (field-potentials) and viability (impedance) parameters were recorded with a MEA machine. Results: To assess this platform, we tested tyrosine-kinase inhibitors with high-cardiac risk profile (sunitinib, vandetanib and nilotinib) and low-cardiac risk (erlotinib), as well as known classic cardiac toxic drugs (doxorubicin and BMS-986094), ion-channel trafficking inhibitors (pentamidine, probucol and arsenic trioxide) and compounds without known clinical cardiotoxicity (amoxicillin, cetirizine, captopril and aspirin). By evaluating the effects of these compounds on MEA parameters, the assay was mostly able to recapitulate different drug-induced cardiotoxicities, represented by a prolongation of the field potential, changes in beating rate and presence of arrhythmic events in acute (<2 h) or delayed phase ≥24 h, and/or reduction of impedance during the delayed phase (≥24 h). Furthermore, a few reference compounds were tested in hiPSC-CMs using fluorescence- and luminescence-based plate reader assays, confirming the presence or absence of cytotoxic effects, linked to changes of the impedance parameters measured in the MEA assay. Of note, some cardiotoxic effects could not be identified at acute time points (<2 h) but were clearly detected after 24 h, reinforcing the importance of chronic drug evaluation. Discussion: In conclusion, the evaluation of chronic drug-induced cardiotoxicity using a hiPSC-CMs in vitro assay can contribute to the early de-risking of compounds and help optimize the drug development process.
Collapse
Affiliation(s)
- C. Altrocchi
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - K. Van Ammel
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Steemans
- A Division of Janssen Pharmaceutica NV, Cell Health Assessment Group, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Kreir
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - F. Tekle
- A Division of Janssen Pharmaceutica NV, Statistics and Decision Sciences, Global Development, Janssen R&D, Beerse, Belgium
| | - A. Teisman
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - D. J. Gallacher
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - H. R. Lu
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| |
Collapse
|
3
|
Usuda K, Hayashi K, Nakajima T, Kurata Y, Cui S, Kusayama T, Tsuda T, Tada H, Kato T, Sakata K, Usui S, Fujino N, Tanaka Y, Kaneko Y, Kurabayashi M, Tange S, Saito T, Ohta K, Yamagishi M, Takamura M. Mechanisms of fever-induced QT prolongation and torsades de pointes in patients with KCNH2 mutation. Europace 2023; 25:euad161. [PMID: 37386841 PMCID: PMC10310978 DOI: 10.1093/europace/euad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/13/2023] [Indexed: 07/01/2023] Open
Abstract
AIMS Patients with particular mutations of type-2 long QT syndrome (LQT2) are at an increased risk for malignant arrhythmia during fever. This study aimed to determine the mechanism by which KCNH2 mutations cause fever-induced QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS We evaluated three KCNH2 mutations, G584S, D609G, and T613M, in the Kv11.1 S5-pore region, identified in patients with marked QT prolongation and TdP during fever. We also evaluated KCNH2 M124T and R269W, which are not associated with fever-induced QT prolongation. We characterized the temperature-dependent changes in the electrophysiological properties of the mutant Kv11.1 channels by patch-clamp recording and computer simulation. The average tail current densities (TCDs) at 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller and less increased with rising temperature from 35°C to 40°C than those for WT, M124T, and R269W. The ratios of the TCDs at 40°C to 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller than for WT, M124T, and R269W. The voltage dependence of the steady-state inactivation curve for WT, M124T, and R269W showed a significant positive shift with increasing temperature; however, that for G584S, WT+D609G, and WT+T613M showed no significant change. Computer simulation demonstrated that G584S, WT+D609G, and WT+T613M caused prolonged action potential durations and early afterdepolarization formation at 40°C. CONCLUSION These findings indicate that KCNH2 G584S, D609G, and T613M in the S5-pore region reduce the temperature-dependent increase in TCDs through an enhanced inactivation, resulting in QT prolongation and TdP at a febrile state in patients with LQT2.
Collapse
Affiliation(s)
- Keisuke Usuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Shihe Cui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Toyonobu Tsuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Yoshihiro Tanaka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
- Department of Preventive Medicine Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Takekatsu Saito
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Kunio Ohta
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| |
Collapse
|
4
|
Shi YQ, Fan P, Zhang GC, Zhang YH, Li MZ, Wang F, Li BX. Probucol-induced hERG Channel Reduction can be Rescued by Matrine and Oxymatrine in vitro. Curr Pharm Des 2020; 25:4606-4612. [PMID: 31657676 PMCID: PMC7327797 DOI: 10.2174/1381612825666191026170033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/19/2019] [Indexed: 01/24/2023]
Abstract
Background The human ether-a-go-go-related gene (hERG) potassium channel is the rapidly activating component of cardiac delayed rectifier potassium current (IKr), which is a crucial determinant of cardiac repolarization. The reduction of hERG current is commonly believed to cause Long QT Syndrome (LQTs). Probucol, a cholesterol-lowering drug, induces LQTs by inhibiting the expression of the hERG channel. Unfortunately, there is currently no effective therapeutic method to rescue probucol-induced LQTs. Methods Patch-clamp recording techniques were used to detect the action potential duration (APD) and current of hERG. Western blot was performed to measure the expression levels of proteins. Results In this study, we demonstrated that 1 μM matrine and oxymatrine could rescue the hERG current and hERG surface expression inhibited by probucol. In addition, matrine and oxymatrine significantly shortened the prolonged action potential duration induced by probucol in neonatal cardiac myocytes. We proposed a novel mechanism underlying the probucol induced decrease in the expression of transcription factor Specificity protein 1 (Sp1), which is an established transactivator of the hERG gene. We also demonstrated that matrine and oxymatrine were able to upregulate Sp1 expression which may be one of the possible mechanisms by which matrine and oxymatrine rescued probucol-induced hERG channel deficiency. Conclusion Our current results demonstrate that matrine and oxymatrine could rescue probucol-induced hERG deficiency in vitro, which may lead to potentially effective therapeutic drugs for treating acquired LQT2 by probucol in the future.
Collapse
Affiliation(s)
- Yuan-Qi Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| | - Pan Fan
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, No. 148 Baojian Road, Nangang District, Harbin 150081, China
| | - Guo-Cui Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Yu-Hao Zhang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Ming-Zhu Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Fang Wang
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China
| | - Bao-Xin Li
- Department of Pharmacology, Harbin Medical University, No. 157 Baojian Road, Harbin, 150086, China.,State-Province Key Laboratory of Biopharmaceutical Engineering, No. 157 Baojian Road, Harbin, 150086, China
| |
Collapse
|
5
|
Shiomi M. The History of the WHHL Rabbit, an Animal Model of Familial Hypercholesterolemia (II) - Contribution to the Development and Validation of the Therapeutics for Hypercholesterolemia and Atherosclerosis. J Atheroscler Thromb 2019; 27:119-131. [PMID: 31748470 PMCID: PMC7049474 DOI: 10.5551/jat.rv17038-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A number of effective drugs have been developed through animal experiments, contributing to the health of many patients. In particular, the WHHL rabbit family (WHHL rabbits and its advanced strains (coronary atherosclerosis-prone WHHL-CA rabbits and myocardial infarction-prone WHHLMI rabbits) developed at Kobe University (Kobe, Japan) contributed greatly in the development of cholesterol-lowering agents. The WHHL rabbit family is animal models for human familial hypercholesterolemia, coronary atherosclerosis, and coronary heart disease. At the end of breeding of the WHHL rabbit family, this review summarizes the contribution of the WHHL rabbit family to the development of lipid-lowering agents and anti-atherosclerosis agents. Studies using the WHHL rabbit family demonstrated, for the first time in the world, that lowering serum cholesterol levels or preventing LDL oxidation can suppress the progression and destabilization of coronary lesions. In addition, the WHHL rabbit family contributed to the development of various compounds that exhibit lipid-lowering and anti-atherosclerotic effects and has also been used in studies of gene therapeutics. Furthermore, this review also discusses the causes of the increased discrepancy in drug development between the results of animal experiments and clinical studies, which became a problem in recent years, and addresses the importance of the selection of appropriate animal models used in studies in addition to an appropriate study design.
Collapse
Affiliation(s)
- Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine
| |
Collapse
|
6
|
Turker I, Ai T, Itoh H, Horie M. Drug-induced fatal arrhythmias: Acquired long QT and Brugada syndromes. Pharmacol Ther 2017; 176:48-59. [PMID: 28527921 DOI: 10.1016/j.pharmthera.2017.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the early 1990s, the concept of primary "inherited" arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes.
Collapse
Affiliation(s)
- Isik Turker
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tomohiko Ai
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
| |
Collapse
|
7
|
Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, Hayashi K, Nakajima T, Ohno S, Makiyama T, Wu J, Hasegawa K, Mastantuono E, Dagradi F, Pedrazzini M, Yamagishi M, Berthet M, Murakami Y, Shimizu W, Guicheney P, Schwartz PJ, Horie M. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J 2015; 37:1456-64. [PMID: 26715165 DOI: 10.1093/eurheartj/ehv695] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Acquired long QT syndrome (aLQTS) exhibits QT prolongation and Torsades de Pointes ventricular tachycardia triggered by drugs, hypokalaemia, or bradycardia. Sometimes, QTc remains prolonged despite elimination of triggers, suggesting the presence of an underlying genetic substrate. In aLQTS subjects, we assessed the prevalence of mutations in major LQTS genes and their probability of being carriers of a disease-causing genetic variant based on clinical factors. METHODS AND RESULTS We screened for the five major LQTS genes among 188 aLQTS probands (55 ± 20 years, 140 females) from Japan, France, and Italy. Based on control QTc (without triggers), subjects were designated 'true aLQTS' (QTc within normal limits) or 'unmasked cLQTS' (all others) and compared for QTc and genetics with 2379 members of 1010 genotyped congenital long QT syndrome (cLQTS) families. Cardiac symptoms were present in 86% of aLQTS subjects. Control QTc of aLQTS was 453 ± 39 ms, shorter than in cLQTS (478 ± 46 ms, P < 0.001) and longer than in non-carriers (406 ± 26 ms, P < 0.001). In 53 (28%) aLQTS subjects, 47 disease-causing mutations were identified. Compared with cLQTS, in 'true aLQTS', KCNQ1 mutations were much less frequent than KCNH2 (20% [95% CI 7-41%] vs. 64% [95% CI 43-82%], P < 0.01). A clinical score based on control QTc, age, and symptoms allowed identification of patients more likely to carry LQTS mutations. CONCLUSION A third of aLQTS patients carry cLQTS mutations, those on KCNH2 being more common. The probability of being a carrier of cLQTS disease-causing mutations can be predicted by simple clinical parameters, thus allowing possibly cost-effective genetic testing leading to cascade screening for identification of additional at-risk family members.
Collapse
Affiliation(s)
- Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan Inserm, UMR_S1166, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institut de recherche sur les maladies cardiovasculaires, du métabolisme et de la nutrition, Paris, France Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Lia Crotti
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Carla Spazzolini
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Isabelle Denjoy
- AP-HP, Hôpital Bichat, Service de Cardiologie, Centre de Référence des Maladies Cardiaques Héréditaires, Université Denis Diderot, Paris 7, Paris, France
| | - Véronique Fressart
- Inserm, UMR_S1166, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institut de recherche sur les maladies cardiovasculaires, du métabolisme et de la nutrition, Paris, France Institute of Cardiometabolism and Nutrition (ICAN), Paris, France AP-HP, Groupe Hospitalier Pitié-Salpétrière, Service de Biochimie Métabolique, UF Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Paris, France
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tadashi Nakajima
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jie Wu
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan Department of Pharmacology, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Kanae Hasegawa
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Elisa Mastantuono
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Federica Dagradi
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Matteo Pedrazzini
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Masakazu Yamagishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Myriam Berthet
- Inserm, UMR_S1166, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institut de recherche sur les maladies cardiovasculaires, du métabolisme et de la nutrition, Paris, France Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Yoshitaka Murakami
- Medical Statistics, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Pascale Guicheney
- Inserm, UMR_S1166, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institut de recherche sur les maladies cardiovasculaires, du métabolisme et de la nutrition, Paris, France Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
8
|
Shi YQ, Yan CC, Zhang X, Yan M, Liu LR, Geng HZ, Lv L, Li BX. Mechanisms underlying probucol-induced hERG-channel deficiency. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3695-704. [PMID: 26229434 PMCID: PMC4516208 DOI: 10.2147/dddt.s86724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (I Kr), which is important for cardiac repolarization. Reduction of I hERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes) or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on I hERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.
Collapse
Affiliation(s)
- Yuan-Qi Shi
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Cai-Chuan Yan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Meng Yan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Li-Rong Liu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Huai-Ze Geng
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Lin Lv
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Bao-Xin Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China ; State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
9
|
Computational investigations of hERG channel blockers: New insights and current predictive models. Adv Drug Deliv Rev 2015; 86:72-82. [PMID: 25770776 DOI: 10.1016/j.addr.2015.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to address such issues at the hit selection stage. In order to prioritize molecules during the early drug discovery phase and to reduce the risk of drug attrition due to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to predict the potential hERG blockage of new drug candidates. In this review, we will describe the current in silico methods developed and applied to predict and to understand the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS and how systemic approaches can help in the drug safety decision.
Collapse
|
10
|
Zhang KP, Yang BF, Li BX. Translational toxicology and rescue strategies of the hERG channel dysfunction: biochemical and molecular mechanistic aspects. Acta Pharmacol Sin 2014; 35:1473-84. [PMID: 25418379 PMCID: PMC4261120 DOI: 10.1038/aps.2014.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/20/2014] [Indexed: 01/08/2023] Open
Abstract
The human ether-à-go-go related gene (hERG) potassium channel is an obligatory anti-target for drug development on account of its essential role in cardiac repolarization and its close association with arrhythmia. Diverse drugs have been removed from the market owing to their inhibitory activity on the hERG channel and their contribution to acquired long QT syndrome (LQTS). Moreover, mutations that cause hERG channel dysfunction may induce congenital LQTS. Recently, an increasing number of biochemical and molecular mechanisms underlying hERG-associated LQTS have been reported. In fact, numerous potential biochemical and molecular rescue strategies are hidden within the biogenesis and regulating network. So far, rescue strategies of hERG channel dysfunction and LQTS mainly include activators, blockers, and molecules that interfere with specific links and other mechanisms. The aim of this review is to discuss the rescue strategies based on hERG channel toxicology from the biochemical and molecular perspectives.
Collapse
Affiliation(s)
- Kai-ping Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-feng Yang
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| | - Bao-xin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
- The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China (Key Laboratory of Cardiovascular Research, Ministry of Education), China
| |
Collapse
|
11
|
Abstract
Abnormal functioning of cardiac ion channels can disrupt cardiac myocyte action potentials and thus cause potentially lethal cardiac arrhythmias. Ion channel dysfunction has been observed at all stages in channel ontogeny, from biogenesis to regulation, and arises from genetic or environmental factors, or both. Acquired arrhythmias - including those that are drug induced - are more common than solely inherited arrhythmias but, in some cases, also contain an identifiable genetic component. This interplay between the pharmacology and genetics - known as 'pharmacogenetics' - of cardiac ion channels and the systems that impact them presents both challenges and opportunities to academics, pharmaceutical companies and clinicians seeking to develop and utilize therapies for cardiac rhythm disorders. In this review, we discuss ion channel pharmacogenetics in the context of both causation and treatment of cardiac arrhythmias, focusing on the long QT syndromes.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Weill Medical College of Cornell University, Greenberg Division of Cardiology, Department of Medicine and Department of Pharmacology, 520 East 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
12
|
Li G, Cheng G, Wu J, Ma S, Sun C. New iPSC for old long QT syndrome modeling: putting the evidence into perspective. Exp Biol Med (Maywood) 2013; 239:131-40. [PMID: 24363251 DOI: 10.1177/1535370213514000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells or iPSCs) are typically derived by transfection of certain stem cell-associated genes into non-pluripotent cells, such as adult fibroblasts (typically adult somatic cells). Various diseases can be modeled through iPSC technology. The important implication of iPSCs to offer an unprecedented opportunity to recapitulate pathologic human tissue formation in vitro has generated great excitement and interest in the whole biomedical research community. Long QT syndrome (LQTS), an inherited heart disease, is characterized by prolonged QT interval on a surface electrocardiogram. LQTS presents with life-threatening cardiac arrhythmias, which can lead to fainting, syncope, and sudden death. The iPSC-derived cardiomyocytes from LQTS patients offer a potentially unlimited source of materials for biomedical study. They can be used to recapitulate complex physiological phenotypes, probe toxicological testing and drug screening, clarify the novel mechanistic insights and may also rectify gene defects at the cellular and molecular level. Despite the emerging challenges, iPSC technology has been increasingly recognized as a valuable and growing toolkit for modeling LQTS over other various models of human diseases.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Nogawa H, Kawai T, Yajima M, Miura M, Ogawa T, Murakami K. Effects of probucol, a typical hERG expression inhibitor, on in vivo QT interval prolongation in conscious dogs. Eur J Pharmacol 2013; 720:29-37. [DOI: 10.1016/j.ejphar.2013.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
|
14
|
Current perspectives in genetic cardiovascular disorders: from basic to clinical aspects. Heart Vessels 2013; 29:129-41. [PMID: 23907713 DOI: 10.1007/s00380-013-0391-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
We summarize recent advances in the clinical genetics of hypercholesterolemia, hypertrophic cardiomyopathy (HCM), and lethal arrhythmia, all of which are monogenic cardiovascular diseases being essential to understanding the heart and circulatory pathophysiology. Among the issues of hypercholesterolemia which play a pivotal role in development of vascular damages, familial hypercholesterolemia is the common genetic cardiovascular disease; in addition to identifying the gene mutation coding low-density lipoprotein receptor, lipid kinetics in autosomal recessive hypercholesterolemia as well as in proprotein convertase subtilisin/kexin 9 gene mutation were recently demonstrated. As for HCM, some gene mutations were identified to correlate with clinical manifestations. Additionally, a gene polymorphism of the renin-angiotensin system in development of heart failure was identified as a modifier gene. The lethal arrhythmias such as sudden death syndromes, QT prolongation, and Brugada syndrome were found to exhibit gene mutation coding potassium and/or sodium ion channels. Interestingly, functional analysis of these gene mutations helped to identify the role of each gene mutation in developing these cardiovascular disorders. We suggest considering the genetic mechanisms of cardiovascular diseases associated with hyperlipidemia, myocardial hypertrophy, or lethal arrhythmia in terms of not only clinical diagnosis but also understanding pathophysiology of each disease with therapeutic aspects.
Collapse
|
15
|
Indexing molecules for their hERG liability. Eur J Med Chem 2013; 65:304-14. [DOI: 10.1016/j.ejmech.2013.04.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 12/15/2022]
|
16
|
Juni RP, Duckers HJ, Vanhoutte PM, Virmani R, Moens AL. Oxidative stress and pathological changes after coronary artery interventions. J Am Coll Cardiol 2013; 61:1471-81. [PMID: 23500310 DOI: 10.1016/j.jacc.2012.11.068] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022]
Abstract
Oxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery. Therefore, the understanding of the pathophysiological role of reactive oxygen species (ROS) generated during or after coronary interventions, or both, is essential to improve the success rate of these procedures. Superoxide O2(·-) anions, whether derived from uncoupled endothelial nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, xanthine oxidase, or mitochondria, are among the most harmful ROS. O2(·-) can scavenge nitric oxide, modify proteins and nucleotides, and induce proinflammatory signaling, which may lead to greater ROS production. Current innovations in stent technologies, including biodegradable stents, nitric oxide donor-coated stents, and a new generation of drug-eluting stents, therefore address persistent oxidative stress and reduced nitric oxide bioavailability after percutaneous coronary interventions. This review discusses the molecular mechanisms of ROS generation after coronary interventions, the related pathological events-including restenosis, endothelial dysfunction, and stent thrombosis-and possible therapeutic ways forward.
Collapse
Affiliation(s)
- Rio P Juni
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
17
|
Hayashi K, Konno T, Ino H, Yamagishi M. Is exercise-related QT interval shortening with a peaked T wave a specific electrocardiographic finding of pheochromocytoma? J Cardiol Cases 2013; 7:e117-e118. [PMID: 30533139 PMCID: PMC6275363 DOI: 10.1016/j.jccase.2013.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 12/02/2022] Open
Affiliation(s)
- Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | | | | | | |
Collapse
|
18
|
He FZ, McLeod HL, Zhang W. Current pharmacogenomic studies on hERG potassium channels. Trends Mol Med 2013; 19:227-38. [PMID: 23369369 DOI: 10.1016/j.molmed.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
Abstract
Genetic polymorphisms in human ether-a-go-go-related gene (hERG) potassium channels are associated with many complex diseases and sensitivity to channel-related drugs. Genotypes may underlie different sensitivities to the same drug, and different drugs selectively repair the functional deficits caused by individual mutations. In fact, not all drugs that block hERG function have adverse effects as previously thought. This suggests that the severe adverse reactions observed clinically may only occur in subjects with a particular genotype, but to others may be safe. Similarly, a drug that is ineffective in one population may be both safe and effective in another. Therefore, detecting polymorphisms in KCNH2 encoding hERG1 is of great significance in guiding the prevention and treatment of related diseases, re-evaluating drug safety, and individualizing treatment. This article reviews current pharmacogenomic studies on hERG potassium channels to provide a reference for developing individualized treatments and evaluating their safety.
Collapse
Affiliation(s)
- Fa-Zhong He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, PR China
| | | | | |
Collapse
|
19
|
Liu L, Hayashi K, Kaneda T, Ino H, Fujino N, Uchiyama K, Konno T, Tsuda T, Kawashiri MA, Ueda K, Higashikata T, Shuai W, Kupershmidt S, Higashida H, Yamagishi M. A novel mutation in the transmembrane nonpore region of the KCNH2 gene causes severe clinical manifestations of long QT syndrome. Heart Rhythm 2012; 10:61-7. [PMID: 23010577 DOI: 10.1016/j.hrthm.2012.09.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long QT syndrome (LQTS) is characterized by prolonged ventricular repolarization and variable clinical course with arrhythmia-related syncope and sudden death. Mutations in the nonpore region of the LQTS-associated KCNH2 gene (also known as hERG) are mostly associated with coassembly or trafficking abnormalities, resulting in haplotype insufficiency and milder clinical phenotypes compared with mutations in the pore domain. OBJECTIVE To investigate the effect of a nonpore mutation on the channel current, which was identified from an LQTS family with severe clinical phenotypes. METHODS Two members of a Japanese family with LQTS were searched for mutations in KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, and KCNJ2 genes by using automated DNA sequencing. We characterized the electrophysiological properties and glycosylation pattern of the mutant channels by using patch clamp recording and Western blot analysis. RESULTS In the LQTS patient with torsades de pointes and cardiopulmonary arrest, we identified the novel T473P mutation in the transmembrane nonpore region of KCNH2. The proband's father carried the same mutation and showed prolonged corrected QT interval and frequent torsades de pointes in the presence of hypokalemia following the administration of garenoxacin. Patch clamp analysis in heterologous cells showed that hERG T473P channels generated no current and exhibited a dominant negative effect when coexpressed with wild-type protein. Only incompletely glycosylated hERG T473P channels were observed by using Western blot analysis, suggesting impaired trafficking. CONCLUSIONS These results demonstrated that a trafficking-deficient mutation in the transmembrane nonpore region of KCNH2 causes a dominant negative effect and a severe clinical course in affected patients.
Collapse
Affiliation(s)
- Li Liu
- Department of Biophysical Genetics, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gustina AS, Trudeau MC. HERG potassium channel regulation by the N-terminal eag domain. Cell Signal 2012; 24:1592-8. [PMID: 22522181 PMCID: PMC4793660 DOI: 10.1016/j.cellsig.2012.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/19/2023]
Abstract
Human ether-á-go-go related gene (hERG, K(v)11.1) potassium channels play a significant role in cardiac excitability. Like other K(v) channels, hERG is activated by membrane voltage; however, distinct from other K(v) channels, hERG channels have unusually slow kinetics of closing (deactivation). The mechanism for slow deactivation involves an N-terminal "eag domain" which comprises a PAS (Per-Arnt-Sim) domain and a short Cap domain. Here we review recent advances in understanding how the eag domain regulates deactivation, including several new Nuclear Magnetic Resonance (NMR) solution structures of the eag domain, and evidence showing that the eag domain makes a direct interaction with the C-terminal C-linker and Cyclic Nucleotide-Binding Homology Domain.
Collapse
Affiliation(s)
- Ahleah S. Gustina
- Program in Neuroscience, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
- Department of Physiology, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
| | - Matthew C. Trudeau
- Department of Physiology, University of Maryland, School of Medicine, 660 W Redwood St, Baltimore, MD 21201
| |
Collapse
|
21
|
Harley CA, Jesus CSH, Carvalho R, Brito RMM, Morais-Cabral JH. Changes in channel trafficking and protein stability caused by LQT2 mutations in the PAS domain of the HERG channel. PLoS One 2012; 7:e32654. [PMID: 22396785 PMCID: PMC3292575 DOI: 10.1371/journal.pone.0032654] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/30/2012] [Indexed: 11/25/2022] Open
Abstract
Inherited human long-QT2 syndrome (LQTS) results from mutations in the gene encoding the HERG channel. Several LQT2-associated mutations have been mapped to the amino terminal cytoplasmic Per-Arnt-Sim (PAS) domain of the HERG1a channel subunit. Here we have characterized the trafficking properties of some LQT2-associated PAS domain mutants and analyzed rescue of the trafficking mutants by low temperature (27°C) or by the pore blocker drug E4031. We show that the LQT2-associated mutations in the PAS domain of the HERG channel display molecular properties that are distinct from the properties of LQT2-associated mutations in the trans-membrane region. Unlike the latter, many of the tested PAS domain LQT2-associated mutations do not result in trafficking deficiency of the channel. Moreover, the majority of the PAS domain mutations that cause trafficking deficiencies are not rescued by a pore blocking drug. We have also explored the in vitro folding stability properties of isolated mutant PAS domain proteins using a thermal unfolding fluorescence assay and a chemical unfolding assay.
Collapse
Affiliation(s)
- Carol A Harley
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Guo J, Li X, Shallow H, Xu J, Yang T, Massaeli H, Li W, Sun T, Pierce GN, Zhang S. Involvement of Caveolin in Probucol-Induced Reduction in hERG Plasma-Membrane Expression. Mol Pharmacol 2011; 79:806-13. [DOI: 10.1124/mol.110.069419] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Hayashi K, Fujino N, Ino H, Uchiyama K, Sakata K, Konno T, Masuta E, Funada A, Sakamoto Y, Tsubokawa T, Hodatsu A, Yasuda T, Kanaya H, Kim MY, Kupershmidt S, Higashida H, Yamagishi M. A KCR1 variant implicated in susceptibility to the long QT syndrome. J Mol Cell Cardiol 2011; 50:50-7. [DOI: 10.1016/j.yjmcc.2010.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
|
25
|
Hayashi K, Shuai W, Sakamoto Y, Higashida H, Yamagishi M, Kupershmidt S. Trafficking-competent KCNQ1 variably influences the function of HERG long QT alleles. Heart Rhythm 2010; 7:973-80. [PMID: 20348026 DOI: 10.1016/j.hrthm.2010.03.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/25/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mutations in the KCNQ1 and human ether-a-go-go-related gene (HERG) genes cause the long QT syndromes, LQTS1 and LQTS2, due to reductions in the cardiac repolarizing I(Ks) and I(Kr) currents, respectively. It was previously reported that KCNQ1 coexpression modulates HERG function by enhancing membrane expression of HERG, and that the 2 proteins coimmunoprecipitate, and colocalize in myocytes. In vivo studies in genetically modified rabbits also support a HERG-KCNQ1 interaction. OBJECTIVE We sought to determine whether KCNQ1 influences the current characteristics of HERG genetic variants. METHODS This study used expression of HERG and KCNQ1 wild-type (WT) and mutant channels in heterologous systems, combined with whole-cell patch clamp analysis and biochemistry. RESULTS Supporting the notion that KCNQ1 needs to be trafficking competent to influence HERG function, we found that although the tail current density of HERG expressed in Chinese Hamster Ovary (CHO) cells was approximately doubled by WT KCNQ1 coexpression, it was not altered in the presence of the trafficking-defective KCNQ1(T587M) variant. Activation and deactivation kinetics of HERG variants were not altered. The HERG(M124T) variant, previously shown to be mildly impaired functionally, was restored to WT levels by KCNQ1-WT but not KCNQ1(T587M) coexpression. The tail current densities of the severely trafficking-impaired HERG(G601S) and HERG(F805C) variants were only slightly improved by KCNQ1 coexpression. The trafficking competent but incompletely processed HERG(N598Q), and a mutation in the selectivity filter, HERG(G628S), were not improved by KCNQ1 coexpression. CONCLUSION These findings suggest a functional codependence of HERG on KCNQ1 during channel biogenesis. Moreover, KCNQ1 variably modulates LQTS2 mutations with distinct underlying pathologies.
Collapse
Affiliation(s)
- Kenshi Hayashi
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. The genetic basis of long QT and short QT syndromes: A mutation update. Hum Mutat 2009; 30:1486-511. [DOI: 10.1002/humu.21106] [Citation(s) in RCA: 318] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Long QT syndrome and associated gene mutation carriers in Japanese children: results from ECG screening examinations. Clin Sci (Lond) 2009; 117:415-24. [DOI: 10.1042/cs20080528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LQTS (long QT syndrome) is caused by mutations in cardiac ion channel genes; however, the prevalence of LQTS in the general population is not well known. In the present study, we prospectively estimated the prevalence of LQTS and analysed the associated mutation carriers in Japanese children. ECGs were recorded from 7961 Japanese school children (4044 males; mean age, 9.9±3.0 years). ECGs were examined again for children who had prolonged QTc (corrected QT) intervals in the initial ECGs, and their QT intervals were measured manually. An LQTS score was determined according to Schwartz's criteria, and ion channel genes were analysed. In vitro characterization of the identified mutants was performed by heterologous expression experiments. Three subjects were assigned to a high probability of LQTS (3.5≤ LQTS score), and eight subjects to an intermediate probability (1.0< LQTS score ≤3.0). Genetic analysis of these II subjects identified three KCNH2 mutations (M124T, 547–553 del GGCGGCG and 2311–2332 del/ins TC). In contrast, no mutations were identified in the 15 subjects with a low probability of LQTS. Electrophysiological studies showed that both the M124T and the 547–553 del GGCGGCG KCNH2 did not suppress the wild-type KCNH2 channel in a dominant-negative manner. These results demonstrate that, in a random sample of healthy Japanese children, the prevalence of a high probability of LQTS is 0.038% (three in 7961), and that LQTS mutation carriers can be identified in at least 0.038% (one in 2653). Furthermore, large-scale genetic studies will be needed to clarify the real prevalence of LQTS by gene-carrier status, as it may have been underestimated in the present study.
Collapse
|
28
|
Itoh H, Sakaguchi T, Ding WG, Watanabe E, Watanabe I, Nishio Y, Makiyama T, Ohno S, Akao M, Higashi Y, Zenda N, Kubota T, Mori C, Okajima K, Haruna T, Miyamoto A, Kawamura M, Ishida K, Nagaoka I, Oka Y, Nakazawa Y, Yao T, Jo H, Sugimoto Y, Ashihara T, Hayashi H, Ito M, Imoto K, Matsuura H, Horie M. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ Arrhythm Electrophysiol 2009; 2:511-23. [PMID: 19843919 DOI: 10.1161/circep.109.862649] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drugs with I(Kr)-blocking action cause secondary long-QT syndrome. Several cases have been associated with mutations of genes coding cardiac ion channels, but their frequency among patients affected by drug-induced long-QT syndrome (dLQTS) and the resultant molecular effects remain unknown. METHODS AND RESULTS Genetic testing was carried out for long-QT syndrome-related genes in 20 subjects with dLQTS and 176 subjects with congenital long-QT syndrome (cLQTS); electrophysiological characteristics of dLQTS-associated mutations were analyzed using a heterologous expression system with Chinese hamster ovary cells together with a computer simulation model. The positive mutation rate in dLQTS was similar to cLQTS (dLQTS versus cLQTS, 8 of 20 [40%] versus 91 of 176 [52%] subjects, P=0.32). The incidence of mutations was higher in patients with torsades de pointes induced by nonantiarrhythmic drugs than by antiarrhythmic drugs (antiarrhythmic versus others, 3 of 14 [21%] versus 5 of 6 [83%] subjects, P<0.05). When reconstituted in Chinese hamster ovary cells, KCNQ1 and KCNH2 mutant channels showed complex gating defects without dominant negative effects or a relatively mild decreased current density. Drug sensitivity for mutant channels was similar to that of the wild-type channel. With the Luo-Rudy simulation model of action potentials, action potential durations of most mutant channels were between those of wild-type and cLQTS. CONCLUSIONS dLQTS had a similar positive mutation rate compared with cLQTS, whereas the functional changes of these mutations identified in dLQTS were mild. When I(Kr)-blocking agents produce excessive QT prolongation (dLQTS), the underlying genetic background of the dLQTS subject should also be taken into consideration, as would be the case with cLQTS; dLQTS can be regarded as a latent form of long-QT syndrome.
Collapse
Affiliation(s)
- Hideki Itoh
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schulze-Bahr E. Susceptibility genes & modifiers for cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:289-300. [DOI: 10.1016/j.pbiomolbio.2009.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Guo J, Massaeli H, Li W, Xu J, Luo T, Shaw J, Kirshenbaum LA, Zhang S. Identification of IKr and Its Trafficking Disruption Induced by Probucol in Cultured Neonatal Rat Cardiomyocytes. J Pharmacol Exp Ther 2007; 321:911-20. [PMID: 17377062 DOI: 10.1124/jpet.107.120931] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes a channel that conducts the rapidly activating delayed rectifier K(+) current (I(Kr)), which is important for cardiac repolarization. Mutations in hERG reduce I(Kr) and cause congenital long QT syndrome (LQTS). More frequently, common medications can reduce I(Kr) and cause LQTS as a side effect. Protein trafficking abnormalities are responsible for most hERG mutation-related LQTS and are recently recognized as a mechanism for drug-induced LQTS. Whereas hERG trafficking has been studied in recombinant expression systems, there has been no reported study on cardiac I(Kr) trafficking at the protein level. In the present study, we identified that I(Kr) is present in cultured neonatal rat ventricular myocytes and can be robustly recorded using Cs(+) as the charge carrier. We further discovered that 4,4'-(isopropylidenedithio)-bis-(2,6-di-t-butylphenol) (probucol), a cholesterol-lowering drug that induces LQTS, disrupted I(Kr) trafficking and prolonged the cardiac action potential duration. Probucol did not directly block I(Kr). Probucol also disrupted hERG trafficking and did not block hERG channels expressed in human embryonic kidney 293 cells. We conclude that probucol induces LQTS by disrupting ether-a-go-go-related gene trafficking, and that primary culture of neonatal rat cardiomyocytes represents a useful system for studying native I(Kr) trafficking.
Collapse
Affiliation(s)
- Jun Guo
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Roepke TK, Abbott GW. Pharmacogenetics and cardiac ion channels. Vascul Pharmacol 2006; 44:90-106. [PMID: 16344000 DOI: 10.1016/j.vph.2005.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 07/01/2005] [Indexed: 12/19/2022]
Abstract
Ion channels control electrical excitability in living cells. In mammalian heart, the opposing actions of Na(+) and Ca(2+) ion influx, and K(+) ion efflux, through cardiac ion channels determine the morphology and duration of action potentials in cardiac myocytes, thus controlling the heartbeat. The last decade has seen a leap in our understanding of the molecular genetic origins of inherited cardiac arrhythmia, largely through identification of mutations in cardiac ion channels and the proteins that regulate them. Further, recent advances have shown that 'acquired arrhythmias', which occur more commonly than inherited arrhythmias, arise due to a variety of environmental factors including side effects of therapeutic drugs and often have a significant genetic component. Here, we review the pharmacogenetics of cardiac ion channels-the interplay between genetic and pharmacological factors that underlie human cardiac arrhythmias.
Collapse
Affiliation(s)
- Torsten K Roepke
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, 520 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
33
|
Yamaguchi M, Shimizu M, Ino H, Terai H, Hayashi K, Kaneda T, Mabuchi H, Sumita R, Oshima T, Hoshi N, Higashida H. Compound heterozygosity for mutations Asp611→Tyr in KCNQ1 and Asp609→Gly in KCNH2 associated with severe long QT syndrome. Clin Sci (Lond) 2005; 108:143-50. [PMID: 15500450 DOI: 10.1042/cs20040220] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LQTS (long QT syndrome) is an inherited cardiac disorder characterized by prolongation of QT interval, torsades de pointes and sudden death. We have identified two heterozygous missense mutations in the KCNQ1 and KCNH2 (also known as HERG) genes [Asp611→Tyr (D611Y) in KCNQ1 and Asp609→Gly (D609G) in KCNH2] in a 2-year-old boy with LQTS. The aim of the present study was to characterize the contributions of the mutations in the KCNQ1 and KCNH2 genes relative to the clinical manifestations and electrophysiological properties of LQTS. Six of 11 carriers of D611Y in KCNQ1 had long QT intervals. D609G in KCNH2 was detected only in the proband. Studies on the electrophysiological alterations due to the two missense mutations revealed that the D611Y mutation in KCNQ1 did not show a significant suppression of the currents compared with wild-type, but the time constants of current activation in the mutants were increased compared with that in the wild-type. In contrast, the D609G mutation in KCNH2 showed a dominant-negative suppression. Our results suggest that the mild phenotype produced by the D611Y mutation in KCNQ1 became more serious by addition of the D609G mutation in KCNH2 in the proband.
Collapse
Affiliation(s)
- Masato Yamaguchi
- Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|