1
|
Vavrek SR, Nalbant EK, Konopek N, Decker NL, Fawzi AA, Mieler WF, Tichauer KM, Kang-Mieler JJ. Retinal Vascular Permeability in Diabetic Subjects without Retinopathy Compared with Mild Diabetic Retinopathy and Healthy Controls. OPHTHALMOLOGY SCIENCE 2025; 5:100636. [PMID: 39717762 PMCID: PMC11664132 DOI: 10.1016/j.xops.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 12/25/2024]
Abstract
Objective To investigate retinal vascular permeability mapping as a potential biomarker for diabetic retinopathy in subjects with diabetes with no signs of retinopathy and with mild nonproliferative retinopathy. Design This is a case-control study. Subjects Participants included 7 healthy controls, 22 subjects with diabetes mellitus and no clinical signs of retinopathy (DMnoDR), and 7 subjects with mild nonproliferative diabetic retinopathy (NPDR). Methods All participants underwent routine retinal fluorescein videoangiography (FVA). Each FVA dataset was analyzed with the dynamic tracer kinetic model (DTKM) method to estimate 5 parameters: extraction fraction (E), blood flow, arrival time, transit time, and rate constant defined via adiabatic solution. The DTKM method was based on indicator dilution theory, including sequential use of 2 prominent kinetic models: the plug flow model and the adiabatic approximation to the tissue homogeneity model. Main Outcome Measures Extraction fraction, i.e., the fluorescein dye leakage measured during 1 pass through surrounding retinal tissue, is extracted via DTKM method and directly relates to retinal vascular permeability. Thus, E represents the preclinical biomarker, retinal vascular permeability. Results The 3 diagnostic groups were found to have significantly different permeability (P = 0.003). Despite having no clinical signs of retinopathy, the mean rank of average vascular E was significantly higher in DMnoDR subjects compared with healthy controls (P = 0.04), as was the mean rank of E for mild NPDR subjects (P = 0.002). The average E for mild NPDR, DMnoDR, and control subjects was 0.10 ± 0.04, 0.07 ± 0.04, and 0.04 ± 0.01, respectively. Conclusions The vascular permeability extracted from FVA datasets using the DTKM method is a promising biomarker for detecting preclinical retinal pathology in patients with diabetes. Longitudinal studies are ongoing to explore the ability of this biomarker to distinguish those subjects with diabetes who will progress to clinically apparent retinopathy from those who will not. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Sarah R. Vavrek
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Elif Kayaalp Nalbant
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Nicholas Konopek
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Nicole L. Decker
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amani A. Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - William F. Mieler
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | | |
Collapse
|
2
|
Park SK, Jung JY, Kim MH, Oh CM, Shin S, Ha E, Lee S, Jung MH, Ryoo JH. Changes in urine dipstick proteinuria and its relation to the risk of diabetic retinopathy and neuropathy. Endocrine 2024; 86:644-653. [PMID: 38907116 DOI: 10.1007/s12020-024-03928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Proteinuria is considered as a predictor for cardiovascular complications in diabetes mellitus (DM). However, no study has examined the association between changes in proteinuria and the risk of diabetic microvascular complications. METHODS Study participants were 71,825 DM patients who received urine dipstick test for proteinuria both in 2003-2004 and 2006-2007. They were categorized into four groups according to changes in proteinuria over 3 years (negative: negative → negative, resolved: proteinuria ≥ 1+ → negative, incident: negative → proteinuria ≥ 1+, persistent: proteinuria ≥ 1+ → proteinuria ≥ 1+). Cox-proportional hazard model was used in assessing the adjusted hazard ratios (HR) and 95% confidence interval (CI) for incidence of retinopathy, and neuropathy (adjusted HR [95% CI]). RESULT In all of DM patients, risk for comprehensive incidence of retinopathy and neuropathy increased in all types of proteinuria changes. In type 1 DM, HR for retinopathy and neuropathy generally increased in order of negative (reference), resolved (2.175 [1.150-4.114] and 1.335 [0.909-1.961]), incident (2.088 [1.185-3.680] and 1.753 [1.275-2.409]), and persistent proteinuria (1.314 [0.418-4.134] and 2.098 [1.274-3.455]). This pattern of relationship was similarly observed in type 2 DM for retinopathy and neuropathy: negative (reference), resolved (1.490 [1.082-2.051] and 1.164 [0.988-1.371]), incident (1.570 [1.161-2.123] and 1.291 [1.112-1.500]), and persistent proteinuria (2.309 [1.407-3.788] and 1.272 [0.945-1.712]). CONCLUSION Risk for diabetic retinopathy and neuropathy generally increased in order of negative, resolved, incident, and persistent proteinuria. Once manifested proteinuria was associated with the increased risk of diabetic retinopathy and neuropathy even after remission of proteinuria.
Collapse
Affiliation(s)
- Sung Keun Park
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Ju Young Jung
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Min-Ho Kim
- Ewha Medical Data Organization, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Chang-Mo Oh
- Departments of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Soonsu Shin
- Department of Occupational and Environment Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Eunhee Ha
- Department of Occupational and Environment Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Sangho Lee
- Department of Anesthesiology and Pain Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Min Hyung Jung
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Hong Ryoo
- Departments of Occupational and Environmental Medicine, School of Medicine, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
3
|
Barone V, Surico PL, Cutrupi F, Mori T, Gallo Afflitto G, Di Zazzo A, Coassin M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024; 12:2346. [PMID: 39457658 PMCID: PMC11505591 DOI: 10.3390/biomedicines12102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetic eye disease (DED) encompasses a range of ocular complications arising from diabetes mellitus, including diabetic retinopathy, diabetic macular edema, diabetic keratopathy, diabetic cataract, and glaucoma. These conditions are leading causes of visual impairments and blindness, especially among working-age adults. Despite advancements in our understanding of DED, its underlying pathophysiological mechanisms remain incompletely understood. Chronic hyperglycemia, oxidative stress, inflammation, and neurodegeneration play central roles in the development and progression of DED, with immune-mediated processes increasingly recognized as key contributors. This review provides a comprehensive examination of the complex interactions between immune cells, inflammatory mediators, and signaling pathways implicated in the pathogenesis of DED. By delving in current research, this review aims to identify potential therapeutic targets, suggesting directions of research for future studies to address the immunopathological aspects of DED.
Collapse
Affiliation(s)
- Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Department of Ophthalmology, University of California San Diego, La Jolla, CA 92122, USA
| | - Gabriele Gallo Afflitto
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00128 Rome, Italy;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy; (V.B.); (F.C.); (T.M.); (A.D.Z.); (M.C.)
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
4
|
Ruan W, Zhou X, Li J, Liu H, Wang T, Zhang G, Lin K. Type 2 diabetes mellitus and cardiovascular health: Evidence of causal relationships in a European ancestry population. ESC Heart Fail 2024; 11:3105-3119. [PMID: 38867366 PMCID: PMC11424321 DOI: 10.1002/ehf2.14877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS Type 2 diabetes mellitus (T2DM) is associated with increased cardiovascular disease (CVD) risk, but whether T2DM directly causes adverse cardiac remodelling is uncertain. We performed a comprehensive Mendelian randomization (MR) analysis to investigate the causal relevance of T2DM to CVD outcomes and cardiac structure/function. METHODS AND RESULTS Bidirectional two-sample MR was conducted using summary-level data from European-ancestry genome-wide association studies. The T2DM GWAS data included 80 154 cases and 853 816 controls from the DIAGRAM consortium. Outcomes included coronary artery disease (CAD), myocardial infarction (MI), stroke, heart failure, atrial fibrillation, and various quantitative cardiac imaging traits assessed by magnetic resonance imaging. MR analysis revealed causal associations between genetic predisposition to T2DM and increased risk of CAD (odds ratio [OR] 1.104, 95% confidence interval [CI] 1.078-1.130, P = 2.59e-16), MI (OR 1.129, 95% CI 1.094-1.166, P = 6.02e-14) and stroke (OR 1.086, 95% CI 1.064-1.109, P = 1.02e-14). These associations were validated in the FinnGen cohort (CAD: OR 1.117, 95% CI 1.075-1.158, P = 1.56e-9; MI: OR 1.132, 95% CI 1.083-1.184, P = 4.27e-8; stroke: OR 1.138, 95% CI 1.107-1.170, P = 3.52e-20). Multivariable MR show consistent findings (CAD: OR 1.063, 95% CI 1.031-1.097, P = 1.11e-4; MI: OR 1.088, 95% CI 1.042-1.135, P = 1.12e-4; stroke: OR 1.066, 95% CI 1.032-1.101, P = 1.18e-4) after adjusting for cardiometabolic traits. T2DM was causally associated with higher left ventricular mass index (β = 0.473, 95% CI 0.193 to 0.752, P = 0.001), lower indexed right atrial minimum (β = -0.048, 95% CI -0.073 to -0.022, P = 2.1e-5), and maximum (β = -0.042, 95% CI -0.065 to -0.019, P = 4.12e-5) areas. The effects on right atrial size remained significant after adjusting for risk factors (minimum area: β = -0.041, 95% CI -0.072 to -0.010, P = 0.009; maximum area: β = -0.039, 95% CI -0.069 to -0.008, P = 0.012). Both apolipoprotein A1 and SBP are important mediators in the causal relationship between T2DM and left ventricular mass index. No reverse causal associations were identified. CONCLUSIONS Our MR study demonstrates that genetic liability to T2DM plays causal roles in CAD, MI, stroke, and cardiac structure changes including left ventricular hypertrophy and reduced right atrial dimensions. These findings provide genetic evidence supporting glycaemic control in T2DM to mitigate cardiovascular complications and adverse cardiac remodelling.
Collapse
Affiliation(s)
- Weiqiang Ruan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xiaoqin Zhou
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Jing Li
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Huizhen Liu
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ting Wang
- Center of Biostatistics, Design, Measurement and Evaluation (CBDME), Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Guiying Zhang
- Research Center of Clinical Epidemiology and Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Ke Lin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
5
|
Salem NAB, Ismail WM, Hendawy SR, Abdelrahman AM, El-Refaey AM. Serum angiopoietin-2: a promising biomarker for early diabetic kidney disease in children and adolescents with type 1 diabetes. Eur J Pediatr 2024; 183:3853-3862. [PMID: 38884820 PMCID: PMC11322226 DOI: 10.1007/s00431-024-05637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Albuminuria has been considered the golden standard biomarker for diabetic kidney disease (DKD), but appears once significant kidney damage has already occurred. Angiopoietin-2 (Angpt-2) has been implicated in the development and progression of DKD in adults. We aimed to explore the association of serum Angpt-2 levels with DKD in children and adolescents with type 1 diabetes mellitus (T1DM) of short duration (3-5 years) and to evaluate the predictive power of serum Angpt-2 in the early detection of DKD prior to the microalbuminuric phase. The current cross-sectional study included 90 children divided into three age and sex-matched groups based on urinary albumin-to-creatinine ratio (UACR): microalbuminuric diabetic group (n = 30), non-albuminuric diabetic group (n = 30), and control group (n = 30). All participants were subjected to anthropometric measurements, serum Angpt-2 and fasting lipid profile (total cholesterol, triglycerides, LDL-C, HDL-C, and Non-HDL-C) assessment. Glomerular filtration rate was estimated based on serum creatinine (eGFR-Cr). Higher serum Angpt-2 levels were detected in both diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric diabetic group. There was no detected significant difference in eGFR-Cr values across the study groups. Serum Angpt-2 was positively correlated with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR, while UACR, HbA1c, and Non-HDL-C were independent predictors for serum Angpt-2. Serum Angpt-2 at level of 137.4 ng/L could discriminate between microalbuminuric and non-albuminuric diabetic groups with AUC = 0.960 and at level of 115.95 ng/L could discriminate between the non-albuminuric diabetic group and controls with AUC = 0.976.Conclusion: Serum Angpt-2 is a promising potent biomarker for the detection of early stage of DKD in childhood T1DM before albuminuria emerges. What is Known? • Urine albumin-to-creatinine ratio (UACR) and glomerular filtration rate (GFR) are the golden standard but late biomarkers for DKD. • Angiopoietin-2 has been implicated in the development and progression of DKD in adults with diabetes, but has not been explored in T1DM children with DKD. What is New? • Higher serum angiopoietin-2 was detected in diabetic groups compared to controls and in microalbuminuric compared to non-albuminuric group. • Angiopoietin-2 correlated positively with triglycerides, LDL, Non-HDL-C, HbA1c, and UACR. • Serum angiopoietin-2 is a promising early diagnostic biomarker for DKD in children with T1DM.
Collapse
Affiliation(s)
- Nanees Abdel-Badie Salem
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Wafaa M Ismail
- Mansoura University Children's Hospital, Mansoura, Egypt
| | - Shimaa R Hendawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf M Abdelrahman
- Department of Diagnostic Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Ahmed M El-Refaey
- Nephrology Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Sun Y, Dinenno FA, Tang P, Kontaridis MI. Protein tyrosine phosphatase 1B in metabolic and cardiovascular diseases: from mechanisms to therapeutics. Front Cardiovasc Med 2024; 11:1445739. [PMID: 39238503 PMCID: PMC11374623 DOI: 10.3389/fcvm.2024.1445739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) has emerged as a significant regulator of metabolic and cardiovascular disease. It is a non-transmembrane protein tyrosine phosphatase that negatively regulates multiple signaling pathways integral to the regulation of growth, survival, and differentiation of cells, including leptin and insulin signaling, which are critical for development of obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Given PTP1B's central role in glucose homeostasis, energy balance, and vascular function, targeted inhibition of PTP1B represents a promising strategy for treating these diseases. However, challenges, such as off-target effects, necessitate a focus on tissue-specific approaches, to maximize therapeutic benefits while minimizing adverse outcomes. In this review, we discuss molecular mechanisms by which PTP1B influences metabolic and cardiovascular functions, summarize the latest research on tissue-specific roles of PTP1B, and discuss the potential for PTP1B inhibitors as future therapeutic agents.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Frank A Dinenno
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Peiyang Tang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, United States
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Zuñiga-Mendoza SA, Zayas-Diaz E, Armenta-Velazquez VR, Silva-Baeza AA, Beltran-Ochoa JJ, Medina-Servin MA, Zavala-Cerna MG. Comparison of Small Blood Vessel Diameter with Intravascular Ultrasound and Coronary Angiography for Guidance of Percutaneous Coronary Intervention. Diagnostics (Basel) 2024; 14:1312. [PMID: 38928727 PMCID: PMC11202878 DOI: 10.3390/diagnostics14121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Major cardiovascular events (MACEs) are a cause of major mortality worldwide. The narrowing and blockage of coronary arteries with atherosclerotic plaques are diagnosed and treated with percutaneous coronary intervention (PCI). During this procedure, coronary angiography (CAG) remains the most widely used guidance modality for the evaluation of the affected blood vessel. The measurement of the blood vessel diameter is an important factor to consider in order to decide if stent colocation is suitable for the intervention. In this regard, a small blood vessel (<2.75 mm) is majorly left without stent colocation; however, small vessel coronary artery disease (SvCAD) is a significant risk factor for the recurrence of MACEs, maybe due to the lack of a standardized treatment related to the diameter of the affected blood vessel; therefore, a more precise measurement is needed. The use of CAG for the measurement of the blood vessel diameter has some important limitations that can be improved with the use of newer techniques such as intravascular ultrasound (IVUS), although at higher costs, which might explain its underuse. To address differences in blood vessel diameter measurements and identify specific cases where IVUS might be of additional benefit for the patient, we conducted a retrospective study in patients who underwent PCI for MACEs with affection for at least one small blood vessel. We compared the measurements of the affected small blood vessels' diameter obtained by CAG and IVUS to identify cases of reclassification of the affected blood vessel; additionally, we underwent a multivariate analysis to identify risk factors associated with blood vessel reclassification. We included information from 48 patients with a mean ± SD age of 69.1 ± 11.9 years; 70.8% were men and 29.2% were women. The mean diameter with CAG and IVUS was 2.1 mm (95% CI 1.9-2.2), and 2.8 (2.8-3.0), respectively. The estimated difference was of 0.8 mm (95% CI 0.7-0.9). We found a significant positive low correlation in diameter measurements of small blood vessels obtained with CAG and IVUS (r = 0.1242 p = 0.014). In total, 37 (77%) patients had a reclassification of the affected blood vessel with IVUS. In 21 cases, the affected blood vessel changed from a small to a medium size (2.75-3.00 mm), and in 15 cases, the affected vessel changed from a small to a large size (<3.00 mm). The Bland-Altman plot was used to evaluate agreement in measurements with CAG and IVUS. The change in blood vessel classification with IVUs was important for the decision of intervention and stent collocation. The only variable associated with reclassification of blood vessels after adjustment in a multivariate analysis was T2D (type 2 diabetes) (p = 0 0.035). Our findings corroborate that blood vessels might appear smaller with CAG, especially in patients with T2D; therefore, at least in these cases, the use of IVUS is recommended over CAG.
Collapse
Affiliation(s)
- Sergio A. Zuñiga-Mendoza
- Hospital Regional Valentin Gomez Farias, ISSSTE, Guadalajara 44340, Jalisco, Mexico; (S.A.Z.-M.); (J.J.B.-O.); (M.A.M.-S.)
- Unidad Académica Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (E.Z.-D.); (V.R.A.-V.); (A.A.S.-B.)
| | - Emanuel Zayas-Diaz
- Unidad Académica Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (E.Z.-D.); (V.R.A.-V.); (A.A.S.-B.)
| | - Victoria R. Armenta-Velazquez
- Unidad Académica Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (E.Z.-D.); (V.R.A.-V.); (A.A.S.-B.)
| | - Ana A. Silva-Baeza
- Unidad Académica Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (E.Z.-D.); (V.R.A.-V.); (A.A.S.-B.)
| | - Juan J. Beltran-Ochoa
- Hospital Regional Valentin Gomez Farias, ISSSTE, Guadalajara 44340, Jalisco, Mexico; (S.A.Z.-M.); (J.J.B.-O.); (M.A.M.-S.)
| | - Misael A. Medina-Servin
- Hospital Regional Valentin Gomez Farias, ISSSTE, Guadalajara 44340, Jalisco, Mexico; (S.A.Z.-M.); (J.J.B.-O.); (M.A.M.-S.)
| | - Maria G. Zavala-Cerna
- Unidad Académica Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico; (E.Z.-D.); (V.R.A.-V.); (A.A.S.-B.)
| |
Collapse
|
8
|
van der Velden AIM, Koudijs A, Kooijman S, Rietjens RGJ, Sol WMPJ, Avramut MC, Wang G, Rensen PCN, Rabelink TJ, van der Vlag J, van den Berg BM. Fasting mimicking diet in diabetic mice partially preserves glomerular endothelial glycocalyx coverage, without changing the diabetic metabolic environment. Am J Physiol Renal Physiol 2024; 326:F681-F693. [PMID: 38205540 DOI: 10.1152/ajprenal.00333.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosalie G J Rietjens
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wendy M P J Sol
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cristina Avramut
- Section of Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernard M van den Berg
- Einthoven Laboratory of Vascular and Regenerative Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Saleh NKM, Mohamed AEHA, Moussa MH, Assal Y, Lasheen NN. Garlic oil improves small intestinal motility in experimentally induced type II diabetes mellitus in female Wistar rats. PLoS One 2024; 19:e0301621. [PMID: 38630691 PMCID: PMC11023395 DOI: 10.1371/journal.pone.0301621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Diabetes mellitus adversely affects the contractile ability of the small intestine. However, there is a paucity of studies investigating the impact of garlic oil on small intestinal motility. This study aimed to evaluate the potential beneficial effects of garlic oil on type 2 diabetes mellitus in rats. Thirty-six adult female Wistar rats (n = 36) were divided into four groups: control, non-diabetic rats supplemented with garlic oil, diabetic rats, and diabetic rats treated with garlic oil. The rats were anesthetized using pentobarbitone (40 mg/kg BW); various motility parameters and oxidative markers were determined in small intestinal segments. Measurements were taken for naso-anal length, waist circumference, fasting blood glucose level (FBG), and plasma insulin level. Compared to the control group, the diabetic rats exhibited a reduction in the average force of contraction and motility index in all small intestinal segments. Furthermore, the rats exhibited a reduction in the average duration of muscle contraction only in the jejunum. The rats also exhibited hyperglycemia, insulin resistance, significant oxidative stress, and obesity. This was proven by changes in motility parameters, fasting blood glucose levels, HOMA-IR values, intestinal MDA levels, and waist circumference. The non-diabetic rats supplemented with garlic oil also exhibited a decrease in the average force of contraction and motility index in all small intestinal segments, despite having consistently higher Lee index and waist circumference values. However, the diabetic rats treated with garlic oil demonstrated improved small intestinal motility in nearly all small intestinal segments and a reduction in oxidative stress. In conclusion, rats with diabetes mellitus experienced a decrease in small intestinal motility, which is primarily driven by oxidative stress. Normal rats administered with garlic oil supplements exhibited similar effects. In contrast, garlic oil treatment in diabetic rats led to enhanced small intestinal motility and a notable anti-hyperglycemic effect, which can be attributed to the potent antioxidant properties of garlic oil.
Collapse
Affiliation(s)
| | | | | | - Yasmin Assal
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha N. Lasheen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
10
|
van der Velden AIM, IJpelaar DHT, Chandie Shaw PK, Pijl H, Vink H, van der Vlag J, Rabelink TJ, van den Berg BM. Role of dietary interventions on microvascular health in South-Asian Surinamese people with type 2 diabetes in the Netherlands: A randomized controlled trial. Nutr Diabetes 2024; 14:17. [PMID: 38600065 PMCID: PMC11006941 DOI: 10.1038/s41387-024-00275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND/OBJECTIVES We investigated whether dietary interventions, i.e. a fasting mimicking diet (FMD, Prolon®) or glycocalyx mimetic supplementation (EndocalyxTM) could stabilize microvascular function in Surinamese South-Asian patients with type 2 diabetes (SA-T2DM) in the Netherlands, a patient population more prone to develop vascular complications. SUBJECTS/METHODS A randomized, placebo controlled, 3-arm intervention study was conducted in 56 SA-T2DM patients between 18 and 75 years old, for 3 consecutive months, with one additional follow up measurement 3 months after the last intervention. Sublingual microcirculation was assessed with SDF-imaging coupled to the GlycoCheckTM software, detecting red blood cell velocity, capillary density, static and dynamic perfused boundary region (PBR), and the overall microvascular health score (MVHS). Linear mixed models and interaction analysis were used to investigate the effects the interventions had on microvascular function. RESULTS Despite a temporal improvement in BMI and HbA1c after FMD the major treatment effect on microvascular health was worsening for RBC-velocity independent PBRdynamic, especially at follow-up. Glycocalyx supplementation, however, reduced urinary MCP-1 presence and improved both PBRdynamic and MVHSdynamic, which persisted at follow-up. CONCLUSIONS We showed that despite temporal beneficial changes in BMI and HbA1c after FMD, this intervention is not able to preserve microvascular endothelial health in Dutch South-Asian patients with T2DM. In contrast, glycocalyx mimetics preserves the microvascular endothelial health and reduces the inflammatory cytokine MCP-1. CLINICAL STUDY REGISTRATION NCT03889236.
Collapse
Affiliation(s)
- Anouk I M van der Velden
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - Daphne H T IJpelaar
- Department of Internal Medicine and Nephrology, Green Heart Hospital, Gouda, The Netherlands
| | - Prataap K Chandie Shaw
- Department of Internal Medicine and Nephrology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Hanno Pijl
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), LUMC, Leiden, The Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- MicroVascular Health Solutions LLC, Alpine, Utah, USA
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory of Vascular and Regenerative Medicine, LUMC, Leiden, The Netherlands.
| |
Collapse
|
11
|
Chacar S, Abdi A, Almansoori K, Alshamsi J, Al Hageh C, Zalloua P, Khraibi AA, Holt SG, Nader M. Role of CaMKII in diabetes induced vascular injury and its interaction with anti-diabetes therapy. Rev Endocr Metab Disord 2024; 25:369-382. [PMID: 38064002 PMCID: PMC10943158 DOI: 10.1007/s11154-023-09855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 03/16/2024]
Abstract
Diabetes mellitus is a metabolic disorder denoted by chronic hyperglycemia that drives maladaptive structural changes and functional damage to the vasculature. Attenuation of this pathological remodeling of blood vessels remains an unmet target owing to paucity of information on the metabolic signatures of this process. Ca2+/calmodulin-dependent kinase II (CaMKII) is expressed in the vasculature and is implicated in the control of blood vessels homeostasis. Recently, CaMKII has attracted a special attention in view of its chronic upregulated activity in diabetic tissues, yet its role in the diabetic vasculature remains under investigation.This review highlights the physiological and pathological actions of CaMKII in the diabetic vasculature, with focus on the control of the dialogue between endothelial (EC) and vascular smooth muscle cells (VSMC). Activation of CaMKII enhances EC and VSMC proliferation and migration, and increases the production of extracellular matrix which leads to maladaptive remodeling of vessels. This is manifested by activation of genes/proteins implicated in the control of the cell cycle, cytoskeleton organization, proliferation, migration, and inflammation. Endothelial dysfunction is paralleled by impaired nitric oxide signaling, which is also influenced by CaMKII signaling (activation/oxidation). The efficiency of CaMKII inhibitors is currently being tested in animal models, with a focus on the genetic pathways involved in the regulation of CaMKII expression (microRNAs and single nucleotide polymorphisms). Interestingly, studies highlight an interaction between the anti-diabetic drugs and CaMKII expression/activity which requires further investigation. Together, the studies reviewed herein may guide pharmacological approaches to improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| | - Abdulhamid Abdi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Khalifa Almansoori
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jawaher Alshamsi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Ali A Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Stephen G Holt
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- SEHA Kidney Care, SEHA, Abu Dhabi, UAE
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice. Arterioscler Thromb Vasc Biol 2024; 44:826-842. [PMID: 38328937 PMCID: PMC10978286 DOI: 10.1161/atvbaha.123.319601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
13
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Neubauer-Geryk J, Wielicka M, Myśliwiec M, Zorena K, Bieniaszewski L. The Relationship between TNF-a, IL-35, VEGF and Cutaneous Microvascular Dysfunction in Young Patients with Uncomplicated Type 1 Diabetes. Biomedicines 2023; 11:2857. [PMID: 37893230 PMCID: PMC10604652 DOI: 10.3390/biomedicines11102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to analyze the relationship between immunological markers and the dysfunction of cutaneous microcirculation in young patients with type 1 diabetes. The study group consisted of 46 young patients with type 1 diabetes and no associated complications. Microvascular function was assessed with the use of nail fold capillaroscopy before and after implementing post-occlusive reactive hyperemia. This evaluation was then repeated after 12 months. Patients were divided into two subgroups according to their baseline median coverage (defined as the ratio of capillary surface area to surface area of the image area), which was established during the initial exam (coverageBASE). Additionally, the levels of several serum biomarkers, including VEGF, TNF-a and IL-35, were assessed at the time of the initial examination. HbA1c levels obtained at baseline and after a 12-month interval were also obtained. Mean HbA1c levels obtained during the first two years of the course of the disease were also analyzed. Patients with coverageBASE below 16.85% were found to have higher levels of VEGF and TNF-α, as well as higher levels of HbA1c during the first two years following diabetes diagnosis. Our results support the hypothesis that the development of diabetic complications is strongly influenced by metabolic memory and an imbalance of pro- and anti-inflammatory cytokines, regardless of achieving adequate glycemic control.
Collapse
Affiliation(s)
- Jolanta Neubauer-Geryk
- Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdansk, Poland; (M.W.); (L.B.)
| | - Melanie Wielicka
- Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdansk, Poland; (M.W.); (L.B.)
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Neonatology, Ann Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Małgorzata Myśliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Leszek Bieniaszewski
- Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdansk, Poland; (M.W.); (L.B.)
| |
Collapse
|
15
|
Wang D, Guo X, Wang W, Xiong K, Yuan M, Gong X, Li Y, Liang X, Huang Z, Zheng S, Huang W, Zuo C. Longitudinal Changes of Parafoveal Vessel Density in Diabetic Patients without Clinical Retinopathy Using Optical Coherence Tomography Angiography. Curr Eye Res 2023; 48:956-964. [PMID: 37326958 DOI: 10.1080/02713683.2023.2227363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE The purpose of this study was to identify the rate of parafoveal vessel density (VD) changes associated with the progression from non-diabetic retinopathy (NDR) to early stages of DR over a year. METHODS This longitudinal cohort study enrolled diabetic patients from the Guangzhou community in China. The patients with NDR at baseline were included and underwent comprehensive examinations at baseline and after 1 year. A commercial OCTA device (Triton Plus, Topcon, Tokyo, Japan) was employed to quantify the parafoveal VD in the superficial and deep capillary plexuses. The rates of change in parafoveal VD over time in the incident DR and NDR groups were compared after a year. RESULTS A total of 448 NDR patients were included in the study. Among them, 382 (83.2%) were stable and 66 (14.4%) developed incident DR during the 1-year follow-up. The average parafoveal VD in the superficial capillary plexus (SCP) reduced significantly more quickly in the incident DR group than in the NDR group (-1.95 ± 0.45%/year vs. -0.45 ± 0.19/year, p = 0.002). The VD reduction rate for the deep capillary plexus (DCP) was not significantly different for the groups (p = 0.156). CONCLUSIONS The incident DR group experienced a significantly faster reduction in parafoveal VD in the SCP compared with the stable group. Our findings further provide supporting evidence that parafoveal VD in the SCP may be used as an early indicator of the pre-clinical stages of DR.
Collapse
Affiliation(s)
- Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xiao Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Kun Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Meng Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xia Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Yuting Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Zhihong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Shaoyang Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Wenyong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Ocular Diseases. Guangzhou Diabetic Eye Study Group, Guangzhou, China
| |
Collapse
|
16
|
Mamilla M, Yartha SGR, Tuli R, Konipineni S, Rayaprolu DT, Borgharkar G, Kalluru PKR, Thugu TR. Role of Magnesium in Diabetic Nephropathy for Better Outcomes. Cureus 2023; 15:e43076. [PMID: 37692668 PMCID: PMC10484355 DOI: 10.7759/cureus.43076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease worldwide, resulting from uncontrolled diabetes. Oxidative stress plays a critical role in the pathophysiology of DN, leading to cellular damage and disease progression. Magnesium, an essential mineral, has emerged as a potential therapeutic agent due to its antioxidative, anti-inflammatory, and antifibrotic properties. An extensive literature search was conducted on Medline using the keywords "Diabetic nephropathy," "Magnesium," and "Chronic Kidney Disease," and the results published after 2000 were exclusively studied to build this review. This review aims to summarize the role of magnesium in DN and explore its therapeutic potential. Magnesium acts as a cofactor for antioxidant enzymes, directly scavenges reactive oxygen species, and enhances the expression of antioxidant proteins. Furthermore, magnesium exhibits anti-inflammatory effects by suppressing pro-inflammatory cytokine production and inhibiting inflammatory signaling pathways. Magnesium supplementation has been shown to reduce oxidative stress markers and improve antioxidant enzyme activities in clinical studies. Additionally, magnesium has been found to mitigate renal fibrosis, maintain tubular integrity and function, improve endothelial function, and modulate renal hemodynamics. Although limited clinical trials suggest the renoprotective effects of magnesium in DN, further research is needed to determine the optimal dosage, duration, and long-term effects of magnesium supplementation. Despite existing drawbacks and gaps in the literature, magnesium holds promise as adjunctive therapy for DN by targeting oxidative stress and preserving renal function.
Collapse
Affiliation(s)
- Mahesh Mamilla
- Internal Medicine, Sri Venkateswara Medical College, Tirupati, IND
| | | | - Richa Tuli
- Internal Medicine, School of Medicine, Xiamen University, Xiamen, CHN
| | - Sunil Konipineni
- Internal Medicine, Zaporizhzhia State Medical University, Zaporizhzhia, UKR
| | | | - Gargi Borgharkar
- Public Health, University of Alabama at Birmingham, Birmingham, USA
| | | | - Thanmai Reddy Thugu
- Internal Medicine, Sri Padmavathi Medical College for Women, Sri Venkateswara Institute of Medical Sciences, Tirupati, IND
| |
Collapse
|
17
|
Witham MD, Granic A, Pearson E, Robinson SM, Sayer AA. Repurposing Drugs for Diabetes Mellitus as Potential Pharmacological Treatments for Sarcopenia - A Narrative Review. Drugs Aging 2023:10.1007/s40266-023-01042-4. [PMID: 37486575 PMCID: PMC10371965 DOI: 10.1007/s40266-023-01042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Sarcopenia, the age-related loss of muscle strength and mass or quality, is a common condition with major adverse consequences. Although the pathophysiology is incompletely understood, there are common mechanisms between sarcopenia and the phenomenon of accelerated ageing seen in diabetes mellitus. Drugs currently used to treat type 2 diabetes mellitus may have mechanisms of action that are relevant to the prevention and treatment of sarcopenia, for those with type 2 diabetes and those without diabetes. This review summarises shared pathophysiology between sarcopenia and diabetes mellitus, including the effects of advanced glycation end products, mitochondrial dysfunction, chronic inflammation and changes to the insulin signalling pathway. Cellular and animal models have generated intriguing, albeit mixed, evidence that supports possible beneficial effects on skeletal muscle function for some classes of drugs used to treat diabetes, including metformin and SGLT2 inhibitors. Most human observational and intervention evidence for the effects of these drugs has been derived from populations with type 2 diabetes mellitus, and there is a need for intervention studies for older people with, and at risk of, sarcopenia to further investigate the balance of benefit and risk in these target populations. Not all diabetes treatments will be safe to use in those without diabetes because of variable side effects across classes. However, some agents [including glucagon-like peptide (GLP)-1 receptor agonists and SGLT2 inhibitors] have already demonstrated benefits in populations without diabetes, and it is these agents, along with metformin, that hold out the most promise for further investigation in sarcopenia.
Collapse
Affiliation(s)
- Miles D Witham
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK.
| | - Antoneta Granic
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ewan Pearson
- Division of Population Health and Genomics, Dundee Medical School, University of Dundee, Dundee, UK
| | - Sian M Robinson
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Avan A Sayer
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
18
|
Periasamy R, Patel DD, Boye SL, Boye SE, Lipinski DM. Improving retinal vascular endothelial cell tropism through rational rAAV capsid design. PLoS One 2023; 18:e0285370. [PMID: 37167304 PMCID: PMC10174500 DOI: 10.1371/journal.pone.0285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Vascular endothelial cells (VEC) are essential for retinal homeostasis and their dysfunction underlies pathogenesis in diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD). Studies have shown that recombinant adeno-associated virus (rAAV) vectors are effective at delivering new genetic material to neural and glial cells within the retina, but targeting VECs remains challenging. To overcome this limitation, herein we developed rAAV capsid mutant vectors with improved tropism towards retinal VEC. rAAV2/2, 2/2[QuadYF-TV], and rAAV2/9 serotype vectors (n = 9, capsid mutants per serotype) expressing GFP were generated by inserting heptameric peptides (7AA) designed to increase endothelial targeting at positions 588 (2/2 and 2/2[QuadYF-TV] or 589 (2/9) of the virus protein (VP 1-3). The packaging and transduction efficiency of the vectors were assessed in HEK293T and bovine VECs using Fluorescence microscopy and flow cytometry, leading to the identification of one mutant, termed EC5, that showed improved endothelial tropism when inserted into all three capsid serotypes. Intra-ocular and intravenous administration of EC5 mutants in C57Bl/6j mice demonstrated moderately improved transduction of the retinal vasculature, particularly surrounding the optic nerve head, and evidence of sinusoidal endothelial cell transduction in the liver. Most notably, intravenous administration of the rAAV2/2[QuadYF-TV] EC5 mutant led to a dramatic and unexpected increase in cardiac muscle transduction.
Collapse
Affiliation(s)
- Ramesh Periasamy
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dwani D. Patel
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanford L. Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Shannon E. Boye
- Department of Pediatrics, Division of Cellular and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Daniel M. Lipinski
- Department of Ophthalmology and Visual Science, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology, Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
19
|
Zhang X, Ohayon-Steckel L, Coppin E, Johny E, Dasari A, Florentin J, Vasamsetti S, Dutta P. Epidermal Growth Factor Receptor in Hepatic Endothelial Cells Suppresses MCP-1-Dependent Monocyte Recruitment in Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1363-1371. [PMID: 36946774 PMCID: PMC10121888 DOI: 10.4049/jimmunol.2200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Insulin resistance is a compromised response to insulin in target tissues such as liver. Emerging evidence shows that vascular endothelial cells (ECs) are critical in mediating glucose metabolism. However, how liver ECs can regulate inflammation in the setting of insulin resistance is still unknown. Using genome-wide transcriptome analysis of ECs isolated from diabetic mice, we found enrichment of the genes involved in epidermal growth factor receptor (Egfr) signaling. In line with this, hepatic sinusoidal ECs in diabetic mice had elevated levels of Egfr expression. Interestingly, we found an increased number of hepatic myeloid cells, especially macrophages, and systemic glucose intolerance in Cdh5Cre/+Egfrfl/fl mice lacking Egfr in ECs compared with littermate control mice with type II diabetes. Egfr deficiency upregulated the expression of MCP-1 in hepatic sinusoidal ECs. This resulted in augmented monocyte recruitment and macrophage differentiation in Cdh5Cre/+Egfrfl/fl mice compared with littermate control mice as determined by a mouse model of parabiosis. Finally, MCP-1 neutralization and hepatic macrophage depletion in Cdh5Cre/+Egfrfl/fl mice resulted in a reduced number of hepatic macrophages and ameliorated glucose intolerance compared with the control groups. Collectively, these results demonstrate a protective endothelial Egfr signaling in reducing monocyte-mediated hepatic inflammation and glucose intolerance in type II diabetic mice.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lee Ohayon-Steckel
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emilie Coppin
- Regeneration in Hematopoiesis, Institute for Immunology, TU Dresden, Dresden, Germany
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ankush Dasari
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sathish Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, 15213
| |
Collapse
|
20
|
Hyun YJ, Park SY, Kim JY. The effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal tract in vitro and in vivo. Food Sci Biotechnol 2023; 32:371-379. [PMID: 36778085 PMCID: PMC9905455 DOI: 10.1007/s10068-022-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
This study aimed to evaluate the effect of fermented rice germ extracts on the inhibition of glucose uptake in the gastrointestinal (GI) tract. Samples were prepared by extracting rice germ fermented with Lactobacillus plantarum with 30% ethanol (RG_30E) or 50% ethanol (RG_50E). Ferulic acid was determined as the active component in the samples. RG_30E significantly inhibited glucose uptake and mRNA expression of GLUT2 and SGLT1 to a larger extent than RG_50E in Caco-2 cells. A single oral administration was performed on C57BL/6 mice to confirm which substrate (glucose, sucrose, or maltose) the sample inhibited absorption of, improving postprandial blood glucose elevation. As a result, RG_30E resulted in significantly lower blood glucose levels and AUC after glucose and sucrose administration. Therefore, fermented rice germ extracted with 30% ethanol regulates glucose uptake through glucose transporters and can be expected to alleviate postprandial hyperglycemia in the GI tract. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01198-6.
Collapse
Affiliation(s)
- Ye Ji Hyun
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
21
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. P53 Acetylation Exerts Critical Roles In Pressure Overload Induced Coronary Microvascular Dysfunction and Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527691. [PMID: 36798200 PMCID: PMC9934706 DOI: 10.1101/2023.02.08.527691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure with preserved ejection fraction. At this point, there are no proven treatments for CMD. We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98/117/161/162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve coronary microvascular dysfunction and prevent the progression of hypertensive cardiac hypertrophy and heart failure. Wild-type (WT) and p534KR mice were subjected to pressure overload (PO) by transverse aortic constriction to induce cardiac hypertrophy and heart failure (HF). Echocardiography measurements revealed improved cardiac function together with reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve (CFR) were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and glucose transporters, as well as the level of fructose-2,6-biphosphate; increased PFK-1 activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice as well as in p534KR mice after TAC. In vitro, p534KR significantly improved endothelial cell (EC) glycolytic function and mitochondrial respiration, and enhanced EC proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved CFR and rescued cardiac dysfunction in SIRT3 KO mice. Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling, and may provide a promising approach to improve hypertension-induced coronary microvascular dysfunction (CMD) and to prevent the transition of cardiac hypertrophy to heart failure.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
22
|
Piperine mitigates aortic vasculopathy in streptozotocin-diabetic rats via targeting TXNIP-NLRP3 signaling. Life Sci 2023; 314:121275. [PMID: 36496033 DOI: 10.1016/j.lfs.2022.121275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Several in vivo and in vitro studies reported a favorable effect of piperine (PIP) on vascular function. However, the potential impacts of PIP on macrovasculopathy in streptozotocin (STZ)-diabetic rats have not yet been studied. Thirty-two Sprague Dawley rats were used (n= 8/group). STZ-administered rats (50 mg/kg once, i.p) received PIP (30 mg/kg/day, orally) or its vehicle starting from day 15 till the end of the study (10 weeks). Control groups consisted of age-matched normal rats with or without PIP treatment. Metabolic and oxidative stress parameters were biochemically determined. Aortas were histologically examined. Ex vivo aortic reactivity to phenylephrine and acetylcholine was studied. Components of the TXNIP-NLRP3 pathway were assessed using real-time PCR, ELISA, and immunohistochemistry. Two-way ANOVA was used to compare groups. Statistical significance was set at P < 0.05. PIP treatment of diabetic rats significantly reduced levels of fasting glycemia, HbA1c, and serum AGEs, TGs, TC, and LDL-C compared to control diabetic group. PIP diminished aortic endothelial denudation and fibrous tissue proliferation compared to control STZ aortas. PIP lessened aortic contractility to phenylephrine and improved aortic relaxation to acetylcholine relative to untreated STZ group. PIP administration to diabetic rats elicited significant enhancements in GSH and SOD levels, eNOS expression, and total nitrate/nitrite bioavailability compared to untreated STZ rats. Moreover, PIP attenuated aortic contents of ROS, MDA, TXNIP protein and mRNA, NF-κB p65 mRNA, NLRP3 mRNA, IL-1β protein, and caspase-3 and TNF-α expressions compared to untreated STZ levels. In conclusion, PIP might ameliorate diabetes-associated functional and structural aortic remodeling by targeting TXNIP-NLRP3 signaling.
Collapse
|
23
|
Mohammed MM, Alnajim EK, Hussein MAA, Hadi NR. RISK FACTORS FOR DIABETIC NEPHROPATHY IN DIABETES MELLITUS TYPE 1. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:145-154. [PMID: 36883503 DOI: 10.36740/wlek202301120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE The aim: To find the risk factors of microalbuminuria and estimated Glomerular Filtration Rate (eGFR) in patients with type 1 diabetes mellitus. PATIENTS AND METHODS Materials and methods: One hundred ten patients of type 1 diabetes mellitus in this cross-sectional study at diabetic and endocrinology center in Al-Najaf during the period from September 2021 to March 2022. All patients were asked about sociodemographic characteristics (age, gender, smoking, duration of DM type1, family history of DM type1), measured (body mass index BMI, blood pressure) and laboratory investigations done to all patients (G.U.E, s. creatinine, lipid profile, HBA1C, calculated estimated Glomerular Filtration Rate (eGFR) and Spot Urine Albumin-Creatinine Ratio (ACR). RESULTS Results: Out of 110 patients, 62 male and 48 female, the mean age was (22±12). The patients with microalbuminuria (ACR ≥ 30 mg/g) show statistically significant with increase HBA1C, duration of DM type 1, total cholesterol (T.C), low density lipoprotein (LDL), triglycerides (TG) and family history of DM type 1, while there were not statistically significant with age, gender, smoking, BMI, eGFR, high density lipoprotein (HDL) and hypertension. Patients with eGFR<90mL/min/1.73m2 show statistically significant with increase HBA1C, duration of DM type1, LDL, TG, T.C, while significantly decrease in HDL and there were not statistically significant with age, gender, smoking, family history of DM type 1, BMI and hypertension. CONCLUSION Conclusions: The degree of glycemic control, duration of type1 (DM) and dyslipidemia were associated with increased microalbuminuria and reduced eGFR (nephropathy). Family history of DM type1 was risk factor for microalbuminuria.
Collapse
Affiliation(s)
| | | | | | - Najah R Hadi
- FACULTY OF MEDICINE, UNIVERSITY OF KUFA, NAJAF, IRAQ
| |
Collapse
|
24
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
25
|
Spione F, Arevalos V, Gabani R, Ortega-Paz L, Gomez-Lara J, Jimenez-Diaz V, Jimenez M, Jiménez-Quevedo P, Diletti R, Pineda J, Campo G, Silvestro A, Maristany J, Flores X, Oyarzabal L, Bastos-Fernandez G, Iñiguez A, Serra A, Escaned J, Ielasi A, Tespili M, Lenzen M, Gonzalo N, Bordes P, Tebaldi M, Biscaglia S, Al-Shaibani S, Romaguera R, Gomez-Hospital JA, Rodes-Cabau J, Serruys PW, Sabaté M, Brugaletta S. Impact of Diabetes on 10-Year Outcomes Following ST-Segment-Elevation Myocardial Infarction: Insights From the EXAMINATION-EXTEND Trial. J Am Heart Assoc 2022; 11:e025885. [PMID: 36444863 PMCID: PMC9851431 DOI: 10.1161/jaha.122.025885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Long-term outcomes of ST-segment-elevation myocardial infarction in patients with diabetes have been barely investigated. The objective of this analysis from the EXAMINATION-EXTEND (10-Years Follow-Up of the EXAMINATION trial) trial was to compare 10-year outcomes of patients with ST-segment-elevation myocardial infarction with and without diabetes. Methods and Results Of the study population, 258 patients had diabetes and 1240 did not. The primary end point was patient-oriented composite end point of all-cause death, any myocardial infarction, or any revascularization. Secondary end points were the individual components of the primary combined end point, cardiac death, target vessel myocardial infarction, target lesion revascularization, and stent thrombosis. All end points were adjusted for potential confounders. At 10 years, patients with diabetes showed a higher incidence of patient-oriented composite end point compared with those without (46.5% versus 33.0%; adjusted hazard ratio [HR], 1.31 [95% CI, 1.05-1.61]; P=0.016) mainly driven by a higher incidence of any revascularization (24.4% versus 16.6%; adjusted HR, 1.61 [95% CI, 1.19-2.17]; P=0.002). Specifically, patients with diabetes had a higher incidence of any revascularization during the first 5 years of follow-up (20.2% versus 12.8%; adjusted HR, 1.57 [95% CI, 1.13-2.19]; P=0.007) compared with those without diabetes. No statistically significant differences were found with respect to the other end points. Conclusions Patients with ST-segment-elevation myocardial infarction who had diabetes had worse clinical outcome at 10 years compared with those without diabetes, mainly driven by a higher incidence of any revascularizations in the first 5 years. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04462315.
Collapse
Affiliation(s)
- Francesco Spione
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain.,Department of Advanced Biomedical Sciences University of Naples Federico II Naples Italy
| | - Victor Arevalos
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| | - Rami Gabani
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| | - Luis Ortega-Paz
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain.,Division of Cardiology University of Florida College of Medicine Jacksonville FL
| | - Josep Gomez-Lara
- Hospital Universitari de Bellvitge Institut d'Investigació Biomedica de Bellvitge Hospitalet de Llobregat Spain
| | - Victor Jimenez-Diaz
- Hospital Alvaro Cunqueiro Vigo Spain.,Cardiovascular Research Group Galicia Sur Health Research Institute SERGAS-UVIGO Vigo Spain
| | | | | | | | | | - Gianluca Campo
- Cardiology Unit Azienda Ospedaliera Universitaria di Ferrara Cona Italy
| | | | | | | | - Loreto Oyarzabal
- Hospital Universitari de Bellvitge Institut d'Investigació Biomedica de Bellvitge Hospitalet de Llobregat Spain
| | - Guillermo Bastos-Fernandez
- Hospital Alvaro Cunqueiro Vigo Spain.,Cardiovascular Research Group Galicia Sur Health Research Institute SERGAS-UVIGO Vigo Spain
| | - Andrés Iñiguez
- Hospital Alvaro Cunqueiro Vigo Spain.,Cardiovascular Research Group Galicia Sur Health Research Institute SERGAS-UVIGO Vigo Spain
| | | | | | | | | | | | | | | | - Matteo Tebaldi
- Cardiology Unit Azienda Ospedaliera Universitaria di Ferrara Cona Italy
| | - Simone Biscaglia
- Cardiology Unit Azienda Ospedaliera Universitaria di Ferrara Cona Italy
| | | | - Rafael Romaguera
- Hospital Universitari de Bellvitge Institut d'Investigació Biomedica de Bellvitge Hospitalet de Llobregat Spain
| | - Joan Antoni Gomez-Hospital
- Hospital Universitari de Bellvitge Institut d'Investigació Biomedica de Bellvitge Hospitalet de Llobregat Spain
| | - Josep Rodes-Cabau
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| | - Patrick W Serruys
- International Center of Circulatory Health Imperial College London London United Kingdom.,Department of Cardiology National University of Ireland Galway Ireland
| | - Manel Sabaté
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV) Instituto de Salud Carlos III Madrid Spain
| | - Salvatore Brugaletta
- Hospital Clínic, Cardiovascular Clinic Institute Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| |
Collapse
|
26
|
Park HR, Lee SE, Yi Y, Moon S, Yoon H, Kang CW, Kim J, Park YS. Integrated analysis of miRNA and mRNA expression profiles in diabetic mouse kidney treated to Korean Red Ginseng. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Adipokine Levels in Men with Coronary Atherosclerosis on the Background of Abdominal Obesity. J Pers Med 2022; 12:jpm12081248. [PMID: 36013196 PMCID: PMC9409903 DOI: 10.3390/jpm12081248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Obesity is associated with dyslipidemia, and excess body fat is associated with unfavorable levels of adipokines and markers of inflammation. The goal of research. To study the level of adipokines and markers of inflammation, their associations with unstable atherosclerotic plaques in men with coronary atherosclerosis on the background of abdominal obesity. Materials and methods. The study involved 82 men aged 40–77 years with coronary atherosclerosis after endarterectomy from the coronary arteries. We divided all men into two groups: 37 men (45.1%) with unstable atherosclerotic plaques, and 45 men (54.9%) who had stable plaques. Obesity was established at a BMI of ≥30 kg/m2. The levels of adipokines and markers of inflammation in the blood were determined by multiplex analysis. Results. In patients with obesity and unstable plaques, the levels of C-peptide, TNFa and IL-6 were 1.8, 1.6, and 2.8 times higher, respectively, than in patients with obesity and stable plaques. The chance of having an unstable plaque increases with an increase in TNFa by 49% in obese patients and decreases with an increase in insulin by 3% in non-obese patients. Conclusions. In men with coronary atherosclerosis and obesity, unstable atherosclerotic plaques in the coronary arteries are directly associated with the level of TNF-α.
Collapse
|
28
|
Li Y, Li T, Zhou Z, Xiao Y. Emerging roles of Galectin-3 in diabetes and diabetes complications: A snapshot. Rev Endocr Metab Disord 2022; 23:569-577. [PMID: 35083706 PMCID: PMC9156459 DOI: 10.1007/s11154-021-09704-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Galectin-3 is a member of the galectin family, widely expressed in immune cells and plays a role mainly in inflammation, autoimmunity, apoptosis, and chemotaxis. We summarized the roles of Galectin-3 in diabetes and its complications, as well as the underlying mechanisms. Clinical research has determined that the circulating level of Galectin-3 is closely related to diabetes and its complications, thus it is promising to use Galectin-3 as a predictor and biomarker for those diseases. Galectin-3 also may be considered as an ideal therapeutic target, which has broad prospects in the prevention and treatment of diabetes and its complications, especially macrovascular and microvascular complications.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, 176, West Labour Road, Changsha, 410011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China.
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China.
| |
Collapse
|
29
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
30
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
31
|
Li Y, Yi M, Deng X, Li W, Chen Y, Zhang X. Evaluation of the Thyroid Characteristics and Correlated Factors in Hospitalized Patients with Newly Diagnosed Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:873-884. [PMID: 35340987 PMCID: PMC8947801 DOI: 10.2147/dmso.s355727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) and thyroid dysfunction (TD) are two closely associated disorders. The objective of the present study was to investigate the thyroid status and the relationships between thyroid hormones, diabetic complications and metabolic parameters in hospitalized patients with newly diagnosed type 2 DM (T2DM). METHODS This was an observational cross-sectional study, conducting on 340 patients with newly diagnosed T2DM who were admitted to ward of endocrinology department and 120 matched individuals without diabetes. Anthropometric, clinical and biochemical data were collected. Spearman correlation coefficients were calculated to evaluate the correlations between thyroid hormones and other variables. Factors associated with diabetic nephropathy (DN) was analyzed with multivariate logistic regression. RESULTS Levels of free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) were significantly lower in patients with T2DM as compared to control group without diabetes. The prevalence of TD was 21.2% in patients with diabetes, higher than that in controls (4.2%). The low T3 syndrome was the most frequent TD, shown in 14.7% of patients. The presence of diabetic complications DN, diabetic ketosis or ketoacidosis), metabolic and demographic factors, including age, glycemic control and insulin resistance were factors significantly associated with levels of thyroid hormones. FT3 level was inversely correlated with the level of urinary total protein (mg/24h) and the presence of DN. Multivariate analysis indicated low FT3 level as a strong independent risk factor (OR = 0.364, P = 0.001) for DN. CONCLUSION TD is not rarely seen in hospitalized patients with newly diagnosed T2DM. Diabetic complications and diabetes-related metabolic and demographic factors are related to thyroid hormone levels. Decreased FT3 is strongly correlated with the presence of DN.
Collapse
Affiliation(s)
- Yanli Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Min Yi
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoyi Deng
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yimei Chen
- Health Examination Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Correspondence: Xiaodan Zhang, Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Haizhu District, Guangzhou, 510260, People’s Republic of China, Email
| |
Collapse
|
32
|
Li Z, Tang Z, Wang Y, Liu Z, Wang S, Wang Y, Wang G, Wang Y, Guo J. Impact of prediabetes and duration of diabetes on radial artery atherosclerosis in acute coronary syndrome patients: An optical coherence tomography study. Diab Vasc Dis Res 2022; 19:14791641221078108. [PMID: 35184608 PMCID: PMC8866250 DOI: 10.1177/14791641221078108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Prediabetes (PDM) and diabetes mellitus (DM) are common among acute coronary syndrome (ACS) patients. The present study evaluated the association between diabetes status and radial artery (RA) atherosclerosis using optical coherence tomography (OCT) in ACS patients. METHODS A total of 335 ACS patients who underwent RA OCT were categorized into the DM group, the PDM group, and the normal glucose metabolism (NGM) group. OCT characteristics and clinical variables were compared. RESULTS RA atherosclerotic plaques were more frequent in the PDM and DM groups than in the NGM group (38.7% vs. 33.3% vs. 16.1%, p = 0.001). Lipid and calcified plaque occurrence were significantly more common in the DM group, followed by the PDM and NGM groups (19.3% vs. 14.6% vs. 6.5%, p = 0.027; 11.8% vs. 6.5% vs. 1.1%, p = 0.009). The prevalence of microvessels in the PDM group was significantly higher (42.7% vs 23.7%, p = 0.017) than in the NGM group but was comparable to the DM group. Multivariate analysis revealed that HbA1c level and age were independent predictors of RA plaque formation and eccentric intimal hyperplasia (all p<0.05). CONCLUSIONS RA atherosclerosis characteristics differ according to diabetes status. HbA1c level could be a useful marker for RA atherosclerosis progression in ACS patients.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Zhe Tang
- Department of Cardiology, Beijing
Anzhen Hospital, Capital Medical
University, Beijing, China
| | - Yujie Wang
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Zijing Liu
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Senhu Wang
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Yuntao Wang
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Guozhong Wang
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Yuping Wang
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
| | - Jincheng Guo
- Department of Cardiology, Beijing
Luhe Hospital, Capital Medical
University, Beijing, China
- Jincheng Guo, Department of Cardiology,
Beijing Luhe hospital, Capital Medical University, No.82, Xinhua South Road,
Tongzhou District, Beijing 101149, China.
| |
Collapse
|
33
|
Ulutas HG, Guclu M, Aslanci ME, Karatas G. The relationship between carotid intima-media thickness and microvascular changes in retinal zones and optic disc in patients with type 1 diabetes mellitus. Eur J Ophthalmol 2021; 32:2328-2337. [PMID: 34851200 DOI: 10.1177/11206721211064024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE The aim of this study was to detect early retinal vascular changes with optical coherence tomography angiography (OCTA) in type 1 diabetes mellitus (T1DM) patients without diabetic retinopathy and to evaluate the correlation of the results with carotid intima-media thickness (IMT). DESIGN This is a case-control and cross-sectional study. METHODS This study included 38 adult patients with T1DM, and 38 age and gender-matched healthy controls. Retinal and optic disc (OD) measurements were taken using OCTA. The carotid artery IMT of each patient was measured using Doppler ultrasonography. Superficial capillary plexus (SCP) and deep capillary plexus (DCP) vessel density, foveal avascular zone (FAZ), non-flow area (NFA) and foveal density (FD) were analysed in the fovea centred 6 × 6 mm macular area. The superficial capillary plexus and DCP were also scanned centred on the peripapillary region. The correlations between OCTA measurements and carotid IMT, duration of DM and haemoglobin A1c levels in patients with T1DM were evaluated. RESULTS The mean values for carotid IMT were significantly higher in diabetic patients than in controls (p < 0.001). The mean values for vessel density SCP, DCP and OD were significantly lower in the diabetic group (p < 0.05). There were correlations between the carotid IMT and duration of T1DM and the evaluated parameters of OCTA. CONCLUSION Microvascular changes in the SCP and DCP in patients with T1DM without DR offer important data. OCTA can be used to detect early microvascular changes in patients with T1DM without DR. In addition, a relationship was found between SCP vascular dropout and carotid IMT.
Collapse
Affiliation(s)
- Hafize Gokben Ulutas
- Department of Ophthalmology, University of Health Sciences, 147003Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Metin Guclu
- Department of Endocrinology, University of Health Sciences, Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Mehmet Emin Aslanci
- Department of Ophthalmology, University of Health Sciences, 147003Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Gokhan Karatas
- Department of Radiology, University of Health Sciences, Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
34
|
Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021; 11:metabo11120807. [PMID: 34940565 PMCID: PMC8708656 DOI: 10.3390/metabo11120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus and insulin resistance feature substantial modifications of the lipoprotein profile, including a higher proportion of smaller and denser low-density lipoprotein (LDL) particles. In addition, qualitative changes occur in the composition and structure of LDL, including changes in electrophoretic mobility, enrichment of LDL with triglycerides and ceramides, prolonged retention of modified LDL in plasma, increased uptake by macrophages, and the formation of foam cells. These modifications affect LDL functions and favor an increased risk of cardiovascular disease in diabetic individuals. In this review, we discuss the main findings regarding the structural and functional changes in LDL particles in diabetes pathophysiology and therapeutic strategies targeting LDL in patients with diabetes.
Collapse
Affiliation(s)
- Isabella Bonilha
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Eric Hajduch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, F-75006 Paris, France;
| | - Beatriz Luchiari
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
| | - Wilson Nadruz
- Cardiology Division, Cardiovascular Pathophysiology Laboratory, State University of Campinas (Unicamp), Campinas 13083-887, Brazil;
| | - Wilfried Le Goff
- Unité de Recherche sur les Maladies Cardiovasculaires, le Métabolisme et la Nutrition, ICAN, Inserm, Sorbonne Université, F-75013 Paris, France;
| | - Andrei C. Sposito
- Cardiology Division, Atherosclerosis and Vascular Biology Laboratory (AtheroLab), State University of Campinas (Unicamp), Campinas 13083-887, Brazil; (I.B.); (B.L.)
- Correspondence: ; Tel.: +55-19-3521-7098; Fax: +55-19-3289-410
| |
Collapse
|
35
|
Velayutham V, Benitez-Aguirre PZ, Liew G, Wong TY, Jenkins AJ, Craig ME, Donaghue KC. Baseline extended zone retinal vascular calibres associate with sensory nerve abnormalities in adolescents with type 1 diabetes: A prospective longitudinal study. Diabet Med 2021; 38:e14662. [PMID: 34324736 DOI: 10.1111/dme.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The relationship between retinal vascular calibres (RVCs) and diabetic neuropathy is unclear. We investigated associations between RVCs and sensory nerve abnormality in adolescents with type 1 diabetes. RESEARCH DESIGN AND METHODS In a prospective longitudinal study of 889 adolescents with type 1 diabetes with baseline mean (±SD) age 14.1 ± 1.5 years and HbA1c IFCC 69.4 ± 14.1 mmol/mol (8.6 ± 1.3%), RVCs were assessed from baseline retinal photographs: 'central zone' calibres, summarized as central retinal arteriolar (CRAE) and venular equivalents (CRVE) and 'extended zone' calibres: mean width of arterioles (MWa) and venules (MWv). Sensory nerve abnormality was defined as at least one abnormal sensory quantitative testing from two thermal and two vibration threshold tests measured at foot every 1-2 years. Associations between baseline RVC and sensory nerve function were examined using generalized estimating equations and cumulative risk by Cox regression analyses. RESULTS During a median study follow-up of 6.2 [IQR 3.7-10.4] years, sensory nerve abnormality was found in 27% of adolescents. Narrower extended zone calibre quartiles but not CRAE or CRVE quartiles were independently associated with sensory nerve abnormality: MWa (Q1 vs. Q2-4: OR 1.35 (95% CI 1.02, 1.61) and MWv (Q1 vs. Q2-4: 1.31 (1.03, 1.7)), after adjusting for HbA1c , duration and blood pressure. Similarly, in Cox regression, the narrowest quartiles were associated with sensory nerve abnormality: MWa hazard ratio (HR) 1.5 (1.3, 1.8) and MWv 1.6 (1.4, 1.9). CONCLUSIONS Narrower extended zone retinal calibres were associated with sensory nerve abnormality in adolescents with type 1 diabetes and may present useful biomarkers to understand the pathophysiology of neuropathy.
Collapse
Affiliation(s)
- Vallimayil Velayutham
- The Children's Hospital at Westmead, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Campbelltown Hospital, Campbelltown, NSW, Australia
| | - Paul Z Benitez-Aguirre
- The Children's Hospital at Westmead, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gerald Liew
- The Children's Hospital at Westmead, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Alicia J Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Maria E Craig
- The Children's Hospital at Westmead, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Kim C Donaghue
- The Children's Hospital at Westmead, Westmead, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Evaluation of Vascular Endothelial Function in Children with Type 1 Diabetes Mellitus. J Clin Med 2021; 10:jcm10215065. [PMID: 34768589 PMCID: PMC8584312 DOI: 10.3390/jcm10215065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease belongs to the major complications of diabetes mellitus. Here, hyperglycaemia is a key metabolic factor that causes endothelial dysfunction and vascular changes within the renal glomerulus. The aim of the present study was to assess the function of the vascular endothelium in children with type 1 diabetes mellitus (type 1 diabetes) by measuring selected endothelial lesion markers in blood serum. The selected markers of endothelial lesions (sVCAM-1, sICAM-1, sE-SELECTIN, PAI-1, ADMA and RAGE) were assayed by the immunoenzymatic ELISA method. The study involved 66 patients (age: 5–18 years) with type 1 diabetes and 21 healthy controls (age: 5–16 years). In the type 1 diabetes patients, significantly higher concentrations of all of the assayed markers were observed compared to the healthy controls (p < 0.001). All of the evaluated markers positively correlated with the disease duration, the age, and BMI of the patients, while only PAI-1 and sE-SELECTIN were characteristic of linear correlations with the estimated glomerular filtration rate (eGFR). It can be concluded that endothelial inflammatory disease occurs in the early stages of type 1 diabetes mellitus in children. The correlations between PAI-1, sE-SELECTIN, and eGFR suggest an advantage of these markers over other markers of endothelial dysfunction as prognostic factors for kidney dysfunction in children with type 1 diabetes.
Collapse
|
37
|
Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021; 289:5440-5462. [PMID: 34496138 DOI: 10.1111/febs.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anna Zoccarato
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Adam A Nabeebaccus
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Rafael R Oexner
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| |
Collapse
|
38
|
Ballasy NN, Jadli AS, Edalat P, Kang S, Fatehi Hassanabad A, Gomes KP, Fedak PWM, Patel VB. Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. FASEB J 2021; 35:e21878. [PMID: 34469050 DOI: 10.1096/fj.202100684rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the most prevalent cause of morbidity and mortality in diabetes. Epicardial adipose tissue (EAT) lies in direct contact with the myocardium and coronary arteries and can influence cardiac (patho) physiology through paracrine signaling pathways. This study hypothesized that the proteins released from EAT represent a critical molecular link between the diabetic state and coronary artery endothelial cell dysfunction. To simulate type 2 diabetes-associated metabolic and inflammatory status in an ex vivo tissue culture model, human EAT samples were treated with a cocktail composed of high glucose, high palmitate, and lipopolysaccharide (gplEAT) and were compared with control EAT (conEAT). Compared to conEAT, gplEAT showed a markedly increased gene expression profile of proinflammatory cytokines, corroborating EAT inflammation, a hallmark feature observed in patients with type 2 diabetes. Luminex assay of EAT-secretome identified increased release of various proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interferon-alpha 2 (IFNA2), interleukin 1 beta (IL1B), interleukin 5 (IL5), interleukin 13 (IL13), and CCL5, among others, in response to high glucose, high palmitate, and lipopolysaccharide. Conditioned culture media was used to collect the concentrated proteins (CPs). In response to gplEAT-CPs, human coronary artery endothelial cells (HCAECs) exhibited an inflammatory endothelial cell phenotype, featuring a significantly increased gene expression of proinflammatory cytokines and cell surface expression of VCAM-1. Moreover, gplEAT-CPs severely decreased Akt-eNOS signaling, nitric oxide production, and angiogenic potential of HCAECs, when compared with conEAT-CPs. These findings indicate that EAT inflammation may play a key role in coronary artery endothelial cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Noura N Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Tota Ł, Matejko B, Morawska-Tota M, Pilch W, Mrozińska S, Pałka T, Klupa T, Malecki MT. Changes in Oxidative and Nitrosative Stress Indicators and Vascular Endothelial Growth Factor After Maximum-Intensity Exercise Assessing Aerobic Capacity in Males With Type 1 Diabetes Mellitus. Front Physiol 2021; 12:672403. [PMID: 34426731 PMCID: PMC8379017 DOI: 10.3389/fphys.2021.672403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 10/26/2022] Open
Abstract
In type 1 diabetes mellitus (T1DM), chronic hyperglycemia causes reactive oxygen and nitrogen species production. Exercise alters the oxidant-antioxidant balance. We evaluated the aerobic capacity and oxidant-antioxidant balance changes after maximum-intensity exercise in T1DM patients. The study involved 30 T1DM participants and 23 controls. The patients' average age was 23.4 ± 5.1 years, with a body mass index of 24.3 ± 3.1 kg m-2 and with satisfactory glycemic control. Among the controls, the respective values equaled 24.7 ± 2.9 years and 22.9 ± 2.1 kg m-2. Aerobic capacity was assessed with a treadmill test. Peak minute oxygen uptake was significantly lower in T1DM compared with the controls (44.7 ± 5.7 vs. 56.0 ± 7.3 mL kg-1 min-1). The total oxidant capacity measured by total oxidative status/total oxidative capacity (TOS/TOC) equaled 321.5 ± 151 μmol L-1 before and 380.1 ± 153 μmol L-1 after exercise in T1DM, and 164.1 ± 75 and 216.6 ± 75 μmol L-1 in the controls (p < 0.05 for all comparisons). A significant difference in the ratio of total antioxidant status/total antioxidant capacity (TAS/TAC) between the groups after the treadmill test was observed (p < 0.05). Nitrosative stress indicators where significantly higher in the T1DM group both before and after the exercise. In conclusion, diabetic patients demonstrated a lower aerobic capacity. The TOS/TOC and nitrosative stress indicators were significantly higher in T1DM before and after the test.
Collapse
Affiliation(s)
- Łukasz Tota
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Bartłomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.,University Hospital in Krakow, Krakow, Poland
| | - Małgorzata Morawska-Tota
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, Poland
| | - Wanda Pilch
- Institute of Basic Research, Department of Chemistry and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Sandra Mrozińska
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.,University Hospital in Krakow, Krakow, Poland
| | - Tomasz Pałka
- Department of Physiology and Biochemistry, University of Physical Education in Krakow, Krakow, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.,University Hospital in Krakow, Krakow, Poland
| | - Maciej T Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland.,University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
40
|
Marcovecchio ML. Importance of Identifying Novel Biomarkers of Microvascular Damage in Type 1 Diabetes. Mol Diagn Ther 2021; 24:507-515. [PMID: 32613289 DOI: 10.1007/s40291-020-00483-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microvascular complications of type 1 diabetes, which primarily include diabetic kidney disease, retinopathy, and neuropathy, are characterized by damage to the microvasculature of the kidney, retina, and neurons. The pathogenesis of these complications is multifactorial, and several pathways are implicated. These complications are often silent during their early stages, and once symptoms develop, there might be little to be done to cure them. Thus, there is a strong need for novel biomarkers to identify individuals at risk of microvascular complications at an early stage and guide the implementation of new therapeutic options for preventing their development and progression. Recent advancements in proteomics, metabolomics, and other 'omics' have led to the identification of several potential biomarkers of microvascular complications. However, biomarker discovery has met several challenges and, up to now, there are no new biomarkers that have been implemented into clinical practice. This highlights the need for further work in this area to move towards better diagnostic and prognostic approaches.
Collapse
Affiliation(s)
- M Loredana Marcovecchio
- Department of Paediatrics, University of Cambridge, Level 8, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
41
|
Lee JH, Samsuzzaman M, Park MG, Park SJ, Kim SY. Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int J Biol Macromol 2021; 187:409-421. [PMID: 34271050 DOI: 10.1016/j.ijbiomac.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022]
Abstract
The presence of excess glucose promotes hemoglobin glycation via the biochemical modification of hemoglobin by dicarbonyl products. However, the precise effects of Hb-AGEs in human umbilical vein endothelial cells (HUVECs) are not known to date. Therefore, we investigated the tentative effects of Hb-AGEs in HUVECs. Initially, we used the AGE formation assay to examine the selectivity of MGO toward various proteins. Among all proteins, MGO-Hb-AGEs formation was higher compared to the formation of other dicarbonyl-mediated AGEs. Our next data demonstrated that treatment with 0.5 mg/mL of Hb-AGEs-4w significantly reduced cell viability in HUVECs. Further, we evaluated the role of MGO in conformational and structural changes in Hb. The results showed that Hb demonstrated a highly altered conformation upon incubation with MGO. Moreover, Hb-AGEs-4w treatment strongly increased ROS production, and decreased mitochondrial membrane potential in HUVECs, and moderately reduced the expression of phosphorylated forms of p-38 and JNK. We observed that Hb-AGEs-4w treatment increased the number of apoptotic cells and the Bax/Bcl-2 ratio and cleaved the nuclear enzyme PARP in HUVECs. Finally, Hb-AGEs also inhibited migration and proliferation of HUVECs, thus be physiologically significant in endothelial dysfunction. Taken together, our data suggest that Hb-AGEs may play a critical role in inducing vascular endothelial cell damage. Therefore, this study may provide a plausible explanation for the potential Hb-AGEs in human endothelial cell dysfunction of diabetic patients.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Md Samsuzzaman
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Company, # Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
42
|
Tsai PS, Chiu CY, Sheu ML, Yang CY, Lan KC, Liu SH. Advanced glycation end products activated endothelial-to-mesenchymal transition in pancreatic islet endothelial cells and triggered islet fibrosis in diabetic mice. Chem Biol Interact 2021; 345:109562. [PMID: 34153226 DOI: 10.1016/j.cbi.2021.109562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
Advanced glycation end products (AGEs) are associated with the pathogenesis of diabetic vascular complications. Induction of the endothelial-to-mesenchymal transition (EndMT) is associated with the pathogenesis of fibrotic diseases. The roles of AGEs in islet EndMT induction and diabetes-related islet microvasculopathy and fibrosis remain unclear. This study investigated the pathological roles of AGEs in islet EndMT induction and fibrosis in vitro and in vivo. Non-cytotoxic concentrations of AGEs upregulated the protein expression of fibronectin, vimentin, and α-smooth muscle actin (α-SMA) (mesenchymal/myofibroblast markers) and downregulated the protein expression of vascular endothelial (VE)-cadherin and cluster of differentiation (CD) 31 (endothelial cell markers) in cultured mouse pancreatic islet endothelial cells, which was prevented by the AGE cross-link breaker alagebrium chloride. In streptozotocin-induced diabetic mice, the average islet area and islet immunoreactivities for insulin and CD31 were decreased and the islet immunoreactivities for AGEs and α-SMA and fibrosis were increased, which were prevented by the AGE inhibitor aminoguanidine. Immunofluorescence double staining showed that α-SMA-positive staining co-localized with CD31-positive staining in the diabetic islets, which was effectively prevented by aminoguanidine. These results demonstrate that AGEs can induce EndMT in islet endothelial cells and islet fibrosis in diabetic mice, suggesting that AGE-induced EndMT may contribute to islet fibrosis in diabetes.
Collapse
Affiliation(s)
- Pei-Shan Tsai
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Yuan Chiu
- Center of Consultation, Center for Drug Evaluation, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
Ortillon J, Le Bail JC, Villard E, Léger B, Poirier B, Girardot C, Beeske S, Ledein L, Blanchard V, Brieu P, Naimi S, Janiak P, Guillot E, Meloni M. High Glucose Activates YAP Signaling to Promote Vascular Inflammation. Front Physiol 2021; 12:665994. [PMID: 34149446 PMCID: PMC8213390 DOI: 10.3389/fphys.2021.665994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background and Aims The YAP/TAZ signaling is known to regulate endothelial activation and vascular inflammation in response to shear stress. Moreover, YAP/TAZ signaling plays a role in the progression of cancers and renal damage associated with diabetes. However, whether YAP/TAZ signaling is also implicated in diabetes-associated vascular complications is not known. Methods The effect of high glucose on YAP/TAZ signaling was firstly evaluated in vitro on endothelial cells cultured under static conditions or subjected to shear stress (either laminar or oscillatory flow). The impact of diabetes on YAP/TAZ signaling was additionally assessed in vivo in db/db mice. Results In vitro, we found that YAP was dephosphorylated/activated by high glucose in endothelial cells, thus leading to increased endothelial inflammation and monocyte attachment. Moreover, YAP was further activated when high glucose was combined to laminar flow conditions. YAP was also activated by oscillatory flow conditions but, in contrast, high glucose did not exert any additional effect. Interestingly, inhibition of YAP reduced endothelial inflammation and monocyte attachment. Finally, we found that YAP is also activated in the vascular wall of diabetic mice, where inflammatory markers are also increased. Conclusion With the current study we demonstrated that YAP signaling is activated by high glucose in endothelial cells in vitro and in the vasculature of diabetic mice, and we pinpointed YAP as a regulator of high glucose-mediated endothelial inflammation and monocyte attachment. YAP inhibition may represent a potential therapeutic opportunity to improve diabetes-associated vascular complications.
Collapse
Affiliation(s)
- Jeremy Ortillon
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | | | - Elise Villard
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Bertrand Léger
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Bruno Poirier
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | | | - Sandra Beeske
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Laetitia Ledein
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Véronique Blanchard
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Patrice Brieu
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Souâd Naimi
- Molecular Histopathology and Bio-Imaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Philip Janiak
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Etienne Guillot
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| | - Marco Meloni
- Cardiovascular Research Unit, Sanofi R&D, Chilly-Mazarin, France
| |
Collapse
|
44
|
Zhou CD, Seah RL, Papatheodorou SI. The role of biomarker ykl-40 in risk stratification and diagnosis of gestational diabetes mellitus: A systematic review and meta-analysis. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
Role of Blood Stasis Syndrome of Kampo Medicine in the Early Pathogenic Stage of Atherosclerosis: A Retrospective Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5557392. [PMID: 34135979 PMCID: PMC8175131 DOI: 10.1155/2021/5557392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/15/2021] [Accepted: 04/26/2021] [Indexed: 12/01/2022]
Abstract
In Kampo medicine, blood stasis (BS) syndrome is strongly associated with microangiopathy and can lead to atherosclerosis. Vascular endothelial dysfunction (VED), evaluated through flow-mediated dilation (FMD), plays an important role in the early stages of atherosclerosis. However, the association of BS syndrome with VED, as determined using FMD, has not been reported. This study investigated the association between BS syndrome and VED using FMD. Forty-one patients with normal glucose tolerance or impaired glucose tolerance (IGT) and without macrovascular complications were evaluated using FMD from May 2017 to August 2017. Based on the BS score, the patients were divided into the non-BS (n = 19) and BS syndrome (n = 22) groups. Physical and background characteristics, physiological function test results, and laboratory data were compared. Univariate analysis revealed that FMD and a history of dyslipidemia/IGT were significantly different between the two groups (p < 0.05). Multiple logistic regression analysis showed that BS syndrome was significantly associated with FMD (odds ratio: 6.26; p=0.03) after adjusting for the history of dyslipidemia/IGT. The receiver operating characteristic curve showed that the area under the curve for BS syndrome (0.74; p < 0.001) and history of IGT (p < 0.007) provided good diagnostic accuracy for FMD. The area under the curve for “BS syndrome + IGT” showed very good accuracy (0.80; p < 0.0001) and was higher than that for BS syndrome or IGT alone. In conclusion, the results of this study suggest that the BS score in Kampo medicine could be a useful tool for detecting the early pathogenic stages of atherosclerosis.
Collapse
|
46
|
Paquin J, Lagacé JC, Brochu M, Dionne IJ. Exercising for Insulin Sensitivity - Is There a Mechanistic Relationship With Quantitative Changes in Skeletal Muscle Mass? Front Physiol 2021; 12:656909. [PMID: 34054574 PMCID: PMC8149906 DOI: 10.3389/fphys.2021.656909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle (SM) tissue has been repetitively shown to play a major role in whole-body glucose homeostasis and overall metabolic health. Hence, SM hypertrophy through resistance training (RT) has been suggested to be favorable to glucose homeostasis in different populations, from young healthy to type 2 diabetic (T2D) individuals. While RT has been shown to contribute to improved metabolic health, including insulin sensitivity surrogates, in multiple studies, a universal understanding of a mechanistic explanation is currently lacking. Furthermore, exercised-improved glucose homeostasis and quantitative changes of SM mass have been hypothesized to be concurrent but not necessarily causally associated. With a straightforward focus on exercise interventions, this narrative review aims to highlight the current level of evidence of the impact of SM hypertrophy on glucose homeostasis, as well various mechanisms that are likely to explain those effects. These mechanistic insights could provide a strengthened rationale for future research assessing alternative RT strategies to the current classical modalities, such as low-load, high repetition RT or high-volume circuit-style RT, in metabolically impaired populations.
Collapse
Affiliation(s)
- Jasmine Paquin
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Christophe Lagacé
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Brochu
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle J Dionne
- Research Centre on Aging, Affiliated With CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada.,Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
47
|
Guan Y, Wang X. Salvianic Acid A Regulates High-Glucose-Treated Endothelial Progenitor Cell Dysfunction via the AKT/Endothelial Nitric Oxide Synthase (eNOS) Pathway. Med Sci Monit 2021; 27:e928153. [PMID: 33770068 PMCID: PMC8008975 DOI: 10.12659/msm.928153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The primary cause of death in patients with diabetes mellitus (DM) is diabetic macroangiopathy, a complication that related to the function and number of endothelial progenitor cells (EPCs). Salvianic acid A (SAA) is a water-soluble active ingredient of Salvia miltiorrhiza, a traditional Chinese medicine used to treat cardiovascular diseases. The purpose of this study was to explore the effects of SAA on the function of rat EPCs cultured in vitro in a high-glucose environment. MATERIAL AND METHODS Bone marrow-derived EPCs from 40 Sprague-Dawley rats were identified by fluorescence staining. Cell viability, apoptosis, tube formation, lactated dehydrogenase (LDH) release, and nitric oxide (NO) production were detected by 3-[4,5-dimethylthylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, flow cytometry, tube formation, LDH, and 3-amino,4-aminomethyl-2',7'-difluorescein, and diacetate assays, respectively. The expression levels of proteins were examined by western blotting. RESULTS Cultured EPCs showed a cobblestone morphology and positive expression of Dil-ac-LDL and FITC-UEA-1. High glucose impaired cell viability. Different concentrations of SAA had no significant effect on EPC viability. SAA reduced the apoptosis rate and LDH release, but promoted tube formation, viability, and NO production in high-glucose-treated EPCs. The ratios of p-AKT/AKT and p-eNOS/eNOS in high-glucose-treated EPCs were elevated by SAA. Phosphoinositide 3-kinase inhibitor LY294002 blocked the rescue effects of SAA on high-glucose-treated EPCs. CONCLUSIONS SAA protected EPCs against high-glucose-induced dysfunction via the AKT/eNOS pathway.
Collapse
Affiliation(s)
- Yanhua Guan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland).,Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
48
|
Ihenacho UK, Meacham KA, Harwig MC, Widlansky ME, Hill RB. Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease. Front Endocrinol (Lausanne) 2021; 12:660095. [PMID: 33841340 PMCID: PMC8027123 DOI: 10.3389/fendo.2021.660095] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial fission protein 1 (Fis1) was identified in yeast as being essential for mitochondrial division or fission and subsequently determined to mediate human mitochondrial and peroxisomal fission. Yet, its exact functions in humans, especially in regard to mitochondrial fission, remains an enigma as genetic deletion of Fis1 elongates mitochondria in some cell types, but not others. Fis1 has also been identified as an important component of apoptotic and mitophagic pathways suggesting the protein may have multiple, essential roles. This review presents current perspectives on the emerging functions of Fis1 and their implications in human health and diseases, with an emphasis on Fis1's role in both endocrine and neurological disorders.
Collapse
Affiliation(s)
| | - Kelsey A. Meacham
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Megan Cleland Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E. Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - R. Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
49
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
50
|
Lee JH, Ji SH, Jung JY, Lee MY, Lee CK. High Blood Glucose Levels Affect Auditory Brainstem Responses after Acoustic Overexposure in Rats. Audiol Neurootol 2021; 26:257-264. [PMID: 33735864 DOI: 10.1159/000511448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a systemic disease characterized by hyperglycemia and several pathological changes. DM-related hearing dysfunctions are associated with histological changes. Here, we explore hearing function and synaptic changes in the inner hair cells (IHCs) of rats with streptozotocin (STZ)-induced diabetes. METHODS STZ was injected to trigger diabetes. Rats with DM were exposed to narrow-band noise (105 dB SPL) for 2 h, and hearing function was analyzed 1, 3, 7, and 14 days later. Both the hearing threshold and the peak 1 amplitude of the tone auditory brainstem response were assessed. After the last functional test, animals were sacrificed for histological evaluation. RESULTS We found no changes in the baseline hearing threshold; however, the peak 1 amplitude at the low frequency (4 kHz) was significantly higher in both DM groups than in the control groups. The hearing threshold had not fully recovered at 14 days after diabetic rats were exposed to noise. The peak 1 amplitude at the higher frequencies (16 and 32 kHz) was significantly larger in both DM groups than in the control groups. The histological analysis revealed that the long-term DM group had significantly more synapses in the 16 kHz region than the other groups. CONCLUSIONS We found that high blood glucose levels increased peak 1 amplitudes without changing the hearing threshold. Diabetic rats were less resilient in threshold changes and were less vulnerable to peak 1 amplitude and synaptic damage than control animals.
Collapse
Affiliation(s)
- Jae-Hun Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sang Hee Ji
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Jae Yun Jung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Young Lee
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Republic of Korea, .,Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, Cheonan, Republic of Korea,
| | - Chi-Kyou Lee
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|