1
|
Khan AW, Aziz M, Sourris KC, Lee MKS, Dai A, Watson AMD, Maxwell S, Sharma A, Zhou Y, Cooper ME, Calkin AC, Murphy AJ, Baratchi S, Jandeleit-Dahm KAM. The Role of Activator Protein-1 Complex in Diabetes-Associated Atherosclerosis: Insights From Single-Cell RNA Sequencing. Diabetes 2024; 73:1495-1512. [PMID: 38905153 DOI: 10.2337/db23-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Despite advances in treatment, atherosclerotic cardiovascular disease remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus, newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single-cell sequencing approach was used to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin-induced diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells (HAECs) and human THP-1-derived macrophages. We then performed a preclinical study using an activator protein-1 (AP-1) inhibitor in a diabetic Apoe-/- mouse model. Single-cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from individuals with diabetes compared with those without diabetes. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, the inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anna M D Watson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Scott Maxwell
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Arpeeta Sharma
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- School of Health & Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Australia
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Leibniz Institute for Diabetes Research, Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
2
|
Comarița IK, Tanko G, Anghelache IL, Georgescu A. The siRNA-mediated knockdown of AP-1 restores the function of the pulmonary artery and the right ventricle by reducing perivascular and interstitial fibrosis and key molecular players in cardiopulmonary disease. J Transl Med 2024; 22:137. [PMID: 38317144 PMCID: PMC10845748 DOI: 10.1186/s12967-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a complex multifactorial vascular pathology characterized by an increased pulmonary arterial pressure, vasoconstriction, remodelling of the pulmonary vasculature, thrombosis in situ and inflammation associated with right-side heart failure. Herein, we explored the potential beneficial effects of treatment with siRNA AP-1 on pulmonary arterial hypertension (PAH), right ventricular dysfunction along with perivascular and interstitial fibrosis in pulmonary artery-PA, right ventricle-RV and lung in an experimental animal model of monocrotaline (MCT)-induced PAH. METHODS Golden Syrian hamsters were divided into: (1) C group-healthy animals taken as control; (2) MCT group obtained by a single subcutaneous injection of 60 mg/kg MCT at the beginning of the experiment; (3) MCT-siRNA AP-1 group received a one-time subcutaneous dose of MCT and subcutaneous injections containing 100 nM siRNA AP-1, every two weeks. All animal groups received water and standard chow ad libitum for 12 weeks. RESULTS In comparison with the MCT group, siRNA AP-1 treatment had significant beneficial effects on investigated tissues contributing to: (1) a reduction in TGF-β1/ET-1/IL-1β/TNF-α plasma concentrations; (2) a reduced level of cytosolic ROS production in PA, RV and lung and notable improvements regarding the ultrastructure of these tissues; a decrease of inflammatory and fibrotic marker expressions in PA (COL1A/Fibronectin/Vimentin/α-SMA/CTGF/Calponin/MMP-9), RV and lung (COL1A/CTGF/Fibronectin/α-SMA/F-actin/OB-cadherin) and an increase of endothelial marker expressions (CD31/VE-cadherin) in PA; (4) structural and functional recoveries of the PA [reduced Vel, restored vascular reactivity (NA contraction, ACh relaxation)] and RV (enlarged internal cavity diameter in diastole, increased TAPSE and PRVOFs) associated with a decrease in systolic and diastolic blood pressure, and heart rate; (5) a reduced protein expression profile of AP-1S3/ pFAK/FAK/pERK/ERK and a significant decrease in the expression levels of miRNA-145, miRNA-210, miRNA-21, and miRNA-214 along with an increase of miRNA-124 and miRNA-204. CONCLUSIONS The siRNA AP-1-based therapy led to an improvement of pulmonary arterial and right ventricular function accompanied by a regression of perivascular and interstitial fibrosis in PA, RV and lung and a down-regulation of key inflammatory and fibrotic markers in MCT-treated hamsters.
Collapse
Affiliation(s)
- Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania
| | | | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of Romanian Academy, Bucharest, Romania.
| |
Collapse
|
3
|
Miteva K. On target inhibition of vascular smooth muscle cell phenotypic transition underpins TNF-OXPHOS-AP-1 as a promising avenue for anti-remodelling interventions in aortic dissection and rupture. Eur Heart J 2024; 45:306-308. [PMID: 37997934 DOI: 10.1093/eurheartj/ehad679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Zhang X, Ding X, Wang C, Le Q, Wu D, Song A, Huang G, Luo L, Luo Y, Yang X, Goins AE, Desai SP, Qiu C, Silva FD, Feldman LE, Zhou J, Spafford MF, Boyd NH, Prossnitz ER, Yang XO, Wang QA, Liu M. Depletion of JunB increases adipocyte thermogenic capacity and ameliorates diet-induced insulin resistance. Nat Metab 2024; 6:78-93. [PMID: 38191667 PMCID: PMC10954369 DOI: 10.1038/s42255-023-00945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
The coexistence of brown adipocytes with low and high thermogenic activity is a fundamental feature of brown adipose tissue heterogeneity and plasticity. However, the mechanisms that govern thermogenic adipocyte heterogeneity and its significance in obesity and metabolic disease remain poorly understood. Here we show that in male mice, a population of transcription factor jun-B (JunB)-enriched (JunB+) adipocytes within the brown adipose tissue exhibits lower thermogenic capacity compared to high-thermogenic adipocytes. The JunB+ adipocyte population expands in obesity. Depletion of JunB in adipocytes increases the fraction of adipocytes exhibiting high thermogenic capacity, leading to enhanced basal and cold-induced energy expenditure and protection against diet-induced obesity and insulin resistance. Mechanistically, JunB antagonizes the stimulatory effects of PPARγ coactivator-1α on high-thermogenic adipocyte formation by directly binding to the promoter of oestrogen-related receptor alpha, a PPARγ coactivator-1α downstream effector. Taken together, our study uncovers that JunB shapes thermogenic adipocyte heterogeneity, serving a critical role in maintaining systemic metabolic health.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Que Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Guixiang Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Aleyah E Goins
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Sharina P Desai
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Chengrui Qiu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Floyd D Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lily Elizabeth Feldman
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jianlin Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Michael F Spafford
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Nathan H Boyd
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Niu C, Zhang P, Zhang L, Lin D, Lai H, Xiao D, Liu Y, Zhuang R, Li M, Ma L, Ye J, Pan Y. Molecular targets and mechanisms of Guanxinning tablet in treating atherosclerosis: Network pharmacology and molecular docking analysis. Medicine (Baltimore) 2023; 102:e35106. [PMID: 37773840 PMCID: PMC10545342 DOI: 10.1097/md.0000000000035106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Guanxinning tablet (GXNT), a Chinese patent medicine, is composed of salvia miltiorrhiza bunge and ligusticum striatum DC, which may play the role of endothelial protection through many pathways. We aimed to explore the molecular mechanisms of GXNT against atherosclerosis (AS) through network pharmacology and molecular docking verification. METHODS The active ingredients and their potential targets of GXNT were obtained in traditional Chinese medicine systems pharmacology database and analysis platform and bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine databases. DrugBank, TTD, DisGeNET, OMIM, and GeneCards databases were used to screen the targets of AS. The intersection targets gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed in DAVID database. GXNT-AS protein-protein interaction network, ingredient-target network and herb-target-pathway network were constructed by Cytoscape. Finally, we used AutoDock for molecular docking. RESULTS We screened 65 active ingredients of GXNT and 70 GXNT-AS intersection targets. The key targets of protein-protein interaction network were AKT1, JUN, STAT3, TNF, TP53, IL6, EGFR, MAPK14, RELA, and CASP3. The Kyoto encyclopedia of genes and genomes pathway enrichment analysis showed that pathways in cancer, lipid and atherosclerosis, and PI3K-Akt signaling pathway were the main pathways. The ingredient-target network showed that the key ingredients were luteolin, tanshinone IIA, myricanone, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone. The results of molecular docking showed that tanshinone IIA, dihydrotanshinlactone, dan-shexinkum d, 2-isopropyl-8-methylphenanthrene-3,4-dione, miltionone I, deoxyneocryptotanshinone, Isotanshinone II and 4-methylenemiltirone all had good binding interactions with AKT1, EGFR and MAPK14. CONCLUSION The results of network pharmacology and molecular docking showed that the multiple ingredients within GXNT may confer protective effects on the vascular endothelium against AS through multitarget and multichannel mechanisms. AKT1, EGFR and MAPK14 were the core potential targets of GXNT against AS.
Collapse
Affiliation(s)
- Chaofeng Niu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Peiyu Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dingfeng Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haixia Lai
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Di Xiao
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Liu
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhuang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Li
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liyong Ma
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Ye
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Pan
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol 2023; 14:1224892. [PMID: 37483616 PMCID: PMC10361657 DOI: 10.3389/fimmu.2023.1224892] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
7
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
8
|
Yang G, Zhou S, He H, Shen Z, Liu Y, Hu J, Wang J. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy. Front Pharmacol 2022; 13:1022627. [PMID: 36523490 PMCID: PMC9744761 DOI: 10.3389/fphar.2022.1022627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2024] Open
Abstract
Background: According to the theory of traditional Chinese medicine, phlegm and blood stasis (PBS) is the pathological basis for coronary heart disease (CHD). This study aimed to explore the biological basis of PBS syndrome in CHD. Methods: Using a strategy that integrated RNA-seq, DIA-based proteomics, and untargeted metabolomics on 90 clinic samples, we constructed a "gene-protein-metabolite" network for CHD-PBS syndrome. We expanded the sample size and validated the differential genes and metabolites in the network through enzyme-linked immunosorbent assay. Results: Our findings revealed that the "gene-protein-metabolite" network of CHD-PBS syndrome included 33 mRNAs, four proteins, and 25 metabolites. JNK1, FOS, CCL2, CXCL8, PTGS2, and CSF1 were all poorly expressed in the PBS group during the sequencing stage, whereas arachidonic acid (AA) was highly expressed. During the validation stage, JNK1, AP-1, CCL2, and CXCL8 were poorly expressed, whereas PTGS2, CSF1, and AA were highly expressed. The area under the receiver operating curve was as follows: CSF1 [0.9635, 95%CI (0.9295, 0.9976)] >JNK1 [0.9361, 95% CI (0.8749, 0.9972)] >CXCL8 [0.8953, 95% CI (0.8222, 0.9684)] > CCL2 [0.8458, 95% CI (0.7676, 0.9241)] >AP-1 [0.7884, 95%CI (0.6869, 0.8899)]. The logistic regression model composed of CSF1 and JNK1 showed the greatest diagnostic value and significance for PBS syndrome. Conclusion: PBS syndrome is characterized by low levels of FOS, AP-1, CCL2, CXCL8, and JNK1 and elevated levels of PTGS2 and CSF1, implying that the AA metabolism is abnormal and that the JNK/AP-1 pathway is inhibited. PBS syndromes, as a subtype of CHD, may have unique molecular changes. Background. Globally, coronary heart disease (CHD) is the leading cause of death, and this would likely continue until 2030 (Mirzaei et al., 2009, 95, 740-746). According to the disease course, CHD can be classified as chronic stable CHD (or chronic coronary syndrome) and acute coronary syndrome (ACS) (Katus et al., 2017; Knuuti, 2019). Although stable CHD is not as lethal as ACS, it has a varied incidence range and patients with CHD have prolonged angina. Some symptoms of stable angina are alleviated with pharmacological therapy, but it cannot eliminate recurrent angina (Rousan et al., 2017). The clinical outcomes were not significantly improved in patients who underwent revascularization compared with those who received optimal pharmacological therapy (Shaw et al., 2008; Antman and Braunwald, 2020). A bottleneck appears to exist in CHD treatment, and traditional Chinese medicine (TCM) can act as a favorable complement. Because of its individualized treatment approach, TCM is widely practiced in eastern civilizations (Teng et al., 2016). TCM has become a principal complement in western countries (Wieland et al., 2013). Like "disease" is used in western medicine, "syndrome" is used in TCM to comprehend anomalous human conditions on the basis of patients' symptoms, tongue, and pulse (Li et al., 2012). On the basis of disease-syndrome diagnose, a TCM doctor can subclassify CHD patients into various categories, such as phlegm and blood stasis (PBS) syndrome, cold congealing and Qi stagnation syndrome, and Qi stagnation and blood stasis syndrome. PBS syndrome has recently emerged as a hot research topic in the TCM field. Objective diagnosis, expert consultations, and efficacy evaluation scales have been developed for PBS syndrome (Ren et al., 2020; Liu et al., 2021; Zheng et al., 2022). The concept of "omics" originates from the genome. It refers to the vocabulary generated by biological molecules at different levels to describe high-sequence molecular biological data resources (Dai and Shen, 2022). RNA, protein, and metabolites decipher the essence of complex etiologies, and the integration of transcriptomics, proteomics, and metabolomics are becoming a promising research mode (Pan et al., 2022). Multi-omics studies have revealed the biological characteristics of APOE transgenic mice, bronchopulmonary dysplasia, and plant tolerant to heavy metals (Singh et al., 2016; Lal et al., 2018; Mohler et al., 2020). Over the past few years, many academic achievements related to CHD-PBS syndrome have been accrued in the single-omic area. For example, Zhou identified the differential metabolites between PBS syndrome and Qi and Yin deficiency syndrome by using the urine samples of 1072 volunteers. Some of the specific metabolites of PBS syndrome are pyroglutamic acid, glutaric acid, glucose, mannitol, and xanthine (Zhou et al., 2019). Li's metabolomic study suggested that valine, leucine, isoleucine, and glycerol phospholipid metabolism could represent PBS syndrome (Zheng et al., 2022). Although some progress has been made in the understanding of PBS syndrome in CHD through the studies conducted, some issues still exist, such as a single-omics level, a lack of in-depth research, an inability to verify each other's research results, and a lack of validation of research conclusions. Overall, a systematic description of the biological foundation of PBS syndrome is lacking. Thus, the present study utilizes system biology methodologies and constructs a multi-omics network by integrating differential genes, proteins, and metabolites to systematically and comprehensively reveal the biological basis of CHD-PBS syndrome. The current study explored 1) the characteristics of the transcriptome, proteome, and metabolome for CHD-PBS syndrome; 2) the "gene-protein-metabolite" network based on differential genes (DGs), differential proteins (DPs), and differential metabolites (DMs); 3) the key biological process and metabolic pathway most related to PBS syndrome; and 4) quantitative results and the diagnostic potential of biomarkers for PSB syndrome. Materials and methods. Multi-omics sequencing, bioinformatics analysis, and clinical validation research strategy. We collected the blood samples from healthy subjects as well as CHD patients with PBS and non-phlegm and blood stasis (NPBS) syndrome to compare the differences between them by subjecting the samples to the transcriptome, proteome, and metabolomics analyses. Bioinformatics analysis identified differential molecules as well as related biological processes and pathways. Next, the "gene-protein-metabolite" network was constructed using the MetaboAnalyst database, String database, and Cytoscape software. We selected molecules with strong centrality and biological association as potential PBS syndrome biomarkers and recruited more volunteers for further validation by enzyme-linked immunosorbent assay (ELISA). Finally, the ROC curve was utilized to assess the level and diagnostic efficacy of various molecules (Figure 1).
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyuan Zhou
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoqiang He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zinuo Shen
- School of traditional chinese medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- *Correspondence: Jun Hu, ; Jie Wang,
| |
Collapse
|
9
|
Bondareva O, Rodríguez-Aguilera JR, Oliveira F, Liao L, Rose A, Gupta A, Singh K, Geier F, Schuster J, Boeckel JN, Buescher JM, Kohli S, Klöting N, Isermann B, Blüher M, Sheikh BN. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat Metab 2022; 4:1591-1610. [PMID: 36400935 PMCID: PMC9684070 DOI: 10.1038/s42255-022-00674-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022]
Abstract
Obesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities. We find that obesity deregulates gene expression networks, including lipid handling, metabolic pathways and AP1 transcription factor and inflammatory signaling, in an organ- and EC-subtype-specific manner. The transcriptomic aberrations worsen with sustained obesity and are only partially mitigated by dietary intervention and weight loss. For example, dietary intervention substantially attenuates dysregulation of liver, but not kidney, EC transcriptomes. Through integration with human genome-wide association study data, we further identify a subset of vascular disease risk genes that are induced by obesity. Our work catalogs the impact of obesity on the endothelium, constitutes a useful resource and reveals leads for investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesús Rafael Rodríguez-Aguilera
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabiana Oliveira
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Longsheng Liao
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Alina Rose
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Florian Geier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jenny Schuster
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, University of Leipzig, Leipzig, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany.
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
10
|
Mosquera‐Sulbaran JA, Pedreañez A, Carrero Y, Callejas D. C-reactive protein as an effector molecule in Covid-19 pathogenesis. Rev Med Virol 2021; 31:e2221. [PMID: 34773448 PMCID: PMC7995022 DOI: 10.1002/rmv.2221] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023]
Abstract
The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jesús A. Mosquera‐Sulbaran
- Instituto de Investigaciones Clinicas “Dr. Americo Negrette”Facultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Adriana Pedreañez
- Catedra de InmunologiaEscuela de BioanalisisFacultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
| | - Yenddy Carrero
- Facultad de Ciencias de la SaludCarrera de MedicinaUniversidad Tecnica de AmbatoAmbatoEcuador
| | - Diana Callejas
- Facultad de Ciencias de la SaludDepartamento de Ciencias BiologicasUniversidad Tecnica de ManabiPortoviejoEcuador
| |
Collapse
|
11
|
Mann-Nüttel R, Ali S, Petzsch P, Köhrer K, Alferink J, Scheu S. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. BMC Genom Data 2021; 22:37. [PMID: 34544361 PMCID: PMC8454182 DOI: 10.1186/s12863-021-00991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Transcription factors (TFs) control gene expression by direct binding to regulatory regions of target genes but also by impacting chromatin landscapes and modulating DNA accessibility for other TFs. In recent years several TFs have been defined that control cell fate decisions and effector functions in the immune system. Plasmacytoid dendritic cells (pDCs) are an immune cell type with the unique capacity to produce high amounts of type I interferons quickly in response to contact with viral components. Hereby, this cell type is involved in anti-infectious immune responses but also in the development of inflammatory and autoimmune diseases. To date, the global TF reservoir in pDCs early after activation remains to be fully characterized. Results To fill this gap, we have performed a comprehensive analysis in naïve versus TLR9-activated murine pDCs in a time course study covering early timepoints after stimulation (2 h, 6 h, 12 h) integrating gene expression (RNA-Seq) and chromatin landscape (ATAC-Seq) studies. To unravel the biological processes underlying the changes in TF expression on a global scale gene ontology (GO) analyses were performed. We found that 70% of all genes annotated as TFs in the mouse genome (1014 out of 1636) are expressed in pDCs for at least one stimulation time point and are covering a wide range of TF classes defined by their specific DNA binding mechanisms. GO analysis revealed involvement of TLR9-induced TFs in epigenetic modulation, NFκB and JAK-STAT signaling, and protein production in the endoplasmic reticulum. pDC activation predominantly “turned on” the chromatin regions associated with TF genes. Our in silico analyses pointed at the AP-1 family of TFs as less noticed but possibly important players in these cells after activation. AP-1 family members exhibit (1) increased gene expression, (2) enhanced chromatin accessibility in their promoter region, and (3) a TF DNA binding motif that is globally enriched in genomic regions that were found more accessible in pDCs after TLR9 activation. Conclusions In this study we define the complete set of TLR9-regulated TFs in pDCs. Further, this study identifies the AP-1 family of TFs as potentially important but so far less well characterized regulators of pDC function. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00991-2.
Collapse
Affiliation(s)
- Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
13
|
Katagiri T, Kameda H, Nakano H, Yamazaki S. Regulation of T cell differentiation by the AP-1 transcription factor JunB. Immunol Med 2021; 44:197-203. [PMID: 33470914 DOI: 10.1080/25785826.2021.1872838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
JunB, a component of the activator protein-1 (AP-1) transcription factor, is known to exhibit an important role in bone formation and bone marrow cell proliferation. During T helper type 2 (Th2) cell differentiation, JunB contributes to the regulation of interleukin (IL)-4 expression, and AP-1 and nuclear factor of activated T cell (NFAT) constitute a heteromer and contribute to IL-2 production. However, the role of JunB in other T cells has not been investigated. In 2017, it was revealed that JunB, in collaboration with basic leucine zipper ATF-like transcription factor (BATF), regulates the expression of Th17-related genes. Furthermore, JunB was found to play an important role in regulatory T (Treg) cell differentiation, contributing to CD25 expression and IL-2 production. IL-2 is a T cell activator and has been shown as a necessary factor for Treg proliferation. Here, we review the role of JunB in T cells based on basic research data and discuss the potential for its clinical applications.
Collapse
Affiliation(s)
- Takaharu Katagiri
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hideto Kameda
- Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Ohashi Medical Center, Toho University, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Krishna S, Berridge B, Kleinstreuer N. High-Throughput Screening to Identify Chemical Cardiotoxic Potential. Chem Res Toxicol 2020; 34:566-583. [PMID: 33346635 DOI: 10.1021/acs.chemrestox.0c00382] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiovascular (CV) disease is one of the most prevalent public health concerns, and mounting evidence supports the contribution of environmental chemicals to CV disease burden. In this study, we performed cardiotoxicity profiling for the Tox21 chemical library by focusing on high-throughput screening (HTS) assays whose targets are associated with adverse events related to CV failure modes. Our objective was to develop new hypotheses around environmental chemicals of potential interest for adverse CV outcomes using Tox21/ToxCast HTS data. Molecular and cellular events linked to six failure modes of CV toxicity were cross-referenced with 1399 Tox21/ToxCast assays to identify cardio-relevant bioactivity signatures. The resulting 40 targets, measured in 314 assays, were integrated via a ToxPi visualization tool and ranking system to prioritize 1138 chemicals based upon formal integration across multiple domains of information. Filtering was performed based on cytotoxicity and generalized cell stress endpoints to try and isolate chemicals with effects specific to CV biology, and bioactivity- and structure-based clustering identified subgroups of chemicals preferentially affecting targets such as ion channels and vascular tissue biology. Our approach identified drugs with known cardiotoxic effects, such as estrogenic modulators like clomiphene and raloxifene, anti-arrhythmic drugs like amiodarone and haloperidol, and antipsychotic drugs like chlorpromazine. Several classes of environmental chemicals such as organotins, bisphenol-like chemicals, pesticides, and quaternary ammonium compounds demonstrated strong bioactivity against CV targets; these were compared to existing data in the literature (e.g., from cardiomyocytes, animal data, or human epidemiological studies) and prioritized for further testing.
Collapse
Affiliation(s)
- Shagun Krishna
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Brian Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| | - Nicole Kleinstreuer
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Research Triangle Park, North Carolina 27560, United States
| |
Collapse
|
15
|
Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, Sithu SD, Wong S, Yu L, Kocher O, Bischoff J, Srivastava S, Linton MF, Ley K, Chen H. Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circ Res 2019; 124:e6-e19. [PMID: 30595089 DOI: 10.1161/circresaha.118.313028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.
Collapse
Affiliation(s)
- Megan L Brophy
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (M.L.B.)
| | - Yunzhou Dong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Huan Tao
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Patricia G Yancey
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Kai Song
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Kun Zhang
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (K.Z.)
| | - Aiyun Wen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Hao Wu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Yang Lee
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Marina V Malovichko
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Srinivas D Sithu
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Scott Wong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Lili Yu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Medical Deaconess Medical Center (O.K.), Harvard Medical School, MA
| | - Joyce Bischoff
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Sanjay Srivastava
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.L.)
| | - Hong Chen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| |
Collapse
|
16
|
Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X, Zhao Y. TRIM7 promotes proliferation and migration of vascular smooth muscle cells in atherosclerosis through activating c-Jun/AP-1. IUBMB Life 2019; 72:247-258. [PMID: 31625258 DOI: 10.1002/iub.2181] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis (AS), with associated risk of stroke or cerebrovascular disease, is one of the most common causes of death globally. It has been well established that tripartite motif-containing protein 7 Tripartite Motif-containing 7 (Trim7), as an E3 ubiquitin protein ligase, is involved in protein ubiquitination and thus regulating cellular proliferation. Moreover, TRIM7 is upregulated in advanced carotid AS. However, the detailed mechanism of TRIM7 on regulation of AS remains unclear. In the present study, we firstly discovered that TRIM7 expression was robustly induced in platelet-derived growth factor type BB-treated vascular smooth muscle cells (VSMCs) and human atherosclerotic plaques. Functional approaches established that knockdown of TRIM7 inhibited proliferation and migration of VSMCs, as well as arrested the cell cycle at G1-S, thus suppressing AS progression. Our results also identified that c-Jun/activator protein 1 (AP-1) signaling pathway was activated by TRIM7. Moreover, gain- and loss-of-function studies revealed that TRIM7 could promote proliferation and migration of VSMCs via activation of c-Jun/AP-1 signaling pathway. Finally, by using atherogenic apolipoprotein E-deficient (apoE-/-) C57BL/6 mice with high-fat diet AS model, we demonstrated that interference of TRIM7 could effectively mitigate in vivo AS via inactivation of c-Jun/AP-1 signaling pathway. In general, activation of c-Jun/AP-1 signaling pathway via TRIM7 could be an important mechanism in AS progression, thus shedding light on the development of novel therapeutics to the treatment of the disease.
Collapse
Affiliation(s)
- Rongjing Ji
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, Medical School of Jinzhou Medical University, Jinzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Gu
- Department of neurology, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jing Zhang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Wanli Gao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Xiaobiao Zang
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Yonghui Zhao
- Department of Cardiology, FuWai Central China Cardiovascular Hospital, Zhengzhou, China.,Department of Cardiology, The People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Milic J, Tian Y, Bernhagen J. Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules 2019; 9:biom9060217. [PMID: 31195722 PMCID: PMC6628250 DOI: 10.3390/biom9060217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is an evolutionarily conserved multi-protein complex, consisting of eight subunits termed CSN1-CSN8. The main biochemical function of the CSN is the control of protein degradation via the ubiquitin-proteasome-system through regulation of cullin-RING E3-ligase (CRL) activity by deNEDDylation of cullins, but the CSN also serves as a docking platform for signaling proteins. The catalytic deNEDDylase (isopeptidase) activity of the complex is executed by CSN5, but only efficiently occurs in the three-dimensional architectural context of the complex. Due to its positioning in a central cellular pathway connected to cell responses such as cell-cycle, proliferation, and signaling, the CSN has been implicated in several human diseases, with most evidence available for a role in cancer. However, emerging evidence also suggests that the CSN is involved in inflammation and cardiovascular diseases. This is both due to its role in controlling CRLs, regulating components of key inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and complex-independent interactions of subunits such as CSN5 with inflammatory proteins. In this case, we summarize and discuss studies suggesting that the CSN may have a key role in cardiovascular diseases such as atherosclerosis and heart failure. We discuss the implicated molecular mechanisms ranging from inflammatory NF-κB signaling to proteotoxicity and necrosis, covering disease-relevant cell types such as myeloid and endothelial cells or cardiomyocytes. While the CSN is considered to be disease-exacerbating in most cancer entities, the cardiovascular studies suggest potent protective activities in the vasculature and heart. The underlying mechanisms and potential therapeutic avenues will be critically discussed.
Collapse
Affiliation(s)
- Jelena Milic
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Yuan Tian
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
- Munich Heart Alliance, 80802 Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
18
|
The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive Lymphomas. Cancers (Basel) 2018; 10:cancers10040093. [PMID: 29597249 PMCID: PMC5923348 DOI: 10.3390/cancers10040093] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The Activator Protein-1 (AP-1) transcription factor (TF) family, composed of a variety of members including c-JUN, c-FOS and ATF, is involved in mediating many biological processes such as proliferation, differentiation and cell death. Since their discovery, the role of AP-1 TFs in cancer development has been extensively analysed. Multiple in vitro and in vivo studies have highlighted the complexity of these TFs, mainly due to their cell-type specific homo- or hetero-dimerization resulting in diverse transcriptional response profiles. However, as a result of the increasing knowledge of the role of AP-1 TFs in disease, these TFs are being recognized as promising therapeutic targets for various malignancies. In this review, we focus on the impact of deregulated expression of AP-1 TFs in CD30-positive lymphomas including Classical Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma.
Collapse
|
19
|
Vozenilek AE, Navratil AR, Green JM, Coleman DT, Blackburn CMR, Finney AC, Pearson BH, Chrast R, Finck BN, Klein RL, Orr AW, Woolard MD. Macrophage-Associated Lipin-1 Enzymatic Activity Contributes to Modified Low-Density Lipoprotein-Induced Proinflammatory Signaling and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 38:324-334. [PMID: 29217509 DOI: 10.1161/atvbaha.117.310455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Macrophage proinflammatory responses induced by modified low-density lipoproteins (modLDL) contribute to atherosclerotic progression. How modLDL causes macrophages to become proinflammatory is still enigmatic. Macrophage foam cell formation induced by modLDL requires glycerolipid synthesis. Lipin-1, a key enzyme in the glycerolipid synthesis pathway, contributes to modLDL-elicited macrophage proinflammatory responses in vitro. The objective of this study was to determine whether macrophage-associated lipin-1 contributes to atherogenesis and to assess its role in modLDL-mediated signaling in macrophages. APPROACH AND RESULTS We developed mice lacking lipin-1 in myeloid-derived cells and used adeno-associated viral vector 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (adeno-associated viral vector 8-proprotein convertase subtilisin/kexin type 9) to induce hypercholesterolemia and plaque formation. Mice lacking myeloid-associated lipin-1 had reduced atherosclerotic burden compared with control mice despite similar plasma lipid levels. Stimulation of bone marrow-derived macrophages with modLDL activated a persistent protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributed to macrophage proinflammatory responses that was dependent on lipin-1 enzymatic activity. CONCLUSIONS Our data demonstrate that macrophage-associated lipin-1 is atherogenic, likely through persistent activation of a protein kinase Cα/βII-extracellular receptor kinase1/2-jun proto-oncogene signaling cascade that contributes to foam cell proinflammatory responses. Taken together, these results suggest that modLDL-induced foam cell formation and modLDL-induced macrophage proinflammatory responses are not independent consequences of modLDL stimulation but rather are both directly influenced by enhanced lipid synthesis.
Collapse
Affiliation(s)
- Aimee E Vozenilek
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Aaron R Navratil
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Jonette M Green
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - David T Coleman
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Cassidy M R Blackburn
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Alexandra C Finney
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brenna H Pearson
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Roman Chrast
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Brian N Finck
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Ronald L Klein
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - A Wayne Orr
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.)
| | - Matthew D Woolard
- From the Department of Microbiology and Immunology (A.E.V., C.M.R.B., M.D.W.), Department of Pathology and Translational Pathobiology (J.M.G., B.H.P., A.W.O.), Department of Cell Biology and Anatomy (A.C.F.), Feist-Weiller Cancer Center (D.T.C.), and Pharmacology, Toxicology, and Neuroscience (R.L.K.), Louisiana State University Health Sciences Center, Shreveport; Department of Pharmacology, University of California San Diego, La Jolla (A.R.N.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (R.C.); and Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO (B.N.F.).
| |
Collapse
|
20
|
Yang HL, Korivi M, Chen CH, Peng WJ, Chen CS, Li ML, Hsu LS, Liao JW, Hseu YC. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:2070-2084. [PMID: 28370894 DOI: 10.1002/tox.22422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2070-2084, 2017.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Mallikarjuna Korivi
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Cheng-Hsien Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Wei-Jung Peng
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Chee-Shan Chen
- Department of Applied Chemistry, Chao Yang University of Technology, Taichung, Taiwan
| | - Mei-Ling Li
- Institute of Nutrition, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Department of Cosmeceutics, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
Sakamuri SSVP, Higashi Y, Sukhanov S, Siddesha JM, Delafontaine P, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice. Atherosclerosis 2016; 252:153-160. [PMID: 27237075 DOI: 10.1016/j.atherosclerosis.2016.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. METHODS TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2(-/-) and ApoE(-/-) mice. ApoE(-/-) mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell (SMC) content by histomorphometry, and aortic gene expression by RT-qPCR. RESULTS The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE(-/-) mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and SMC contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice expressed markedly reduced levels of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing-Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). CONCLUSIONS TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases.
Collapse
Affiliation(s)
| | - Yusuke Higashi
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Sergiy Sukhanov
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Jalahalli M Siddesha
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, NIAID/NIH, Bethesda, MD, 20892, United States
| | - Bysani Chandrasekar
- Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, 70112, United States; HS Truman Memorial Veterans Hospital, 800 Hospital Drive, Columbia, MO, 75201, United States.
| |
Collapse
|
22
|
Elliott KJ, Eguchi S. Phosphorylation Regulation by Kinases and Phosphatases in Atherosclerosis. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
A salicylate-based small molecule HS-Cm exhibits immunomodulatory effects and inhibits dipeptidyl peptidase-IV activity in human T cells. Eur J Pharmacol 2014; 726:124-32. [PMID: 24491838 DOI: 10.1016/j.ejphar.2014.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells are key players in chronic inflammatory diseases, including atherosclerosis. Salicylates, like aspirin, display not only anti-inflammatory, anti-thrombotic, anti-atherosclerotic activities, but also immunomodulatory effects in T cells at high dosages. Here, we aimed to identify potent immunomodulators for T cells through cell-based screening from a mini-library of 300 salicylate-based small molecules, and elucidate the mechanisms. Human peripheral blood T cells were isolated from buffy coat. Phorbol 12-myristate 13-acetate plus ionomycin (P/I) was used to stimulate T cells. Cytokine production was measured by enzyme-linked immunosorbent assays. T cell activation markers were determined by flow cytometry. The activation of transcription factors and kinases was analyzed by western blotting, electrophoretic mobility shift assay, or kinase assay. Through library screening, we identified a small molecule named HS-Cm [C13H9ClFNO2; N-(4-chloro-2-fluorophenyl)-2-hydroxybenzamide] that exhibited potent immunomodulatory effects on T cells with low cytotoxicity. In P/I-stimulated T cells, HS-Cm inhibited the production of interleukin-2, tumor necrosis factor-alpha, and interferon-gamma and suppressed the expression of surface activation markers CD25, CD69, and CD71, but not CD45RO. HS-Cm down-regulated DNA-binding activities of activator protein-1 and nuclear factor-kappa B, but not nuclear factor of activated T-cells, through inhibiting c-Jun N-terminal kinase/p38 and inhibitor of kappaB alpha (IκBα) kinase (IKK)/IκBα pathways, respectively. On the basis of structure-activity relationship, HS-Cm exerted considerable inhibition of dipeptidyl-peptidase IV/CD26 activity in T cells. Our results suggested that the small molecule HS-Cm exhibiting immunomodulatory effects on T cells may be useful for therapeutics in chronic inflammatory diseases, like atherosclerosis, diabetes and autoimmune arthritis.
Collapse
|
24
|
Cai W, Tao J, Zhang X, Tian X, Liu T, Feng X, Bai J, Yan C, Han Y. Contribution of homeostatic chemokines CCL19 and CCL21 and their receptor CCR7 to coronary artery disease. Arterioscler Thromb Vasc Biol 2014; 34:1933-41. [PMID: 24990231 DOI: 10.1161/atvbaha.113.303081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to identify the role of the homeostatic chemokines CCL19 and CCL21 and their common receptor CCR7 in atherogenesis and to study the relationships between CCL19, CCL21, and CCR7 gene variants and coronary artery disease in a Chinese Han population. APPROACH AND RESULTS Immunohistochemical analysis of samples with atherosclerosis of various stages showed increased CCL19, CCL21, and CCR7 expression in atherosclerotic coronary plaques compared with nonatherosclerotic controls. Expression levels increased in positive correlation with coronary lesion stage. Cell adhesion assays confirmed that CCL19 promoted monocyte adhesion, which was induced by CCR7, to human umbilical vein endothelial cells, an effect partially antagonized by atorvastatin. After the human umbilical vein endothelial cells were treated with CCR7-neutralizing antibody, both CCL19- and CCL21-induced monocyte to human umbilical vein endothelial cell migration and CCL19-induced monocyte to human umbilical vein endothelial cell adhesion were abolished. The associations between genetic variants of CCL19, CCL21, CCR7, and coronary artery disease in a Chinese Han population were determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The following single nucleotide polymorphisms were associated with coronary artery disease: CCL19 rs2227302, CCL21 rs2812377, and CCR7 rs588019. Individuals with the CCL19 rs2227302 T allele or CCL21 rs2812377 G allele had higher plasma CCL19 levels than those with C/C genotype and higher CCL21 levels than those with T/T genotype in both case and control subjects. CONCLUSION CCL19/CCL21-CCR7 is a novel homeostatic chemokine system that modulates human monocyte adhesion and migration, promoting atherogenesis. It is associated with coronary artery disease risk in Chinese Han individuals. These data suggest that the CCL19/CCL21-CCR7 axis plays an important role in atherosclerosis progression.
Collapse
Affiliation(s)
- Wenzhi Cai
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Jie Tao
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Xiaolin Zhang
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Xiaoxiang Tian
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Tengfei Liu
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Xueyao Feng
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Jing Bai
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Chenghui Yan
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China
| | - Yaling Han
- From the Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang, China.
| |
Collapse
|
25
|
Ye N, Ding Y, Wild C, Shen Q, Zhou J. Small molecule inhibitors targeting activator protein 1 (AP-1). J Med Chem 2014; 57:6930-48. [PMID: 24831826 PMCID: PMC4148154 DOI: 10.1021/jm5004733] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Activator
protein 1 (AP-1) is a pivotal transcription factor that
regulates a wide range of cellular processes including proliferation,
apoptosis, differentiation, survival, cell migration, and transformation.
Accumulating evidence supports that AP-1 plays an important role in
several severe disorders including cancer, fibrosis, and organ injury,
as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid
arthritis. AP-1 has emerged as an actively pursued drug discovery
target over the past decade. Excitingly, a selective AP-1 inhibitor
T-5224 (51) has been investigated in phase II human clinical
trials. Nevertheless, no effective AP-1 inhibitors have yet been approved
for clinical use. Despite significant advances achieved in understanding
AP-1 biology and function, as well as the identification of small
molecules modulating AP-1 associated signaling pathways, medicinal
chemistry efforts remain an urgent need to yield selective and efficacious
AP-1 inhibitors as a viable therapeutic strategy for human diseases.
Collapse
Affiliation(s)
- Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | |
Collapse
|
26
|
Nair J, Ghatge M, Kakkar VV, Shanker J. Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease. PLoS One 2014; 9:e94328. [PMID: 24736319 PMCID: PMC3988072 DOI: 10.1371/journal.pone.0094328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/15/2014] [Indexed: 01/25/2023] Open
Abstract
Network analysis is a novel method to understand the complex pathogenesis of inflammation-driven atherosclerosis. Using this approach, we attempted to identify key inflammatory genes and their core transcriptional regulators in coronary artery disease (CAD). Initially, we obtained 124 candidate genes associated with inflammation and CAD using Polysearch and CADgene database for which protein-protein interaction network was generated using STRING 9.0 (Search Tool for the Retrieval of Interacting Genes) and visualized using Cytoscape v 2.8.3. Based on betweenness centrality (BC) and node degree as key topological parameters, we identified interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), interleukin-1 beta (IL-1B), tumor necrosis factor (TNF) and prostaglandin-endoperoxide synthase 2 (PTGS2) as hub nodes. The backbone network constructed with these five hub genes showed 111 nodes connected via 348 edges, with IL-6 having the largest degree and highest BC. Nuclear factor kappa B1 (NFKB1), signal transducer and activator of transcription 3 (STAT3) and JUN were identified as the three core transcription factors from the regulatory network derived using MatInspector. For the purpose of validation of the hub genes, 97 test networks were constructed, which revealed the accuracy of the backbone network to be 0.7763 while the frequency of the hub nodes remained largely unaltered. Pathway enrichment analysis with ClueGO, KEGG and REACTOME showed significant enrichment of six validated CAD pathways - smooth muscle cell proliferation, acute-phase response, calcidiol 1-monooxygenase activity, toll-like receptor signaling, NOD-like receptor signaling and adipocytokine signaling pathways. Experimental verification of the above findings in 64 cases and 64 controls showed increased expression of the five candidate genes and the three transcription factors in the cases relative to the controls (p<0.05). Thus, analysis of complex networks aid in the prioritization of genes and their transcriptional regulators in complex diseases.
Collapse
Affiliation(s)
- Jiny Nair
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka, India
| | - Madankumar Ghatge
- Tata Proteomics and Coagulation Unit, Thrombosis Research Unit, Bengaluru, Karnataka, India
| | - Vijay V. Kakkar
- Thrombosis Research Institute, Bengaluru, Karnataka, India
- Thrombosis Research Institute, London, United Kingdom
| | - Jayashree Shanker
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
27
|
Biros E, Moran CS, Rush CM, Gäbel G, Schreurs C, Lindeman JHN, Walker PJ, Nataatmadja M, West M, Holdt LM, Hinterseher I, Pilarsky C, Golledge J. Differential gene expression in the proximal neck of human abdominal aortic aneurysm. Atherosclerosis 2014; 233:211-8. [PMID: 24529146 DOI: 10.1016/j.atherosclerosis.2013.12.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/16/2013] [Accepted: 12/22/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) represents a common cause of morbidity and mortality in elderly populations but the mechanisms involved in AAA formation remain incompletely understood. Previous human studies have focused on biopsies obtained from the center of the AAA however it is likely that pathological changes also occur in relatively normal appearing aorta away from the site of main dilatation. The aim of this study was to assess the gene expression profile of biopsies obtained from the neck of human AAAs. METHODS We performed a microarray study of aortic neck specimens obtained from 14 patients with AAA and 8 control aortic specimens obtained from organ donors. Two-fold differentially expressed genes were identified with correction for multiple testing. Mechanisms represented by differentially expressed genes were identified using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Some of the differentially expressed genes were validated by quantitative real-time PCR (qPCR) and immunohistochemistry. RESULTS We identified 1047 differentially expressed genes in AAA necks. The KEGG analysis revealed marked upregulation of genes related to immunity. These pathways included cytokine-cytokine receptor interaction (P = 8.67*10(-12)), chemokine signaling pathway (P = 5.76*10(-07)), and antigen processing and presentation (P = 4.00*10(-04)). Examples of differentially expressed genes validated by qPCR included the T-cells marker CD44 (2.16-fold upregulated, P = 0.008) and the B-cells marker CD19 (3.14-fold upregulated, P = 0.029). The presence of B-cells in AAA necks was confirmed by immunohistochemistry. CONCLUSIONS The role of immunity in AAA is controversial. This study suggests that immune pathways are also upregulated within the undilated aorta proximal to an AAA.
Collapse
Affiliation(s)
- Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Corey S Moran
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Catherine M Rush
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia; School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig Maximilians University Munich, Munich, Germany
| | - Charlotte Schreurs
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip J Walker
- University of Queensland, School of Medicine, Discipline of Surgery, and Centre for Clinical Research and Royal Brisbane and Women's Hospital, Department of Vascular Surgery Herston, Queensland 4029, Australia
| | - Maria Nataatmadja
- The Cardiovascular Research Group, Department of Medicine, the University of Queensland, Queensland, Australia
| | - Malcolm West
- The Cardiovascular Research Group, Department of Medicine, the University of Queensland, Queensland, Australia
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Irene Hinterseher
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Christian Pilarsky
- Department of Vascular and Endovascular Surgery, Ludwig Maximilians University Munich, Munich, Germany
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine, James Cook University, Townsville, Queensland, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
28
|
Reactive oxygen species in health and disease. J Biomed Biotechnol 2012; 2012:936486. [PMID: 22927725 PMCID: PMC3424049 DOI: 10.1155/2012/936486] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease.
Collapse
|