1
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, Sheykhhasan M. Unveiling therapeutic potential: Adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399. [PMID: 38944396 DOI: 10.1016/j.bcp.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Afkhami
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
3
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Rajalekshmy GP, Ramesan RM, Geetha CS, Pratheesh KV, Shenoy SJ, Anilkumar TV. In Vivo Wound-Healing Efficacy of Insulin-Loaded Strontium-Cross-Linked Alginate-Based Hydrogels in Diabetic Rats. ACS Biomater Sci Eng 2024; 10:2552-2566. [PMID: 38450650 DOI: 10.1021/acsbiomaterials.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The wound-healing effect of insulin is well studied and reported. However, prolonged topical application of insulin without compromising its biological activity is still a challenge. In this study, the effect of topically delivered insulin on promoting wound healing in diabetic animals was evaluated. Alginate diamine PEG-g-poly(PEGMA) (ADPM2S2) was the material used for the topical delivery of insulin. ADPM2S2 hydrogels release insulin and strontium ions, and they synergistically act to regulate different phases of wound healing. Insulin was released from the ADPM2S2 hydrogel for a period of 48 h, maintaining its structural stability and biological activity. In vitro studies were performed under high-glucose conditions to evaluate the wound-healing potential of insulin. Insulin-loaded ADPM2S2 hydrogels showed significant improvement in cell migration, proliferation, and collagen deposition, compared to control cells under high-glucose conditions. Immunostaining studies in L929 cells showed a reduction in phospho Akt expression under high-glucose conditions, and in the presence of insulin, the expression increased. The gene expression studies revealed that insulin plays an important role in regulating the inflammatory phase and macrophage polarization, which favors accelerated wound closure. In vivo experiments in diabetic rat excision wounds treated with insulin-loaded ADPM2S2 showed 95% wound closure within 14 days compared with 82% in control groups. Thus, both the in vitro and in vivo results signify the therapeutic potential of topically delivered insulin in wound management under high-glucose conditions.
Collapse
Affiliation(s)
- G P Rajalekshmy
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Rekha M Ramesan
- Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - C Surendran Geetha
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Kanakarajan V Pratheesh
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | - Thapasimuthu V Anilkumar
- Experimental Pathology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| |
Collapse
|
5
|
Yang Y, Yang X, Ren S, Cao Y, Wang Z, Cheng Z. Identification and analysis of prognostic metabolic characteristics in colon adenocarcinoma. Heliyon 2024; 10:e27388. [PMID: 38509965 PMCID: PMC10950572 DOI: 10.1016/j.heliyon.2024.e27388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Colon adenocarcinoma (COAD) is a highly lethal gastrointestinal malignancy. The five-year survival rate of metastatic colorectal cancer remains low, at 14 percent. Numerous publications have suggested a role for peroxisome proliferator-activated receptors (PPARs) in malignancy. Recent studies have shown that PPARs, as nuclear transcription factors, may serve as potential targets for the treatment of metabolic syndrome tumors and their associated complications. However, the molecular mechanism has not been thoroughly investigated. Hence, in order to enhance the prediction of personalized medicine for PPAR-associated modulators in malignancy treatment, a timely review becomes essential. Utilizing TCGA-COAD expression profile data and patient overall survival (OS) information, this study systematically conducted investigations to identify and develop Hub stem cell-related diagnostic and prognostic identification models, aiming to enhance the multi-gene markers for COAD. Utilizing the differential expression profiles of stem cell-related genes, an 11-gene (SLC27A4, CPT1C, CPT1B, CPT2, CYP4A11, FABP3, FABP7, AQP7, MMP1, ACOX1, ANGPTL4) diagnostic and prognostic model was developed. This model demonstrated precise diagnostic and prognostic capabilities and holds the potential to characterize the clinicopathologic features of COAD. Univariate and multivariate Cox proportional hazards regression analyses were conducted to ascertain the independent factors influencing OS outcomes in COAD. The results revealed that CPT1B, SLC27A4, and FABP3 were identified as independent risk prognostic factors for OS in COAD, whereas ACOX1 and CPT2 served as independent protective prognostic factors. The hub genes associated with PPARs were identified through the differential expression of contrast agent COAD and normal tissues. Finally, the investigation of variations in immune infiltration and the analysis of relevant biological pathways validate the prognostic significance of the independent post-factors within this molecular model. This research aims to provide references for comprehending the mechanism of post-transcriptional regulation of COAD and molecular therapy.
Collapse
Affiliation(s)
- Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medicial School of Nantong University, No.20 Xisi Road, Chongchuan District, 226001, Nantong City, Jiangsu Province, China
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong City, Jiangsu Province, 226001, China
| | - Xinyu Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medicial School of Nantong University, No.20 Xisi Road, Chongchuan District, 226001, Nantong City, Jiangsu Province, China
- Medical School of Nantong University, Qixiu Road, 226001, Nantong City, Jiangsu Province, China
| | - Shiqi Ren
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yang Cao
- Department of Operation Room, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001, Nantong City, Jiangsu Province, China
| | - Ziheng Wang
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- Department of Clinical-Biobank, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001, Nantong City, Jiangsu Province, China
| | - Zhouyang Cheng
- Department of General Surgery, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, 226001, Nantong City, Jiangsu Province, China
| |
Collapse
|
6
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Chen Y, Zhang Y, Jiang M, Ma H, Cai Y. HMOX1 as a therapeutic target associated with diabetic foot ulcers based on single-cell analysis and machine learning. Int Wound J 2024; 21:e14815. [PMID: 38468410 PMCID: PMC10928352 DOI: 10.1111/iwj.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mellitus and a leading cause of disability and death in diabetic patients. However, current treatments remain unsatisfactory. Although macrophages are associated with DFU, their exact role in this disease remains uncertain. This study sought to detect macrophage-related genes in DFU and identify possible therapeutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets (GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU were retrieved from the gene expression omnibus (GEO) database for this study. Analysis of the provided single-cell data revealed the distribution of macrophage subpopulations in the DFU. Four independent RNA-seq datasets were merged into a single DFU cohort and further analysed using bioinformatics. This included differential expression (DEG) analysis, multiple machine learning algorithms to identify biomarkers and enrichment analysis. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western bolt. Finally, the findings were validated using RT-qPCR and western blot. We obtained 802 macrophage-related genes in single-cell analysis. Differential expression analysis yielded 743 DEGs. Thirty-seven macrophage-associated DEGs were identified by cross-analysis of marker genes with macrophage-associated DEGs. Thirty-seven intersections were screened and cross-analysed using four machine learning algorithms. Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1 was significantly associated with biological pathways such as the insulin signalling pathway. The results showed that HMOX1 was significantly overexpressed in DFU samples. In conclusion, the analytical results of this study identified HMOX1 as a potentially valuable biomarker associated with macrophages in DFU. The results of our analysis improve our understanding of the mechanism of macrophage action in this disease and may be useful in developing targeted therapies for DFU.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yixin Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Breast SurgeryYantai City Yantai Hill hospitalYantaiChina
| | - Ming Jiang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Hong Ma
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of BurnHanzhong Central HospitalHanZhongChina
| | - Yuhui Cai
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
8
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
9
|
Saghafi F, Khalilzadeh SH, Ramezani V, Pasandeh F, Fallahzadeh H, Sahebnasagh A. Efficacy of the Novel Formulation of Topical Liothyronine and Liothyronine-insulin in Mild to Moderate Diabetic Foot Ulcer: A Randomized, Triple-blind Clinical Trial. Curr Med Chem 2024; 31:3232-3243. [PMID: 37226792 DOI: 10.2174/0929867330666230523155739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the challenging complications of chronic diabetes. OBJECTIVE The study aimed to investigate whether liothyronine (T3) and liothyronineinsulin (T3/Ins) topical preparations could significantly reduce the healing time of DFU. METHODS A prospective, randomized, placebo-controlled, patient-blinded clinical trial was conducted on patients with mild to moderate DFU, over a lesion area of no greater than 100 cm2. The patients were randomized to receive T3, T3/Ins, or honey cream 10% as the routine of care twice a day. Patients were examined for tissue healing weekly for 4 weeks, or until the total lesion clearance was observed, whichever was earlier. RESULTS Of 147 patients with DFUs, 78 patients (26 per group) completed the study and were included in the final evaluation. At the time of study termination, all participants in each of the T3 or T3/Ins groups were free of symptoms based on the REEDA score, while about 40% of participants in the control group were detected with each of grades 1, 2, or 3. A significant difference was observed on days 7, 14, and 21 of consumption of topical preparations (p-value < 0.001). The mean time to complete wound closure in the routine care group was about 60.6 days, while it was 15.9 and 16.4 days in T3 and T3/Ins groups, respectively. Within the T3 and T3/Ins groups, significant earlier wound closure was detected at day 28 (p-value < 0.001). CONCLUSION T3 or T3/Ins topical preparations are effective for wound healing and acceleration of wound closure in mild to moderate DFUs.
Collapse
Affiliation(s)
- Fatemeh Saghafi
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - Vahid Ramezani
- Department of Pharmaceutics, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fatemeh Pasandeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Hossein Fallahzadeh
- Departments of Biostatistics and Epidemiology, Center for Healthcare Data Modeling, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Adeleh Sahebnasagh
- Department of Internal Medicine, Clinical Research Center, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
10
|
Ramirez-GarciaLuna JL, Rangel-Berridi K, Bergeron A, Kolosovas-Machuca ES, Wang SC, Berry GK, Martinez-Jimenez MA. Local Insulin Improves Wound Healing: A Systematic Review and Bayesian Network Meta-Analysis. Plast Reconstr Surg 2023; 152:1114e-1130e. [PMID: 36940147 DOI: 10.1097/prs.0000000000010432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
BACKGROUND Wounds are a significant health issue, and reliable and safe strategies to promote repair are needed. Clinical trials have demonstrated that local insulin promotes healing in acute and chronic wounds (ie, reductions of 7% to 40% versus placebo). However, the trials' sample sizes have prevented drawing solid conclusions. Furthermore, no analysis has focused on safety concerns (ie, hypoglycemia). Under the hypothesis that local insulin promotes healing through proangiogenic effects and cellular recruitment, the aim of this systematic review and network meta-analysis (NMA) was to assess its safety and relative effectiveness using a Bayesian approach. METHODS Medline, CENTRAL, Embase, Scopus, LILACS, and gray literature sources were searched for human studies assessing the local use of insulin versus any comparator since inception to October of 2020. Data on glucose changes and adverse events, wound and treatment characteristics, and healing outcomes were extracted, and an NMA was conducted. RESULTS A total of 949 reports were found, of which 23 ( n = 1240 patients) were included in the NMA. The studies evaluated six different therapies, and most comparisons were against placebo. NMA showed -1.8 mg/dL blood glucose level change with insulin and a lack of reported adverse events. Statistically significant clinical outcomes identified include reduction in wound size (-27%), increased healing rate (23 mm/day), reduction in Pressure Ulcer Scale for Healing scores (-2.7), -10 days to attain complete closure, and an odds ratio of 20 for complete wound closure with insulin use. Likewise, significantly increased neoangiogenesis (+30 vessels/mm 2 ) and granulation tissue (+25%) were also found. CONCLUSION Local insulin promotes wound healing without significant adverse events.
Collapse
Affiliation(s)
| | | | | | - E Samuel Kolosovas-Machuca
- Coordinacion para la Innovacion y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autonoma de San Luis Potosi
| | | | | | - Mario A Martinez-Jimenez
- Hospital Central "Dr. Ignacio Morones Prieto"
- Coordinacion para la Innovacion y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autonoma de San Luis Potosi
| |
Collapse
|
11
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
12
|
Li M, Xia W, Khoong YM, Huang L, Huang X, Liang H, Zhao Y, Mao J, Yu H, Zan T. Smart and versatile biomaterials for cutaneous wound healing. Biomater Res 2023; 27:87. [PMID: 37717028 PMCID: PMC10504797 DOI: 10.1186/s40824-023-00426-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
The global increase of cutaneous wounds imposes huge health and financial burdens on patients and society. Despite improved wound healing outcomes, conventional wound dressings are far from ideal, owing to the complex healing process. Smart wound dressings, which are sensitive to or interact with changes in wound condition or environment, have been proposed as appealing therapeutic platforms to effectively facilitate wound healing. In this review, the wound healing processes and features of existing biomaterials are firstly introduced, followed by summarizing the mechanisms of smart responsive materials. Afterwards, recent advances and designs in smart and versatile materials of extensive applications for cutaneous wound healing were submarined. Finally, clinical progresses, challenges and future perspectives of the smart wound dressing are discussed. Overall, by mapping the composition and intrinsic structure of smart responsive materials to their individual needs of cutaneous wounds, with particular attention to the responsive mechanisms, this review is promising to advance further progress in designing smart responsive materials for wounds and drive clinical translation.
Collapse
Affiliation(s)
- Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lujia Huang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hsin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
13
|
Ostróżka-Cieślik A, Wilczyński S, Dolińska B. Hydrogel Formulations for Topical Insulin Application: Preparation, Characterization and In Vitro Permeation across the Strat-M ® Membrane. Polymers (Basel) 2023; 15:3639. [PMID: 37688265 PMCID: PMC10489751 DOI: 10.3390/polym15173639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Insulin has shown efficacy in the treatment of hard-to-heal wounds, which is mainly due to its role in regulating oxidative stress and inflammatory reactions. The aim of this study was to develop an insulin-hydrogel carrier based on Sepineo™ P 600 and Sepineo™ PHD 100 for application to lesional skin. Preformulation studies of the developed formulations were performed in terms of analysis of the pharmaceutical availability of insulin from the hydrogels through the Strat-M® membrane, and rheological and texture measurements. Insulin is released in a prolonged manner; after a time of 6.5 h, 4.01 IU/cm2 (53.36%) and 3.69 IU/cm2 (47.4%) of the hormone were released from the hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100, respectively. Rheological analysis showed that the hydrogels tested belong to non-Newtonian, shear-thinning systems with yield stress. The insulin-hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100 shows optimal application properties. The results obtained provide a basis for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
14
|
Linnemann C, Şahin F, Li N, Pscherer S, Götz F, Histing T, Nussler AK, Ehnert S. Insulin Can Delay Neutrophil Extracellular Trap Formation In Vitro-Implication for Diabetic Wound Care? BIOLOGY 2023; 12:1082. [PMID: 37626968 PMCID: PMC10452400 DOI: 10.3390/biology12081082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Diabetes is a worldwide evolving disease with many associated complications, one of which is delayed or impaired wound healing. Appropriate wound healing strongly relies on the inflammatory reaction directly after injury, which is often altered in diabetic wound healing. After an injury, neutrophils are the first cells to enter the wound site. They have a special defense mechanism, neutrophil extracellular traps (NETs), consisting of released DNA coated with antimicrobial proteins and histones. Despite being a powerful weapon against pathogens, NETs were shown to contribute to impaired wound healing in diabetic mice and are associated with amputations in diabetic foot ulcer patients. The anti-diabetic drugs metformin and liraglutide have already been shown to regulate NET formation. In this study, the effect of insulin was investigated. NET formation after stimulation with PMA (phorbol myristate acetate), LPS (lipopolysaccharide), or calcium ionophore (CI) in the presence/absence of insulin was analyzed. Insulin led to a robust delay of LPS- and PMA-induced NET formation but had no effect on CI-induced NET formation. Mechanistically, insulin induced reactive oxygen species, phosphorylated p38, and ERK, but reduced citrullination of histone H3. Instead, bacterial killing was induced. Insulin might therefore be a new tool for the regulation of NET formation during diabetic wound healing, either in a systemic or topical application.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Filiz Şahin
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Pscherer
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
- Department of Internal Medicine III, Sophien- and Hufeland-Hospital, 99425 Weimar, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany
| | - Tina Histing
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| |
Collapse
|
15
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
16
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Li A, Li L, Zhao B, Li X, Liang W, Lang M, Cheng B, Li J. Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. Int J Biol Macromol 2022; 194:914-923. [PMID: 34838860 DOI: 10.1016/j.ijbiomac.2021.11.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
Epigallocatechin-3-O-gallate (EGCG) is a green biomedical agent for promoting wound healing, which possess excellent antibacterial, antioxidant and anti-inflammatory activities. For improving the low bioavailability challenges of EGCG in vivo, we had successful created a low-cost and simple wound dressing Poly (L-Lactic-co-caprolactone) (PLCL)/Gelatin/EGCG/Core-shell nanofiber membrane (PGEC) with drug sustained release capacity through coaxial electrospinning technology. In vitro experimental indicated that the core-shell structure wound dressing had excellent biocompatibility, antibacterial and antioxidant ability, which could support cell viability and proliferation, encourage re-epithelialization during the healing process, inhibit subsequent wound infection and thus promote wound regeneration. In vivo experimental demonstrated that PGEC wound dressing could promote wound healing, the histological results further demonstrated that PGEC not only facilitated early wound closure but also influenced cellular differentiation and tissue organization. Meanwhile, PGEC had excellent hemostatic ability. Taken all together, we believed that the PGEC wound dressing, which could localize delivery of EGCG, had high potential clinical application for promoting wound healing, hemostasis or other related clinical applications in the future.
Collapse
Affiliation(s)
- Ang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China; Department of General Surgery, The Affiliated Shanghai Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Linhui Li
- Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 ChanghaiRoad, Yangpu District, Shanghai 200433, China
| | - Bin'an Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Xiaotong Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
19
|
Sun S, Zhang L, Liu J, Li H. Insulin Topical Application for Wound Healing in Nondiabetic Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9785466. [PMID: 34840600 PMCID: PMC8616663 DOI: 10.1155/2021/9785466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low-cost and safe strategies to improve wound healing will be of great social and economic value. The goal of this pilot clinical trial is aimed at analyzing how effective insulin therapy is at healing wounds in nondiabetic people. METHODS In this protocol research, 346 individuals were included. Patients were divided as 2 groups at random: experimental patients were given a ten-unit answer. For each 10 cm2 of wound, insulin was injected in solution with 1 mL 0.9 percent saline, whereas the control group got a standard dressing with normal saline. RESULTS During the therapy period, no adverse effects were reported. After insulin therapy, no substantial insulin-related side effects were reduced. After 10 days of therapy, the experimental group's granulation tissue coverage rate and thickness were considerably improved as compared to control. Furthermore, a momentous difference in the occurrence of wound bleeding and suppurative wounds between the two groups (P = 0.05). CONCLUSION The results of this pilot research suggest that insulin injections could harmless and effective alternative therapy for wound healing in nondiabetic individuals and that larger, placebo-controlled trials are needed to evaluate effectiveness and safety of insulin treatment in wound healing patients.
Collapse
Affiliation(s)
- Shudong Sun
- Department of Burn and Wound Repair, Weifang People's Hospital, Weifang, Shandong, China
| | - Lei Zhang
- Department of Burns and Plastic Surgery, Binzhou People's Hospital Binzhou, Shandong, China
| | - Jun Liu
- Department of Dermatology, Sunshine Union Hospital, Weifang, Shandong, China
| | - Huiling Li
- Department of Burn and Wound Repair Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
20
|
Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome-A Review. Angiology 2021; 73:299-311. [PMID: 34541892 DOI: 10.1177/00033197211042684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral arterial disease can involve tissue loss in up to 50% of patients with diabetic foot syndrome (DFS). Consequently, revascularization of narrowed or occluded arteries is one of the most common forms of comprehensive treatment. However, technically successful angioplasty does not always result in the healing of ulcers. The pathomechanism of this phenomenon is still not fully understood, but inadequate angiogenesis in tissue repair may play an essential role. Changes in pro- and anti-angiogenic factors among patients with DFS are not always clear and conclusive. In particular, some studies underline the role of decreased concentration of pro-angiogenic factors and higher levels of anti-angiogenic mediators. Nevertheless, there are still controversial issues, including the paradox of impaired wound healing despite high concentrations of some pro-angiogenic factors, dynamics of their expression during the healing process, and their mutual relationships. Exploring this process among diabetic patients may provide new insight into well-known methods of treatment and show their real benefits and chances for improving outcomes.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland.,Doctoral School of Medical and Health Sciences, 162261Jagiellonian University, Krakow, Poland
| | - Patrycja Łączak
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Pasieka
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Anna Płotek
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Maga
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
21
|
Clostridium Collagenase Impact on Zone of Stasis Stabilization and Transition to Healthy Tissue in Burns. Int J Mol Sci 2021; 22:ijms22168643. [PMID: 34445347 PMCID: PMC8395468 DOI: 10.3390/ijms22168643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Clostridium collagenase has provided superior clinical results in achieving digestion of immediate and accumulating devitalized collagen tissue. Recent studies suggest that debridement via Clostridium collagenase modulates a cellular response to foster an anti-inflammatory microenvironment milieu, allowing for a more coordinated healing response. In an effort to better understand its role in burn wounds, we evaluated Clostridium collagenase’s ability to effectively minimize burn progression using the classic burn comb model in pigs. Following burn injury, wounds were treated with Clostridium collagenase or control vehicle daily and biopsied at various time points. Biopsies were evaluated for factors associated with progressing necrosis as well as inflammatory response associated with treatment. Data presented herein showed that Clostridium collagenase treatment prevented destruction of dermal collagen. Additionally, treatment with collagenase reduced necrosis (HMGB1) and apoptosis (CC3a) early in burn injuries, allowing for increased infiltration of cells and protecting tissue from conversion. Furthermore, early epidermal separation and epidermal loss with a clearly defined basement membrane was observed in the treated wounds. We also show that collagenase treatment provided an early and improved inflammatory response followed by faster resolution in neutrophils. In assessing the inflammatory response, collagenase-treated wounds exhibited significantly greater neutrophil influx at day 1, with macrophage recruitment throughout days 2 and 4. In further evaluation, macrophage polarization to MHC II and vascular network maintenance were significantly increased in collagenase-treated wounds, indicative of a pro-resolving macrophage environment. Taken together, these data validate the impact of clostridial collagenases in the pathophysiology of burn wounds and that they complement patient outcomes in the clinical scenario.
Collapse
|
22
|
Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. MATERIALS 2021; 14:ma14154257. [PMID: 34361451 PMCID: PMC8348788 DOI: 10.3390/ma14154257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Wound care has been clinically demanding due to inefficacious treatment that represents an economic burden for healthcare systems. In Europe, approximately 7 million people are diagnosed with untreated wounds, leading to a cost between 6.000€ and 10.000€ per patient/year. In the United States of America, 1.5 million people over 65 years old suffer from chronic wounds. A promising therapeutic strategy is the use of exogenous growth factors because they are decreased at the wound site, limiting the recovery of the skin. Insulin is one of the cheapest growth factors in the market able to accelerate the re-epithelialization and stimulate angiogenesis and cell migration. However, the effectiveness of topical insulin in wound healing is hampered by the proteases in the wound bed. The encapsulation into nanoparticles improves its stability in the wound, providing adhesion to the mucosal surface and allowing its sustained release. The aim of this review is to perform a standing point about a promising strategy to treat different types of wounds by the topical delivery of insulin-loaded nanocarriers.
Collapse
|
23
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
24
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
25
|
Angiogenesis in Wound Healing following Pharmacological and Toxicological Exposures. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00212-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Wang J, Xu J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab Syndr Obes 2020; 13:719-727. [PMID: 32214835 PMCID: PMC7078652 DOI: 10.2147/dmso.s237294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex biological process that repairs damaged tissues and restores skin integrity. Insulin, a potent factor of wound healing, has been reported for nearly a century to induce rapid recovery of various wounds, as shown by numerous human and animal studies. Although many studies have addressed the healing effect of systemic insulin on burn wound, only few have investigated the efficacy of topical insulin. Thus, this study aimed to review evidence of the effects of topical insulin on wound healing, including on diabetic and non-diabetic wounds. The presented animal and clinical studies support that topical insulin improves wound healing through several mechanisms without causing side effects. Additionally, various wound dressings accelerate the wound healing with controlled and sustained delivery of bioactive insulin. Therefore, topical insulin has been appreciated in field of wound healing, and further studies are needed to improve our understanding of the role of insulin in the healing of various wounds.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Jixiong Xu Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng St., Nanchang, Jiangxi Province330006, People’s Republic of ChinaTel +86 13307086069 Email
| |
Collapse
|
27
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 492] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
28
|
Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf B Biointerfaces 2019; 175:436-444. [DOI: 10.1016/j.colsurfb.2018.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
|
29
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
30
|
Abdelkader DH, Tambuwala MM, Mitchell CA, Osman MA, El-Gizawy SA, Faheem AM, El-Tanani M, McCarron PA. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. Drug Deliv Transl Res 2018; 8:1053-1065. [PMID: 29971752 PMCID: PMC6133079 DOI: 10.1007/s13346-018-0554-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulin plays an important role in the wound healing process, but its method of delivery to the wound bed and subsequent effect on rate of healing is less well investigated. In this study, we evaluated the therapeutic effectiveness of topical human insulin delivery using a nanoparticulate delivery system suspended in a structured hydrogel vehicle. Poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) of 202.6 nm diameter and loaded with 33.86 μg insulin per milligram of polymer were formulated using a modified double-emulsion solvent evaporation technique and dispersed in a dilatant hydrogel (poly(vinyl alcohol)-borate). Importantly, this hydrogel formulation was used to achieve ultimate contact with the wound bed. A comparison of wound healing rates following local administration of insulin in the free and nanoencapsulated forms was performed in diabetic and healthy rats. In non-diabetic rats, there was no significant difference between healing observed in control and wounds treated with free insulin (p > 0.05), whereas treatment with insulin encapsulated within PLGA NP showed a significant difference (p < 0.001). In diabetic cohorts, both free insulin and nanoencapsulated insulin induced significant improvement in wound healing when compared to controls, with better percentage wound injury indices observed with the colloidal formulation. At day 10 of the experiment, the difference between percentage wound injury indices of insulin-PLGA NP and free insulin comparing to their controls were 29.15 and 12.16%, respectively. These results support strongly the potential of insulin-loaded colloidal carriers for improved wound healing when delivered using dilatant hydrogel formulations.
Collapse
Affiliation(s)
- Dalia H Abdelkader
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co., Londonderry, BT52 1SA, UK
- Faculty of Pharmacy, Pharmaceutical Technology Department, Tanta University, Tanta, 31111, Egypt
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co., Londonderry, BT52 1SA, UK
| | - Christopher A Mitchell
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine Co., Londonderry, BT52 1SA, UK
| | - Mohamed A Osman
- Faculty of Pharmacy, Pharmaceutical Technology Department, Tanta University, Tanta, 31111, Egypt
| | - Sanaa A El-Gizawy
- Faculty of Pharmacy, Pharmaceutical Technology Department, Tanta University, Tanta, 31111, Egypt
| | - Ahmed M Faheem
- Sunderland Pharmacy School, University of Sunderland, Sunderland, SR1 3SD, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co., Londonderry, BT52 1SA, UK.
| |
Collapse
|
31
|
Engineering Tissues without the Use of a Synthetic Scaffold: A Twenty-Year History of the Self-Assembly Method. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5684679. [PMID: 29707571 PMCID: PMC5863296 DOI: 10.1155/2018/5684679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
Twenty years ago, Dr. François A. Auger, the founder of the Laboratory of Experimental Organogenesis (LOEX), introduced the self-assembly technique. This innovative technique relies on the ability of dermal fibroblasts to produce and assemble their own extracellular matrix, differing from all other tissue-engineering techniques that use preformed synthetic scaffolds. Nevertheless, the use of the self-assembly technique was limited for a long time due to its main drawbacks: time and cost. Recent scientific breakthroughs have addressed these limitations. New protocol modifications that aim at increasing the rate of extracellular matrix formation have been proposed to reduce the production costs and laboratory handling time of engineered tissues. Moreover, the introduction of vascularization strategies in vitro permits the formation of capillary-like networks within reconstructed tissues. These optimization strategies enable the large-scale production of inexpensive native-like substitutes using the self-assembly technique. These substitutes can be used to reconstruct three-dimensional models free of exogenous materials for clinical and fundamental applications.
Collapse
|
32
|
Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assesment of wound healing potential: A systematic review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Liu Y, Dhall S, Castro A, Chan A, Alamat R, Martins-Green M. Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue. Biol Open 2018; 7:bio.026187. [PMID: 29101099 PMCID: PMC5827262 DOI: 10.1242/bio.026187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Wound healing is a complex process that involves sequential phases that overlap in time and space and affect each other dynamically at the gene and protein levels. We previously showed that insulin accelerates wound healing by stimulating faster and regenerative healing. One of the processes that insulin stimulates is an increase in monocyte/macrophage chemotaxis. In this study, we performed experiments in vivo and in vitro to elucidate the signaling transduction pathways that are involved in insulin-induced monocyte/macrophage chemotaxis. We found that insulin stimulates THP-1 cell chemotaxis in a dose-dependent and insulin receptor-dependent manner. We also show that the kinases PI3K-Akt, SPAK/JNK, and p38 MAPK are key molecules in the insulin-induced signaling pathways that lead to chemoattraction of the THP-1 cell. Furthermore, both PI3K-Akt and SPAK/JNK signaling involve Rac1 activation, an important molecule in regulating cell motility. Indeed, topical application of Rac1 inhibitor at an early stage during the healing process caused delayed and impaired healing even in the presence of insulin. These results delineate cell and molecular mechanisms involved in insulin-induced chemotaxis of monocyte/macrophage, cells that are critical for proper healing. Summary: Insulin regulates multiple signaling pathways leading to monocyte/macrophage chemotaxis into the wound tissue, involving -Akt, SPAK/JNK, and p38 MAPK which in turn are involved in Rac1 activation. Furthermore, these results augment our understanding of the insulin-regulated wound inflammatory response.
Collapse
Affiliation(s)
- Yan Liu
- Department of Burn and Plastic Surgery, ShangHai JiaoTong University School of Medicine Ruijin hospital, Shanghai, P.R.China 200025
| | - Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Alex Chan
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Raquelle Alamat
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| |
Collapse
|
34
|
Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Wu JZ, Williams GR, Li HY, Wang DX, Li SD, Zhu LM. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv 2017; 24:1513-1525. [PMID: 28975813 PMCID: PMC8241149 DOI: 10.1080/10717544.2017.1381200] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022] Open
Abstract
Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N-vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83 ± 0.15 and 82.6 ± 5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes.
Collapse
Affiliation(s)
- Jun-Zi Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | | | - He-Yu Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Dong-Xiu Wang
- Central Laboratory, Environmental Monitoring Center of Kunming, Kunming, P.R. China
| | - Shu-De Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming, P.R. China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| |
Collapse
|
36
|
Abstract
Microparticles with controlled size and morphology are of significant interest in the field of drug delivery. Although advanced nanoparticles have been the object of a substantial number of reviews, fewer have focused on microparticles, especially for the delivery of drugs and growth factors to the wound site. Microparticles show distinct advantages, including ease of production and characterization, extended release properties, high drug loading and little concern about the toxicity as compared with the nanosized systems. This review presents an introduction to the pathophysiology of wound healing and provides an overview of some of the recent advances in microparticle-based drugs and growth factors delivery to wound sites.
Collapse
|
37
|
Mathew SA, Chandravanshi B, Bhonde R. Hypoxia primed placental mesenchymal stem cells for wound healing. Life Sci 2017. [PMID: 28625360 DOI: 10.1016/j.lfs.2017.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AIMS To investigate how Placental Mesenchymal Stem Cells (P-MSCs) would adapt themselves and survive under hypoxic conditions which are prevalent in most injury sites. MAIN METHODS P-MSCs were isolated from term placenta and characterised under normoxia and hypoxia (2-2.5% O2). Cells were examined for morphology and surface marker variations by flow cytometry analysis. Glucose stimulated insulin secretion was assayed by Insulin ELISA Kit. Gene expression levels were estimated using Real Time PCR for hypoxia inducible factor1 alpha, Insulin (INS), Glucose transporters (GLUT-1, GLUT-2 and GLUT-3), Adhesion Proteins- Integrins, Fibronectin1 (FN1), E-Cadherin (CDH1), and N-Cadherin (CDH2) and angiogenesis marker VEGFA. Immunofluorescence assay was done to confirm the presence of C-Peptide, GLUT 2, E-Cadherin and ITGB3. Adhesion was confirmed assessed on fibronectin binding. KEY FINDINGS We show that insulin secretion is not hampered under hypoxia. We found an upregulation of glucose transporters under hypoxia indicating enhanced glucose uptake needed to cater to metabolic demands of proliferating cells. Up regulation of adhesion molecules was seen under hypoxia indicative of a favoured environment for retention of cells at the injury site. We also found increased level of angiogenesis of P-MSCs under hypoxia. SIGNIFICANCE Our present study thus demonstrates for the first time that P-MSCs modulate themselves under hypoxic conditions by secreting insulin, up regulating glucose transporters and adhesion molecules and eventually exhibiting an increased angiogenic potential. We thus infer that priming P-MSCs under hypoxia, could make them more suitable for wound healing applications.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, Bangalore 560 065, India
| | - Bhawna Chandravanshi
- School of Regenerative Medicine, Manipal University, MAHE, GKVK Post, Bellary Road, Allalasandra, Near Royal Orchid, Yelahanka, Bangalore 560 065, India
| | - Ramesh Bhonde
- Dr D Y Patil University, Sant Tukaram Nagar, Maharashtra, Pune 411018, India.
| |
Collapse
|
38
|
Sridharan K, Sivaramakrishnan G. Efficacy of topical insulin in wound healing: A preliminary systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen 2017; 25:279-287. [PMID: 28090724 DOI: 10.1111/wrr.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Topical insulin has been shown to promote wound healing in various studies. Considering the absence of a systematic review and quantitative synthesis on the same, the present study was carried out. Using an appropriate search strategy, electronic databases were searched for randomized controlled trials that have compared topical application of insulin in wounds with normal saline. Standardize mean differences were calculated for the following outcome measures: healing rate of ulcers/wound, percent granulation tissue growth, microvessel density, time to heal, wound area and ulcer severity score. Cochrane's risk of bias tool was used for each of the studies and RevMan 5.3 software was used to generate the pooled estimates and Forest plots. The quality of evidence was assessed by the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) working group approach. A total of 8 studies were found eligible to be included in this review and 7 for the meta-analysis. The pooled estimates were as follows: healing rate-0.04 [-1.38, 1.46]; percent granulation tissue-10.99 [-10.07, 32.06], microvessel density-3.01 [-1.67, 7.69] and wound area--6.59 [-9.7, -3.48]. There was only one study for each of the following outcome measures: time to heal and ulcer severity score. Hence, pooling of the results was not attempted for these outcome measures. The studies conducted in this field were preliminary and it was difficult to draw any conclusion regarding the use of insulin topically for wound healing.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Health Sciences, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| | - Gowri Sivaramakrishnan
- Department of Oral Health, College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
| |
Collapse
|
39
|
Zeng M, Zhi Y, Liu W, Zhang W, Xu J. Clinical study on local application of low-dose insulin for promoting wound healing after operation for deep burns. Exp Ther Med 2016; 12:3221-3226. [PMID: 27882141 PMCID: PMC5103771 DOI: 10.3892/etm.2016.3749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
Transplanted free skin flaps are often needed to treat deep burns; their survival, however, is less than optimal. This study examined whether local low-dose insulin injections can promote flap survival and wound healing after surgery. A total of 165 patients who underwent free skin flap transplantation for simple deep burns were enrolled in the study and divided into 5 groups of 33 patients each: Blank control group (no local subcutaneous drug injections), saline control group (saline injections), low-dose insulin group (0.5 units regular insulin injections), medium-dose group (1.0 units regular insulin injections) and high-dose group (2.0 units regular insulin injections). Wound healing and flap survival conditions were assessed and compared among groups. The best wound healing rate found was that of the low-dose insulin injection group where all the parameters measured improved significantly: The healing time was shorter; the blood flow volume, the flap survival, the number of fibroblasts and new vessels increased; the re-epithelialization occurred faster; the infiltration of inflammatory cells was reduced; the expression levels of heat shock protein-90, vascular endothelial growth factor, transforming growth factor-β and interleukin-1 were higher; and the plasma glucose levels only fluctuated slightly. The results clearly demonstrate that a local low-dose insulin regime after flap transplantation can accelerate the healing time and improve the surgical outcome without exerting detrimental secondary effects on the glucose plasma level of deep burn patients.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yan Zhi
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenjun Liu
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wei Zhang
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinxiong Xu
- Department of Burns, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
40
|
Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers. Arch Dermatol Res 2016; 308:677-694. [PMID: 27655635 DOI: 10.1007/s00403-016-1686-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/04/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.
Collapse
|
41
|
Dhall S, Alamat R, Castro A, Sarker AH, Mao JH, Chan A, Hang B, Martins-Green M. Tobacco toxins deposited on surfaces (third hand smoke) impair wound healing. Clin Sci (Lond) 2016; 130:1269-84. [PMID: 27129193 DOI: 10.1042/cs20160236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/28/2016] [Indexed: 02/04/2023]
Abstract
Third hand smoke (THS) is the accumulation of second hand smoke (SHS) toxins on surfaces in homes, cars, clothing and hair of smokers. It is known that 88M US nonsmokers ≥3 years old living in homes of smokers are exposed to THS toxicants and show blood cotinine levels of ≥0.05 ng/ml, indicating that the toxins are circulating in their circulatory systems. The goal of the present study is to investigate the mechanisms by which THS causes impaired wound healing. We show that mice living under conditions that mimic THS exposure in humans display delayed wound closure, impaired collagen deposition, altered inflammatory response, decreased angiogenesis, microvessels with fibrin cuffs and a highly proteolytic wound environment. Moreover, THS-exposed mouse wounds have high levels of oxidative stress and significantly lower levels of antioxidant activity leading to molecular damage, including protein nitration, lipid peroxidation and DNA damage that contribute to tissue dysfunction. Furthermore, we show that elastase is elevated, suggesting that elastin is degraded and the plasticity of the wound tissue is decreased. Taken together, our results lead us to conclude that THS toxicants delay and impair wound healing by disrupting the sequential processes that lead to normal healing. In addition, the lack of elastin results in loss of wound plasticity, which may be responsible for reopening of wounds.
Collapse
Affiliation(s)
- Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, U.S.A
| | - Raquelle Alamat
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, U.S.A
| | - Anthony Castro
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, U.S.A
| | - Altaf H Sarker
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Jian-Hua Mao
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Alex Chan
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, U.S.A
| | - Bo Hang
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, CA 92521, U.S.A.
| |
Collapse
|