1
|
Xie Y, Fan Y, Liu X, Li Z, Liu S. 4D-DIA-based proteomics analysis reveals the protective effects of Pidanjiangtang granules in IGT rat model. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119012. [PMID: 39481621 DOI: 10.1016/j.jep.2024.119012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Pidanjiangtang (PDJT) formula was founded on the "Pidan" theory from the "Nei Jing." PDJT is considered to eliminate the accumulation of pathological products, remove heat sources, and prevent damage to organs such as the liver and islets. It is widely used in clinical practice to treat impaired glucose tolerance (IGT). However, the bioactive ingredients and underlying mechanisms are still unclear and need further investigation. OBJECTIVE This study aimed to determine the therapeutic effect of PDJT on IGT rats and explore the mechanism of PDJT intervention on IGT by four-dimensional independent data acquisition (4D-DIA) proteomics analysis. MATERIALS AND METHODS The IGT model was established by a high-fat diet combined with Streptozotocin (STZ) injection. The IGT rats were treated with low, medium, and high doses of PDJT orally for 42 days and compared with the Metformin positive control group. The therapeutic effects of PDJT on IGT rats were evaluated using the oral glucose tolerance test (OGTT), serum lipoprotein detection, insulin detection, liver histopathology, and hepatic steatosis assessment. 4D-DIA proteomics analysis was used to explore the differential proteins (DEPs) and potential pathways of PDJT. Finally, Western blotting and ELISA techniques were used to verify DEPs and major targets. RESULTS PDJT can enhance glucose metabolism, restore islet β cell function, regulate lipoprotein metabolism, reduce hepatic steatosis, and consequently slow down the progression of IGT. In the proteomic analysis, a total of 355 DEPs were identified, and critical proteins were validated. The results indicated that the JAK2/STAT1 signaling pathway plays a pivotal role in the effects of PDJT. IκB-ζ may be a potential target for PDJT in regulating the inflammatory response of IGT. CONCLUSION PDJT is an effective formula for improving IGT, with its potential mechanism linked to the JAK2/STAT1/IκB-ζ signaling pathway. This study offers a novel approach to investigating the mechanisms of TCM formula through proteomics and offers new insight into exploring TCM treatment for IGT.
Collapse
Affiliation(s)
- Yu Xie
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Fan
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Liu
- Beijing University of Chinese Medicine, Beijing, China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zirong Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Shangjian Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Feng J, Zhang M, Ren H, Ren Y, Hao Z, Bian S, Cui J, Li S, Xu J, Daniel MM, Ren F, Xu Z, Tan Y, Chen X, Zhang Y, Chang J, Wang H. Human umbilical cord mesenchymal stem cells improve bone marrow hematopoiesis through regulation of bone marrow adipose tissue. Mol Cell Biochem 2024:10.1007/s11010-024-05156-0. [PMID: 39613944 DOI: 10.1007/s11010-024-05156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024]
Abstract
Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.
Collapse
Affiliation(s)
- Jingyi Feng
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Miao Zhang
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Huanying Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yan Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhuanghui Hao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Sicheng Bian
- Department of Medicine, The MetroHealth System, Case Western Reserve University, Cleveland, OH, 44109, USA
| | - Jiangxia Cui
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shuo Li
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jing Xu
- Department of Medical Cell Biology and Genetics, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Muteb Muyey Daniel
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Fanggang Ren
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Zhifang Xu
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yanhong Tan
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiuhua Chen
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yaofang Zhang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jianmei Chang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Hongwei Wang
- Institute of Hematology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
3
|
Zhao Y, Wang X, Teng H, Zhao T, Nadembega WMC, Fan X, Zhang W, Fan B, Chi Y, Zhao Y, Liu S. Weighted Gene Co-Expression Network Based on Transcriptomics: Unravelling the Differentiation Dynamics of 3T3-L1 Preadipocytes and the Regulatory Mechanism of Protopanaxatriol. Int J Mol Sci 2024; 25:12254. [PMID: 39596321 PMCID: PMC11594308 DOI: 10.3390/ijms252212254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The intricate regulatory mechanisms governing adipocyte differentiation are pivotal in elucidating the complex pathophysiology underlying obesity. This study aims to explore the dynamic changes in gene expression during the differentiation of 3T3-L1 adipocytes using transcriptomics methods. Protopanaxatriol (PPT) significantly inhibited adipocyte differentiation. To uncover the molecular mechanisms, we conducted an extensive transcriptomic analysis of adipocytes throughout various differentiation stages, comparing gene expression profiles before and after PPT treatment. The construction of 16 co-expression modules was achieved using weighted gene co-expression network analysis (WGCNA). The 838 differentially expressed genes in the blue module were highly correlated with PPT treatment. Further analysis revealed that PIKfyve, STAT3, JAK1, CTTN, TYK2, JAK3, STAT2, STAT5b, SOCS3, and IRF9 were core genes closely associated with adipocyte differentiation. This discovery underscores the potential pivotal function of these ten genes in regulating adipocyte differentiation. This study elucidated that PPT, an active ingredient in ginseng, could reduce lipid accumulation by inhibiting the differentiation of adipocyte precursors through the negative regulation of genes such as PIKfyve, STAT3, and JAK1. Finally, molecular docking identified potential binding sites for PPT on PIKfyve and JAK1. This study provides potential drug targets for preventing obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yaru Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Tianyi Zhao
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Wendyam Marie Christelle Nadembega
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Xinhua Fan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Bowen Fan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Yuye Chi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130117, China; (Y.Z.); (X.W.); (H.T.); (X.F.); (W.Z.); (B.F.); (Y.C.)
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun 130118, China; (T.Z.); (W.M.C.N.)
| |
Collapse
|
4
|
You YL, Choi HS. Nootkatone (NK), a grapefruit-derived aromatic compound, inhibited lipid accumulation by regulating JAK2-STAT signaling and antioxidant response in adipocyte. Food Sci Biotechnol 2024; 33:2631-2641. [PMID: 39144189 PMCID: PMC11319697 DOI: 10.1007/s10068-024-01522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 08/16/2024] Open
Abstract
Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPβ, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01522-2.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
5
|
Zhang L, Zhao J, Peng Z, Zhang Z, Huang S, Dong X, Gao J, Guo X. Anti-adipogenesis effect of indole-3-acrylic acid on human preadipocytes and HFD-induced zebrafish. Acta Diabetol 2024; 61:975-985. [PMID: 38598139 DOI: 10.1007/s00592-024-02256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Obesity, defined as excessive or abnormal body fat accumulation, which could significantly increase the risk of cardiovascular disease, type 2 diabetes mellitus (T2DM) diseases and seriously affect people's quality of life. More than 2 billion people are overweight, and the incidence of obesity is increasing rapidly worldwide, it has become a widely concerned public health issue in the world. Diverse evidence show that active metabolites are involved in the pathophysiological processes of obesity. AIMS However, whether the downstream catabolite of tryptophan, 3-indole acrylic acid (IA), is involved in obesity remains unclear. METHODS We collected the samples of serum from peripheral blood of obesity and health controls, and liquid chromatography-mass spectrometry (LC-MS) was performed to identify the plasma levels of IA. Additionally, we verified the potential benefits of IA on human preadipocytes and HFD- induced zebrafish by cell viability assay, flow cytometry assay, Oil red O staining, total cholesterol (T-CHO), triglyceride (TG) and nonesterified free fatty acids (NEFA) measurements and Nile Red staining. RNA-Seq, functional analysis and western blot revealed the mechanisms underlying the function of IA. RESULTS We found that the content of IA in peripheral blood serum of overweight people was significantly lower than that of normal people. In addition, supplementation with IA in zebrafish larvae induced by a high fat diet (HFD) dramatically reduced HFD induced lipid accumulation. IA had no effect on proliferation and apoptosis of preadipocytes, but significantly inhibited adipogenesis of preadipocytes by down-regulate CEBPα and PPARγ. RNA-Seq and functional analysis revealed that IA regulated the adipogenesis of preadipocytes through stimulate the phosphorylation of STAT1. CONCLUSIONS Taken together, IA has been identified as a potent metabolite for the prevention or treatment of obesity.
Collapse
Affiliation(s)
- Ling Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China
| | - Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China
| | - Shan Huang
- Endocrinology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China
| | - Jianfang Gao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China.
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, People's Republic of China.
| |
Collapse
|
6
|
Chen H, Sun B, Chang SJ, Yu Z, Qiu Y, Hua C, Lin X. Single-cell sequencing of facial adipose tissue unveils FKBP5 as a therapeutic target for facial infiltrating lipomatosis. Stem Cell Res Ther 2024; 15:209. [PMID: 39020442 PMCID: PMC11256636 DOI: 10.1186/s13287-024-03835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Facial infiltrating lipomatosis is characterized by excessive growth of adipose tissue. Its etiology is associated with somatic phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) variants, but the specific mechanisms are not yet fully understood. METHODS We collected facial adipose tissue from both FIL patients and non-FIL individuals, isolated the stromal vascular fraction (SVF) and performed single-cell transcriptome sequencing on these samples. RESULTS We mapped out the cellular landscape within the SVF, with a specific focus on a deeper analysis of fibro-adipogenic precursor cells (FAPs). Our analysis revealed that FAPs from FIL patients (FIL-FAPs) significantly overexpressed FK506 binding protein 51 (FKBP5) compared to FAPs from individuals without FIL. Further experiments indicated that FKBP5 is regulated by the PI3K-AKT signaling pathway. The overactivation of this pathway led to an increase in FKBP5 expression. In vitro experiments demonstrated that FKBP5 promoted adipogenic differentiation of FAPs, a process that could be hindered by FKBP5 knockdown or inhibition. Additionally, in vivo assessments confirmed FKBP5's role in adipogenesis. CONCLUSIONS These insights into the pathogenesis of FIL underscore FKBP5 as a promising target for developing non-surgical interventions to manage the excessive adipose tissue growth in FIL.
Collapse
Affiliation(s)
- Hongrui Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Bin Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Shih-Jen Chang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Zhang Yu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Yajing Qiu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China
| | - Chen Hua
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| | - Xiaoxi Lin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
7
|
Wang C, Chen C, Lei B, Qin S, Zhang Y, Li K, Zhang S, Liu Y. Constructing eRNA-mediated gene regulatory networks to explore the genetic basis of muscle and fat-relevant traits in pigs. Genet Sel Evol 2024; 56:28. [PMID: 38594607 PMCID: PMC11003151 DOI: 10.1186/s12711-024-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) play a crucial role in transcriptional regulation. While significant progress has been made in understanding epigenetic regulation mediated by eRNAs, research on the construction of eRNA-mediated gene regulatory networks (eGRN) and the identification of critical network components that influence complex traits is lacking. RESULTS Here, employing the pig as a model, we conducted a comprehensive study using H3K27ac histone ChIP-seq and RNA-seq data to construct eRNA expression profiles from multiple tissues of two distinct pig breeds, namely Enshi Black (ES) and Duroc. In addition to revealing the regulatory landscape of eRNAs at the tissue level, we developed an innovative network construction and refinement method by integrating RNA-seq, ChIP-seq, genome-wide association study (GWAS) signals and enhancer-modulating effects of single nucleotide polymorphisms (SNPs) measured by self-transcribing active regulatory region sequencing (STARR-seq) experiments. Using this approach, we unraveled eGRN that significantly influence the growth and development of muscle and fat tissues, and identified several novel genes that affect adipocyte differentiation in a cell line model. CONCLUSIONS Our work not only provides novel insights into the genetic basis of economic pig traits, but also offers a generalizable approach to elucidate the eRNA-mediated transcriptional regulation underlying a wide spectrum of complex traits for diverse organisms.
Collapse
Affiliation(s)
- Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bowen Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, People's Republic of China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
| | - Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, People's Republic of China.
| |
Collapse
|
8
|
You YL, Lee JY, Choi HS. S chisandra chinensis-derived gomisin C suppreses lipid accumulation by JAK2-STAT signaling in adipocyte. Food Sci Biotechnol 2023; 32:1225-1233. [PMID: 37362811 PMCID: PMC10290005 DOI: 10.1007/s10068-023-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Gomisin C is a lignan isolated from the fruit of Schisandra chinensis. The current study aimed to investigate the effect of gomisin C on lipid accumulation in adipocytes and its underlying mechanism. Gomisin C effectively inhibited lipid accumulation by downregulating adipogenic factors such as PPARγ and C/EBPα. Gomisin C-mediated suppression of lipid accumulation occurred in the early adipogenic stage; C/EBPβ was downregulated by 55%, while KLF2 was upregulated by 1.5-fold. Gomisin C significantly reduced the production of reactive oxygen species but upregulated antioxidant enzymes, including catalase, SOD1, and Gpx at the mRNA level. Gomisin C regulated NRF2-KEAP1 pathway by increasing NRF2 and decreasing KEAP1, in protein abundance. Furthermore, gomisin C suppressed the JAK2-STAT signaling pathway by decreasing phosphorylation. Taken together, gomisin C reduced early adipogenesis and ROS production by inhibiting the JAK2-STAT signaling pathway but activating the NRF2-KEAP1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01263-8.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Ji-Yeon Lee
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-Gil 20, Jongno-Gu, Seoul, 03016 Republic of Korea
| |
Collapse
|
9
|
Chen Y, Wang W, Morgan MP, Robson T, Annett S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: current status and therapeutic targets. Front Endocrinol (Lausanne) 2023; 14:1148934. [PMID: 37361533 PMCID: PMC10286797 DOI: 10.3389/fendo.2023.1148934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Obesity is a global epidemic and overwhelming evidence indicates that it is a risk factor for numerous cancers, including hepatocellular carcinoma (HCC), the third leading cause of cancer-related deaths worldwide. Obesity-associated hepatic tumorigenesis develops from nonalcoholic fatty liver disease (NAFLD), progressing to nonalcoholic steatohepatitis (NASH), cirrhosis and ultimately to HCC. The rising incidence of obesity is resulting in an increased prevalence of NAFLD and NASH, and subsequently HCC. Obesity represents an increasingly important underlying etiology of HCC, in particular as the other leading causes of HCC such as hepatitis infection, are declining due to effective treatments and vaccines. In this review, we provide a comprehensive overview of the molecular mechanisms and cellular signaling pathways involved in the pathogenesis of obesity-associated HCC. We summarize the preclinical experimental animal models available to study the features of NAFLD/NASH/HCC, and the non-invasive methods to diagnose NAFLD, NASH and early-stage HCC. Finally, since HCC is an aggressive tumor with a 5-year survival of less than 20%, we will also discuss novel therapeutic targets for obesity-associated HCC and ongoing clinical trials.
Collapse
Affiliation(s)
- Yinshuang Chen
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Maria P. Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
10
|
Hartinger R, Lederer EM, Schena E, Lattanzi G, Djabali K. Impact of Combined Baricitinib and FTI Treatment on Adipogenesis in Hutchinson-Gilford Progeria Syndrome and Other Lipodystrophic Laminopathies. Cells 2023; 12:1350. [PMID: 37408186 DOI: 10.3390/cells12101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease that causes premature aging symptoms, such as vascular diseases, lipodystrophy, loss of bone mineral density, and alopecia. HGPS is mostly linked to a heterozygous and de novo mutation in the LMNA gene (c.1824 C > T; p.G608G), resulting in the production of a truncated prelamin A protein called "progerin". Progerin accumulation causes nuclear dysfunction, premature senescence, and apoptosis. Here, we examined the effects of baricitinib (Bar), an FDA-approved JAK/STAT inhibitor, and a combination of Bar and lonafarnib (FTI) treatment on adipogenesis using skin-derived precursors (SKPs). We analyzed the effect of these treatments on the differentiation potential of SKPs isolated from pre-established human primary fibroblast cultures. Compared to mock-treated HGPS SKPs, Bar and Bar + FTI treatments improved the differentiation of HGPS SKPs into adipocytes and lipid droplet formation. Similarly, Bar and Bar + FTI treatments improved the differentiation of SKPs derived from patients with two other lipodystrophic diseases: familial partial lipodystrophy type 2 (FPLD2) and mandibuloacral dysplasia type B (MADB). Overall, the results show that Bar treatment improves adipogenesis and lipid droplet formation in HGPS, FPLD2, and MADB, indicating that Bar + FTI treatment might further ameliorate HGPS pathologies compared to lonafarnib treatment alone.
Collapse
Affiliation(s)
- Ramona Hartinger
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Eva-Maria Lederer
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| | - Elisa Schena
- Unit of Bologna, CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Lattanzi
- Unit of Bologna, CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany
| |
Collapse
|
11
|
Zhang YX, Ou MY, Yang ZH, Sun Y, Li QF, Zhou SB. Adipose tissue aging is regulated by an altered immune system. Front Immunol 2023; 14:1125395. [PMID: 36875140 PMCID: PMC9981968 DOI: 10.3389/fimmu.2023.1125395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Adipose tissue is a widely distributed organ that plays a critical role in age-related physiological dysfunctions as an important source of chronic sterile low-grade inflammation. Adipose tissue undergoes diverse changes during aging, including fat depot redistribution, brown and beige fat decrease, functional decline of adipose progenitor and stem cells, senescent cell accumulation, and immune cell dysregulation. Specifically, inflammaging is common in aged adipose tissue. Adipose tissue inflammaging reduces adipose plasticity and pathologically contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue dysfunction. Adipose tissue inflammaging also contributes to age-related diseases, such as diabetes, cardiovascular disease and cancer. There is an increased infiltration of immune cells into adipose tissue, and these infiltrating immune cells secrete proinflammatory cytokines and chemokines. Several important molecular and signaling pathways mediate the process, including JAK/STAT, NFκB and JNK, etc. The roles of immune cells in aging adipose tissue are complex, and the underlying mechanisms remain largely unclear. In this review, we summarize the consequences and causes of inflammaging in adipose tissue. We further outline the cellular/molecular mechanisms of adipose tissue inflammaging and propose potential therapeutic targets to alleviate age-related problems.
Collapse
Affiliation(s)
- Yi-Xiang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Ou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Han Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Nortey AN, Garces KN, Hackam AS. Exploring the role of interleukin-27 as a regulator of neuronal survival in central nervous system diseases. Neural Regen Res 2022; 17:2149-2152. [PMID: 35259821 PMCID: PMC9083161 DOI: 10.4103/1673-5374.336134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Interleukin-27 is a pleiotropic cytokine that is involved in tissue responses to infection, cell stress, neuronal disease, and tumors. Recent studies in various tissues indicate that interleukin-27 has complex activating and inhibitory properties in innate and acquired immunity. The availability of recombinant interleukin-27 protein and mice with genetic deletions of interleukin-27, its receptors and signaling mediators have helped define the role of interleukin-27 in neurodegenerative diseases. Interleukin-27 has been well-characterized as an important regulator of T cell activation and differentiation that enhances or suppresses T cell responses in autoimmune conditions in the central nervous system. Evidence is also accumulating that interleukin-27 has neuroprotective activities in the retina and brain. Interleukin-27 is secreted from and binds to infiltrating microglia, macrophage, astrocytes, and even neurons and it promotes neuronal survival by regulating pro- and anti-inflammatory cytokines, neuroinflammatory pathways, oxidative stress, apoptosis, autophagy, and epigenetic modifications. However, interleukin-27 can have the opposite effect and induce inflammation and cell death in certain situations. In this review, we describe the current understanding of regulatory activities of interleukin-27 on cell survival and inflammation and discuss its mechanisms of action in the brain, spinal cord, and retina. We also review evidence for and against the therapeutic potential of interleukin-27 for dampening harmful neuroinflammatory responses in central nervous system diseases.
Collapse
Affiliation(s)
- Andrea N. Nortey
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kimberly N. Garces
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abigail S. Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
13
|
Liu C, Xiao K, Xie L. Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment. Front Immunol 2022; 13:928134. [PMID: 35880175 PMCID: PMC9307903 DOI: 10.3389/fimmu.2022.928134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common condition with high mortality. ALI/ARDS is caused by multiple etiologies, and the main clinical manifestations are progressive dyspnea and intractable hypoxemia. Currently, supportive therapy is the main ALI/ARDS treatment, and there remains a lack of targeted and effective therapeutic strategies. Macrophages are important components of innate immunity. M1 macrophages are pro-inflammatory, while M2 macrophages are anti-inflammatory and promote tissue repair. Mesenchymal stem cells (MSCs) are stem cells with broad application prospects in tissue regeneration due to their multi-directional differentiation potential along with their anti-inflammatory and paracrine properties. MSCs can regulate the balance of M1/M2 macrophage polarization to improve the prognosis of ALI/ARDS. In this paper, we review the mechanisms by which MSCs regulate macrophage polarization and the signaling pathways associated with polarization. This review is expected to provide new targets for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- Center of Pulmonary & Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
14
|
Li J, Chen Y, Liu Q, Tian Z, Zhang Y. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 2022; 23:287-299. [DOI: 10.1007/s10238-022-00816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|
15
|
Cheng Z, Xiong X, Zhou Y, Wu F, Shao Q, Dong R, Liu Q, Li L, Chen G. 6-gingerol ameliorates metabolic disorders by inhibiting hypertrophy and hyperplasia of adipocytes in high-fat-diet induced obese mice. Biomed Pharmacother 2022; 146:112491. [PMID: 34896967 DOI: 10.1016/j.biopha.2021.112491] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Accumulating studies revealed that 6-gingerol, a compound extracted mainly from ginger, treats obesity by preventing hyperlipidemia in vivo induced by high-fat-diet (HFD). The present study intends to further evaluate the efficacy of 6-gingerol in the treatment of obesity and investigate its potential mechanism. METHODS Obese mice were established by HFD induction. Bioinformatic analysis was used to predict the possible pathways enrolled by the application of 6-gingerol. Body weight and the levels of blood glucose and lipids were examined and analyzed for the evaluation of the therapeutic effect of 6-gingerol. The size and amounts as well as the status of adipocytes were determined by histological staining. The expression levels of related proteins in adipose tissue were assessed by immunohistochemical staining, immunofluorescent staining, and Western blot analysis. In addition, the expression levels of related mRNA were assessed by RT-qPCR. RESULTS HFD induced obesity was significantly curbed by 6-gingerol treatment. Here inhibition mechanism of 6-gingerol is demonstrated on excessive hypertrophy and hyperplasia of adipocytes in white adipose tissue (WAT), which may be related to the regulation of adipocytokines, such as PPARγ, C/EBPα, FABP4 and adiponectin, and the TLR3/IL-6/JAK1/STAT3 axis. Moreover, 6-gingerol treatment suppressed the expressions of IL-1β and CD68 in the liver and AKT/INSR/IRS-1 in epididymal WAT. CONCLUSION The results suggested that 6-gingerol could alleviate metabolic inflammation in the liver and insulin resistance to treat obesity. The mechanism is mainly involved in the inhibition of excessive hypertrophy and hyperplasia of adipocytes.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingli Li
- Department of Traditional Chinese Medicine, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College,Huazhong University of Science and Technology, Wuhan 430033, China.
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
16
|
Interleukin 21 Receptor Affects Adipogenesis of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Int 2022; 2022:4930932. [PMID: 35047041 PMCID: PMC8763493 DOI: 10.1155/2022/4930932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.
Collapse
|
17
|
Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. Biochem J 2021; 478:4027-4043. [PMID: 34724561 DOI: 10.1042/bcj20210442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
In the context of obesity-induced adipose tissue (AT) inflammation, migration of macrophages and their polarization from predominantly anti-inflammatory to proinflammatory subtype is considered a pivotal event in the loss of adipose insulin sensitivity. Two major chemoattractants, monocyte chemoattractant protein-1 (MCP-1) and Fetuin-A (FetA), have been reported to stimulate macrophage migration into inflamed AT instigating inflammation. Moreover, FetA could notably modulate macrophage polarization, yet the mechanism(s) is unknown. The present study was undertaken to elucidate the mechanistic pathway involved in the actions of FetA and MCP-1 in obese AT. We found that FetA knockdown in high fat diet (HFD) fed mice could significantly subdue the augmented MCP-1 expression and reduce adipose tissue macrophage (ATM) content thereby indicating that MCP-1 is being regulated by FetA. Additionally, knockdown of FetA in HFD mice impeded the expression of inducible nitric oxide synthase (iNOS) reverting macrophage activation from mostly proinflammatory to anti-inflammatory state. It was observed that the stimulating effect of FetA on MCP-1 and iNOS was mediated through interferon γ (IFNγ) induced activation of JAK2-STAT1-NOX4 pathway. Furthermore, we detected that the enhanced IFNγ expression was accounted by the stimulatory effect of FetA upon the activities of both cJun and JNK. Taken together, our findings revealed that obesity-induced FetA acts as a master upstream regulator of AT inflammation by regulating MCP-1 and iNOS expression through JNK-cJun-IFNγ-JAK2-STAT1 signaling pathway. This study opened a new horizon in understanding the regulation of ATM content and activation in conditions of obesity-induced insulin resistance.
Collapse
|
18
|
Hua Y, Yue Y, Zhao D, Ma Y, Xiong Y, Xiong X, Li J. Ablation of KDM2A Inhibits Preadipocyte Proliferation and Promotes Adipogenic Differentiation. Int J Mol Sci 2021; 22:9759. [PMID: 34575926 PMCID: PMC8467897 DOI: 10.3390/ijms22189759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epigenetic signals and chromatin-modifying proteins play critical roles in adipogenesis, which determines the risk of obesity and which has recently attracted increasing interest. Histone demethylase 2A (KDM2A) is an important component of histone demethylase; however, its direct effect on fat deposition remains unclear. Here, a KDM2A loss of function was performed using two unbiased methods, small interfering RNA (siRNA) and Cre-Loxp recombinase systems, to reveal its function in adipogenesis. The results show that the knockdown of KDM2A by siRNAs inhibited the proliferation capacity of 3T3-L1 preadipocytes. Furthermore, the promotion of preadipocyte differentiation was observed in siRNA-treated cells, manifested by the increasing content of lipid droplets and the expression level of adipogenic-related genes. Consistently, the genetic deletion of KDM2A by Adipoq-Cre in primary adipocytes exhibited similar phenotypes to those of 3T3-L1 preadipocytes. Interestingly, the knockdown of KDM2A upregulates the expression level of Transportin 1(TNPO1), which in turn may induce the nuclear translocation of PPARγ and the accumulation of lipid droplets. In conclusion, the ablation of KDM2A inhibits preadipocyte proliferation and promotes its adipogenic differentiation. This work provides direct evidence of the exact role of KDM2A in fat deposition and provides theoretical support for obesity therapy that targets KDM2A.
Collapse
Affiliation(s)
- Yonglin Hua
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yongqi Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dan Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Ma
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (Y.H.); (Y.Y.); (D.Z.); (Y.M.); (X.X.)
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
19
|
Ko J, Kim JY, Kim BR, Lee EJ, Kikkawa DO, Yoon JS. Signal transducer and activator of transcription 3 as a potential therapeutic target for Graves' orbitopathy. Mol Cell Endocrinol 2021; 534:111363. [PMID: 34116129 DOI: 10.1016/j.mce.2021.111363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/16/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
The roles of signal transducer and activator of transcription 3 (STAT3) in inflammation, oxidative stress, and adipogenesis during Graves' orbitopathy (GO) are incompletely understood. Here, STAT3 expression in orbital tissues (from individuals with GO and healthy control subjects) was studied, and the role of STAT3 in GO pathogenesis was examined through small-interfering RNA (siRNA)-mediated silencing in primary orbital fibroblasts. STAT3 mRNA expression was higher in GO orbital tissues than in non-GO tissues. Treatment with proinflammatory cytokines, thyroid-stimulating hormone, or insulin-like growth factor-1 induced STAT3 mRNA in GO orbital fibroblasts, but not in non-GO cells. STAT3 silencing inhibited interleukin-1β-induced inflammatory cytokines and oxidative stress-induced haem oxygenase-1 expression. STAT3 siRNA-transfected GO orbital fibroblasts showed decreased adipocyte differentiation. STAT3 affected proinflammatory cytokine production, oxidative stress responses, and adipogenesis in an in vitro model of GO, suggesting that STAT3 mediates GO pathology, and that modulating STAT3 expression may have therapeutic potential against GO.
Collapse
Affiliation(s)
- JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Bo Ram Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Jig Lee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Don O Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Viterbi Family Department of Ophthalmology, UC San Diego Shiley Eye Institute, La Jolla, CA 95093, USA; Division of Plastic Surgery, UC San Diego, La Jolla, CA 95093, USA
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
20
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
21
|
Yadav AK, Jang BC. Inhibition of Lipid Accumulation and Cyclooxygenase-2 Expression in Differentiating 3T3-L1 Preadipocytes by Pazopanib, a Multikinase Inhibitor. Int J Mol Sci 2021; 22:ijms22094884. [PMID: 34063048 PMCID: PMC8125232 DOI: 10.3390/ijms22094884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/23/2023] Open
Abstract
Pazopanib is a multikinase inhibitor with anti-tumor activity. As of now, the anti-obesity effect and mode of action of pazopanib are unknown. In this study, we investigated the effects of pazopanib on lipid accumulation, lipolysis, and expression of inflammatory cyclooxygenase (COX)-2 in differentiating and differentiated 3T3-L1 cells, a murine preadipocyte. Of note, pazopanib at 10 µM markedly decreased lipid accumulation and triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. Furthermore, pazopanib inhibited not only expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and perilipin A but also phosphorylation of signal transducer and activator of transcription (STAT)-3 during 3T3-L1 preadipocyte differentiation. In addition, pazopanib treatment increased phosphorylation of cAMP-activated protein kinase (AMPK) and its downstream effector ACC during 3T3-L1 preadipocyte differentiation. However, in differentiated 3T3-L1 adipocytes, pazopanib treatment did not stimulate glycerol release and hormone-sensitive lipase (HSL) phosphorylation, hallmarks of lipolysis. Moreover, pazopanib could inhibit tumor necrosis factor (TNF)-α-induced expression of COX-2 in both 3T3-L1 preadipocytes and differentiated cells. In summary, this is the first report that pazopanib has strong anti-adipogenic and anti-inflammatory effects in 3T3-L1 cells, which are mediated through regulation of the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, ACC, perilipin A, AMPK, and COX-2.
Collapse
|
22
|
Kwon HS, Jeong GS, Jang BC. Cudratricusxanthone A Inhibits Lipid Accumulation and Expression of Inducible Nitric Oxide Synthase in 3T3-L1 Preadipocytes. Int J Mol Sci 2021; 22:ijms22020505. [PMID: 33419132 PMCID: PMC7825570 DOI: 10.3390/ijms22020505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Cudratricusxanthone A (CTXA) is a natural bioactive compound extracted from the roots of Cudrania tricuspidata Bureau and has been shown to possess anti-inflammatory, anti-proliferative, and hepatoprotective activities. However, at present, anti-adipogenic and anti-inflammatory effects of CTXA on adipocytes remain unclear. In this study, we investigated the effects of CTXA on lipid accumulation and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, two known inflammatory enzymes, in 3T3-L1 preadipocytes. Strikingly, CTXA at 10 µM markedly inhibited lipid accumulation and reduced triglyceride (TG) content during 3T3-L1 preadipocyte differentiation with no cytotoxicity. On mechanistic levels, CTXA at 10 µM suppressed not only expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A, but also phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during 3T3-L1 preadipocyte differentiation. In addition, CTXA at 10 µM up-regulated phosphorylation levels of cAMP-activated protein kinase (AMPK) while down-regulating expression and phosphorylation levels of acetyl-CoA carboxylase (ACC) during 3T3-L1 preadipocyte differentiation. Moreover, CTXA at 10 µM greatly attenuated tumor necrosis factor (TNF)-α-induced expression of iNOS, but not COX-2, in 3T3-L1 preadipocytes. These results collectively demonstrate that CTXA has strong anti-adipogenic and anti-inflammatory effects on 3T3-L1 cells through control of the expression and phosphorylation levels of C/EBP-α, PPAR-γ, FAS, ACC, perilipin A, STAT-3/5, AMPK, and iNOS.
Collapse
Affiliation(s)
- Hyo-Shin Kwon
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Korea;
- Correspondence: ; Tel.: +82-53-258-7404
| |
Collapse
|
23
|
Adipose biology, cardiovascular, and cardiometabolic disease: novel insights and new targets for intervention. Clin Sci (Lond) 2020; 134:1473-1474. [PMID: 32579179 DOI: 10.1042/cs20200816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022]
Abstract
Adipose biology research has grown rapidly offering new insights into the physiological and pathophysiological roles of different body fat depots. This Thematic Collection of Clinical Science brings a well-rounded timely view of the recent development in this field. We highlight the state of the art on adipose tissue function/dysfunction in the context of cardiovascular and metabolic pathologies.
Collapse
|