1
|
Seuthe K, Picard FSR, Winkels H, Pfister R. Cancer Development and Progression in Patients with Heart Failure. Curr Heart Fail Rep 2024; 21:515-529. [PMID: 39340596 PMCID: PMC11511767 DOI: 10.1007/s11897-024-00680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW The co-occurrence of heart failure (HF) and cancer represents a complex and multifaceted medical challenge. Patients with prevalent cardiovascular disease (CVD), particularly HF, exhibit an increased risk of cancer development, raising questions about the intricate interplay between these two prevalent conditions. This review aims to explore the evolving landscape of cancer development in patients with HF, shedding light on potential mechanisms, risk factors, and clinical implications. RECENT FINDINGS Epidemiological data suggests higher cancer incidences and higher cancer mortality in HF patients, which are potentially more common in patients with HF with preserved ejection fraction due to related comorbidities. Moreover, recent preclinical data identified novel pathways and mediators including the protein SerpinA3 as potential drivers of cancer progression in HF patients, suggesting HF as an individual risk factor for cancer development. The review emphasizes preliminary evidence supporting cancer development in patients with HF, which offers several important clinical interventions such as cancer screening in HF patients, prevention addressing both HF and cancer, and molecular targets to treat cancer. However, there is need for more detailed understanding of molecular and cellular cross-talk between cancer and HF which can be derived from prospective assessments of cancer-related outcomes in CV trials and preclinical research of molecular mechanisms.
Collapse
Affiliation(s)
- Katharina Seuthe
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany.
| | - Felix Simon Ruben Picard
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Strasse 62, 50937, Cologne, Germany
| |
Collapse
|
2
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2024:10.1007/s00204-024-03874-4. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Ugusman A, Hisam NSN, Othman NS, Anuar NNM, Hamid AA, Kumar J, Razmi MM, Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol Ther 2024; 261:108685. [PMID: 38977083 DOI: 10.1016/j.pharmthera.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia; Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Maisarah Md Razmi
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Leiva O, Zarif TE, Alvarez-Cardona J. Gastrointestinal Cancer Therapy and Cardiotoxicity. Curr Treat Options Oncol 2024; 25:1203-1209. [PMID: 39102169 DOI: 10.1007/s11864-024-01236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Gastrointestinal cancers are a heterogenous group of cancers that share common risk factors with cardiovascular disease. Therapy for gastrointestinal cancers have improved cancer-specific outcomes at the cost of cardiotoxicity. The most common cardiotoxic therapies utilized in gastrointestinal cancers include conventional chemotherapy (including fluoropyrimidines and anthracyclines), targeted therapies including anti-vascular endothelial growth factor (VEGF) therapy and tyrosine kinase inhibitors (TKI), and immunotherapy. It is important for clinicians managing patients with gastrointestinal cancers to be aware of potential cardiotoxicity associated with these agents.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, U.S.A
| | - Talal El Zarif
- Department of Medicine, Yale New Haven Health, New Haven, CT, U.S.A
| | - Jose Alvarez-Cardona
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, U.S.A..
| |
Collapse
|
5
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Marrow JP, Alshamali R, Edgett BA, Allwood MA, Cochrane KLS, Al-Sabbag S, Ayoub A, Ask K, Hare GMT, Brunt KR, Simpson JA. Cardiomyocyte crosstalk with endothelium modulates cardiac structure, function, and ischemia-reperfusion injury susceptibility through erythropoietin. Front Physiol 2024; 15:1397049. [PMID: 39011088 PMCID: PMC11246973 DOI: 10.3389/fphys.2024.1397049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Erythropoietin (EPO) exerts non-canonical roles beyond erythropoiesis that are developmentally, structurally, and physiologically relevant for the heart as a paracrine factor. The role for paracrine EPO signalling and cellular crosstalk in the adult is uncertain. Here, we provided novel evidence showing cardiomyocyte restricted loss of function in Epo in adult mice induced hyper-compensatory increases in Epo expression by adjacent cardiac endothelial cells via HIF-2α independent mechanisms. These hearts showed concentric cellular hypertrophy, elevated contractility and relaxation, and greater resistance to ischemia-reperfusion injury. Voluntary exercise capacity compared to control hearts was improved independent of any changes to whole-body metabolism or blood O2 content or delivery (i.e., hematocrit). Our findings suggest cardiac EPO had a localized effect within the normoxic heart, which was regulated by cell-specific EPO-reciprocity between cardiomyocytes and endothelium. Within the heart, hyper-compensated endothelial Epo expression was accompanied by elevated Vegfr1 and Vegfb RNA, that upon pharmacological pan-inhibition of VEGF-VEGFR signaling, resulted in a paradoxical upregulation in whole-heart Epo. Thus, we provide the first evidence that a novel EPO-EPOR/VEGF-VEGFR axis exists to carefully mediate cardiac homeostasis via cardiomyocyte-endothelial EPO crosstalk.
Collapse
Affiliation(s)
- Jade P Marrow
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Brittany A Edgett
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Melissa A Allwood
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Kyla L S Cochrane
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| | - Sara Al-Sabbag
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Anmar Ayoub
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Gregory M T Hare
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Keith R Brunt
- IMPART Investigator Team Canada, Guelph, ON, Canada
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
- IMPART Investigator Team Canada, Guelph, ON, Canada
| |
Collapse
|
7
|
Lai X, Wan Q, Jiao SF, Sun XC, Hu JF, Peng HW. Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients: a retrospective, pharmacovigilance study. Expert Opin Drug Saf 2024; 23:287-296. [PMID: 37608525 DOI: 10.1080/14740338.2023.2251398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cardiac adverse events (AEs) are common in tyrosine kinase inhibitors(TKIs). This study explored the cardiac AEs of TKIs through the Food and Drug Administration's Adverse Event Reporting System (FAERS). METHODS Disproportionality analysis and Bayesian analysis were utilized for data mining of the suspected cardiac AEs of TKIs, based on FAERS data from January 2004 to December 2021. RESULTS A total of 4708 cardiac AEs reports of sorafenib, regorafenib, lenvatinib, and cabozantinib were identified. Hypertension accounts for the most reported cardiac AE. Lenvatinib appears to induce cardiac failure with the highest signals strength [ROR = 7.7 (3.46,17.17)]. Acute myocardial infarction was detected in lenvatinib [ROR = 7.91 (5.64,11.09)] and sorafenib [ROR = 2.22 (1.74, 2.84)]. Acute coronary syndrome was detected in lenvatinib [ROR = 11.57 (6.84, 19.58)] and sorafenib [ROR = 2.81 (1.87,4.24)]. Atrial fibrillation was detected in sorafenib [ROR = 1.82 (1.55,2.14)] and regorafenib [ROR = 1.36 (1.03,1.81)]. Meanwhile, aortic dissections were detected in sorafenib [ROR = 5.08 (3.31,7.8)] and regorafenib [ROR = 3.39 (1.52,7.56)]. Most patients developed hypertension and cardiac failure within 30 days of initiating TKI treatments. Patients taking lenvatinib had an increased incidence of developing acute coronary syndrome after 180 days of treatment. CONCLUSION Analysis of FAERS data provides a precise profile on the characteristics of cardiac AEs associated with different TKI regimens. Distinct monitoring and appropriate management are needed in the care of TKI recipients.
Collapse
Affiliation(s)
- Xin Lai
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Wan
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shou-Feng Jiao
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Chun Sun
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Fang Hu
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong-Wei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Jiang C, Xu H, Wu Y. Effect of chemotherapy in tumor on coronary arteries: Mechanisms and management. Life Sci 2024; 338:122377. [PMID: 38135114 DOI: 10.1016/j.lfs.2023.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Coronary artery disease (CAD) is an important contributor to the cardiovascular burden in cancer survivors. The development of coronary ischemia events, myocardial infarction, and heart failure has been associated with many conventional chemotherapeutic agents, new targeted therapies, and immunotherapy. The most frequent pathological manifestations of chemotherapy-mediated coronary damage include acute vasospasm, acute thrombosis, accelerated atherosclerosis development, and microvascular dysfunction. Potential screening techniques for CAD patients include baseline risk factor evaluation, polygenic risk factors, and coronary artery calcium scores. Determining the risk requires consideration of both the type of chemotherapy and the type of cancer being treated. Cardiology-oncology guidelines offer some suggestions for the care of coronary artery disease, which might involve medication, lifestyle changes, and coronary revascularization.
Collapse
Affiliation(s)
- Chengqing Jiang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Stachyra-Strawa P, Szatkowska-Sieczek L, Cisek P, Gołębiowski P, Grzybowska-Szatkowska L. Cardiac and Nephrological Complications Related to the Use of Antiangiogenic and Anti-Programmed Cell Death Protein 1 Receptor/Programmed Cell Death Protein 1 Ligand Therapy. Genes (Basel) 2024; 15:177. [PMID: 38397167 PMCID: PMC10887630 DOI: 10.3390/genes15020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The ability to undergo neoangiogenesis is a common feature with all cancers. Signaling related to vascular endothelial growth factors (VEGF) and their receptors (VEGFR) plays a key role in the process of tumor neoangiogenesis. A close relationship has been demonstrated between excessive VEGF levels and the induction of immunosuppression in the tumor microenvironment. The use of drugs blocking the VEGF function, apart from the anticancer effect, also result in adverse effects, in particular related to the circulatory system and kidneys. Cardiac toxicity associated with the use of such therapy manifests itself mainly in the form of hypertension, thromboembolic episodes and ischemic heart disease. In the case of renal complications, the most common symptoms include renal arterial hypertension, proteinuria and microangiopathy. Although these complications are reversible in 60-80% of cases after cessation of VSP (VEGF pathway inhibitor) therapy, in some cases they can lead to irreversible changes in renal function, whereas cardiac complications may be fatal. Also, the use of PD-1/PD-L1 inhibitors may result in kidney and heart damage. In the case of cardiac complications, the most common symptoms include myocarditis, pericarditis, arrhythmia, acute coronary syndrome and vasculitis, while kidney damage most often manifests as acute kidney injury (AKI), nephrotic syndrome, pyuria or hematuria. The decision whether to resume treatment after the occurrence of cardiovascular and renal complications remains a problem.
Collapse
Affiliation(s)
- Paulina Stachyra-Strawa
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Lidia Szatkowska-Sieczek
- Clinical Department of Cardiology, 4th Military Hospital, Rudolfa Weigla 5, 50-981 Wroclaw, Poland;
| | - Paweł Cisek
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Paweł Gołębiowski
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland; (P.S.-S.); (P.C.); (P.G.)
| |
Collapse
|
10
|
Santorsola M, Capuozzo M, Nasti G, Sabbatino F, Di Mauro A, Di Mauro G, Vanni G, Maiolino P, Correra M, Granata V, Gualillo O, Berretta M, Ottaiano A. Exploring the Spectrum of VEGF Inhibitors' Toxicities from Systemic to Intra-Vitreal Usage in Medical Practice. Cancers (Basel) 2024; 16:350. [PMID: 38254839 PMCID: PMC10813960 DOI: 10.3390/cancers16020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The use of Vascular Endothelial Growth Factor inhibitors (VEGFi) has become prevalent in the field of medicine, given the high incidence of various pathological conditions necessitating VEGF inhibition within the general population. These conditions encompass a range of advanced neoplasms, such as colorectal cancer, non-small cell lung cancer, renal cancer, ovarian cancer, and others, along with ocular diseases. The utilization of VEGFi is not without potential risks and adverse effects, requiring healthcare providers to be well-prepared for identification and management. VEGFi can be broadly categorized into two groups: antibodies or chimeric proteins that specifically target VEGF (bevacizumab, ramucirumab, aflibercept, ranibizumab, and brolucizumab) and non-selective and selective small molecules (sunitinib, sorafenib, cabozantinib, lenvatinib, regorafenib, etc.) designed to impede intracellular signaling of the VEGF receptor (RTKi, receptor tyrosine kinase inhibitors). The presentation and mechanisms of adverse effects resulting from VEGFi depend primarily on this distinction and the route of drug administration (systemic or intra-vitreal). This review provides a thorough examination of the causes, recognition, management, and preventive strategies for VEGFi toxicities with the goal of offering support to oncologists in both clinical practice and the design of clinical trials.
Collapse
Affiliation(s)
- Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | | | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy;
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Giordana Di Mauro
- Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy;
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, PTV Policlinico Tor Vergata University, 00133 Rome, Italy;
| | - Piera Maiolino
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Marco Correra
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude), NEIRID Laboratory (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.); (A.D.M.); (P.M.); (M.C.); (V.G.)
| |
Collapse
|
11
|
Ekram J, Rathore A, Avila C, Hussein R, Alomar M. Unveiling the Cardiotoxicity Conundrum: Navigating the Seas of Tyrosine Kinase Inhibitor Therapies. Cancer Control 2024; 31:10732748241285755. [PMID: 39318033 PMCID: PMC11440564 DOI: 10.1177/10732748241285755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of various solid and hematologic malignancies by targeting dysregulated signaling pathways critical for malignant cell growth. However, these therapeutic benefits are often accompanied by cardiotoxicities, such as hypertension, left ventricular dysfunction, QT prolongation, and tachyarrhythmias, among others. These cardiotoxicities post a significant challenge in clinical management, often limiting the use of otherwise effective therapies. The underlying mechanism of TKI-induced cardiotoxicity appears to be multifaceted, involving several pathways including: direct cardiomyocyte damage, mitochondrial dysfunction, endothelial damage, and disruption of signaling pathways critical for cardiac function. The range and severity of cardiotoxicities vary significantly across different TKIs, necessitating a comprehensive understanding of each agent's specific cardiovascular risk profile. Preventing and managing TKI-induced cardiotoxicity requires a comprehensive, multidisciplinary approach. Early identification of at-risk patients through baseline cardiovascular risk assessments and appropriate monitoring during therapy is crucial. Strategies to mitigate cardiotoxic effects include dose modification, the use of cardioprotective agents, and temporary discontinuation of therapy. Additionally, decision making via multidisciplinary teams ensures minimization of cardiovascular complications while also continuing effective cancer treatment. Historically, data have been limited regarding cardiotoxicity and most cancer therapies, which certainly includes TKIs. This review aims to synthesize the current body of knowledge on TKI-associated cardiotoxicities, while highlighting the importance of vigilance and proactive management to minimize cardiovascular complications.
Collapse
Affiliation(s)
- Jahanzaib Ekram
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Azeem Rathore
- Department of Internal Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Carlos Avila
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Rahbia Hussein
- Department of Internal Medicine, Manatee Memorial Hospital, Bradenton, FL, USA
| | - Mohammed Alomar
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Cardio-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Shen MX, Li FL, Luo XS, Wang ZM. An effective treatment and suspicious adverse reaction to Ibrutinib in a patient diagnosed with splenic B-cell lymphoma/leukaemia with prominent nucleoli: A first case report. Medicine (Baltimore) 2023; 102:e36022. [PMID: 38206706 PMCID: PMC10754594 DOI: 10.1097/md.0000000000036022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/16/2023] [Indexed: 01/13/2024] Open
Abstract
RATIONALE Splenic B-cell lymphoma/leukemia with prominent nucleoli (SBLPN) is a new classification, which is so rare that it lacks clinical data. PATIENT CONCERNS An increased proportion of prolymphocytes (84%) in the bone marrow smear. Whole exon sequence analysis revealed a TP53 mutation. DIAGNOSES Combining the clinical features with laboratory test results led to a diagnosis of SBLPN which was made according to the 5th edition of the WHO classification of hematolymphoid tumors, although the patient was diagnosed with B-PLL when guided by the 4th edition of the WHO classification. INTERVENTIONS The use of Ibrutinib as an effective treatment. OUTCOMES The patient was in complete remission after 5 months of Ibrutinib and then died of sudden aortic dissection. LESSONS Ibrutinib was an effective regimen for SBLPN. Aortic dissection might be considered as a suspicious adverse reaction to Ibrutinib.
Collapse
Affiliation(s)
- Mei-Xiao Shen
- Department of Hematology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Fu-Ling Li
- Department of Pharmacy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xian-Sheng Luo
- Department of Hematology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Zhi-Ming Wang
- Department of Hematology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
13
|
Puttagunta P, Pamulapati SV, Bates JE, Gross JH, Stokes WA, Schmitt NC, Steuer C, Teng Y, Saba NF. Critical review of the current and future prospects of VEGF-TKIs in the management of squamous cell carcinoma of head and neck. Front Oncol 2023; 13:1310106. [PMID: 38192624 PMCID: PMC10773827 DOI: 10.3389/fonc.2023.1310106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
As the prognosis for squamous cell carcinoma of the head and neck remains unsatisfactory when compared to other malignancies, novel therapies targeting specific biomarkers are a critical emerging area of great promise. One particular class of drugs that has been developed to impede tumor angiogenesis is vascular endothelial growth factor-tyrosine kinase inhibitors. As current data is primarily limited to preclinical and phase I/II trials, this review summarizes the current and future prospects of these agents in squamous cell carcinoma of the head and neck. In particular, the combination of these agents with immunotherapy is an exciting area that may be a promising option for patients with recurrent or metastatic disease, evidenced in recent trials such as the combination immune checkpoint inhibitors with lenvatinib and cabozantinib. In addition, the use of such combination therapy preoperatively in locally advanced disease is another area of interest.
Collapse
Affiliation(s)
- Prashant Puttagunta
- Medical Education, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Saagar V. Pamulapati
- Internal Medicine Program, Mercyhealth Graduate Medical Education Consortium, Rockford, IL, United States
| | - James E. Bates
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - William A. Stokes
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Conor Steuer
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Jiao T, Wang Y, Lin X, Song W, Wang L, Rahman TMS, Xu L, Nie L, Zhang Q, Li J. Axitinib targets cardiac fibrosis in pressure overload-induced heart failure through VEGFA-KDR pathway. Front Med (Lausanne) 2023; 10:1256156. [PMID: 38020087 PMCID: PMC10667428 DOI: 10.3389/fmed.2023.1256156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background There are no specific clinical medications that target cardiac fibrosis in heart failure (HF). Recent studies have shown that tyrosine kinase inhibitors (TKIs) may benefit fibrosis in various organs. However, there is limited research on their application in cardiac fibrosis. Axitinib, an FDA-approved tyrosine kinase inhibitor, was used to evaluate its effects on cardiac fibrosis and function in pressure overload-induced heart failure. Methods To build a pharmacological network, the pharmacological targets of axitinib were first retrieved from databases and coupled with key heart failure gene molecules for analysis and prediction. To validate the results outlined above, 8-week-old male C57BL/6 J mice were orally administrated of axitinib (30 mg/kg) daily for 8 weeks after Transverse Aortic Constriction (TAC) surgery. Mouse cardiomyocytes and cardiac fibroblasts were used as cell lines to test the function and mechanism of axitinib. Results We found that the pharmacological targets of axitinib could form a pharmacological network with key genes involved in heart failure. The VEGFA-KDR pathway was found to be closely related to the differential gene expression of human heart-derived primary cardiomyocyte cell lines treated with axitinib, based on analysis of the publicly available dataset. The outcomes of animal experiments demonstrated that axitinib therapy greatly reduced cardiac fibrosis and improved TAC-induced cardiac dysfunction. Further research has shown that the expression of transforming growth factor-β(TGF-β) and other fibrosis genes was significantly reduced in vivo and in vitro. Conclusion Our study provides evidence for the repurposing of axitinib to combat cardiac fibrosis, and offers new insights into the treatment of patients with HF.
Collapse
Affiliation(s)
- Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueqi Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Song
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Practice, Jinyang Community Health Service Center in Pudong District, Shanghai, China
| | - Liang Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tapu Md Sakibur Rahman
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linghao Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lindong Nie
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Kersting D, Mavroeidi IA, Settelmeier S, Seifert R, Schuler M, Herrmann K, Rassaf T, Rischpler C. Molecular Imaging Biomarkers in Cardiooncology: A View on Established Technologies and Future Perspectives. J Nucl Med 2023; 64:29S-38S. [PMID: 37918843 DOI: 10.2967/jnumed.122.264868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Novel therapeutic options have significantly improved survival and long-term outcomes in many cancer entities. Unfortunately, this improvement in outcome is often accompanied by new and increasingly relevant therapy-related cardiovascular toxicity. In this context, cardiooncology has emerged as a new field of interdisciplinary individual patient care. Important tasks are pretherapeutic risk stratification and early detection and treatment of cardiotoxicity, which comprises cardiac damage in relation to cardiovascular comorbidities, the tumor disease, and cancer treatment. Clinical manifestations can cover a broad spectrum, ranging from subtle and usually asymptomatic abnormalities to serious acute or chronic complications. Typical manifestations include acute and chronic heart failure, myo- and pericarditis, arrythmias, ischemia, and endothelial damage. They can be related to almost all current cancer treatments, including cytotoxic chemotherapy, targeted therapy, immunotherapy, hormonal therapy, and radiotherapy. Molecular imaging biomarkers can aid in pretherapeutic cardiooncologic assessment for primary prevention and personalized surveillance, detection, and differential diagnosis of cardiotoxic complications. Potential advantages over conventional diagnostics are the higher detection sensitivity for subtle changes in cardiac homeostasis, higher reproducibility, and better observer independence. Hybrid imaging with highly sensitive PET/MRI may be particularly suited for early diagnosis. Important technologies that are encouraged in current multidisciplinary guidelines are equilibrium radionuclide angiography for evaluation of ventricular function and chamber morphology, as well as myocardial perfusion imaging for additional detection of ischemia. Novel modalities that may detect even earlier signs of cardiotoxicity comprise 123I-metaiodobenzylguanidine SPECT to visualize sympathetic innervation, 18F-FDG and somatostatin receptor (68Ga-DOTATOC/DOTATATE) PET to indicate a metabolic shift and inflammation, and 68Ga-fibroblast activation protein inhibitor PET to monitor cardiac remodeling. In addition, PET imaging of mitochondrial function has recently been introduced in preclinical models and will potentially broaden the field of application through higher sensitivity and specificity and by enabling higher individualization of diagnostic concepts.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany;
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Martin Schuler
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium, Partner Site University Hospital Essen, Essen, Germany
| |
Collapse
|
16
|
Kashyap MK, Mangrulkar SV, Kushwaha S, Ved A, Kale MB, Wankhede NL, Taksande BG, Upaganlawar AB, Umekar MJ, Koppula S, Kopalli SR. Recent Perspectives on Cardiovascular Toxicity Associated with Colorectal Cancer Drug Therapy. Pharmaceuticals (Basel) 2023; 16:1441. [PMID: 37895912 PMCID: PMC10610064 DOI: 10.3390/ph16101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiotoxicity is a well-known adverse effect of cancer-related therapy that has a significant influence on patient outcomes and quality of life. The use of antineoplastic drugs to treat colorectal cancers (CRCs) is associated with a number of undesirable side effects including cardiac complications. For both sexes, CRC ranks second and accounts for four out of every ten cancer deaths. According to the reports, almost 39% of patients with colorectal cancer who underwent first-line chemotherapy suffered cardiovascular impairment. Although 5-fluorouracil is still the backbone of chemotherapy regimen for colorectal, gastric, and breast cancers, cardiotoxicity caused by 5-fluorouracil might affect anywhere from 1.5% to 18% of patients. The precise mechanisms underlying cardiotoxicity associated with CRC treatment are complex and may involve the modulation of various signaling pathways crucial for maintaining cardiac health including TKI ErbB2 or NRG-1, VEGF, PDGF, BRAF/Ras/Raf/MEK/ERK, and the PI3/ERK/AMPK/mTOR pathway, resulting in oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, ultimately damaging cardiac tissue. Thus, the identification and management of cardiotoxicity associated with CRC drug therapy while minimizing the negative impact have become increasingly important. The purpose of this review is to catalog the potential cardiotoxicities caused by anticancer drugs and targeted therapy used to treat colorectal cancer as well as strategies focused on early diagnosing, prevention, and treatment of cardiotoxicity associated with anticancer drugs used in CRC therapy.
Collapse
Affiliation(s)
- Monu Kumar Kashyap
- Goel Institute of Pharmaceutical Sciences, Faizabad Road, Lucknow 226028, Uttar Pradesh, India;
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Shubhada V. Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education and Research, Raebareli 229010, Uttar Pradesh, India
| | - Akash Ved
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow 222001, Uttar Pradesh, India;
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Nitu L. Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Brijesh G. Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Aman B. Upaganlawar
- SNJB’s Shriman Sureshdada Jain Collge of Pharmacy, Neminagar, Chandwad, Nadik 423101, Maharashtra, India;
| | - Milind J. Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India; (S.V.M.); (M.B.K.); (N.L.W.)
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si 27478, Chungcheongbuk Do, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| |
Collapse
|
17
|
Glen C, Adam S, McDowell K, Waterston A, Tan YY, Petrie MC, Coats CJ, Lang NN. Cardiotoxicity of BRAF/MEK Inhibitors: A Longitudinal Study Incorporating Contemporary Definitions and Risk Scores. JACC CardioOncol 2023; 5:628-637. [PMID: 37969652 PMCID: PMC10635885 DOI: 10.1016/j.jaccao.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 11/17/2023] Open
Abstract
Background Rapidly accelerated fibrosarcoma B-type (BRAF) and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors have revolutionized treatment for patients with BRAF-mutated melanoma. Although left ventricular systolic dysfunction associated with these therapies has been reported in clinical trials, the real-world incidence is poorly defined, as are risk factors for its development. Objectives This study sought to characterize the incidence, time course, and risk factors for cancer therapy-related cardiac dysfunction (CTRCD) in patients with melanoma receiving BRAF and MEK inhibitors. Methods Patients with melanoma treated with BRAF and MEK inhibitors at a cancer hospital network between June 1, 2017, and June 30, 2020, were included retrospectively. CTRCD was defined as mild, moderate, or severe according to International Cardio-Oncology Society (ICOS) definitions. Baseline cardiotoxicity risk stratification was performed using the Heart Failure Association/ICOS tool. Results Of the 63 patients included, 27% developed CTRCD (17% mild and 10% moderate). No patients developed severe CTRCD or symptomatic heart failure. CTRCD occurred most frequently in patients considered to be at "low" and "medium" baseline risk of cardiotoxicity (82%). The baseline left ventricular ejection fraction and global longitudinal strain were not different in patients who developed moderate CTRCD vs those who did not. Left ventricular internal diameters in diastole and systole were larger in patients who developed moderate CTRCD compared with those who did not (left ventricular internal diameter in diastole: 4.9 ± 0.6 cm vs 4.3 ± 0.6 cm; P = 0.023; left ventricular internal diameter in systole: 3.3 ± 0.4 cm vs 2.8 ± 0.5 cm; P = 0.039). Conclusions BRAF and MEK inhibitor-associated CTRCD is common. The utility of the Heart Failure Association/ICOS risk stratification tool appears limited in this group, and better risk prediction tools are needed. The long-term consequences of CTRCD, particularly mild CTRCD, warrant evaluation in larger prospective studies.
Collapse
Affiliation(s)
- Claire Glen
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Adam
- Queen Elizabeth University Hospital, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Kirsty McDowell
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Ashita Waterston
- Beatson West of Scotland Cancer Centre, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Yun Yi Tan
- Beatson West of Scotland Cancer Centre, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Mark C. Petrie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Caroline J. Coats
- Queen Elizabeth University Hospital, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Ninian N. Lang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Saito Y, Takekuma Y, Komatsu Y, Sugawara M. Severe hypertension development significantly improves progression-free survival in regorafenib treatment for metastatic colorectal cancer. Int J Clin Oncol 2023; 28:1183-1190. [PMID: 37322220 DOI: 10.1007/s10147-023-02364-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Regorafenib is the first multikinase inhibitor used for metastatic colorectal cancer (mCRC) treatment. Reports regarding other multikinase inhibitors have suggested that the development of hypertension is associated with improved clinical benefits. We aimed to reveal the relationship between the development of severe hypertension and regorafenib efficacy in an mCRC real-world setting. METHODS Patients with mCRC (n = 100) who received regorafenib were assessed retrospectively. The primary endpoint was a comparison of progression-free survival (PFS) between patients with and without ≥ grade 3 hypertension. The secondary endpoints were overall survival (OS), disease control rate (DCR), and adverse effects. RESULTS Patients developing ≥ grade 3 hypertension accounted for 30%, and obtained significantly longer PFS than control patients (median PFS of 53 and 56 days, 95% confidence interval [CI] of 46-144 and 49-63 days, respectively; P = 0.04). In contrast, OS and DCR were not statistically different between the groups (P = 0.13 and P = 0.46, respectively). The incidence and severity of adverse effects were not significantly different, except for hypertension. Treatment interruption was significantly more frequent in patients with hypertension (P = 0.04). Multivariate Cox hazard analysis suggested that the development of ≥ grade 3 severe hypertension was an independent factor for improved PFS (adjusted hazard ratio 0.57, 95% CI 0.35-0.93; P = 0.02). In contrast, baseline hypoalbuminemia was associated with a worse PFS (1.85, 1.14-3.01; P = 0.01). CONCLUSION We have revealed that patients who develop severe hypertension after regorafenib treatment for mCRC have improved PFS. Management of hypertension is important for effective treatment with less burden; therefore, further evaluation is needed.
Collapse
Affiliation(s)
- Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Yoshito Komatsu
- Cancer Center, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan.
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
19
|
Wong-Siegel JR, Hayashi RJ, Foraker R, Mitchell JD. Cardiovascular toxicities after anthracycline and VEGF-targeted therapies in adolescent and young adult cancer survivors. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:30. [PMID: 37420285 DOI: 10.1186/s40959-023-00181-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Cancer survival rates have been steadily improving in the adolescent and young adult (AYA) population, but survivors are at increased risk for cardiovascular disease (CVD). The cardiotoxic effects of anthracycline therapy have been well studied. However, the cardiovascular toxicity associated with newer therapies, such as the vascular endothelial growth factor (VEGF) inhibitors, is less well understood. OBJECTIVE This retrospective study of AYA cancer survivors sought to gain insight into their burden of cardiovascular toxicities (CT) following initiation of anthracycline and/or VEGF inhibitor therapy. METHODS Data were extracted from electronic medical records over a fourteen-year period at a single institution. Cox proportional hazards regression modeling was used to examine risk factors for CT within each treatment group. Cumulative incidence was calculated with death as a competing risk. RESULTS Of the 1,165 AYA cancer survivors examined, 32%, 22%, and 34% of patients treated with anthracycline, VEGF inhibitor, or both, developed CT. Hypertension was the most common outcome reported. Males were at increased risk for CT following anthracycline therapy (HR: 1.34, 95% CI 1.04-1.73). The cumulative incidence of CT was highest in patients who received both anthracycline and VEGF inhibitor (50% at ten years of follow up). CONCLUSIONS CT was common among AYA cancer survivors who received anthracycline and/or VEGF inhibitor therapy. Male sex was an independent risk factor for CT following anthracycline treatment. Further screening and surveillance are warranted to continue understanding the burden of CVD following VEGF inhibitor therapy.
Collapse
Affiliation(s)
- Jeannette R Wong-Siegel
- Division of Pediatric Cardiology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Robert J Hayashi
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO, USA
| | - Randi Foraker
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Division of Cardiology, Washington University in St. Louis, 660 S. Euclid Ave, CB 8086, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
21
|
Dai S, Zhong Y, Cui H, Zhao J, Li S. Aortic dissection induced by vascular endothelial growth factor inhibitors. Front Pharmacol 2023; 14:1189910. [PMID: 37426822 PMCID: PMC10327890 DOI: 10.3389/fphar.2023.1189910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) contributes to angiogenesis and vasculogenesis. The occurrence and progression of tumors are accompanied by angiogenesis. Vascular endothelial growth factor inhibitors (VEGFI) have been used in anti-tumor treatment. However, aortic dissection (AD) is one of the VEGFI-associated adverse reactions with cute onset, rapid progression, and high case fatality rate. We collected case reports of VEGFI related to aortic dissection in PubMed and CNKI (China National Knowledge Infrastructure) from inception to 28 April 2022. Seventeen case reports were selected. The medication included sunitinib, sorafenib, pazopanib, axitinib, apatinib, anlotinib, bevacizumab, and ramucirumab. This review discusses the pathology, risk factors, diagnosis, and treatment of AD. Vascular endothelial growth factor inhibitors are related to aortic dissection. Although current literature lacks clear statistical evidence on the population, we offer points to encourage further confirmation of the best methods of care for these patients.
Collapse
|
22
|
Crocetto F, Ferro M, Buonerba C, Bardi L, Dolce P, Scafuri L, Mirto BF, Verde A, Sciarra A, Barone B, Calogero A, Sagnelli C, Busetto GM, Del Giudice F, Cilio S, Sonpavde G, Di Trolio R, Della Ratta GL, Barbato G, Di Lorenzo G. Comparing Cardiovascular Adverse Events in Cancer Patients: A Meta-analysis of Combination Therapy with Angiogenesis Inhibitors and Immune Checkpoint Inhibitors versus Angiogenesis Inhibitors Alone. Crit Rev Oncol Hematol 2023:104059. [PMID: 37353178 DOI: 10.1016/j.critrevonc.2023.104059] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Anti-VEGF (vascular endothelial growth factor) agents were associated with increased risk of several cardiovascular events, while one meta-analysis did not show any significantly increased risk of cardiotoxicity associated with the use of immune checkpoint inhibitors (ICIs). This meta-analysis of randomized-controlled trials (RCTs) was designed to compare cardiovascular toxicity of anti-VEGF agents plus ICI vs anti-VEGF agents without ICIs. A systematic search of the literature was conducted to include all full papers reporting about phase II and III randomized controlled trials (RCTs) conducted in patients with solid malignancies randomized to an anti-VEGF agent plus an ICI vs. an anti-VEGF agent without an ICI. Overall incidences of cardiovascular events were compared between these two treatment groups estimating the corresponding odds ratios. This analysis suggests that ICIs may increase the risk of cardiovascular toxicities associated with anti-VEGF therapies. Further research, including real world studies, is warranted.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Carlo Buonerba
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Luca Bardi
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pasquale Dolce
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Luca Scafuri
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Benito Fabio Mirto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Antonio Verde
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Antonella Sciarra
- Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, NA, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, 80131, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urological Sciences, Umberto I Polyclinic Hospital, Sapienza University, Rome, Italy
| | - Simone Cilio
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Guru Sonpavde
- Division of Medical Oncology, Advent Health Cancer Institute, Orlando, FL, USA
| | - Rossella Di Trolio
- Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | | | - Gabriele Barbato
- Department of Anesthesia and Intensive Care, "Anastasia Guerriero" Hospital, Caserta Local Health Authority, Marcianise, Caserta, Italy
| | - Giuseppe Di Lorenzo
- Associazione O.R.A.-Oncology Research Assistance, 80049 Somma Vesuviana, Italy; Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy; Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
23
|
Chan SHY, Khatib Y, Webley S, Layton D, Salek S. Identification of cardiotoxicity related to non-small cell lung cancer (NSCLC) treatments: A systematic review. Front Pharmacol 2023; 14:1137983. [PMID: 37383708 PMCID: PMC10294714 DOI: 10.3389/fphar.2023.1137983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: In the last few decades, there has been a rapid development in cancer therapies and improved detection strategies, hence the death rates caused by cancer have decreased. However, it has been reported that cardiovascular disease has become the second leading cause of long-term morbidity and fatality among cancer survivors. Cardiotoxicity from anticancer drugs affects the heart's function and structure and can occur during any stage of the cancer treatments, which leads to the development of cardiovascular disease. Objectives: To investigate the association between anticancer drugs for non-small cell lung cancer (NSCLC) and cardiotoxicity as to whether: different classes of anticancer drugs demonstrate different cardiotoxicity potentials; different dosages of the same drug in initial treatment affect the degree of cardiotoxicity; and accumulated dosage and/or duration of treatments affect the degree of cardiotoxicity. Methods: This systematic review included studies involving patients over 18 years old with NSCLC and excluded studies in which patients' treatments involve radiotherapy only. Electronic databases and registers including Cochrane Library, National Cancer Institute (NCI) Database, PubMed, Scopus, Web of Science, ClinicalTrials.gov and the European Union Clinical Trials Register were systematically searched from the earliest available date up until November 2020. A full version protocol of this systematic review (CRD42020191760) had been published on PROSPERO. Results: A total of 1785 records were identified using specific search terms through the databases and registers; 74 eligible studies were included for data extraction. Based on data extracted from the included studies, anticancer drugs for NSCLC that are associated with cardiovascular events include bevacizumab, carboplatin, cisplatin, crizotinib, docetaxel, erlotinib, gemcitabine and paclitaxel. Hypertension was the most reported cardiotoxicity as 30 studies documented this cardiovascular adverse event. Other reported treatment-related cardiotoxicities include arrhythmias, atrial fibrillation, bradycardia, cardiac arrest, cardiac failure, coronary artery disease, heart failure, ischemia, left ventricular dysfunction, myocardial infarction, palpitations, and tachycardia. Conclusion: The findings of this systematic review have provided a better understanding of the possible association between cardiotoxicities and anticancer drugs for NSCLC. Whilst variation is observed across different drug classes, the lack of information available on cardiac monitoring can result in underestimation of this association. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020191760, identifier PROSPERO CRD42020191760.
Collapse
Affiliation(s)
- Stefanie Ho Yi Chan
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Yasmin Khatib
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sherael Webley
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Deborah Layton
- IQVIA UK, London, United Kingdom
- PEPI Consultancy Limited, Southampton, United Kingdom
- University of Keele, Keele, United Kingdom
| | - Sam Salek
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
24
|
Wang Y, Cui C, Deng L, Wang L, Ren X. Cardiovascular toxicity profiles of immune checkpoint inhibitors with or without angiogenesis inhibitors: a real-world pharmacovigilance analysis based on the FAERS database from 2014 to 2022. Front Immunol 2023; 14:1127128. [PMID: 37292205 PMCID: PMC10244526 DOI: 10.3389/fimmu.2023.1127128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) combined with angiogenesis inhibitors (AGIs) have become increasingly available for multiple types of cancers, although the cardiovascular safety profiles of this combination therapy in real-world settings have not been elucidated to date. Therefore, we aimed to comprehensively investigate the cardiovascular toxicity profiles of ICIs combined with AGIs in comparison with ICIs alone. Methods The Food and Drug Administration Adverse Event Reporting System (FAERS) database from the 1st quarter of 2014 to the 1st quarter of 2022 was retrospectively queried to extract reports of cardiovascular adverse events (AEs) associated with ICIs alone, AGIs alone and combination therapy. To perform disproportionality analysis, the reporting odds ratios (RORs) and information components (ICs) were calculated with statistical shrinkage transformation formulas and a lower limit of the 95% confidence interval (CI) for ROR (ROR025) > 1 or IC (IC025) > 0 with at least 3 reports was considered statistically significant. Results A total of 18 854 cardiovascular AE cases/26 059 reports for ICIs alone, 47 168 cases/67 595 reports for AGIs alone, and 3 978 cases/5 263 reports for combination therapy were extracted. Compared to the entire database of patients without AGIs or ICIs, cardiovascular AEs were overreported in patients with combination therapy (IC025/ROR025 = 0.559/1.478), showing stronger signal strength than those taking ICIs alone (IC025/ROR025 = 0.118/1.086) or AGIs alone (IC025/ROR025 = 0.323/1.252). Importantly, compared with ICIs alone, combination therapy showed a decrease in signal strength for noninfectious myocarditis/pericarditis (IC025/ROR025 = 1.142/2.216 vs. IC025/ROR025 = 0.673/1.614), while an increase in signal value for embolic and thrombotic events (IC025/ROR025 = 0.147/1.111 vs. IC025/ROR025 = 0.591/1.519). For outcomes of cardiovascular AEs, the frequency of death and life-threatening AEs was lower for combination therapy than ICIs alone in noninfectious myocarditis/pericarditis (37.7% vs. 49.2%) as well as in embolic and thrombotic events (29.9% vs. 39.6%). Analysis among indications of cancer showed similar findings. Conclusion Overall, ICIs combined with AGIs showed a greater risk of cardiovascular AEs than ICIs alone, mainly due to an increase in embolic and thrombotic events while a decrease in noninfectious myocarditis/pericarditis. In addition, compared with ICIs alone, combination therapy presented a lower frequency of death and life-threatening in noninfectious myocarditis/pericarditis and embolic and thrombotic events.
Collapse
Affiliation(s)
- Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Butel-Simoes LE, Haw TJ, Williams T, Sritharan S, Gadre P, Herrmann SM, Herrmann J, Ngo DTM, Sverdlov AL. Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. Hypertension 2023; 80:685-710. [PMID: 36756872 PMCID: PMC10023512 DOI: 10.1161/hypertensionaha.122.17947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cardiovascular disease and cancer are 2 of the leading causes of death worldwide. Although improvements in outcomes have been noted for both disease entities, the success of cancer therapies has come at the cost of at times very impactful adverse events such as cardiovascular events. Hypertension has been noted as both, a side effect as well as a risk factor for the cardiotoxicity of cancer therapies. Some of these dynamics are in keeping with the role of hypertension as a cardiovascular risk factor not only for heart failure, but also for the development of coronary and cerebrovascular disease, and kidney disease and its association with a higher morbidity and mortality overall. Other aspects such as the molecular mechanisms underlying the amplification of acute and long-term cardiotoxicity risk of anthracyclines and increase in blood pressure with various cancer therapeutics remain to be elucidated. In this review, we cover the latest clinical data regarding the risk of hypertension across a spectrum of novel anticancer therapies as well as the underlying known or postulated pathophysiological mechanisms. Furthermore, we review the acute and long-term implications for the amplification of the development of cardiotoxicity with drugs not commonly associated with hypertension such as anthracyclines. An outline of management strategies, including pharmacological and lifestyle interventions as well as models of care aimed to facilitate early detection and more timely management of hypertension in patients with cancer and survivors concludes this review, which overall aims to improve both cardiovascular and cancer-specific outcomes.
Collapse
Affiliation(s)
- Lloyd E Butel-Simoes
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Tatt Jhong Haw
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Trent Williams
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Shanathan Sritharan
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Payal Gadre
- Department of Medicine, Hunter New England Local Health District, NSW, Australia
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA
| | - Doan TM Ngo
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| | - Aaron L Sverdlov
- Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia
- College of Health and Medicine, University of Newcastle, NSW Australia
- Newcastle Centre of Excellence in Cardio-Oncology, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW Australia
| |
Collapse
|
26
|
Li G, Zhang L, Liu M. Evolving field of cardio-oncology. CANCER PATHOGENESIS AND THERAPY 2023; 1:141-145. [PMID: 38328403 PMCID: PMC10846296 DOI: 10.1016/j.cpt.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2024]
Abstract
Therapy development for cancer and cardiovascular disease (CVD) to prolong lifespan makes the relationship between these two conditions more complex. Drug interactions in cardiology and oncology are associated with metabolism and drug transportation. Advances in biomarkers and imaging provide novel methods for detecting cardiotoxicity, including cardiac injury and inflammation. The new concept of CVD-related cancer risk is leading to a new direction of progression termed "reverse cardio-oncology."
Collapse
Affiliation(s)
- Guo Li
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| | - Lijun Zhang
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| | - Meiyan Liu
- Department of Psycho-Cardiology, Beijing Anzhen Hospital, Beijing 100029, China
| |
Collapse
|
27
|
Kang Z, Li S, Lin Y, Li Y, Mao Y, Zhang J, Lei T, Wang H, Su Y, Yang Y, Qiu J, Li W. A phase I dose-escalation study of SYHA1813, a VEGFR and CSF1R inhibitor, in patients with recurrent High-Grade Gliomas or Advanced Solid Tumors. Invest New Drugs 2023; 41:296-305. [PMID: 36884148 PMCID: PMC10140125 DOI: 10.1007/s10637-022-01325-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 03/09/2023]
Abstract
SYHA1813 is a potent multikinase inhibitor that targets vascular endothelial growth factor receptors (VEGFRs)/colony-stimulating factor 1 receptor (CSF1R). This study aimed to evaluate the safety, pharmacokinetics (PK), and antitumor activity of escalating doses of SYHA1813 in patients with recurrent high-grade gliomas (HGGs) or advanced solid tumors. This study adopted a combination of accelerated titration and a 3 + 3 design for dose escalation, with a starting dose of 5 mg once daily. The dose escalation continued at successive dose levels until the maximum tolerated dose (MTD) was determined. A total of 14 patients were enrolled and treated, including 13 with WHO grade III or IV gliomas and 1 with colorectal cancer. Two patients experienced dose-limiting toxicities (grade 4 hypertension and grade 3 mucositis oral) at 30 mg SYHA1813. The MTD was defined as 15 mg once daily. Hypertension (n = 6, 42.9%) was the most frequent treatment-related adverse event. Among evaluable patients (n = 10), 2 (20%) patients achieved partial response, and 7 (70%) had stable disease. The exposure increased with increasing doses within the studied dose range of 5 to 30 mg. Biomarker assessments demonstrated significant reductions in the levels of soluble VEGFR2 (P = .0023) and increases in the levels of VEGFA (P = .0092) and placental growth factor (P = .0484). The toxicities of SYHA1813 were manageable, and encouraging antitumor efficacy was observed in patients with recurrent malignant glioma. This study is registered with the Chinese Clinical Trial Registry ( www.chictr.org.cn/index.aspx ; identifier ChiCTR2100045380).
Collapse
Affiliation(s)
- Zhuang Kang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenglan Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Lin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Haidan Wang
- Department of Clinical Development, CSPC Pharmaceutical Group Limited, Shijiazhuang, China
| | - Yangzhi Su
- Department of Clinical Development, CSPC Pharmaceutical Group Limited, Shijiazhuang, China
| | - Yang Yang
- Department of Clinical Development, CSPC Pharmaceutical Group Limited, Shijiazhuang, China
| | - Jingbo Qiu
- Department of Clinical Development, CSPC Pharmaceutical Group Limited, Shijiazhuang, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Neves KB, Alves-Lopes R, Montezano AC, Touyz RM. Role of PARP and TRPM2 in VEGF Inhibitor-Induced Vascular Dysfunction. J Am Heart Assoc 2023; 12:e027769. [PMID: 36802924 PMCID: PMC10111475 DOI: 10.1161/jaha.122.027769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background Hypertension and vascular toxicity are major unwanted side effects of antiangiogenic drugs, such as vascular endothelial growth factor inhibitors (VEGFis), which are effective anticancer drugs but have unwanted side effects, including vascular toxicity and hypertension. Poly (ADP-ribose) polymerase (PARP) inhibitors, used to treat ovarian and other cancers, have also been associated with elevated blood pressure. However, when patients with cancer receive both olaparib, a PARP inhibitor, and VEGFi, the risk of blood pressure elevation is reduced. Underlying molecular mechanisms are unclear, but PARP-regulated transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a redox-sensitive calcium channel, may be important. We investigated whether PARP/TRPM2 plays a role in VEGFi-induced vascular dysfunction and whether PARP inhibition ameliorates the vasculopathy associated with VEGF inhibition. Methods and Results Human vascular smooth muscle cells (VSMCs), human aortic endothelial cells, and wild-type mouse mesenteric arteries were studied. Cells/arteries were exposed to axitinib (VEGFi) alone and in combination with olaparib. Reactive oxygen species production, Ca2+ influx, protein/gene analysis, PARP activity, and TRPM2 signaling were assessed in VSMCs, and nitric oxide levels were determined in endothelial cells. Vascular function was assessed by myography. Axitinib increased PARP activity in VSMCs in a reactive oxygen species-dependent manner. Endothelial dysfunction and hypercontractile responses were ameliorated by olaparib and a TRPM2 blocker (8-Br-cADPR). VSMC reactive oxygen species production, Ca2+ influx, and phosphorylation of myosin light chain 20 and endothelial nitric oxide synthase (Thr495) were augmented by axitinib and attenuated by olaparib and TRPM2 inhibition. Proinflammatory markers were upregulated in axitinib-stimulated VSMCs, which was reduced by reactive oxygen species scavengers and PARP-TRPM2 inhibition. Human aortic endothelial cells exposed to combined olaparib and axitinib showed nitric oxide levels similar to VEGF-stimulated cells. Conclusions Axitinib-mediated vascular dysfunction involves PARP and TRPM2, which, when inhibited, ameliorate the injurious effects of VEGFi. Our findings define a potential mechanism whereby PARP inhibitor may attenuate vascular toxicity in VEGFi-treated patients with cancer.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow United Kingdom
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Research Institute of the McGill University Health Centre (RI-MUHC) McGill University Montreal Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow United Kingdom.,Research Institute of the McGill University Health Centre (RI-MUHC) McGill University Montreal Canada
| |
Collapse
|
29
|
Sayegh N, Yirerong J, Agarwal N, Addison D, Fradley M, Cortes J, Weintraub NL, Sayed N, Raval G, Guha A. Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors. Curr Cardiol Rep 2023; 25:269-280. [PMID: 36795308 PMCID: PMC10392782 DOI: 10.1007/s11886-023-01845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW To provide a detailed overview of cardiovascular adverse events associated with the use of tyrosine kinase inhibitors across different tumor types. RECENT FINDINGS Despite an undeniable survival advantage of tyrosine kinase inhibitors (TKIs) in patients with hematologic or solid malignancies, the accompanying off-target cardiovascular adverse events can be life-threatening. In patients with B cell malignancies, the use of Bruton tyrosine kinase inhibitors has been associated with atrial and ventricular arrhythmias, as well as hypertension. Cardiovascular toxic profiles are heterogeneous among the several approved breakpoint cluster region (BCR)-ABL TKIS. Notably, imatinib might be cardioprotective. Vascular endothelial growth factor TKIs, constituting the central axis in the treatment of several solid tumors, including renal cell carcinoma and hepatocellular carcinoma, have strongly been associated with hypertension and arterial ischemic events. Epidermal growth factor TKIs as therapy for advanced non-small cell lung cancer (NSCLC) have been reported to be infrequently associated with heart failure and QT prolongation. While tyrosine kinase inhibitors have been demonstrated to increase overall survival across different types of cancers, special consideration should be given to cardiovascular toxicities. High-risk patients can be identified by undergoing a comprehensive workup at baseline.
Collapse
Affiliation(s)
- Nicolas Sayegh
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Juliet Yirerong
- Division of Cardiology, Department of Internal Medicine, Yale Bridgeport Hospital, Bridgeport, CT, USA
| | - Neeraj Agarwal
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Michael Fradley
- Division of Cardiology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Cortes
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.,Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, CN 5313, Augusta, GA, 30912, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nazish Sayed
- Department of Vascular Surgery, Cardiovascular Research Institute, Stanford University, Palo Alto, CA, USA
| | - Girindra Raval
- Division of Hematology and Oncology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.,Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, CN 5313, Augusta, GA, 30912, USA
| | - Avirup Guha
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. .,Cardio-Oncology Program, Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Blvd, CN 5313, Augusta, GA, 30912, USA. .,Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
30
|
Zagami P, Nicolò E, Corti C, Valenza C, Curigliano G. New Concepts in Cardio-Oncology. Cancer Treat Res 2023; 188:303-341. [PMID: 38175351 DOI: 10.1007/978-3-031-33602-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer and cardiovascular disease are the two major causes of morbidity and mortality in worldwide. Discovering new therapeutic agents for the management of breast cancer (BC) has increased the numbers of cancer survivors but with the risk of cardiovascular adverse events (CV-AEs). All drugs can potentially damage the cardiovascular system, with different types of clinical manifestations from ischemic myocardial disease to vasculitis, thrombosis or pericarditis. An early detection of CV-AEs guarantees an earlier treatment, which is associated with better outcomes. Cardio-oncology field enlarged its studies to improve prevention, monitoring and treatment of all cardiotoxic manifestations related to old or modern oncological agents. A multidisciplinary approach with a close partnership between oncologists and cardiologists is essential for an optimal management and therapeutic decision-making. The aim of this chapter is to review all types of cardiotoxic manifestations related to novel and old agents approved for treatment of BC patients including chemotherapy, anti-HER2 agents, cyclin-dependent kinase 4/6 inhibitors, PolyADP-ribose polymerase (PARP) inhibitors, antiangiogenic drugs and immunotherapy. We also focused our discussion on prevention, monitoring, treatment, and management of CV-AEs.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hematology, University of Milano, Milan, Italy.
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Carmine Valenza
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
31
|
Toro C, Felmingham B, Jessop S, Celermajer DS, Kotecha RS, Govender D, Terese Hanna DM, O'Connor M, Manudhane R, Ayer J, O'Sullivan J, Sullivan M, Costello B, La Gerche A, Walwyn T, Horvath L, Mateos MK, Fulbright J, Jadhav M, Cheung M, Eisenstat D, Elliott DA, Conyers R. Cardio-Oncology Recommendations for Pediatric Oncology Patients: An Australian and New Zealand Delphi Consensus. JACC. ADVANCES 2022; 1:100155. [PMID: 38939459 PMCID: PMC11198111 DOI: 10.1016/j.jacadv.2022.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 06/29/2024]
Abstract
Cardio-oncology is a new multidisciplinary area of expertise that seeks to pre-emptively and proactively address cardiac complications that emerge during and following cancer therapy. Modern therapies including molecular targeted therapy and immunotherapy have broadened the agents that can cause cardiac sequelae, often with complications arising within days to weeks of therapy. Several international guidelines have been developed for the acute monitoring of cardio-oncology side effects. However, none are specific to pediatrics. We have addressed this gap in the literature by undertaking a rigorous Delphi consensus approach across 11 domains of cardio-oncology care using an Australian and New Zealand expert group. The expert group consisted of pediatric and adult cardiologists and pediatric oncologists. This Delphi consensus provides an approach to perform risk and baseline assessment, screening, and follow-up, specific to the cancer therapeutic. This review is a useful tool for clinicians involved in the cardio-oncology care of pediatric oncology patients.
Collapse
Affiliation(s)
- Claudia Toro
- Cardiac Regeneration Laboratory, Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Ben Felmingham
- Cardiac Regeneration Laboratory, Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
| | - Sophie Jessop
- Michael Rice Centre for Haematology and Oncology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - David S. Celermajer
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, RPA Hospital, Camperdown, New South Wales, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Curtin Medical School, Curtin University, Perth, Australia
| | - Dinisha Govender
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Diane Marie Terese Hanna
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne University, Parkville, Victoria, Australia
- The Walter & Eliza Hall Institute, Parkville, Victoria, Australia
| | - Matthew O'Connor
- Michael Rice Centre for Haematology and Oncology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Rebecca Manudhane
- Michael Rice Centre for Haematology and Oncology, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Julian Ayer
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- The Heart Centre for Children, The Sydney Children’s Hospital Network Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - John O'Sullivan
- Department of Cardiology, RPA Hospital, Camperdown, New South Wales, Australia
- Heart Institute, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Sullivan
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Ben Costello
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - André La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Thomas Walwyn
- Department of Paediatric Oncology, Haematology and Bone Marrow Transplantation, Perth Children’s Hospital, Nedlands, Western Australia, Australia
- Discipline of Paediatrics, Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Lisa Horvath
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital Randwick, Sydney, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Joy Fulbright
- Division of Pediatric Hematology/Oncology, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Mangesh Jadhav
- Cardiology Department, The Royal Children’s Hospital, Melbourne, Australia
| | - Michael Cheung
- Cardiac Regeneration Laboratory, Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Cardiology Department, The Royal Children’s Hospital, Melbourne, Australia
| | - David Eisenstat
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - David A. Elliott
- Cardiac Regeneration Laboratory, Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Rachel Conyers
- Cardiac Regeneration Laboratory, Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital, Parkville, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
32
|
Drljevic-Nielsen A, Mains JR, Thorup K, Andersen MB, Rasmussen F, Donskov F. Early reduction in spectral dual-layer detector CT parameters as favorable imaging biomarkers in patients with metastatic renal cell carcinoma. Eur Radiol 2022; 32:7323-7334. [PMID: 35511260 DOI: 10.1007/s00330-022-08793-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To associate the early change in DL-CT parameters and HU with survival outcomes and treatment response in patients with metastatic renal cell carcinoma (mRCC). METHODS DL-CT scans were performed at baseline and after 1 month of checkpoint immunotherapy or tyrosine kinase inhibitor therapy. Scans were reconstructed to conventional CT and DL-CT series, and used for assessment of HU, iodine concentration (IC), and the effective atomic number (Zeffective) in the combined RECISTv.1.1 target lesions. The relative changes, defined as ΔIC(combined), ΔZeffective(combined), and ΔHU(combined), were associated with progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The reduction in the sum of diameters of target lesions ≥ 30% after 1 month was associated with OS, PFS, and ORR. RESULTS Overall, 115 and 104 mRCC patients were included at baseline and 1 month, respectively. Median IC(combined) decreased from 2.3 to 1.2 mg/ml (p < 0.001), Zeffective(combined) from 8.5 to 8.0 (p < 0.001), and HU(combined) from 86.0 to 64.00 HU (p < 0.001). After multivariate adjustments, the largest reductions in ΔIC(combined) (HR 0.47, 95% CI: 0.24-0.94, p = 0.033) and ΔZeffective(combined) (HR = 0.43, 95% CI: 0.21-0.87, p = 0.019) were associated with favorable OS; the largest reduction in ΔZeffective(combined) was associated with higher response (OR = 2.79, 95% CI: 1.12-6.94, p = 0.027). The largest reduction in ΔHU(combined) was solely associated with OS in univariate analysis (HR 0.45, 95% CI: 0.23-0.91). Reduction in SOD ≥ 30% at 1 month was not associated with outcomes (p > 0.075). CONCLUSIONS Early reductions at 1 month in ΔIC(combined) and ΔZeffective(combined) are associated with favorable outcomes in patients with mRCC. This information may reassure physicians and patients about treatment strategy. KEY POINTS • Early reductions following 1 month of therapy in spectral dual-layer detector CT-derived iodine concentration and the effective atomic number (Zeffective) are independent biomarkers for better overall survival in patients with metastatic renal cell carcinoma. • Early reduction after 1 month of therapy in the effective atomic number (Zeffective) is an independent imaging biomarker for better treatment response metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
| | - Jill R Mains
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Michael Brun Andersen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
- Department of Radiology, Herlev/Gentofte, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
33
|
Wang Y, Cui C, Ren X, Dong X, Cui W. Cardiovascular toxicity associated with angiogenesis inhibitors: A comprehensive pharmacovigilance analysis based on the FDA Adverse Event Reporting System database from 2014 to 2021. Front Cardiovasc Med 2022; 9:988013. [PMID: 36312283 PMCID: PMC9606330 DOI: 10.3389/fcvm.2022.988013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/14/2022] [Indexed: 01/31/2023] Open
Abstract
Background The profiles of cardiovascular toxicity associated with angiogenesis inhibitors, including intravenous monoclonal antibodies (mAbs) and oral tyrosine kinase inhibitors (TKIs), targeting vascular endothelial growth factor (VEGF) remain poorly elucidated in real-world settings. This pharmacovigilance analysis aimed to comprehensively investigate the frequency, spectrum, timing, and outcomes of cardiovascular toxicities associated with angiogenesis inhibitors and to explore the differences in such patterns between mAbs and TKIs. Methods Disproportionality analysis was performed by leveraging reports from the FDA Adverse Event Reporting System (FAERS) database from 2014 to 2021. Cardiovascular adverse events (AEs) were grouped into nine narrow categories using the Standardized Medical Dictionary for Regulatory Activities (MedDRA) Queries (SMQs). Reporting odds ratio (ROR) and information components (ICs) were calculated with statistical shrinkage transformation formulas and a lower limit of 95% confidence interval (CI) for ROR (ROR025) > 1 or IC (IC025) > 0, with at least three reports being considered statistically significant. Results A total of 757,577 reports of angiogenesis inhibitors and 70,668 (9.3%) reports of cardiovascular AEs were extracted. Significant disproportionality was detected in angiogenesis inhibitors for cardiovascular AEs (IC025/ROR025 = 0.35/1.27). Bevacizumab (31.8%), a mAb, presented the largest number of reports, followed by sunitinib (12.4%), a TKI. Hypertension (SMQ) was detected with the strongest signal value (IC025/ROR025 = 1.73/3.33), followed by embolic and thrombotic events (SMQ) (IC025/ROR025 = 0.32/1.26). Hypertension showed the shortest time to onset with a median (interquartile range) value of 23 (8, 69) days, while embolic and thrombotic events had the longest value of 51 (16, 153) days. Notably, hypertension presented the lowest proportions of death and life-threatening events (10.9%), whereas embolic and thrombotic events posed the highest (29.3%). Furthermore, both mAbs (IC025/ROR025 = 0.47/1.39) and TKIs (IC025/ROR025 = 0.30/1.23) showed increased cardiovascular AEs. Hypertension was detected in both agents (IC025/ROR025 = 1.53/2.90 for mAbs and IC025/ROR025 = 1.83/3.56 for TKIs) with a shorter time to onset of 17 (6, 48) days for TKIs than mAbs of 42 (14, 131) days. By contrast, embolic and thrombotic events were detected for mAbs (IC025/ROR025 = 0.90/1.87) without TKI (IC025/ROR025 = −0.08/0.95). Conclusion Angiogenesis inhibitors were associated with increased cardiovascular toxicity with a discrepancy between intravenous mAbs and oral TKIs, deserving distinct monitoring and appropriate management.
Collapse
Affiliation(s)
- YanFeng Wang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanjuan Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiayang Ren
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinran Dong
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Wei Cui
- Department of Laboratory Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Wei Cui
| |
Collapse
|
34
|
Ma C, Wu Z, Wang X, Huang M, Wei X, Wang W, Qu H, Qiaolongbatu X, Lou Y, Jing L, Fan G. A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicol Appl Pharmacol 2022; 450:116162. [PMID: 35830948 DOI: 10.1016/j.taap.2022.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.
Collapse
Affiliation(s)
- Cui Ma
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Mengling Huang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Xiaona Wei
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Wei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China.
| | - Guorong Fan
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
35
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
36
|
Autopsy and Cardiac Magnetic Resonance Image Case of Bevacizumab-Related Cardiomyopathy. J Cardiovasc Dev Dis 2022; 9:jcdd9070208. [PMID: 35877571 PMCID: PMC9318594 DOI: 10.3390/jcdd9070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
We report an autopsy case of a 69-year-old female with cervical cancer. She was given bevacizumab-containing chemotherapy for 4 months. After two years of chemotherapy, she developed congestive heart failure (CHF) with left ventricular dysfunction. Cardiac magnetic resonance (CMR) imaging revealed late gadolinium enhancement (LGE) of linear mid-wall delayed enhancement located in the basal to the mid-septal wall, suggesting bevacizumab-related cardiotoxicity. Although she was treated with cardioprotective medications and discharged, she eventually died from worsening CHF a year later, and we conducted an autopsy. Histopathological examination revealed diffuse fibrosis in the myocardium, and the area where LGE was present on CMR showed thinning and wavy changes in cardiomyocytes with diffuse interstitial fibrosis and edema.
Collapse
|
37
|
Scott SS, Greenlee AN, Matzko A, Stein M, Naughton MT, Zaramo TZ, Schwendeman EJ, Mohammad SJ, Diallo M, Revan R, Shimmin G, Tarun S, Ferrall J, Ho TH, Smith SA. Intracellular Signaling Pathways Mediating Tyrosine Kinase Inhibitor Cardiotoxicity. Heart Fail Clin 2022; 18:425-442. [PMID: 35718417 PMCID: PMC10391230 DOI: 10.1016/j.hfc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat several cancers; however, a myriad of adverse cardiotoxic effects remain a primary concern. Although hypertension (HTN) is the most common adverse effect reported with TKI therapy, incidents of arrhythmias (eg, QT prolongation, atrial fibrillation) and heart failure are also prevalent. These complications warrant further research toward understanding the mechanisms of TKI-induced cardiotoxicity. Recent literature has given some insight into the intracellular signaling pathways that may mediate TKI-induced cardiac dysfunction. In this article, we discuss the cardiotoxic effects of TKIs on cardiomyocyte function, signaling, and possible treatments.
Collapse
|
38
|
Nerve growth factor and post-infarction cardiac remodeling. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of sudden death from chronic heart failure and cardiac arrhythmias caused by myocardial infarction is a complex problem in cardiology. Post-infarction cardiac remodeling occurs after myocardial infarction. This compensatory-adaptive reaction, regulated by mechanical, neurohumoral and genetic factors, includes the structural and functional changes of cardiomyocytes, stromal elements and extracellular matrix, geometry and architectonics of the left ventricular cavity. Adverse left ventricular remodeling is associated with heart failure and increased mortality. The concept of post-infarction cardiac remodeling is an urgent problem, since the mechanisms of development and progression of adverse post-infarction changes in the myocardium are completely unexplored. In recent years, the scientist attention has been focused on neurotrophic factors involved in the sympathetic nervous system and the vascular system remodeling after myocardial infarction. Nerve growth factor (NGF) is a protein from the neurotrophin family that is essential for the survival and development of sympathetic and sensory neurons, which also plays an important role in vasculogenesis. Acute myocardial infarction and heart failure are characterized by changes in the expression and activity of neurotrophic factors and their receptors, affecting the innervation of the heart muscle, as well as having a direct effect on cardiomyocytes, endothelial and smooth muscle vascular cells. The identification of the molecular mechanisms involved in the interactions between cardiomyocytes and neurons, as well as the study of the effects of NGF in the cardiovascular system, will improve understanding of the cardiac remodeling mechanism. This review summarizes the available scientific information (2019–2021) about mechanisms of the link between post-infarction cardiac remodeling and NGF functions.
Collapse
|
39
|
Glen C, Tan YY, Waterston A, Evans TRJ, Jones RJ, Petrie MC, Lang NN. Mechanistic and Clinical Overview Cardiovascular Toxicity of BRAF and MEK Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:1-18. [PMID: 35492830 PMCID: PMC9040125 DOI: 10.1016/j.jaccao.2022.01.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Rapidly accelerated fibrosarcoma B-type (BRAF) and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors have revolutionized melanoma treatment. Approximately half of patients with melanoma harbor a BRAF gene mutation with subsequent dysregulation of the RAF-MEK-ERK signaling pathway. Targeting this pathway with BRAF and MEK blockade results in control of cell proliferation and, in most cases, disease control. These pathways also have cardioprotective effects and are necessary for normal vascular and cardiac physiology. BRAF and MEK inhibitors are associated with adverse cardiovascular effects including hypertension, left ventricular dysfunction, venous thromboembolism, atrial arrhythmia, and electrocardiographic QT interval prolongation. These effects may be underestimated in clinical trials. Baseline cardiovascular assessment and follow-up, including serial imaging and blood pressure assessment, are essential to balance optimal anti-cancer therapy while minimizing cardiovascular side effects. In this review, an overview of BRAF/MEK inhibitor-induced cardiovascular toxicity, the mechanisms underlying these, and strategies for surveillance, prevention, and treatment of these effects are provided.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- AF, atrial fibrillation
- BRAF inhibitor
- BRAF, rapidly accelerated fibrosarcoma B-type
- CVAE, cardiovascular adverse event
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal-regulated kinase
- LVSD, left ventricular systolic dysfunction
- MEK inhibitor
- MEK, mitogen-activated extracellular signal-regulated kinase
- RAF, rapidly accelerated fibrosarcoma
- VEGF, vascular endothelial growth factor
- cardio-oncology
- cardiovascular toxicity
- hypertension
- left ventricular systolic dysfunction
- melanoma
Collapse
Affiliation(s)
- Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yun Yi Tan
- Beatson West of Scotland Cancer Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Ashita Waterston
- Beatson West of Scotland Cancer Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Thomas R. Jeffry Evans
- Beatson West of Scotland Cancer Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert J. Jones
- Beatson West of Scotland Cancer Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C. Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ninian N. Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
- Beatson West of Scotland Cancer Centre, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| |
Collapse
|
40
|
Stăncioiu L, Gherman AMR, Brezeștean I, Dina NE. Vibrational spectral analysis of Sorafenib and its molecular docking study compared to other TKIs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Mechanistic science in cardiovascular-oncology: the way forward to maximise anti-cancer drug effects and minimise cardiovascular toxicity. Clin Sci (Lond) 2021; 135:2661-2663. [PMID: 34881389 PMCID: PMC8672202 DOI: 10.1042/cs20210986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Dramatic improvements in cancer survival have arisen because of the rapid development of novel anti-cancer therapies. The potential for cardiovascular toxicity associated with these drugs often reflects overlap between pathogenic cancer mechanisms and physiological pathways required for normal cardiovascular function. Clinical Science has, therefore, compiled a themed collection on Cardiovascular-Oncology. This collection examines the intersection between cancer treatments and their potentially harmful cardiovascular effects. By defining the mechanisms underlying unwanted cardiovascular effects of anti-cancer therapies, cardioprotective strategies can be developed. Only by doing so, will patients be able to achieve optimal cancer treatment at the minimum cost to cardiovascular health.
Collapse
|
42
|
Jankiewicz WK, Barnett SD, Stavniichuk A, Hwang SH, Hammock BD, Belayet JB, Khan AH, Imig JD. Dual sEH/COX-2 Inhibition Using PTUPB-A Promising Approach to Antiangiogenesis-Induced Nephrotoxicity. Front Pharmacol 2021; 12:744776. [PMID: 34955823 PMCID: PMC8695932 DOI: 10.3389/fphar.2021.744776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Kidney injury from antiangiogenic chemotherapy is a significant clinical challenge, and we currently lack the ability to effectively treat it with pharmacological agents. Thus, we set out to investigate whether simultaneous soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) inhibition using a dual sEH/COX-2 inhibitor PTUPB could be an effective strategy for treating antiangiogenic therapy-induced kidney damage. We used a multikinase inhibitor, sorafenib, which is known to cause serious renal side effects. The drug was administered to male Sprague-Dawley rats that were on a high-salt diet. Sorafenib was administered over the course of 56 days. The study included three experimental groups; 1) control group (naïve rats), 2) sorafenib group [rats treated with sorafenib only (20 mg/kg/day p.o.)], and 3) sorafenib + PTUPB group (rats treated with sorafenib only for the initial 28 days and subsequently coadministered PTUPB (10 mg/kg/day i.p.) from days 28 through 56). Blood pressure was measured every 2 weeks. After 28 days, sorafenib-treated rats developed hypertension (161 ± 4 mmHg). Over the remainder of the study, sorafenib treatment resulted in a further elevation in blood pressure through day 56 (200 ± 7 mmHg). PTUPB treatment attenuated the sorafenib-induced blood pressure elevation and by day 56, blood pressure was 159 ± 4 mmHg. Urine was collected every 2 weeks for biochemical analysis. After 28 days, sorafenib rats developed pronounced proteinuria (9.7 ± 0.2 P/C), which intensified significantly (35.8 ± 3.5 P/C) by the end of day 56 compared with control (2.6 ± 0.4 P/C). PTUPB mitigated sorafenib-induced proteinuria, and by day 56, it reduced proteinuria by 73%. Plasma and kidney tissues were collected on day 56. Kidney histopathology revealed intratubular cast formation, interstitial fibrosis, glomerular injury, and glomerular nephrin loss at day 56 in sorafenib-treated rats. PTUPB treatment reduced histological features by 30%-70% compared with the sorafenib-treated group and restored glomerular nephrin levels. Furthermore, PTUPB also acted on the glomerular permeability barrier by decreasing angiotensin-II-induced glomerular permeability to albumin. Finally, PTUPB improved in vitro the viability of human mesangial cells. Collectively, our data demonstrate the potential of using PTUPB or dual sEH/COX-2 inhibition as a therapeutic strategy against sorafenib-induced glomerular nephrotoxicity.
Collapse
Affiliation(s)
- Wojciech K. Jankiewicz
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott D. Barnett
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna Stavniichuk
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Jawad B. Belayet
- Department of Chemistry and Biochemistry, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| | - A. H. Khan
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John D. Imig
- Drug Discovery Center and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
43
|
Alavi MV. OMA1 High-Throughput Screen Reveals Protease Activation by Kinase Inhibitors. ACS Chem Biol 2021; 16:2202-2211. [PMID: 34672515 DOI: 10.1021/acschembio.1c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial proteases are interesting but challenging drug targets for multifactorial diseases, such as neurodegeneration and cancer. The mitochondrial inner membrane protease OMA1 is a bona fide drug target for heart failure supported by data from human linkage analysis and animal disease models, but presumably relevant for more indications. OMA1 acts at the intersection of energy metabolism and stress signaling. The protease cleaves the structural protein OPA1, which organizes the cristae, as well as the signaling peptide DELE1, which can stimulate the integrated stress response. OMA1 shows little activity under physiological conditions but hydrolyzes OPA1 in mitochondria destined for mitophagy and during apoptosis. Little is known about OMA1, its structure has not been solved, let alone its context-dependent regulation. Autocatalytic processing and the lack of OMA1 inhibitors are thereby creating the biggest roadblocks. This study introduces a scalable, cellular OMA1 protease assay suitable for high-throughput drug screening. The assay utilizes an engineered luciferase targeted to the inner membrane as artificial OMA1 substrate, whereby the reporter signal inversely correlates to OMA1 activity. Testing different screening protocols and sampling different compound collections validated the reporter and demonstrated that both OMA1 activators as well as OMA1 inhibitors can be identified with the assay. Ten kinase-targeted cancer drugs triggered OMA1 in the assays, which suggests─considering cardiotoxicity as a rather common side-effect of this class of drugs─cross-reactivity with the OMA1 pathway.
Collapse
Affiliation(s)
- Marcel V. Alavi
- 712 North Inc., QB3 Incubator at UC Berkeley, 130 Stanley Hall, #3220, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Cardiovascular toxicity of angiogenesis inhibitors and immune checkpoint inhibitors: synergistic anti-tumour effects at the cost of increased cardiovascular risk? Clin Sci (Lond) 2021; 135:1649-1668. [PMID: 34283204 DOI: 10.1042/cs20200300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In the past two decades, treatment outcomes for a wide range of malignancies have improved remarkably due to the development of novel anti-cancer therapies, including vascular endothelial growth factor inhibitors (VEGFIs) and immune checkpoint inhibitors (ICIs). Despite their unprecedented anti-tumour effects, it is becoming increasingly clear that both types of agents are associated with specific cardiovascular toxicity, including hypertension, congestive heart failure, myocarditis and acceleration of atherosclerosis. Currently, VEGFI and ICI combination therapy is recommended for the treatment of advanced renal cell carcinoma (RCC) and has shown promising treatment efficacy in other tumour types as well. Consequently, VEGFI and ICI combination therapy will most likely become an important therapeutic strategy for various malignancies. However, this combinatory approach is expected to be accompanied by a substantial increase in cardiovascular risk, as both types of agents could act synergistically to induce cardiovascular sequelae. Therefore, a comprehensive baseline assessment and adequate monitoring by specialised cardio-oncology teams is essential in case these agents are used in combination, particularly in high-risk patients. This review summarises the mechanisms of action and treatment indications for currently registered VEGFIs and ICIs, and discusses their main vascular and cardiac toxicity. Subsequently, we provide the biological rationales for the observed promising synergistic anti-tumour effects of combined VEGFI/ICI administration. Lastly, we speculate on the increased risk for cardiovascular toxicity in case these agents are used in combination and its implications and future directions for the clinical situation.
Collapse
|
45
|
van Dorst DC, Dobbin SJ, Neves KB, Herrmann J, Herrmann SM, Versmissen J, Mathijssen RH, Danser AJ, Lang NN. Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circ Res 2021; 128:1040-1061. [PMID: 33793337 PMCID: PMC8011349 DOI: 10.1161/circresaha.121.318051] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of a wide range of novel antineoplastic therapies has improved the prognosis for patients with a wide range of malignancies, which has increased the number of cancer survivors substantially. Despite the oncological benefit, cancer survivors are exposed to short- and long-term adverse cardiovascular toxicities associated with anticancer therapies. Systemic hypertension, the most common comorbidity among cancer patients, is a major contributor to the increased risk for developing these adverse cardiovascular events. Cancer and hypertension have common risk factors, have overlapping pathophysiological mechanisms and hypertension may also be a risk factor for some tumor types. Many cancer therapies have prohypertensive effects. Although some of the mechanisms by which these antineoplastic agents lead to hypertension have been characterized, further preclinical and clinical studies are required to investigate the exact pathophysiology and the optimal management of hypertension associated with anticancer therapy. In this way, monitoring and management of hypertension before, during, and after cancer treatment can be improved to minimize cardiovascular risks. This is vital to optimize cardiovascular health in patients with cancer and survivors, and to ensure that advances in terms of cancer survivorship do not come at the expense of increased cardiovascular toxicities.
Collapse
Affiliation(s)
- Daan C.H. van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Karla B. Neves
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine (J.H.), Mayo Clinic, Rochester, MN
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension (S.M.H.), Mayo Clinic, Rochester, MN
| | - Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Hospital Pharmacy (J.V.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ron H.J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute (D.C.H.v.D., R.H.J.M.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (D.C.H.v.D., J.V., A.H.J.D.), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (S.J.H.D., K.B.N., N.N.L.)
| |
Collapse
|