1
|
Kaur G, Tintelott M, Suranglikar M, Masurier A, Vu XT, Gines G, Rondelez Y, Ingebrandt S, Coffinier Y, Pachauri V, Vlandas A. Time-encoded electrical detection of trace RNA biomarker by integrating programmable molecular amplifier on chip. Biosens Bioelectron 2024; 257:116311. [PMID: 38677018 DOI: 10.1016/j.bios.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
One of the serious challenges facing modern point-of-care (PoC) molecular diagnostic platforms relate to reliable detection of low concentration biomarkers such as nucleic acids or proteins in biological samples. Non-specific analyte-receptor interactions due to competitive binding in the presence of abundant molecules, inefficient mass transport and very low number of analyte molecules in sample volume, in general pose critical hurdles for successful implementation of such PoC platforms for clinical use. Focusing on these specific challenges, this work reports a unique PoC biosensor that combines the advantages of nanoscale biologically-sensitive field-effect transistor arrays (BioFET-arrays) realized in a wafer-scale top-down nanofabrication as high sensitivity electrical transducers with that of sophisticated molecular programs (MPs) customized for selective recognition of analyte miRNAs and amplification resulting in an overall augmentation of signal transduction strategy. The MPs realize a programmable universal molecular amplifier (PUMA) in fluidic matrix on chip and provide a biomarker-triggered exponential release of small nucleic acid sequences easily detected by receptor-modified BioFETs. A common miRNA biomarker LET7a was selected for successful demonstration of this novel biosensor, achieving limit of detection (LoD) down to 10 fM and wide dynamic ranges (10 pM-10 nM) in complex physiological solutions. As the determination of biomarker concentration is implemented by following the electrical signal related to analyte-triggered PUMA in time-domain instead of measuring the threshold shifts of BioFETs, and circumvents direct hybridization of biomarkers at transducer surface, this new strategy also allows for multiple usage (>3 times) of the biosensor platform suggesting exceptional cost-effectiveness for practical use.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institut D'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR CNRS 8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq, Cedex, 59652, France
| | - Marcel Tintelott
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Mohit Suranglikar
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Antoine Masurier
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Xuan-Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Guillaume Gines
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, Ecole Supérieure de Physique et de Chimie Industrielles, PSL Research University, and CNRS, Paris, France
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Yannick Coffinier
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany
| | - Vivek Pachauri
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074, Aachen, Germany.
| | - Alexis Vlandas
- Institut D'Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR CNRS 8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq, Cedex, 59652, France
| |
Collapse
|
2
|
Mozayan E, Rafiee-Pour HA, Ghasemi F. CNT-FET for sensitive hydrogen peroxide biosensing via immobilized Cytochrome c. Arch Biochem Biophys 2023:109695. [PMID: 37479051 DOI: 10.1016/j.abb.2023.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
H2O2 is an effective substance in the body which contributes to gene expression, insulin metabolism and determining cell shapes. However, a high concentration of H2O2 is harmful to the body and can cause various diseases such as colitis wounds, sepsis disease, lymphocyte proliferation and macrophage apoptosis in systemic lupus erythematosus. In this study, a Cyt c/cMWCNTs/FET was designed to real-time detect H2O2 via immobilized Cyt c on the cMWCNTs/FET surface. The performance of the Cyt c/cMWCNTs/FET biosensor was studied under various parameters such as cMWCNTs and Cyt c concentrations, as well as different pH values. When H2O2 was added to the reaction chamber of the Cyt c/cMWCNTs/FET, the output current of the Bio-FET was reduced, which was attributed to H2O2 detection. The linear response range of this Cyt c/cMWCNT/FET was 10.0 fM to 1.0 nM. The limit of detection and response time of this platform were determined to be 9.13 fM and around 1.0 s, respectively. Also, the operation of the Cyt c/cMWCNTs/FET in the presence of glucose, leucine, tyrosine and ascorbic acid as interfering substances was selective towards H2O2.
Collapse
Affiliation(s)
- Elaheh Mozayan
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hossain-Ali Rafiee-Pour
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Foad Ghasemi
- Nanoscale Physics Device Lab (NPDL), Department of Physics, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
3
|
Bakhoum EG, Zhang C. Field Effect Transistor with Nanoporous Gold Electrode. MICROMACHINES 2023; 14:1135. [PMID: 37374719 DOI: 10.3390/mi14061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Nanoporous gold (NPG) has excellent catalytic activity and has been used in the recent literature on this issue as a sensor in various electrochemical and bioelectrochemical reactions. This paper reports on a new type of metal-oxide-semiconductor field-effect transistor (MOSFET) that utilizes NPG as a gate electrode. Both n-channel and p-channel MOSFETs with NPG gate electrodes have been fabricated. The MOSFETs can be used as sensors and the results of two experiments are reported: the detection of glucose and the detection of carbon monoxide. A detailed comparison of the performance of the new MOSFET to that of the older generation of MOSFETs fitted with zinc oxide gate electrodes is given.
Collapse
Affiliation(s)
- Ezzat G Bakhoum
- Department of Electrical and Computer Engineering, University of West Florida, Pensacola, FL 32514, USA
| | - Cheng Zhang
- Department of Mechanical Engineering, University of West Florida, Pensacola, FL 32514, USA
| |
Collapse
|
4
|
Ben Halima H, Bellagambi FG, Brunon F, Alcacer A, Pfeiffer N, Heuberger A, Hangouët M, Zine N, Bausells J, Errachid A. Immuno field-effect transistor (ImmunoFET) for detection of salivary cortisol using potentiometric and impedance spectroscopy for monitoring heart failure. Talanta 2023; 257:123802. [PMID: 36863297 DOI: 10.1016/j.talanta.2022.123802] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
Cortisol, a steroid hormone mostly known as "the stress hormone," plays many essential functions in humans due its involvement in several metabolic pathways. It is well-known that cortisol dysregulation is implied in evolution and progression of several chronic pathologies, including cardiac diseases such as heart failure (HF). However, although several sensors have been proposed to date for the determination of cortisol, none of them has been designed for its determination in saliva in order to monitor HF progression. In this work, a silicon nitride based Immuno field-effect transistor (ImmunoFET) has been proposed to quantify salivary cortisol for HF monitoring. Sensitive biological element was represented by anti-cortisol antibody bound onto the ISFET gate via 11-triethoxysilyl undecanal (TESUD) by vapor-phase method. Potentiometric and electrochemical impedance spectroscopy (EIS) measurements were carried out for preliminary investigations on device responsiveness. Subsequently, a more sensitive detection was obtained using electrochemical EIS. The proposed device has proven to have a linear response (R2 always >0.99), to be sensitive (with a limit of detection, LoD, of 0.005 ± 0.002 ng/mL), selective in case of other HF biomarkers (e.g. N-terminal pro B-type natriuretic peptide (NT-proBNP), tumor necrosis factor-alpha (TNF-α), and interleukin 10 (IL-10)), and accurate in cortisol quantification in saliva sample by performing the standard addition method.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Francesca G Bellagambi
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France.
| | - Fabien Brunon
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Albert Alcacer
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Norman Pfeiffer
- Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits, 91058, Erlangen, Germany
| | - Albert Heuberger
- Information Technology (LIKE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Marie Hangouët
- Institute of Analytical Sciences (ISA) - UMR 5280, French National Center for Scientific Research (CNRS), 69100, Lyon, France
| | - Nadia Zine
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France
| | - Joan Bausells
- Institute of Microelectronics of Barcelona (IMB-CNM, CSIC), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Abdelhamid Errachid
- Institute of Analytical Sciences (ISA) - UMR 5280, Claude Bernard Lyon 1 University, 69100, Lyon, France.
| |
Collapse
|
5
|
Sabrin S, Karmokar DK, Karmakar NC, Hong SH, Habibullah H, Szili EJ. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sens 2023; 8:974-993. [PMID: 36897225 DOI: 10.1021/acssensors.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Low temperature plasma technology is proving to be at the frontier of emerging medical technologies with real potential to overcome escalating healthcare challenges including antimicrobial and anticancer resistance. However, significant improvements in efficacy, safety, and reproducibility of plasma treatments need to be addressed to realize the full clinical potential of the technology. To improve plasma treatments recent research has focused on integrating automated feedback control systems into medical plasma technologies to maintain optimal performance and safety. However, more advanced diagnostic systems are still needed to provide data into feedback control systems with sufficient levels of sensitivity, accuracy, and reproducibility. These diagnostic systems need to be compatible with the biological target and to also not perturb the plasma treatment. This paper reviews the state-of-the-art electronic and optical sensors that might be suitable to address this unmet technological need, and the steps needed to integrate these sensors into autonomous plasma systems. Realizing this technological gap could facilitate the development of next-generation medical plasma technologies with strong potential to yield superior healthcare outcomes.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Nemai C Karmakar
- Electrical and Computer Systems Engineering Department, Monash University, Clayton, Victoria 3800, Australia
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Endre J Szili
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
6
|
Song Y, Tang W, Han L, Liu Y, Shen C, Yin X, Ouyang B, Su Y, Guo X. Integration of nanomaterial sensing layers on printable organic field effect transistors for highly sensitive and stable biochemical signal conversion. NANOSCALE 2023; 15:5537-5559. [PMID: 36880412 DOI: 10.1039/d2nr05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic field effect transistor (OFET) devices are one of the most popular candidates for the development of biochemical sensors due to their merits of being flexible and highly customizable for low-cost large-area manufacturing. This review describes the key points in constructing an extended-gate type OFET (EGOFET) biochemical sensor with high sensitivity and stability. The structure and working mechanism of OFET biochemical sensors are described firstly, emphasizing the importance of critical material and device engineering to higher biochemical sensing capabilities. Next, printable materials used to construct sensing electrodes (SEs) with high sensitivity and stability are presented with a focus on novel nanomaterials. Then, methods of obtaining printable OFET devices with steep subthreshold swing (SS) for high transconductance efficiency are introduced. Finally, approaches for the integration of OFETs and SEs to form portable biochemical sensor chips are introduced, followed by several demonstrations of sensory systems. This review will provide guidelines for optimizing the design and manufacturing of OFET biochemical sensors and accelerating the movement of OFET biochemical sensors from the laboratory to the marketplace.
Collapse
Affiliation(s)
- Yawen Song
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Han
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chaochao Shen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaokuan Yin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bang Ouyang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojun Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Li H, Wang S, Li X, Cheng C, Shen X, Wang T. Dual-Channel Detection of Breast Cancer Biomarkers CA15-3 and CEA in Human Serum Using Dialysis-Silicon Nanowire Field Effect Transistor. Int J Nanomedicine 2022; 17:6289-6299. [PMID: 36536938 PMCID: PMC9758920 DOI: 10.2147/ijn.s391234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/03/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignant tumors and the leading cause of cancer deaths among women. The early diagnosis and treatment of BC are effective measures that can increase survival rates and reduce mortality. Carbohydrate antigens 15-3 (CA15-3) and carcinoma embryonic antigens (CEA) have been regarded as the most two valuable tumor markers of BC. The combined detection of CA15-3 and CEA could improve the sensitivity and accuracy of early diagnosis for BC. METHODS The multi-channel double-gate silicon nanowire field effect transistor (SiNW-FET) biosensors were fabricated by using the top-down semiconductor manufacturing technology. By surface modification of the different SiNW surfaces with monoclonal CA15-3 and CEA antibodies separately, the prepared SiNW-FET was processed into biosensor for dual-channel detection of CA15-3 and CEA. RESULTS The prepared SiNW-FET biosensors were proved to have high sensitivity and specificity for the dual-channel detection of CA15-3 and CEA, and the detection limit is as low as 0.1U/mL CA15-3 and 0.01 ng/mL CEA. Moreover, the SiNW-FET biosensors were able to detect CA15-3 and CEA in serum by connecting a miniature hemodialyzer. CONCLUSION The present study reported a SiNW-FET biosensor for dual-channel detection of breast cancer biomarkers CA15-3 and CEA in serum, which has potential clinical application value for the early diagnosis and curative effect observation of BC.
Collapse
Affiliation(s)
- Hang Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shuai Wang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiaosong Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Cong Cheng
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiping Shen
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
8
|
Ben Halima H, Bellagambi F, Hangouet M, Alcacer A, Pfeiffer N, Heuberger A, Zine N, Bausells J, Elaissari A, ERRACHID A. A novel IMFET biosensor strategy for Interleukin‐10 quantification for early screening heart failure disease in saliva. ELECTROANAL 2022. [DOI: 10.1002/elan.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Sakata T. Technical Perspectives on Applications of Biologically Coupled Gate Field-Effect Transistors. SENSORS (BASEL, SWITZERLAND) 2022; 22:4991. [PMID: 35808482 PMCID: PMC9269775 DOI: 10.3390/s22134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Biosensing technologies are required for point-of-care testing (POCT). We determine some physical parameters such as molecular charge and mass, redox potential, and reflective index for measuring biological phenomena. Among such technologies, biologically coupled gate field-effect transistor (Bio-FET) sensors are a promising candidate as a type of potentiometric biosensor for the POCT because they enable the direct detection of ionic and biomolecular charges in a miniaturized device. However, we need to reconsider some technical issues of Bio-FET sensors to expand their possible use for biosensing in the future. In this perspective, the technical issues of Bio-FET sensors are pointed out, focusing on the shielding effect, pH signals, and unique parameters of FETs for biosensing. Moreover, other attractive features of Bio-FET sensors are described in this perspective, such as the integration and the semiconductive materials used for the Bio-FET sensors.
Collapse
Affiliation(s)
- Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Elli G, Hamed S, Petrelli M, Ibba P, Ciocca M, Lugli P, Petti L. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22114178. [PMID: 35684798 PMCID: PMC9185402 DOI: 10.3390/s22114178] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
The precise monitoring of environmental contaminants and agricultural plant stress factors, respectively responsible for damages to our ecosystems and crop losses, has nowadays become a topic of uttermost importance. This is also highlighted by the recent introduction of the so-called "Sustainable Development Goals" of the United Nations, which aim at reducing pollutants while implementing more sustainable food production practices, leading to a reduced impact on all ecosystems. In this context, the standard methods currently used in these fields represent a sub-optimal solution, being expensive, laboratory-based techniques, and typically requiring trained personnel with high expertise. Recent advances in both biotechnology and material science have led to the emergence of new sensing (and biosensing) technologies, enabling low-cost, precise, and real-time detection. An especially interesting category of biosensors is represented by field-effect transistor-based biosensors (bio-FETs), which enable the possibility of performing in situ, continuous, selective, and sensitive measurements of a wide palette of different parameters of interest. Furthermore, bio-FETs offer the possibility of being fabricated using innovative and sustainable materials, employing various device configurations, each customized for a specific application. In the specific field of environmental and agricultural monitoring, the exploitation of these devices is particularly attractive as it paves the way to early detection and intervention strategies useful to limit, or even completely avoid negative outcomes (such as diseases to animals or ecosystems losses). This review focuses exactly on bio-FETs for environmental and agricultural monitoring, highlighting the recent and most relevant studies. First, bio-FET technology is introduced, followed by a detailed description of the the most commonly employed configurations, the available device fabrication techniques, as well as the specific materials and recognition elements. Then, examples of studies employing bio-FETs for environmental and agricultural monitoring are presented, highlighting in detail advantages and disadvantages of available examples. Finally, in the discussion, the major challenges to be overcome (e.g., short device lifetime, small sensitivity and selectivity in complex media) are critically presented. Despite the current limitations and challenges, this review clearly shows that bio-FETs are extremely promising for new and disruptive innovations in these areas and others.
Collapse
Affiliation(s)
- Giulia Elli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Correspondence:
| | - Saleh Hamed
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mattia Petrelli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pietro Ibba
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Manuela Ciocca
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Paolo Lugli
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
| | - Luisa Petti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, 39100 Bolzano, Italy; (S.H.); (M.P.); (P.I.); (M.C.); (P.L.); (L.P.)
- Competence Centre for Plant Health, Free University of Bolzano-Bozen, 39100 Bolzano, Italy
| |
Collapse
|
11
|
Tintelott M, Kremers T, Ingebrandt S, Pachauri V, Vu XT. Realization of a PEDOT:PSS/Graphene Oxide On-Chip Pseudo-Reference Electrode for Integrated ISFETs. SENSORS 2022; 22:s22082999. [PMID: 35458984 PMCID: PMC9032565 DOI: 10.3390/s22082999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
A stable reference electrode (RE) plays a crucial role in the performance of an ion-sensitive field-effect transistor (ISFET) for bio/chemical sensing applications. There is a strong demand for the miniaturization of the RE for integrated sensor systems such as lab-on-a-chip (LoC) or point-of-care (PoC) applications. Out of several approaches presented so far to integrate an on-chip electrode, there exist critical limitations such as the effect of analyte composition on the electrode potential and drifts during the measurements. In this paper, we present a micro-scale solid-state pseudo-reference electrode (pRE) based on poly(3,4-ethylene dioxythiophene): poly(styrene sulfonic acid) (PEDOT:PSS) coated with graphene oxide (GO) to deploy with an ion-sensitive field-effect transistor (ISFET)-based sensor platform. The PEDOT:PSS was electropolymerized from its monomer on a micro size gold (Au) electrode and, subsequently, a thin GO layer was deposited on top. The stability of the electrical potential and the cross-sensitivity to the ionic strength of the electrolyte were investigated. The presented pRE exhibits a highly stable open circuit potential (OCP) for up to 10 h with a minimal drift of ~0.65 mV/h and low cross-sensitivity to the ionic strength of the electrolyte. pH measurements were performed using silicon nanowire field-effect transistors (SiNW-FETs), using the developed pRE to ensure good gating performance of electrolyte-gated FETs. The impact of ionic strength was investigated by measuring the transfer characteristic of a SiNW-FET in two electrolytes with different ionic strengths (1 mM and 100 mM) but the same pH. The performance of the PEDOT:PSS/GO electrode is similar to a commercial electrochemical Ag/AgCl reference electrode.
Collapse
|
12
|
|
13
|
Bhatt D, Panda S. Dual‐gate ion‐sensitive field‐effect transistors: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Deepa Bhatt
- National Centre for Flexible Electronics Indian Institute of Technology Kanpur Kanpur India
- Samtel Centre for Display Technologies Indian Institute of Technology Kanpur Kanpur India
| | - Siddhartha Panda
- National Centre for Flexible Electronics Indian Institute of Technology Kanpur Kanpur India
- Samtel Centre for Display Technologies Indian Institute of Technology Kanpur Kanpur India
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur India
- Materials Science Programme Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
14
|
Shojaei Baghini M, Vilouras A, Douthwaite M, Georgiou P, Dahiya R. Ultra‐thin ISFET‐based sensing systems. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mahdieh Shojaei Baghini
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| | - Anastasios Vilouras
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| | - Matthew Douthwaite
- Centre for Bio‐Inspired Technology Department of Electrical and Electronic Engineering Imperial College London London UK
| | - Pantelis Georgiou
- Centre for Bio‐Inspired Technology Department of Electrical and Electronic Engineering Imperial College London London UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group School of Engineering University of Glasgow Glasgow UK
| |
Collapse
|
15
|
Troponin I as a Biomarker for Early Detection of Acute Myocardial Infarction. Curr Probl Cardiol 2021; 48:101067. [PMID: 34826431 DOI: 10.1016/j.cpcardiol.2021.101067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/02/2023]
Abstract
Acute myocardial infarction (AMI) as the main cause of death among cardiovascular diseases is defined as a deficiency of oxygen that generates irreversible tissue necrosis in the heart muscle. For diagnostic measurements, the evaluation of cardiac markers concentration like cardiac triponin I (cTnI) in plasma or saliva thought the use of biosensors has become one of the most commonly applied strategies for prognosis of AMI. Inside this diagnostic devices, electrochemical (ECL) ones have been highly encourage to improve sensing capabilities by using different materials and configurations. In this review, the authors presents a summary of studies that involves cTnI detection using ECL biosensors modified with nanomaterials and related mechanisms.
Collapse
|
16
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Sinha S, Pal T. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Soumendu Sinha
- CSIR – Central Electronics Engineering Research Institute (CEERI) Pilani Rajasthan India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Tapas Pal
- CSIR – Central Electronics Engineering Research Institute (CEERI) Pilani Rajasthan India
| |
Collapse
|
18
|
Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. MICROMACHINES 2021; 12:mi12091094. [PMID: 34577737 PMCID: PMC8465297 DOI: 10.3390/mi12091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
This review looks at the different approaches, techniques, and materials devoted to DNA studies. In the past few decades, DNA nanotechnology, micro-fabrication, imaging, and spectroscopies have been tailored and combined for a broad range of medical-oriented applications. The continuous advancements in miniaturization of the devices, as well as the continuous need to study biological material structures and interactions, down to single molecules, have increase the interdisciplinarity of emerging technologies. In the following paragraphs, we will focus on recent sensing approaches, with a particular effort attributed to cutting-edge techniques for structural and mechanical studies of nucleic acids.
Collapse
Affiliation(s)
- Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Correspondence: ; Tel.: +39-011-090-43-22
| | - Francesca Legittimo
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Marco Allione
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Luciano Scaltrito
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
- Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Torino, Italy;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (F.L.); (B.T.); (T.L.); (L.S.); (C.F.P.); (E.d.F.)
| |
Collapse
|
19
|
Tintelott M, Pachauri V, Ingebrandt S, Vu XT. Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays. SENSORS (BASEL, SWITZERLAND) 2021; 21:5153. [PMID: 34372390 PMCID: PMC8347659 DOI: 10.3390/s21155153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/31/2022]
Abstract
Silicon nanowire field-effect transistors (SiNW-FET) have been studied as ultra-high sensitive sensors for the detection of biomolecules, metal ions, gas molecules and as an interface for biological systems due to their remarkable electronic properties. "Bottom-up" or "top-down" approaches that are used for the fabrication of SiNW-FET sensors have their respective limitations in terms of technology development. The "bottom-up" approach allows the synthesis of silicon nanowires (SiNW) in the range from a few nm to hundreds of nm in diameter. However, it is technologically challenging to realize reproducible bottom-up devices on a large scale for clinical biosensing applications. The top-down approach involves state-of-the-art lithography and nanofabrication techniques to cast SiNW down to a few 10s of nanometers in diameter out of high-quality Silicon-on-Insulator (SOI) wafers in a controlled environment, enabling the large-scale fabrication of sensors for a myriad of applications. The possibility of their wafer-scale integration in standard semiconductor processes makes SiNW-FETs one of the most promising candidates for the next generation of biosensor platforms for applications in healthcare and medicine. Although advanced fabrication techniques are employed for fabricating SiNW, the sensor-to-sensor variation in the fabrication processes is one of the limiting factors for a large-scale production towards commercial applications. To provide a detailed overview of the technical aspects responsible for this sensor-to-sensor variation, we critically review and discuss the fundamental aspects that could lead to such a sensor-to-sensor variation, focusing on fabrication parameters and processes described in the state-of-the-art literature. Furthermore, we discuss the impact of functionalization aspects, surface modification, and system integration of the SiNW-FET biosensors on post-fabrication-induced sensor-to-sensor variations for biosensing experiments.
Collapse
Affiliation(s)
| | | | | | - Xuan Thang Vu
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany; (M.T.); (V.P.); (S.I.)
| |
Collapse
|
20
|
Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater Sci Eng 2021; 7:2926-2948. [PMID: 34133114 PMCID: PMC8278381 DOI: 10.1021/acsbiomaterials.0c01110] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Organ-on-chip systems are promising new in vitro research tools in medical, pharmaceutical, and biological research. Their main benefit, compared to standard cell culture platforms, lies in the improved in vivo resemblance of the cell culture environment. A critical aspect of these systems is the ability to monitor both the cell culture conditions and biological responses of the cultured cells, such as proliferation and differentiation rates, release of signaling molecules, and metabolic activity. Today, this is mostly done using microscopy techniques and off-chip analytical techniques and assays. Integrating in situ analysis methods on-chip enables improved time resolution, continuous measurements, and a faster read-out; hence, more information can be obtained from the developed organ and disease models. Integrated electrical, electrochemical, and optical sensors have been developed and used for chemical analysis in lab-on-a-chip systems for many years, and recently some of these sensing principles have started to find use in organ-on-chip systems as well. This perspective review describes the basic sensing principles, sensor fabrication, and sensor integration in organ-on-chip systems. The review also presents the current state of the art of integrated sensors and discusses future potential. We bring a technological perspective, with the aim of introducing in-line sensing and its promise to advance organ-on-chip systems and the challenges that lie in the integration to researchers without expertise in sensor technology.
Collapse
Affiliation(s)
- Stefanie Fuchs
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Sofia Johansson
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Anders Ø. Tjell
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Gabriel Werr
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Torsten Mayr
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Maria Tenje
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
21
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
22
|
Zheng Z, Zhang H, Zhai T, Xia F. Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi Zheng
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| | - Hongyuan Zhang
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Fan Xia
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan Hubei 430074 China
| |
Collapse
|
23
|
Nakatsuka N, Abendroth JM, Yang KA, Andrews AM. Divalent Cation Dependence Enhances Dopamine Aptamer Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9425-9435. [PMID: 33410656 PMCID: PMC7933093 DOI: 10.1021/acsami.0c17535] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Oligonucleotide receptors (aptamers), which change conformation upon target recognition, enable electronic biosensing under high ionic-strength conditions when coupled to field-effect transistors (FETs). Because highly negatively charged aptamer backbones are influenced by ion content and concentration, biosensor performance and target sensitivities were evaluated under application conditions. For a recently identified dopamine aptamer, physiological concentrations of Mg2+ and Ca2+ in artificial cerebrospinal fluid produced marked potentiation of dopamine FET-sensor responses. By comparison, divalent cation-associated signal amplification was not observed for FET sensors functionalized with a recently identified serotonin aptamer or a previously reported dopamine aptamer. Circular dichroism spectroscopy revealed Mg2+- and Ca2+-induced changes in target-associated secondary structure for the new dopamine aptamer, but not the serotonin aptamer nor the old dopamine aptamer. Thioflavin T displacement corroborated the Mg2+ dependence of the new dopamine aptamer for target detection. These findings imply allosteric binding interactions between divalent cations and dopamine for the new dopamine aptamer. Developing and testing sensors in ionic environments that reflect intended applications are best practices for identifying aptamer candidates with favorable attributes and elucidating sensing mechanisms.
Collapse
Affiliation(s)
- Nako Nakatsuka
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - John M. Abendroth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, New York 10032, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Corresponding Author:
| |
Collapse
|
24
|
Zhu XY, Wang BR, Gu Y, Zhu H, Chen L, Sun QQ. Novel Nanofluidic Cells Based on Nanowires and Nanotubes for Advanced Chemical and Bio-Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E90. [PMID: 33401631 PMCID: PMC7823412 DOI: 10.3390/nano11010090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Since the first introduction of one-dimensional nanochannels for single-molecule detection, there has been increasing interest in modern nanofluidic systems, such as chemical and biological sensing applications. Recently developed nanowires (NWs) and nanotubes (NTs) have received tremendous attention due to their unique geometrical, physical and chemical properties, which are very attractive in this field. Here, we review the recent research activities in the field of novel nanofluidic cells based on NWs and NTs. First, we give a brief introduction of this field. Then the common synthesis methods of NWs and NTs are summarized. After that, we discuss the working principle and sensing mechanism of nanofluidic devices, which is fundamental to the interaction between these nanostructures and small molecules. Finally, we present the NW- and NT-based devices for chemical and bio-sensing applications, such as gas sensing, pathogen detection, DNA sequencing, and so forth.
Collapse
Affiliation(s)
| | | | | | - Hao Zhu
- The State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China; (X.-Y.Z.); (B.-R.W.); (Y.G.); (L.C.); (Q.-Q.S.)
| | | | | |
Collapse
|
25
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
26
|
Verification of Operating Principle of Nano Field-effect Transistor Biosensor with an Extended Gate Electrode. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Reyes-Retana JA, Duque-Ossa LC. Acute Myocardial Infarction Biosensor: A Review From Bottom Up. Curr Probl Cardiol 2020; 46:100739. [PMID: 33250264 DOI: 10.1016/j.cpcardiol.2020.100739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 02/09/2023]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease that is produced due to a deficiency of oxygen generating irreversible damage in the heart muscle. In diagnosis, electrocardiogram (ECG) investigation has been the main method but is insufficient, so approaches like the measurement of biomarkers levels in plasma or saliva have become one of the most commonly applied strategies for prognosis of AMI, as some of them are specifically related to a heart attack. Many tests are carrying on to determine biological markers changes, but usually, they present disadvantages related to time consumption and laborious work. To overcome the issues, researchers around the world have been developing different ways to enhance detection through the use of biosensors. These diagnostic devices have a biological sensing element associated to a physicochemical transducer that can be made from different materials and configurations giving place to different kinds of detection: Electrical/Electrochemical, Optical and Mechanical. In this review, the authors presents relevant investigations related to the most important biomarkers and biosensors used for their detection having in mind the nanotechnology participation in the process through the application of nanostructures as a good choice for device configuration.
Collapse
Affiliation(s)
- J A Reyes-Retana
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| | - L C Duque-Ossa
- Tecnologico de Monterrey, School of Engineering and Science, Av. Carlos Lazo 100, Santa Fe, La Loma, Mexico City 01389, Mexico. https://tec.mx
| |
Collapse
|
28
|
Menon S, Mathew MR, Sam S, Keerthi K, Kumar KG. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J Electroanal Chem (Lausanne) 2020; 878:114596. [PMID: 32863810 PMCID: PMC7446658 DOI: 10.1016/j.jelechem.2020.114596] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/01/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022]
Abstract
The rise of emerging infectious diseases (EIDs) as well as the increase in spread of existing infections is threatening global economies and human lives, with several countries still fighting repeated onslaught of a few of these epidemics. The catastrophic impact a pandemic has on humans and economy should serve as a reminder to be better prepared to the advent of known and unknown pathogens in the future. The goal of having a set of initiatives and procedures to tackle them is the need of the hour. Rapid detection and point-of-care (POC) analysis of pathogens causing these diseases is not only a problem entailing the scientific community but also raises challenges in tailoring appropriate treatment strategies to the healthcare sector. Among the various methods used to detect pathogens, Electrochemical Biosensor Technology is at the forefront in the development of POC devices. Electrochemical Biosensors stand in good stead due to their rapid response, high sensitivity and selectivity and ease of miniaturization to name a few advantages. This review explores the innovations in electrochemical biosensing based on the various electroanalytical techniques including voltammetry, impedance, amperometry and potentiometry and discusses their potential in diagnosis of emerging and re-emerging infectious diseases (Re-EIDs), which are potential pandemic threats. This review offers a detailed description of the latest developments in electrochemical biosensors for emerging and re-emerging infectious diseases. Advantages and limitations of various types of electrochemical biosensor techniques are demonstrated. Discusses the latest electrochemical biosensors for COVID-19. Challenges and future prospects of electrochemical biosensors have been discussed in this review.
Collapse
Affiliation(s)
- Shalini Menon
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - Manna Rachel Mathew
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - Sonia Sam
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - K Keerthi
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| | - K Girish Kumar
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India
| |
Collapse
|
29
|
A review on nanomaterial-based field effect transistor technology for biomarker detection. Mikrochim Acta 2019; 186:739. [DOI: 10.1007/s00604-019-3850-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
|
30
|
Sakata T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS OMEGA 2019; 4:11852-11862. [PMID: 31460295 PMCID: PMC6682067 DOI: 10.1021/acsomega.9b01629] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/26/2019] [Indexed: 05/22/2023]
Abstract
In this paper, recent works on biologically coupled gate field-effect transistor (bio-FET) sensors are introduced and compared to provide a perspective. Most biological phenomena are closely related to behaviors of ions and biomolecules. This is why biosensing devices for detecting ionic and biomolecular charges contribute to the direct analysis of biological phenomena in a label-free and enzyme-free manner. Potentiometric biosensors such as bio-FET sensors, which allow the direct detection of these charges on the basis of the field effect, meet this requirement and have been developed as simple devices for in vitro diagnostics (IVD). A variety of biological ionic behaviors generated by biomolecular recognition events and cellular activities are being targeted for clinical diagnostics as well as the study of neuroscience using the bio-FET sensors. To realize these applications, bioelectrical interfaces should be formed between the electrolyte solution and the gate electrode by modifying artificially synthesized and biomimetic membranes, resulting in the selective detection of targets based on intrinsic molecular charges. Various types of semiconducting materials, not only inorganic semiconductors but also organic semiconductors, can be selected for use in bio-FET sensors, depending on the application field. In addition, a semiconductor integrated circuit device is ideal for the massively parallel detection of multiple samples. Thus, platforms based on bio-FET sensors are suitable for use in simple and miniaturized electrical circuit systems for IVD to enable the prevention and early detection of diseases.
Collapse
|
31
|
Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron 2019; 141:111384. [PMID: 31195196 DOI: 10.1016/j.bios.2019.111384] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the current review article is to present a comprehensive understanding regarding pros and cons of graphene related nanocomposites and to find ways in order to improve the performance of nanocomposites with new designs. Nanomaterials including GR are employed in industrial applications such as supercapacitors, biosensors, solar cells, and corrosion studies. The present article has been prepared in three main categories. In the first part, graphene types have been presented, as pristine graphene, graphene oxide and reduced graphene oxide. In the second part, nanocomposites with many graphene, inorganic and polymeric materials such as polymer/GR, activated carbon/GR, metal oxide/GR, metal/graphene and carbon fibre/GR have been investigated in more detail. In the third part, the focus in on the industrial applications of GR nanocomposite, including super capacitors, biosensors, solar cells, and corrosion protection studies.
Collapse
|
32
|
Bhattacharyya IM, Cohen S, Shalabny A, Bashouti M, Akabayov B, Shalev G. Specific and label-free immunosensing of protein-protein interactions with silicon-based immunoFETs. Biosens Bioelectron 2019; 132:143-161. [PMID: 30870641 DOI: 10.1016/j.bios.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023]
Abstract
The importance of specific and label-free detection of proteins via antigen-antibody interactions for the development of point-of-care testing devices has greatly influenced the search for a more accessible, sensitive, low cost and robust sensors. The vision of silicon field-effect transistor (FET)-based sensors has been an attractive venue for addressing the challenge as it potentially offers a natural path to incorporate sensors with the existing mature Complementary Metal Oxide Semiconductor (CMOS) industry; this provides a stable and reliable technology, low cost for potential disposable devices, the potential for extreme minituarization, low electronic noise levels, etc. In the current review we focus on silicon-based immunological FET (ImmunoFET) for specific and label-free sensing of proteins through antigen-antibody interactions that can potentially be incorporated into the CMOS industry; hence, immunoFETs based on nano devices (nanowire, nanobelts, carbon nanotube, etc.) are not treated here. The first part of the review provides an overview of immunoFET principles of operation and challenges involved with the realization of such devices (i.e. e.g. Debye length, surface functionalization, noise, etc.). In the second part we provide an overview of the state-of-the-art silicon-based immunoFET structures and novelty, principles of operation and sensing performance reported to date.
Collapse
Affiliation(s)
- Ie Mei Bhattacharyya
- Department of Electrical & Computer Engineering, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Awad Shalabny
- Jacob Blaustein Institutes for Desert Research, Seder Boqer Campus, Ben-Gurion University of the Negev, 8499000 Sede Boqer, Israel
| | - Muhammad Bashouti
- Jacob Blaustein Institutes for Desert Research, Seder Boqer Campus, Ben-Gurion University of the Negev, 8499000 Sede Boqer, Israel; The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Gil Shalev
- Department of Electrical & Computer Engineering, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel; The Ilse-Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
33
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
34
|
Rani D, Pachauri V, Madaboosi N, Jolly P, Vu XT, Estrela P, Chu V, Conde JP, Ingebrandt S. Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen. ACS OMEGA 2018; 3:8471-8482. [PMID: 31458975 PMCID: PMC6644640 DOI: 10.1021/acsomega.8b00990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/18/2018] [Indexed: 05/16/2023]
Abstract
Highly sensitive electrical detection of biomarkers for the early stage screening of cancer is desired for future, ultrafast diagnostic platforms. In the case of prostate cancer (PCa), the prostate-specific antigen (PSA) is of prime interest and its detection in combination with other PCa-relevant biomarkers in a multiplex approach is advised. Toward this goal, we demonstrate the label-free, potentiometric detection of PSA with silicon nanowire ion-sensitive field-effect transistor (Si NW-ISFET) arrays. To realize the field-effect detection, we utilized the DNA aptamer-receptors specific for PSA, which were covalently and site-specifically immobilized on Si NW-ISFETs. The platform was used for quantitative detection of PSA and the change in threshold voltage of the Si NW-ISEFTs was correlated with the concentration of PSA. Concentration-dependent measurements were done in a wide range of 1 pg/mL to 1 μg/mL, which covers the clinical range of interest. To confirm the PSA-DNA aptamer binding on the Si NW surfaces, a sandwich-immunoassay based on chemiluminescence was implemented. The electrical approach using the Si NW-ISFET platform shows a lower limit of detection and a wide dynamic range of the assay. In future, our platform should be utilized to detect multiple biomarkers in one assay to obtain more reliable information about cancer-related diseases.
Collapse
Affiliation(s)
- Dipti Rani
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Vivek Pachauri
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
| | - Narayanan Madaboosi
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Pawan Jolly
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Xuan-Thang Vu
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- Institute
of Physics I, RWTH Aachen University, Sommerfeldstr. 14, 52074 Aachen, Germany
| | - Pedro Estrela
- Department
of Electronic and Electrical Engineering, University of Bath, BA2 7AY Bath, United Kingdom
| | - Virginia Chu
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - João Pedro Conde
- INESC
Microsistemas e Nanotecnologias, Rua Alves Redol, 91000-029 Lisbon, Portugal
| | - Sven Ingebrandt
- Department
of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Zweibrücken, Germany
- E-mail:
| |
Collapse
|
35
|
Modena MM, Chawla K, Misun PM, Hierlemann A. Smart Cell Culture Systems: Integration of Sensors and Actuators into Microphysiological Systems. ACS Chem Biol 2018; 13:1767-1784. [PMID: 29381325 PMCID: PMC5959007 DOI: 10.1021/acschembio.7b01029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technological advances in microfabrication techniques in combination with organotypic cell and tissue models have enabled the realization of microphysiological systems capable of recapitulating aspects of human physiology in vitro with great fidelity. Concurrently, a number of analysis techniques has been developed to probe and characterize these model systems. However, many assays are still performed off-line, which severely compromises the possibility of obtaining real-time information from the samples under examination, and which also limits the use of these platforms in high-throughput analysis. In this review, we focus on sensing and actuation schemes that have already been established or offer great potential to provide in situ detection or manipulation of relevant cell or tissue samples in microphysiological platforms. We will first describe methods that can be integrated in a straightforward way and that offer potential multiplexing and/or parallelization of sensing and actuation functions. These methods include electrical impedance spectroscopy, electrochemical biosensors, and the use of surface acoustic waves for manipulation and analysis of cells, tissue, and multicellular organisms. In the second part, we will describe two sensor approaches based on surface-plasmon resonance and mechanical resonators that have recently provided new characterization features for biological samples, although technological limitations for use in high-throughput applications still exist.
Collapse
Affiliation(s)
- Mario M. Modena
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Ketki Chawla
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Patrick M. Misun
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| | - Andreas Hierlemann
- ETH Zürich, Department of Biosystems Science and Engineering,
Bio Engineering Laboratory, Basel, Switzerland
| |
Collapse
|
36
|
Poghossian A, Jablonski M, Koch C, Bronder TS, Rolka D, Wege C, Schöning MJ. Field-effect biosensor using virus particles as scaffolds for enzyme immobilization. Biosens Bioelectron 2018; 110:168-174. [DOI: 10.1016/j.bios.2018.03.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 11/27/2022]
|
37
|
Kutovyi Y, Zadorozhnyi I, Hlukhova H, Handziuk V, Petrychuk M, Ivanchuk A, Vitusevich S. Origin of noise in liquid-gated Si nanowire troponin biosensors. NANOTECHNOLOGY 2018; 29:175202. [PMID: 29446349 DOI: 10.1088/1361-6528/aaaf9e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Liquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors. Our results show that the additional noise is related to the troponin molecules and has characteristics which considerably differ from those usually recorded for conventional FETs without target molecules. We describe the origin of the noise and suggest that noise spectroscopy represents a powerful tool for understanding molecular dynamic processes in nanoscale FET-based biosensors.
Collapse
Affiliation(s)
- Y Kutovyi
- Bioelectronics (ICS-8), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Delle LE, Pachauri V, Sharma S, Shaforost O, Ma H, Adabi M, Lilischkis R, Wagner P, Thoelen R, Klein N, O’Kennedy R, Ingebrandt S. ScFv-modified graphene-coated IDE-arrays for ‘label-free’ screening of cardiovascular disease biomarkers in physiological saline. Biosens Bioelectron 2018; 102:574-581. [DOI: 10.1016/j.bios.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
|
39
|
Detection principles of biological and chemical FET sensors. Biosens Bioelectron 2017; 98:437-448. [PMID: 28711826 DOI: 10.1016/j.bios.2017.07.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/21/2017] [Accepted: 07/04/2017] [Indexed: 01/08/2023]
Abstract
The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered.
Collapse
|
40
|
Singh KP, Guo C. Current–voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor. Phys Chem Chem Phys 2017; 19:15701-15708. [DOI: 10.1039/c7cp02457f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonlinear variation of average ion current through a channel as a function of gate potential Vg for different channel diameters and surface charge densities.
Collapse
Affiliation(s)
- Kunwar Pal Singh
- Singh Simutech Pvt. Ltd
- Bharatpur
- India
- The Institute of Optics
- University of Rochester
| | - Chunlei Guo
- The Institute of Optics
- University of Rochester
- Rochester
- USA
| |
Collapse
|