1
|
Zanetti KA, Guo L, Husain D, Kelly RS, Lasky-Su J, Broadhurst D, Wheelock CE. Workshop report - interdisciplinary metabolomic epidemiology: the pathway to clinical translation. Metabolomics 2024; 20:60. [PMID: 38773013 PMCID: PMC11108898 DOI: 10.1007/s11306-024-02111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024]
Abstract
Metabolomic epidemiology studies are complex and require a broad array of domain expertise. Although many metabolite-phenotype associations have been identified; to date, few findings have been translated to the clinic. Bridging this gap requires understanding of both the underlying biology of these associations and their potential clinical implications, necessitating an interdisciplinary team approach. To address this need in metabolomic epidemiology, a workshop was held at Metabolomics 2023 in Niagara Falls, Ontario, Canada that highlighted the domain expertise needed to effectively conduct these studies -- biochemistry, clinical science, epidemiology, and assay development for biomarker validation -- and emphasized the role of interdisciplinary teams to move findings towards clinical translation.
Collapse
Affiliation(s)
- Krista A Zanetti
- Office of Nutrition Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD, USA.
| | | | - Deeba Husain
- Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Broadhurst
- School of Science, Edith Cowan University, Joondalup, Perth, Western Australia
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Kumar Barik A, Mathew C, Sanoop PM, John RV, Adigal SS, Bhat S, Pai KM, Bhandary SV, Devasia T, Upadhya R, Kartha VB, Chidangil S. Protein profile pattern analysis: A multifarious, in vitro diagnosis technique for universal screening. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123944. [PMID: 38056315 DOI: 10.1016/j.jchromb.2023.123944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Universal health care is attracting increased attention nowadays, because of the large increase in population all over the world, and a similar increase in life expectancy, leading to an increase in the incidence of non-communicable (various cancers, coronary diseases, neurological and old-age-related diseases) and communicable diseases/pandemics like SARS-COVID 19. This has led to an immediate need for a healthcare technology that should be cost-effective and accessible to all. A technology being considered as a possible one at present is liquid biopsy, which looks for markers in readily available samples like body fluids which can be accessed non- or minimally- invasive manner. Two approaches are being tried now towards this objective. The first involves the identification of suitable, specific markers for each condition, using established methods like various Mass Spectroscopy techniques (Surface-Enhanced Laser Desorption/Ionization Mass Spectroscopy (SELDI-MS), Matrix-Assisted Laser Desorption/Ionization (MALDI-MS), etc., immunoassays (Enzyme-Linked Immunoassay (ELISA), Proximity Extension Assays, etc.) and separation methods like 2-Dimensional Polyacrylamide Gel Electrophoresis (2-D PAGE), Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE), Capillary Electrophoresis (CE), etc. In the second approach, no attempt is made the identification of specific markers; rather an efficient separation method like High-Performance Liquid Chromatography/ Ultra-High-Performance Liquid Chromatography (HPLC/UPLC) is used to separate the protein markers, and a profile of the protein pattern is recorded, which is analysed by Artificial Intelligence (AI)/Machine Learning (MI) methods to derive characteristic patterns and use them for identifying the disease condition. The present report gives a summary of the current status of these two approaches and compares the two in the use of their suitability for universal healthcare.
Collapse
Affiliation(s)
- Ajaya Kumar Barik
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Clint Mathew
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pavithran M Sanoop
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sphurti S Adigal
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sujatha Bhat
- Division of Microbiology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Keerthilatha M Pai
- Department of Dental Surgery, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Sulatha V Bhandary
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rekha Upadhya
- Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - V B Kartha
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Ahmad A, Imran M, Ahsan H. Biomarkers as Biomedical Bioindicators: Approaches and Techniques for the Detection, Analysis, and Validation of Novel Biomarkers of Diseases. Pharmaceutics 2023; 15:1630. [PMID: 37376078 DOI: 10.3390/pharmaceutics15061630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A biomarker is any measurable biological moiety that can be assessed and measured as a potential index of either normal or abnormal pathophysiology or pharmacological responses to some treatment regimen. Every tissue in the body has a distinct biomolecular make-up, which is known as its biomarkers, which possess particular features, viz., the levels or activities (the ability of a gene or protein to carry out a particular body function) of a gene, protein, or other biomolecules. A biomarker refers to some feature that can be objectively quantified by various biochemical samples and evaluates the exposure of an organism to normal or pathological procedures or their response to some drug interventions. An in-depth and comprehensive realization of the significance of these biomarkers becomes quite important for the efficient diagnosis of diseases and for providing the appropriate directions in case of multiple drug choices being presently available, which can benefit any patient. Presently, advancements in omics technologies have opened up new possibilities to obtain novel biomarkers of different types, employing genomic strategies, epigenetics, metabolomics, transcriptomics, lipid-based analysis, protein studies, etc. Particular biomarkers for specific diseases, their prognostic capabilities, and responses to therapeutic paradigms have been applied for screening of various normal healthy, as well as diseased, tissue or serum samples, and act as appreciable tools in pharmacology and therapeutics, etc. In this review, we have summarized various biomarker types, their classification, and monitoring and detection methods and strategies. Various analytical techniques and approaches of biomarkers have also been described along with various clinically applicable biomarker sensing techniques which have been developed in the recent past. A section has also been dedicated to the latest trends in the formulation and designing of nanotechnology-based biomarker sensing and detection developments in this field.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
4
|
Krishnamoorthy S, Steiger AK, Nelson WC, Egbert RG, Wright AT. An activity-based probe targeting the streptococcal virulence factor C5a peptidase. Chem Commun (Camb) 2022; 58:8113-8116. [PMID: 35770883 DOI: 10.1039/d2cc01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of profiling strategies to provide high resolution understanding of enzymes involved in bacterial infections remains an important need. These strategies help resolve enzyme mechanisms of actions and can guide therapeutic development. We have developed a selective new activity-based probe (ABP) targeting a highly conserved surface bound enzyme, C5a peptidase, present in several pathogenic Streptococci. We demonstrate our probe inhibits C5a peptidase activity and enables detection of C5a peptidase expressing pathogens in microbial mixtures. Our profiling strategy selectively labels the pathogen by phenotype and enables specific isolation of the live bacteria providing a route for further in-depth investigation. This study paves the way towards a rapid detection, isolation, and characterization pipeline for existing and emerging strains of most common pathogenic Streptococci.
Collapse
Affiliation(s)
| | - Andrea K Steiger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA. .,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99163, USA
| |
Collapse
|
5
|
Blann AD, Brown JE, Heitmar R. Angiogenesis, Metabolism, Endothelial and Platelet Markers in Diabetes and Cardiovascular Disease. Br J Biomed Sci 2022; 79:10313. [PMID: 35996503 PMCID: PMC9302542 DOI: 10.3389/bjbs.2022.10313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022]
Abstract
Introduction: Diabetes is a leading risk factor for cardiovascular disease (CVD), the pathophysiology of both being linked to metabolic, endothelial, renal, angiogenic and platelet abnormalities. We hypothesised that abnormalities in these systems are more adverse in those whose CVD is compounded by diabetes, compared to those with diabetes or CVD alone. Materials and methods: Serum or plasma from 66 patients with diabetes alone, 76 with CVD alone, and 70 with both diabetes and CVD i.e. diabetic cardiovascular disease, was probed for markers of angiogenesis [angiopoietin 1 and 2, vascular endothelial growth factor (VEGF) and endoglin], metabolic [soluble receptor for advanced glycation products (sRAGE), leptin, lipocalin-2, interleukin-8, and cystatin-C], the endothelium (von Willebrand factor, endothelial microparticles and soluble E selectin)], and the platelet (platelet microparticles and soluble P selectin) by ELISA, Luminex or flow cytometry. Results: VEGF (p = 0.04), von Willebrand factor (p = 0.001) and endothelial microparticles (p = 0.042) were all higher in diabetic cardiovascular disease than in diabetes alone and cardiovascular disease alone. Soluble E selectin was higher in diabetic cardiovascular disease than in diabetes alone (p = 0.045), whilst cystatin-C (p = 0.004) and soluble P selectin (p < 0.001) were higher in diabetes and diabetic cardiovascular disease than in cardiovascular disease alone. There were no differences in angiopoietin 1 or 2, endoglin, sRAGE, leptin, lipocalin-2, or interleukin-8. Conclusion: Angiopoietin 1 or 2, endoglin, sRAGE, leptin, lipocalin-2, interleukin-8, and cystatin-c cannot differentiate diabetes from cardiovascular disease, or both conditions combined. Our data point to a more adverse endothelial (von Willebrand factor, endothelial microparticles), and angiogenic profile (VEGF) in those with diabetic cardiovascular disease, supporting the view that this group should be targeted more aggressively.
Collapse
Affiliation(s)
- A. D. Blann
- School of Applied Sciences, Huddersfield University, Huddersfield, United Kingdom
- *Correspondence: A. D. Blann,
| | - J. E. Brown
- Department of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - R. Heitmar
- School of Applied Sciences, Huddersfield University, Huddersfield, United Kingdom
| |
Collapse
|
6
|
Paleczek A, Rydosz AM. Review of the algorithms used in exhaled breath analysis for the detection of diabetes. J Breath Res 2022; 16. [PMID: 34996056 DOI: 10.1088/1752-7163/ac4916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Currently, intensive work is underway on the development of truly noninvasive medical diagnostic systems, including respiratory analysers based on the detection of biomarkers of several diseases including diabetes. In terms of diabetes, acetone is considered as a one of the potential biomarker, although is not the single one. Therefore, the selective detection is crucial. Most often, the analysers of exhaled breath are based on the utilization of several commercially available gas sensors or on specially designed and manufactured gas sensors to obtain the highest selectivity and sensitivity to diabetes biomarkers present in the exhaled air. An important part of each system are the algorithms that are trained to detect diabetes based on data obtained from sensor matrices. The prepared review of the literature showed that there are many limitations in the development of the versatile breath analyser, such as high metabolic variability between patients, but the results obtained by researchers using the algorithms described in this paper are very promising and most of them achieve over 90% accuracy in the detection of diabetes in exhaled air. This paper summarizes the results using various measurement systems, feature extraction and feature selection methods as well as algorithms such as Support Vector Machines, k-Nearest Neighbours and various variations of Neural Networks for the detection of diabetes in patient samples and simulated artificial breath samples.
Collapse
Affiliation(s)
- Anna Paleczek
- Institute of Electronics, AGH University of Science and Technology Faculty of Computer Science Electronics and Telecommunications, al. A. Mickiewicza 30, Krakow, 30-059, POLAND
| | - Artur Maciej Rydosz
- Institute of Electronics, AGH University of Science and Technology Faculty of Computer Science Electronics and Telecommunications, Al. Mickiewicza 30, Krakow, 30-059, POLAND
| |
Collapse
|
7
|
Natnan ME, Mayalvanan Y, Jazamuddin FM, Aizat WM, Low CF, Goh HH, Azizan KA, Bunawan H, Baharum SN. Omics Strategies in Current Advancements of Infectious Fish Disease Management. BIOLOGY 2021; 10:1086. [PMID: 34827079 PMCID: PMC8614662 DOI: 10.3390/biology10111086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
Aquaculture is an important industry globally as it remains one of the significant alternatives of animal protein source supplies for humankind. Yet, the progression of this industry is being dampened by the increasing rate of fish mortality, mainly the outbreak of infectious diseases. Consequently, the regress in aquaculture ultimately results in the economy of multiple countries being affected due to the decline of product yields and marketability. By 2025, aquaculture is expected to contribute approximately 57% of fish consumption worldwide. Without a strategic approach to curb infectious diseases, the increasing demands of the aquaculture industry may not be sustainable and hence contributing to the over-fishing of wild fish. Recently, a new holistic approach that utilizes multi-omics platforms including transcriptomics, proteomics, and metabolomics is unraveling the intricate molecular mechanisms of host-pathogen interaction. This approach aims to provide a better understanding of how to improve the resistance of host species. However, no comprehensive review has been published on multi-omics strategies in deciphering fish disease etiology and molecular regulation. Most publications have only covered particular omics and no constructive reviews on various omics findings across fish species, particularly on their immune systems, have been described elsewhere. Our previous publication reviewed the integration of omics application for understanding the mechanism of fish immune response due to microbial infection. Hence, this review provides a thorough compilation of current advancements in omics strategies for fish disease management in the aquaculture industry. The discovery of biomarkers in various fish diseases and their potential advancement to complement the recent progress in combatting fish disease is also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; (M.E.N.); (Y.M.); (F.M.J.); (W.M.A.); (C.-F.L.); (H.-H.G.); (K.A.A.); (H.B.)
| |
Collapse
|
8
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
9
|
Bhattacharyya N, Pandey V, Bhattacharyya M, Dey A. Regulatory role of long non coding RNAs (lncRNAs) in neurological disorders: From novel biomarkers to promising therapeutic strategies. Asian J Pharm Sci 2021; 16:533-550. [PMID: 34849161 PMCID: PMC8609388 DOI: 10.1016/j.ajps.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
Long non coding RNAs (lncRNAs) are non-protein or low-protein coding transcripts that contain more than 200 nucleotides. They representing a large share of the cell's transcriptional output, demonstrate functional attributes viz. tissue-specific expression, determination of cell fate, controlled expression, RNA processing and editing, dosage compensation, genomic imprinting, conserved evolutionary traits etc. These long non coding variants are well associated with pathogenicity of various diseases including the neurological disorders like Alzheimer's disease, schizophrenia, Huntington's disease, Parkinson's disease etc. Neurological disorders are widespread and there knowing the underlying mechanisms become crucial. The lncRNAs take part in the pathogenesis by a plethora of mechanisms like decoy, scaffold, mi-RNA sequestrator, histone modifiers and in transcriptional interference. Detailed knowledge of the role of lncRNAs can help to use them further as novel biomarkers for therapeutic aspects. Here, in this review we discuss regulation and functional roles of lncRNAs in eight neurological diseases and psychiatric disorders, and the mechanisms by which they act. With these, we try to establish their roles as potential markers and viable diagnostic tools in these disorders.
Collapse
Affiliation(s)
| | - Vedansh Pandey
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
10
|
Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes. Mar Drugs 2021; 19:md19050259. [PMID: 33946320 PMCID: PMC8146821 DOI: 10.3390/md19050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The 3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil (FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes. However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells. These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis and lipogenesis via independent pathways in 3T3-L1 cells.
Collapse
|
11
|
Dib I, Khalil A, Chouaib R, El-Makhour Y, Noureddine H. Apolipoprotein C-III and cardiovascular diseases: when genetics meet molecular pathologies. Mol Biol Rep 2021; 48:875-886. [PMID: 33389539 PMCID: PMC7778846 DOI: 10.1007/s11033-020-06071-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/05/2020] [Indexed: 01/31/2023]
Abstract
Cardiovascular diseases (CVD) have overtaken infectious diseases and are currently the world's top killer. A quite strong linkage between this type of ailments and elevated plasma levels of triglycerides (TG) has been always noticed. Notably, this risk factor is mired in deep confusion, since its role in atherosclerosis is uncertain. One of the explanations that aim to decipher this persistent enigma was provided by apolipoprotein C-III (apoC-III), a small protein historically recognized as an important regulator of TG metabolism. Preeminently, hundreds of studies have been carried out in order to explore the APOC3 genetic background, as well as to establish a correlation between its variants and dyslipidemia-related disorders, pointing to an earnest predictive power for future outcomes. Among several polymorphisms reported within the APOC3, the SstI site in its 3'-untranslated region (3'-UTR) was the most consistently and robustly associated with an increased CVD risk. As more genetic data supporting its importance in cardiovascular events aggregate, it was declared, correspondingly, that apoC-III exerts various atherogenic effects, either by intervening in the function and catabolism of many lipoproteins, or by inducing endothelial inflammation and smooth muscle cells (SMC) proliferation. This review was designed to shed the light on the structural and functional aspects of the APOC3 gene, the existing association between its SstI polymorphism and CVD, and the specific molecular mechanisms that underlie apoC-III pathological implications. In addition, the translation of all these gathered knowledges into preventive and therapeutic benefits will be detailed too.
Collapse
Affiliation(s)
- Israa Dib
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Alia Khalil
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Racha Chouaib
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Yolla El-Makhour
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| | - Hiba Noureddine
- grid.411324.10000 0001 2324 3572Environmental Health Research Lab (EHRL), Faculty of Sciences V, Lebanese University, Nabatieh, Lebanon
| |
Collapse
|
12
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
13
|
Tiwari D, Jakhmola S, Pathak DK, Kumar R, Jha HC. Temporal In Vitro Raman Spectroscopy for Monitoring Replication Kinetics of Epstein-Barr Virus Infection in Glial Cells. ACS OMEGA 2020; 5:29547-29560. [PMID: 33225186 PMCID: PMC7676301 DOI: 10.1021/acsomega.0c04525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/21/2020] [Indexed: 05/17/2023]
Abstract
Raman spectroscopy can be used as a tool to study virus entry and pathogen-driven manipulation of the host efficiently. To date, Epstein-Barr virus (EBV) entry and altered biochemistry of the glial cell upon infection are elusive. In this study, we detected biomolecular changes in human glial cells, namely, HMC-3 (microglia) and U-87 MG (astrocytes), at two variable cellular locations (nucleus and periphery) by Raman spectroscopy post-EBV infection at different time points. Two possible phenomena, one attributed to the response of the cell to viral attachment and invasion and the other involved in duplication of the virus followed by egress from the host cell, are investigated. These changes corresponded to unique Raman spectra associated with specific biomolecules in the infected and the uninfected cells. The Raman signals from the nucleus and periphery of the cell also varied, indicating differential biochemistry and signaling processes involved in infection progression at these locations. Molecules such as cholesterol, glucose, hyaluronan, phenylalanine, phosphoinositide, etc. are associated with the alterations in the cellular biochemical homeostasis. These molecules are mainly responsible for cellular processes such as lipid transport, cell proliferation, differentiation, and apoptosis in the cells. Raman signatures of these molecules at distinct time points of infection indicated their periodic involvement, depending on the stage of virus infection. Therefore, it is possible to discern the details of variability in EBV infection progression in glial cells at the biomolecular level using time-dependent in vitro Raman scattering.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Shweta Jakhmola
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| | - Devesh K. Pathak
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
| | - Rajesh Kumar
- Discipline
of Physics, Indian Institute of Technology
Indore, Simrol, 453552 Indore, India
- Centre
for Advanced Electronics, Indian Institute
of Technology Indore, Simrol, 453552 Indore, India
| | - Hem Chandra Jha
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552 Indore, India
| |
Collapse
|
14
|
Mizen LAM, Stanfield AC. Demystifying neuroscience laboratory techniques used to investigate single-gene disorders. BJPSYCH ADVANCES 2020. [DOI: 10.1192/bja.2020.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARYThere is considerable work being carried out in neuroscientific laboratories to delineate the mechanisms underlying single-gene disorders, particularly those related to intellectual disability and autism spectrum disorder. Many clinicians will have little if any direct experience of this type of work and so find the procedures and terminology difficult to understand. This article describes some of the laboratory techniques used and their increasing relevance to clinical practice. It is pitched for clinicians with little or no laboratory science background.
Collapse
|
15
|
Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Hassan MI, Ahmad F, Islam A. Probing the interaction of Rivastigmine Tartrate, an important Alzheimer's drug, with serum albumin: Attempting treatment of Alzheimer's disease. Int J Biol Macromol 2020; 148:533-542. [PMID: 31954794 DOI: 10.1016/j.ijbiomac.2020.01.134] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/16/2023]
Abstract
The present study was aimed at investigating the binding between an important drug of Alzheimer's therapy, Rivastigmine tartrate (RT), with Bovine serum albumin (BSA). BSA is a model protein that is increasingly being used for studies related to drug-protein interaction owing to its structural similarity with human serum albumin (HSA) which is extremely abundant in the circulatory system comprising around 60% of the total plasma protein. Fluorescence spectroscopy implied that complex formation is taking place between BSA and RT; binding constant calculated was of the order of 104 M-1 implicative of the strength of this interaction. Fluorescence spectroscopy was carried out at three different temperatures in a bid to find out the operative mode of quenching; static quenching was taking place for RT-BSA interaction with a binding constant of 2.5 × 104 M-1 at 298 K. Further, changes in Far UV CD spectra clearly implied that RT induces structural transition in BSA suggestive of RT-BSA complex formation. The negative value of ∆G0 as obtained from fluorescence spectroscopy and isothermal titration calorimetry (ITC) suggests the reaction to be spontaneous and thermodynamically favorable. Additionally, molecular docking was employed to investigate different forces and critical residues involved in RT-BSA interaction. Furthermore, all-atom molecular dynamics simulation for 50 ns was performed on the BSA-RT complex to investigate its conformational behavior, stability and dynamics.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
16
|
AMICIZIA D, MICALE R, PENNATI B, ZANGRILLO F, IOVINE M, LECINI E, MARCHINI F, LAI P, PANATTO D. Burden of typhoid fever and cholera: similarities and differences. Prevention strategies for European travelers to endemic/epidemic areas. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E271-E285. [PMID: 31967084 PMCID: PMC6953460 DOI: 10.15167/2421-4248/jpmh2019.60.4.1333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
The burden of diarrheal diseases is very high, accounting for 1.7 to 5 billion cases per year worldwide. Typhoid fever (TF) and cholera are potentially life-threatening infectious diseases, and are mainly transmitted through the consumption of food, drink or water that have been contaminated by the feces or urine of subjects excreting the pathogen. TF is mainly caused by Salmonella typhi, whereas cholera is caused by intestinal infection by the toxin-producing bacterium Vibrio cholerae. These diseases typically affect low- and middle-income countries where housing is overcrowded and water and sanitation are poor, or where conflicts or natural disasters have led to the collapse of the water, sanitation and healthcare systems. Mortality is higher in children under 5 years of age. Regarding their geographical distribution, TF has a high incidence in sub-Saharan Africa, India and south-east Asia, while cholera has a high incidence in a few African countries, particularly in the Horn of Africa and the Arabian Peninsula. In the fight against these diseases, preventive measures are fundamental. With modern air travel, transmissible diseases can spread across continents and oceans in a few days, constituting a threat to global public health. Nowadays, people travel for many reasons, such as tourism and business. Several surveys have shown that a high proportion of travelers lack adequate information on safety issues, such as timely vaccination and prophylactic medications. The main objective of this overview is to provide information to help European travelers to stay healthy while abroad, and thus also to reduce the potential importation of these diseases and their consequent implications for public health and society. The preventive measures to be implemented in the case of travel to countries where these diseases are still endemic are well known: the adoption of safe practices and vaccinations. It is important to stress that an effective preventive strategy should be based both on vaccinations and on hygiene travel guidelines. Furthermore, the emergence of multidrug-resistant strains is becoming a serious problem in the clinical treatment of these diseases. For this reason, vaccination is the main solution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D. PANATTO
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
17
|
Shamsi A, Mohammad T, Khan MS, Shahwan M, Husain FM, Rehman MT, Hassan MI, Ahmad F, Islam A. Unraveling Binding Mechanism of Alzheimer's Drug Rivastigmine Tartrate with Human Transferrin: Molecular Docking and Multi-Spectroscopic Approach towards Neurodegenerative Diseases. Biomolecules 2019; 9:biom9090495. [PMID: 31533274 PMCID: PMC6770857 DOI: 10.3390/biom9090495] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
Studying drug–protein interactions has gained significant attention lately, and this is because the majority of drugs interact with proteins, thereby altering their structure and, moreover, their functionality. Rivastigmine tartrate (RT) is a drug that is in use for mild to moderate Alzheimer therapy. This study was targeted to characterize the interaction between human transferrin (hTf) and RT by employing spectroscopy, isothermal titration calorimetry (ITC), and molecular docking studies. Experimental results of fluorescence quenching of hTf induced by RT implied the formation of a static complex between hTf and RT. Further elucidation of the observed fluorescence data retorting Stern–Volmer and modified Stern–Volmer resulted in binding constants for hTf–RT complex of the order 104 M−1 over the studied temperatures. Thermodynamic parameters of hTf–RT interaction were elucidated further by employing these obtained binding constant values. It was quite evident from obtained thermodynamic attributes that RT spontaneously binds to hTf with a postulated existence of hydrogen bonding or Van der Waals forces. Further, Circular dichroism spectroscopy (CD) also confirmed RT–hTf complex formation owing to upward movement of CD spectra in the presence of RT. ITC profiles advocated the existence of reaction to be spontaneous. Moreover, molecular docking further revealed that the important residues play a pivotal role in RT–hTf interaction. The findings of this study can be of a significant benefit to the drug-designing industry in this disease-prone era.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Moyad Shahwan
- College of Pharmacy & Health sciences, Ajman University, Ajman, UAE
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
18
|
Tobramycin Promotes Melanogenesis by Upregulating p38 MAPK Protein Phosphorylation in B16F10 Melanoma Cells. Antibiotics (Basel) 2019; 8:antibiotics8030140. [PMID: 31491963 PMCID: PMC6783951 DOI: 10.3390/antibiotics8030140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/27/2023] Open
Abstract
Tobramycin is an aminoglycoside-based natural antibiotic derived from Streptomyces tenebrarius, which is primarily used for Gram-negative bacterial infection treatment. Although tobramycin has been utilized in clinical practice for a long time, it has exhibited several side effects, leading to the introduction of more effective antibiotics. Therefore, we conducted our experiments focusing on new possibilities for the clinical use of tobramycin. How tobramycin affects skin melanin formation is unknown. This study used B16F10 melanoma cells to assess the effect of tobramycin on melanin production. After cytotoxicity was assessed by MTT assay, melanin content and tyrosinase activity analyses revealed that tobramycin induces melanin synthesis in B16F10 cells. Next, Western blot analyses were performed to elucidate the mechanism by which tobramycin increases melanin production; phosphorylated p38 protein expression was upregulated. Protein inhibitors have been used to elucidate the mechanism of tobramycin. Kanamycin A and B are structurally similar to tobramycin, and 2-DOS represents the central structure of these antibiotics. The effects of these substances on melanogenesis were evaluated. Kanamycin A reduced melanin production, whereas kanamycin B and 2-DOS had no effect. Overall, our data indicated that tobramycin increases melanin production by promoting p38 protein phosphorylation in B16F10 melanoma cells.
Collapse
|
19
|
Shamsi A, Al Shahwan M, Ahamad S, Hassan MI, Ahmad F, Islam A. Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: implications of Alzheimer’s drug. J Biomol Struct Dyn 2019; 38:1094-1102. [DOI: 10.1080/07391102.2019.1595728] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Moyad Al Shahwan
- College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Shahzaib Ahamad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|