1
|
Jin L, Li J, Zhu F. AS03-adjuvanted H5N1 vaccine enhances immune response by modulating NR4A1, SDC1, ID3 genes, and reducing cortisol. Hum Vaccin Immunother 2024; 20:2426319. [PMID: 39569615 PMCID: PMC11583616 DOI: 10.1080/21645515.2024.2426319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The AS03-adjuvanted H5N1 influenza vaccine induces significantly higher immune responses compared to the non-adjuvanted H5N1 vaccine. However, the immunological mechanisms underlying this enhancement remain unclear. We aimed to identify the key genes and pathways involved in the immune response to the AS03-adjuvanted H5N1 vaccine compared to the non-adjuvanted H5N1 vaccine. The expression profiles of GSE102012 and GSE112293 were downloaded from the Gene Expression Omnibus database to identify differentially expressed genes between AS03-adjuvanted and non-adjuvanted H5N1 vaccine groups. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the Database for Annotation, Visualization, and Integrated Discovery online tool. The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes database. Through cluster analysis of the PPI network, three hub genes, namely NR4A1, SDC1, and ID3, were identified as pivotal players in the intricate network of interactions. The ID3 was up-regulated, and the other two hub genes were down-regulated. The results of the GO analysis highlighted enrichment in seven biological processes, three cellular components, and two molecular functions among the differentially expressed genes. The KEGG pathway analysis revealed the involvement of the Cushing syndrome pathway. The AS03-adjuvanted H5N1 vaccine may enhance immune responses through suppressing the NR4A1 gene and the SDC1 gene, upregulating the ID3 gene, and reducing cortisol production compared to the non-adjuvanted H5N1 vaccine.
Collapse
Affiliation(s)
- Lairun Jin
- School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing, P.R. China
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
2
|
Frey K, Brunner M, Curio C, Kemkemer R. Curvature Perception of Mesenchymal Cells on Mesoscale Topographies. Adv Healthc Mater 2024:e2402865. [PMID: 39659136 DOI: 10.1002/adhm.202402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Cells can sense geometrical cues with sizes of several tens of micrometers in their vicinity. Recent in vitro studies show that cells can adapt their shape, align along specific directions, or regulate other cellular functions when grown on surfaces with curvatures larger than their size. Although possible mechanisms for such responses like the alignment along axial cues have been suggested, a detailed understanding of the involved cellular processes remains open. This work addresses this gap by systematically investigating mesenchymal cell and nucleus orientation responses using a low-cost model surface platform, the CurvChip. Using an array of cylindrically curved topographies with radii of curvatures ranging from tens to hundreds of micrometers, the contact guidance response of cells and nuclei is quantified in dependence on substratum curvature and manipulation of cytoskeletal components. Results suggest a desired perceived curvature for the investigated cells, and a very sensitive and robust curvature perception mechanism, as the effect of pharmacological manipulation of cytoskeletal components is relatively small. Furthermore, a comparison with previously published work strengthens the hypothesis of an involvement of the nucleus in the cell response to three-dimensional (3D) curvatures.
Collapse
Affiliation(s)
- Kerstin Frey
- Reutlingen University, Alteburgstrasse 150, 72764, Reutlingen, Germany
| | - Michael Brunner
- Reutlingen University, Alteburgstrasse 150, 72764, Reutlingen, Germany
| | - Christóbal Curio
- Reutlingen University, Alteburgstrasse 150, 72764, Reutlingen, Germany
| | - Ralf Kemkemer
- Reutlingen University, Alteburgstrasse 150, 72764, Reutlingen, Germany
- Max Plank Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Roy AD, Gonzalez CS, Shahid F, Yadav E, Inoue T. Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626286. [PMID: 39677776 PMCID: PMC11642777 DOI: 10.1101/2024.12.01.626286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT 06030, USA
- Department of Cell Biology, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Cristian Saez Gonzalez
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Farid Shahid
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Eesha Yadav
- The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Xiao H, Gong X, Jordan SN, Liang Z, Mak M. Viscosity regulates cell spreading and cell-extracellular matrix interactions. FEBS J 2024. [PMID: 39529371 DOI: 10.1111/febs.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Fluid viscosity and osmolarity are among some of the underappreciated mechanical stimuli that cells can detect. Abnormal changes of multiple fluidic factors such as viscosity and osmolarity have been linked with diseases such as cystic fibrosis, cancer, and coronary heart disease. Changes in viscosity have been recently suggested as a regulator of cell locomotion. These novel studies focus on cell migration and spreading on glass substrates and through microchannels, and it remains a question whether viscosity impacts the cellular remodeling of extracellular matrices (ECMs). Here, we demonstrate that elevated viscosity induces cellular remodeling of collagen substrates and enhances cell spreading on ECM-mimetic substrates. Our results expand on recent work showing that viscosity induces increased cellular forces and demonstrates that viscosity can drive local ECM densification. Our data further show that microtubules, Ras-related C3 botulinum toxin substrate 1 (Rac1), actin-related protein 2/3 (Arp2/3) complex, Rho-associated protein kinase 1 (ROCK), and myosin are important regulators of viscosity-induced ECM remodeling. In the context of viscosity-induced cell spreading, cells cultured on glass and collagen substrates exhibit markedly different responses to pharmacological treatments, indicating that microtubules, Rac1, and Arp2/3 play distinct roles in regulating cellular spreading depending on the substrate. In addition, our results demonstrate that high osmotic pressures override viscosity-induced cell spreading by suppressing membrane ruffling. Our results demonstrate viscosity as a regulator of ECM remodeling and cell spreading in a fibrillar microenvironment. We also reveal a complex interplay between viscosity and osmolarity. We anticipate that our research can pave the way for future investigations into the crucial roles played by viscosity in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Seyma Nayir Jordan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Zixie Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Kreis NN, Moon HH, Wordeman L, Louwen F, Solbach C, Yuan J, Ritter A. KIF2C/MCAK a prognostic biomarker and its oncogenic potential in malignant progression, and prognosis of cancer patients: a systematic review and meta-analysis as biomarker. Crit Rev Clin Lab Sci 2024; 61:404-434. [PMID: 38344808 DOI: 10.1080/10408363.2024.2309933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 03/24/2024]
Abstract
KIF2C/MCAK (KIF2C) is the most well-characterized member of the kinesin-13 family, which is critical in the regulation of microtubule (MT) dynamics during mitosis, as well as interphase. This systematic review briefly describes the important structural elements of KIF2C, its regulation by multiple molecular mechanisms, and its broad cellular functions. Furthermore, it systematically summarizes its oncogenic potential in malignant progression and performs a meta-analysis of its prognostic value in cancer patients. KIF2C was shown to be involved in multiple crucial cellular processes including cell migration and invasion, DNA repair, senescence induction and immune modulation, which are all known to be critical during the development of malignant tumors. Indeed, an increasing number of publications indicate that KIF2C is aberrantly expressed in multiple cancer entities. Consequently, we have highlighted its involvement in at least five hallmarks of cancer, namely: genome instability, resisting cell death, activating invasion and metastasis, avoiding immune destruction and cellular senescence. This was followed by a systematic search of KIF2C/MCAK's expression in various malignant tumor entities and its correlation with clinicopathologic features. Available data were pooled into multiple weighted meta-analyses for the correlation between KIF2Chigh protein or gene expression and the overall survival in breast cancer, non-small cell lung cancer and hepatocellular carcinoma patients. Furthermore, high expression of KIF2C was correlated to disease-free survival of hepatocellular carcinoma. All meta-analyses showed poor prognosis for cancer patients with KIF2Chigh expression, associated with a decreased overall survival and reduced disease-free survival, indicating KIF2C's oncogenic potential in malignant progression and as a prognostic marker. This work delineated the promising research perspective of KIF2C with modern in vivo and in vitro technologies to further decipher the function of KIF2C in malignant tumor development and progression. This might help to establish KIF2C as a biomarker for the diagnosis or evaluation of at least three cancer entities.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Ha Hyung Moon
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynaecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
6
|
deWeever A, Paudel SS, Zhou C, Francis CM, Tambe DT, Frank DW, Balczon R, Stevens T. cUMP elicits interendothelial gap formation during Pseudomonas aeruginosa infection. Am J Physiol Lung Cell Mol Physiol 2024; 327:L395-L405. [PMID: 39076085 PMCID: PMC11444506 DOI: 10.1152/ajplung.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/08/2024] [Accepted: 06/30/2024] [Indexed: 07/31/2024] Open
Abstract
Pseudomonas aeruginosa utilizes a type 3 secretion system to intoxicate host cells with the nucleotidyl cyclase ExoY. After activation by its host cell cofactor, filamentous actin, ExoY produces purine and pyrimidine cyclic nucleotides, including cAMP, cGMP, and cUMP. ExoY-generated cyclic nucleotides promote interendothelial gap formation, impair motility, and arrest cell growth. The disruptive activities of cAMP and cGMP during the P. aeruginosa infection are established; however, little is known about the function of cUMP. Here, we tested the hypothesis that cUMP contributes to endothelial cell barrier disruption during P. aeruginosa infection. Using a membrane permeable cUMP analog, cUMP-AM, we revealed that during infection with catalytically inactive ExoY, cUMP promotes interendothelial gap formation in cultured pulmonary microvascular endothelial cells (PMVECs) and contributes to increased filtration coefficient in the isolated perfused lung. These findings indicate that cUMP contributes to endothelial permeability during P. aeruginosa lung infection.NEW & NOTEWORTHY During pneumonia, bacteria utilize a virulence arsenal to communicate with host cells. The Pseudomonas aeruginosa T3SS directly introduces virulence molecules into the host cell cytoplasm. These molecules are enzymes that trigger interkingdom communication. One of the exoenzymes is a nucleotidyl cyclase that produces noncanonical cyclic nucleotides like cUMP. Little is known about how cUMP acts in the cell. Here we found that cUMP instigates pulmonary edema during Pseudomonas aeruginosa infection of the lung.
Collapse
Grants
- R01 HL167997 NHLBI NIH HHS
- HL136689 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL066299 NHLBI NIH HHS
- AI104922 HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases (DMID)
- R01 HL140182 NHLBI NIH HHS
- HL167997 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 AI104922 NIAID NIH HHS
- HL148069 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL148069 NHLBI NIH HHS
- HL140182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL66299 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Althea deWeever
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sunita S Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dhananjay T Tambe
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
7
|
Wu J, Huang L, Zhou Y, Xie Y, Mo T, Li N. Clinical and genetic characteristics of Chinese patients with congenital fibrosis of the extraocular muscles. Orphanet J Rare Dis 2024; 19:300. [PMID: 39148141 PMCID: PMC11325808 DOI: 10.1186/s13023-024-03206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE This study aimed to describe the clinical and genetic characteristics of Chinese patients with congenital fibrosis of the extraocular muscles (CFEOM), and to evaluate the phenotype-genotype correlations in these patients. METHODS This was a retrospective study. Patients with CFEOM underwent detailed ophthalmic examinations and magnetic resonance imaging (MRI). Panel-based next-generation sequencing was performed to identify pathogenic variants of disease-causing genes. RESULTS Sixty-two patients with CFEOM were recruited into this study. Thirty-nine patients were diagnosed with CFEOM1 and 23 with CFEOM3. Forty-nine of the 62 patients with CFEOM carried either KIF21A (41/49) or TUBB3 variants (8/49). Six known missense variants in the KIF21A and TUBB3 genes, and a novel variant (c.3906T > A, p.D1302E) in the KIF21A gene were detected. Most patients with CFEOM1 carrying the KIF21A mutation displayed isolated CFEOM, whereas patients with CFEOM3 carrying the TUBB3 mutation had a wide range of clinical manifestations, either CFEOM alone or syndromes. Nystagmus was also present in 12 patients with CFEOM. Furthermore, the MRI findings varied, ranging from attenuation of the extraocular muscles to dysgenesis of the cranial nerves and brain structure. CONCLUSIONS The novel variants identified in this study will further expand the spectrum of pathogenic variants in CFEOM-related genes. However, no phenotype-genotype correlations were established because of the diversity of the clinical characteristics of these patients.
Collapse
Affiliation(s)
- Jin Wu
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
- Department of Ophthalmology, Shenzhen Children's Hospital, Shenzhen, 518031, China
| | - Lijuan Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yunyu Zhou
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Yan Xie
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, 518031, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai, 200940, China.
| |
Collapse
|
8
|
Jash M, Ghosh S, Roy R, Mukherjee N, Sen S, Ghosh S. Next generation antimitotic β-carboline derivatives modulate microtubule dynamics and downregulate NF-κB, ERK 1/2 and phospho HSP 27. Life Sci 2024; 351:122836. [PMID: 38879159 DOI: 10.1016/j.lfs.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Exploring the efficacy of β-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics. MATERIALS AND METHODS We synthesized a series of 1-Aryl-N-substituted-β-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity. The mechanism of action of MJ-211 was elucidated through Western blot analysis of key pro-apoptotic and cell cycle regulatory proteins. Additionally, the inhibitory effect of MJ-211 on multicellular 3D spheroid growth of A549 cells was evaluated. KEY FINDINGS Lead compound MJ-211 exhibited remarkable cytotoxicity against A549 cells with an IC50 of 4.075 μM at 24 h treatment and IC50 of 1.7 nM after 72 h of treatment, while demonstrating selectivity towards normal WI-38 cells. MJ-211 activated pro-apoptotic factors Bim and p53, and suppressed Cyclin B1, Phospho HSP 27, BubR1, Mad 2, ERK1/2, and NF-κB, indicating its potent antimitotic and pro-apoptotic effects. MJ-211 significantly suppressed the migration of cells and inhibited the growth of A549 cell-derived multicellular 3D spheroids, highlighting its efficacy in a more physiologically relevant model. SIGNIFICANCE Cytotoxic effect of MJ-211 against cancer cells, selectivity towards normal cells, and ability to modulate key regulatory proteins involved in apoptosis and cell cycle progression underscore its potential as a promising template for further anticancer lead optimization. Moreover, the inhibitory effect of MJ-211 on multicellular spheroid growth suggests its efficacy in combating tumor heterogeneity and resistance mechanisms, thereby offering a promising avenue for future anticancer drug development.
Collapse
Affiliation(s)
- Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India; Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India; iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| |
Collapse
|
9
|
Jia X, Lin L, Guo S, Zhou L, Jin G, Dong J, Xiao J, Xie X, Li Y, He S, Wei Z, Yu C. CLASP-mediated competitive binding in protein condensates directs microtubule growth. Nat Commun 2024; 15:6509. [PMID: 39095354 PMCID: PMC11297316 DOI: 10.1038/s41467-024-50863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Microtubule organization in cells relies on targeting mechanisms. Cytoplasmic linker proteins (CLIPs) and CLIP-associated proteins (CLASPs) are key regulators of microtubule organization, yet the underlying mechanisms remain elusive. Here, we reveal that the C-terminal domain of CLASP2 interacts with a common motif found in several CLASP-binding proteins. This interaction drives the dynamic localization of CLASP2 to distinct cellular compartments, where CLASP2 accumulates in protein condensates at the cell cortex or the microtubule plus end. These condensates physically contact each other via CLASP2-mediated competitive binding, determining cortical microtubule targeting. The phosphorylation of CLASP2 modulates the dynamics of the condensate-condensate interaction and spatiotemporally navigates microtubule growth. Moreover, we identify additional CLASP-interacting proteins that are involved in condensate contacts in a CLASP2-dependent manner, uncovering a general mechanism governing microtubule targeting. Our findings not only unveil a tunable multiphase system regulating microtubule organization, but also offer general mechanistic insights into intricate protein-protein interactions at the mesoscale level.
Collapse
Affiliation(s)
- Xuanyan Jia
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Leishu Lin
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Siqi Guo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Gaowei Jin
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiayuan Dong
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jinman Xiao
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xingqiao Xie
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sicong He
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiyi Wei
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Shenzhen, Guangdong, 518055, China.
- Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Cong Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
10
|
Liu J, Wang X, Jiang W, Azoitei A, Eiseler T, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Wezel F, Zengerling F, Bolenz C, Günes C. Impairment of α-tubulin and F-actin interactions of GJB3 induces aneuploidy in urothelial cells and promotes bladder cancer cell invasion. Cell Mol Biol Lett 2024; 29:94. [PMID: 38956497 PMCID: PMC11218312 DOI: 10.1186/s11658-024-00609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND We have previously identified an unsuspected role for GJB3 showing that the deficiency of this connexin protein induces aneuploidy in human and murine cells and accelerates cell transformation as well as tumor formation in xenograft models. The molecular mechanisms by which loss of GJB3 leads to aneuploidy and cancer initiation and progression remain unsolved. METHODS GJB3 expression levels were determined by RT-qPCR and Western blot. The consequences of GJB3 knockdown on genome instability were assessed by metaphase chromosome counting, multinucleation of cells, by micronuclei formation and by the determination of spindle orientation. Interactions of GJB3 with α-tubulin and F-actin was analyzed by immunoprecipitation and immunocytochemistry. Consequences of GJB3 deficiency on microtubule and actin dynamics were measured by live cell imaging and fluorescence recovery after photobleaching experiments, respectively. Immunohistochemistry was used to determine GJB3 levels on human and murine bladder cancer tissue sections. Bladder cancer in mice was chemically induced by BBN-treatment. RESULTS We find that GJB3 is highly expressed in the ureter and bladder epithelium, but it is downregulated in invasive bladder cancer cell lines and during tumor progression in both human and mouse bladder cancer. Downregulation of GJB3 expression leads to aneuploidy and genomic instability in karyotypically stable urothelial cells and experimental modulation of GJB3 levels alters the migration and invasive capacity of bladder cancer cell lines. Importantly, GJB3 interacts both with α-tubulin and F-actin. The impairment of these interactions alters the dynamics of these cytoskeletal components and leads to defective spindle orientation. CONCLUSION We conclude that deregulated microtubule and actin dynamics have an impact on proper chromosome separation and tumor cell invasion and migration. Consequently, these observations indicate a possible role for GJB3 in the onset and spreading of bladder cancer and demonstrate a molecular link between enhanced aneuploidy and invasive capacity cancer cells during tumor cell dissemination.
Collapse
Affiliation(s)
- Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS, UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Golderman V, Gofrit SG, Ivashko-Pachima Y, Gozes I, Chapman J, Shavit-Stein E. The thrombin receptor (PAR1) is associated with microtubules, mitosis and process formation in glioma cells. Heliyon 2024; 10:e33329. [PMID: 39027436 PMCID: PMC11254606 DOI: 10.1016/j.heliyon.2024.e33329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The cell surface protease-activated receptor 1 (PAR1) is overexpressed in glioblastoma multiforme (GBM). We studied the function and structure of intracellular microtubule (MT) and PAR1 in a tubulin-mediated process. We found that exposure to thrombin increased the percentage of proliferative, S, and M phases cells, affected morphology, and increased process elongation. PAR1 antagonist inversely affects these measures, increases tubulin end-binding protein 3 (EB3) mRNA expression in C6 cells, and reduces EB3 comet length, track length, and duration in neuroblastoma cells. In addition, immunofluorescence staining suggests that PAR1 is in close association with the MT α-tubulin and with coagulation cascade proteins during cell division stages. Our findings support PAR1 involvement in MT dynamics.
Collapse
Affiliation(s)
- Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Yanina Ivashko-Pachima
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, 6997801, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, Tel-Aviv, 6997801, Israel
- The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| |
Collapse
|
12
|
Di Gregorio E, Staelens M, Hosseinkhah N, Karimpoor M, Liburd J, Lim L, Shankar K, Tuszyński JA. Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1093. [PMID: 38998698 PMCID: PMC11243591 DOI: 10.3390/nano14131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in α-helix content and a concurrent increase in β-sheets compared to the control samples. This PBM-induced α-helix to β-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Instituto de Física Corpuscular, CSIC–Universitat de València, Carrer Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | | | | | | | - Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
13
|
DeTemple VK, Walter A, Bredemeier S, Gutzmer R, Schaper-Gerhardt K. Anti-tumor effects of tirbanibulin in squamous cell carcinoma cells are mediated via disruption of tubulin-polymerization. Arch Dermatol Res 2024; 316:341. [PMID: 38847867 PMCID: PMC11161541 DOI: 10.1007/s00403-024-03032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
Topical tirbanibulin is a highly effective and well tolerated novel treatment option for actinic keratoses (AKs). This study aimed to characterize the mode of action of tirbanibulin in keratinocytes (NHEK) and cutaneous squamous cell carcinoma (cSCC) cell lines (A431, SCC-12) in vitro. Tirbanibulin significantly reduced proliferation in a dose-dependent manner in all investigated cell lines, inhibited migration, and induced G2/M-cell cycle arrest only in the cSCC cell lines analyzed, and induced apoptosis solely in A431, which showed the highest sensitivity to tirbanibulin. In general, we detected low basal expression of phosphorylated SRC in all cell lines analyzed, therefore, interference with SRC signaling does not appear to be the driving force regarding the observed effects of tirbanibulin. The most prominent tirbanibulin-mediated effect was on β-tubulin-polymerization, which was especially impaired in A431. Additionally, tirbanibulin induced an increase of the proinflammatory cytokines IL-1α, bFGF and VEGF in A431. In conclusion, tirbanibulin mediated anti-tumor effects predominantly in A431, while healthy keratinocytes and more dedifferentiated SCC-12 were less influenced. These effects of tirbanibulin are most likely mediated via dysregulation of β-tubulin-polymerization and may be supported by proinflammatory aspects.
Collapse
Affiliation(s)
- Viola K DeTemple
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Universitätsklinik der Ruhr-Universität Bochum, Hans-Nolte-Straße 1, 32429, Minden, Germany.
| | - Antje Walter
- Klinik für Dermatologie, Allergologie und Venerologie, Hauttumorzentrum Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sabine Bredemeier
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Universitätsklinik der Ruhr-Universität Bochum, Hans-Nolte-Straße 1, 32429, Minden, Germany
| | - Ralf Gutzmer
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Universitätsklinik der Ruhr-Universität Bochum, Hans-Nolte-Straße 1, 32429, Minden, Germany
| | - Katrin Schaper-Gerhardt
- Universitätsklinik für Dermatologie, Venerologie, Allergologie und Phlebologie, Johannes Wesling Klinikum Minden, Universitätsklinik der Ruhr-Universität Bochum, Hans-Nolte-Straße 1, 32429, Minden, Germany
- Klinik für Dermatologie, Allergologie und Venerologie, Hauttumorzentrum Hannover, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
14
|
Choi JH, Jeong J, Kim J, You E, Keum S, Song S, Hwang YE, Ji M, Park KS, Rhee S. Genetic disruption of ATAT1 causes RhoA downregulation through abnormal truncation of C/EBPβ. BMB Rep 2024; 57:293-298. [PMID: 38835115 PMCID: PMC11214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 06/06/2024] Open
Abstract
Microtubule acetylation has been shown to regulate actin filament dynamics by modulating signaling pathways that control actin organization, although the precise mechanisms remain unknown. In this study, we found that the downregulation of microtubule acetylation via the disruption ATAT1 (which encodes α-tubulin N-acetyltransferase 1) inhibited the expression of RhoA, a small GTPase involved in regulating the organization of actin filaments and the formation of stress fibers. Analysis of RHOA promoter and chromatin immunoprecipitation assays revealed that C/EBPβ is a major regulator of RHOA expression. Interestingly, the majority of C/EBPβ in ATAT1 knockout (KO) cells was found in the nucleus as a 27-kDa fragment (referred to as C/EBPβp27) lacking the N-terminus of C/EBPβ. Overexpression of a gene encoding a C/EBPβp27-mimicking protein via an N-terminal deletion in C/EBPβ led to competitive binding with wild-type C/EBPβ at the C/EBPβ binding site in the RHOA promoter, resulting in a significant decrease of RHOA expression. We also found that cathepsin L (CTSL), which is overexpressed in ATAT1 KO cells, is responsible for C/EBPβp27 formation in the nucleus. Treatment with a CTSL inhibitor led to the restoration of RHOA expression by downregulation of C/EBPβp27 and the invasive ability of ATAT1 KO MDA-MB-231 breast cancer cells. Collectively, our findings suggest that the downregulation of microtubule acetylation associated with ATAT1 deficiency suppresses RHOA expression by forming C/EBPβp27 in the nucleus through CTSL. We propose that CTSL and C/EBPβp27 may represent a novel therapeutic target for breast cancer treatment. [BMB Reports 2024; 57(6): 293-298].
Collapse
Affiliation(s)
- Jee-Hye Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Jangho Jeong
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Jaegu Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Eunae You
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Seula Keum
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Seongeun Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Ye Eun Hwang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Minjoo Ji
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sangmyung Rhee
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea, VA 22903, USA
| |
Collapse
|
15
|
Gyimesi M, Okolicsanyi RK, Haupt LM. Beyond amyloid and tau: rethinking Alzheimer's disease through less explored avenues. Open Biol 2024; 14:240035. [PMID: 38862019 DOI: 10.1098/rsob.240035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.
Collapse
Affiliation(s)
- M Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
| | - R K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
| | - L M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices , Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave , Kelvin Grove, Queensland 4059, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies , Brisbane, QLD 4059, Australia
| |
Collapse
|
16
|
Zhu H, Bao Y, Dou X, Zuo X, Ye J, Ma H, Bu Y, Wang Y, Zhu J. KIF2C is a critical regulator for malignant progression of head and neck squamous cell carcinoma. Am J Cancer Res 2024; 14:2538-2554. [PMID: 38859848 PMCID: PMC11162673 DOI: 10.62347/cibm2965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of mortality, while the underlying mechanism remains unclear. Our studies have revealed that KIF2C plays a crucial role in tumor proliferation and metastasis in HNSCC. The results demonstrate that KIF2C is highly expressed at both the mRNA and protein levels and is closely associated with lymph node metastasis. The gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicate that the differentially expressed genes are enriched in processes or pathways related to cell adhesion and cell mitosis in HNSCC. Moreover, the established protein-protein interaction network identifies KIF2C as a potential hub gene in HNSCC. Knockdown of KIF2C has been demonstrated to significantly reduce cell migration and invasion ability, leading to cell cycle arrest, a high proportion of abnormal cell apoptosis, and cell chromosome division mismatches in the HNSCC cell line. Downstream genes such as PDGFA, EGFR, TP63, SNAI2, KRT5, and KRT14 were found to be down-regulated, and multiple critical pathways, including mTOR, ERK, and PI3K-AKT pathways, were inactivated as a result of KIF2C knockdown. These findings provide strong evidence for the crucial role of KIF2C in HNSCC and suggest that targeting KIF2C may be a promising therapeutic strategy for this disease. Knockdown of KIF2C has been shown to significantly inhibit tumor proliferation in nude mice, demonstrating the potential therapeutic role of KIF2C in HNSCC treatment.
Collapse
Affiliation(s)
- Haiyue Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yuxin Bao
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Xuanqi Dou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Xiaofeng Zuo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Junhong Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Haiyu Ma
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| | - Jiang Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical UniversityChongqing 400016, P. R. China
- Molecular Medicine and Cancer Research Center, Chongqing Medical UniversityChongqing 400016, P. R. China
| |
Collapse
|
17
|
Ren S, Kong Y, Liu R, Li Q, Shen X, Kong QX. Lissencephaly caused by a de novo mutation in tubulin TUBA1A: a case report and literature review. Front Pediatr 2024; 12:1367305. [PMID: 38813542 PMCID: PMC11135126 DOI: 10.3389/fped.2024.1367305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tubulin plays an essential role in cortical development, and TUBA1A encodes a major neuronal α-tubulin. Neonatal mutations in TUBA1A are associated with severe brain malformations, and approximately 70% of patients with reported cases of TUBA1A mutations exhibit lissencephaly. We report the case of a 1-year-old boy with the TUBA1A nascent mutation c.1204C >T, p.Arg402Cys, resulting in lissencephaly, developmental delay, and seizures, with a brain MRI showing normal cortical formation in the bilateral frontal lobes, smooth temporo-parieto-occipital gyri and shallow sulcus. This case has not been described in any previous report; thus, the present case provides new insights into the broad disease phenotype and diagnosis associated with TUBA1A mutations. In addition, we have summarized the gene mutation sites, neuroradiological findings, and clinical details of cases previously described in the literature and discussed the differences that exist between individual cases of TUBA1A mutations through a longitudinal comparative analysis of similar cases. The complexity of the disease is revealed, and the importance of confirming the genetic diagnosis from the beginning of the disease is emphasized, which can effectively shorten the diagnostic delay and help clinicians provide genetic and therapeutic counseling.
Collapse
Affiliation(s)
- Sijing Ren
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yu Kong
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ruihan Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qiubo Li
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xuehua Shen
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qing-Xia Kong
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
18
|
Liu Q, Jiang HJ, Wu YD, Li JD, Sun XH, Xiao C, Xu JY, Lin ZY. Carrageenan maintains the contractile phenotype of vascular smooth muscle cells by increasing macromolecular crowding in vitro. Eur J Med Res 2024; 29:249. [PMID: 38650027 PMCID: PMC11036678 DOI: 10.1186/s40001-024-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The contractile phenotype of vascular smooth muscle cells (VSMCs) results in good diastolic and contractile capacities, and its altered function is the main pathophysiological basis for diseases such as hypertension. VSMCs exist as a synthetic phenotype in vitro, making it challenging to maintain a contractile phenotype for research. It is widely recognized that the common medium in vitro is significantly less crowded than in the in vivo environment. Additionally, VSMCs have a heightened sense for detecting changes in medium crowding. However, it is unclear whether macromolecular crowding (MMC) helps maintain the VSMCs contractile phenotype. PURPOSE This study aimed to explore the phenotypic, behavioral and gene expression changes of VSMCs after increasing the crowding degree by adding carrageenan (CR). METHODS The degree of medium crowding was examined by a dynamic light scattering assay; VSMCs survival and activity were examined by calcein/PI cell activity and toxicity and CCK-8 assays; VSMCs phenotypes and migration were examined by WB and wound healing assays; and gene expression was examined by transcriptomic analysis and RT-qPCR. RESULTS Notably, 225 μg/mL CR significantly increased the crowding degree of the medium and did not affect cell survival. Simultaneously, CR significantly promoted the contraction phenotypic marker expression in VSMCs, shortened cell length, decreased cell proliferation, and inhibited cell migration. CR significantly altered gene expression in VSMCs. Specifically, 856 genes were upregulated and 1207 genes were downregulated. These alterations primarily affect the cellular ion channel transport, microtubule movement, respiratory metabolism, amino acid transport, and extracellular matrix synthesis. The upregulated genes were primarily involved in the cytoskeleton and contraction processes of VSMCs, whereas the downregulated genes were mainly involved in extracellular matrix synthesis. CONCLUSIONS The in vitro study showed that VSMCs can maintain the contractile phenotype by sensing changes in the crowding of the culture environment, which can be maintained by adding CR.
Collapse
Affiliation(s)
- Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yin-Di Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Dong Li
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhan-Yi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Gossen S, Gerstner S, Borchers A. The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells. Cells Dev 2024; 177:203899. [PMID: 38160720 DOI: 10.1016/j.cdev.2023.203899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.
Collapse
Affiliation(s)
- Stefanie Gossen
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
20
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
21
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
22
|
Chen TY, Cheng KC, Yang PS, Shrestha LK, Ariga K, Hsu SH. Interaction of vascular endothelial cells with hydrophilic fullerene nanoarchitectured structures in 2D and 3D environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2315014. [PMID: 38419801 PMCID: PMC10901190 DOI: 10.1080/14686996.2024.2315014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
The interaction between diverse nanoarchitectured fullerenes and cells is crucial for biomedical applications. Here, we detailed the preparation of hydrophilic self-assembled fullerenes by the liquid-liquid interfacial precipitation (LLIP) method and hydrophilic coating of the materials as a possible vascularization strategy. The interactions of vascular endothelial cells (ECs) with hydrophilic fullerene nanotubes (FNT-P) and hydrophilic fullerene nanowhiskers (FNW-P) were investigated. The average length and diameter of FNT-P were 16 ± 2 μm and 3.4 ± 0.4 μm (i.e. aspect ratios of 4.6), respectively. The average length and diameter of FNW-P were 65 ± 8 μm and 1.2 ± 0.2 μm (i.e. aspect ratios of 53.9), respectively. For two-dimensional (2D) culture after 7 days, the ECs remained viable and proliferated up to ~ 420% and ~ 400% with FNT-P and FNW-P of 50 μg/mL, respectively. Furthermore, an optimized chitosan-based self-healing hydrogel with a modulus of ~400 Pa was developed and used to incorporate self-assembled fullerenes as in vitro three-dimensional (3D) platforms to investigate the impact of FNT-P and FNW-P on ECs within a 3D environment. The addition of FNW-P or FNT-P (50 μg/mL) in the hydrogel system led to proliferation rates of ECs up to ~323% and ~280%, respectively, after 7 days of culture. The ECs in FNW-P hydrogel displayed an elongated shape with aligned morphology, while those in FNT-P hydrogel exhibited a rounded and clustered distribution. Vascular-related gene expressions of ECs were significantly upregulated through interactions with these fullerenes. Thus, the combined use of different nanoarchitectured self-assembled fullerenes and self-healing hydrogels may offer environmental cues influencing EC development in a 3D biomimetic microenvironment, holding promise for advancing vascularization strategy in tissue engineering.
Collapse
Affiliation(s)
- Tsai-Yu Chen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Kun-Chih Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Pei-Syuan Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Katsuhiko Ariga
- Supermolecules Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| |
Collapse
|
23
|
Nakamura F. The Role of Mechanotransduction in Contact Inhibition of Locomotion and Proliferation. Int J Mol Sci 2024; 25:2135. [PMID: 38396812 PMCID: PMC10889191 DOI: 10.3390/ijms25042135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Contact inhibition (CI) represents a crucial tumor-suppressive mechanism responsible for controlling the unbridled growth of cells, thus preventing the formation of cancerous tissues. CI can be further categorized into two distinct yet interrelated components: CI of locomotion (CIL) and CI of proliferation (CIP). These two components of CI have historically been viewed as separate processes, but emerging research suggests that they may be regulated by both distinct and shared pathways. Specifically, recent studies have indicated that both CIP and CIL utilize mechanotransduction pathways, a process that involves cells sensing and responding to mechanical forces. This review article describes the role of mechanotransduction in CI, shedding light on how mechanical forces regulate CIL and CIP. Emphasis is placed on filamin A (FLNA)-mediated mechanotransduction, elucidating how FLNA senses mechanical forces and translates them into crucial biochemical signals that regulate cell locomotion and proliferation. In addition to FLNA, trans-acting factors (TAFs), which are proteins or regulatory RNAs capable of directly or indirectly binding to specific DNA sequences in distant genes to regulate gene expression, emerge as sensitive players in both the mechanotransduction and signaling pathways of CI. This article presents methods for identifying these TAF proteins and profiling the associated changes in chromatin structure, offering valuable insights into CI and other biological functions mediated by mechanotransduction. Finally, it addresses unanswered research questions in these fields and delineates their possible future directions.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
24
|
Jha S, Kim JH, Kim M, Nguyen AH, Ali KH, Gupta SK, Park SY, Ha E, Seo YH. Design, synthesis, and biological evaluation of HDAC6 inhibitors targeting L1 loop and serine 531 residue. Eur J Med Chem 2024; 265:116057. [PMID: 38142511 DOI: 10.1016/j.ejmech.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Collapse
Affiliation(s)
- Sonam Jha
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Ji Hyun Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea
| | - Ai-Han Nguyen
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sun You Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea.
| |
Collapse
|
25
|
Smart K, Sharp DJ. The fidgetin family: Shaking things up among the microtubule-severing enzymes. Cytoskeleton (Hoboken) 2024; 81:151-166. [PMID: 37823563 DOI: 10.1002/cm.21799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The microtubule cytoskeleton is required for several crucial cellular processes, including chromosome segregation, cell polarity and orientation, and intracellular transport. These functions rely on microtubule stability and dynamics, which are regulated by microtubule-binding proteins (MTBPs). One such type of regulator is the microtubule-severing enzymes (MSEs), which are ATPases Associated with Diverse Cellular Activities (AAA+ ATPases). The most recently identified family are the fidgetins, which contain three members: fidgetin, fidgetin-like 1 (FL1), and fidgetin-like 2 (FL2). Of the three known MSE families, the fidgetins have the most diverse range of functions in the cell, spanning mitosis/meiosis, development, cell migration, DNA repair, and neuronal function. Furthermore, they offer intriguing novel therapeutic targets for cancer, cardiovascular disease, and wound healing. In the two decades since their first report, there has been great progress in our understanding of the fidgetins; however, there is still much left unknown about this unusual family. This review aims to consolidate the present body of knowledge of the fidgetin family of MSEs and to inspire deeper exploration into the fidgetins and the MSEs as a whole.
Collapse
Affiliation(s)
- Karishma Smart
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
- Microcures, Inc., Bronx, New York, USA
| |
Collapse
|
26
|
Tochinai R, Nagashima Y, Sekizawa SI, Kuwahara M. Anti-tumor and cardiotoxic effects of microtubule polymerization inhibitors: The mechanisms and management strategies. J Appl Toxicol 2024; 44:96-106. [PMID: 37496236 DOI: 10.1002/jat.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Microtubule polymerization inhibitors (MPIs) have long been used as anticancer agents because they inhibit mitosis. Microtubules are thought to play an important role in the migration of tumor cells and the formation of tumor blood vessels, and new MPIs are being developed. Many clinical trials of novel MPIs have been conducted in humans, while some clinical studies in dogs have also been reported. More attempts to apply MPIs not only in humans but also in the veterinary field are expected to be made in the future. Meanwhile, MPIs have a risk of cardiotoxicity. In this paper, we review findings on the pharmacological effects and cardiotoxicity of MPIs, as well as the mechanisms of their cardiotoxicity. Cardiotoxicity of MPIs involves not only the direct effects of MPIs on cardiomyocytes but also their effects on vascular function. For example, hypertension induced by impaired vascular function also contributes to the exacerbation of myocardial damage, and blood pressure control may be useful in reducing cardiotoxicity. By combined administration of MPIs and other anticancer agents, MPI efficacy may be enhanced, thereby potentially allowing to keep MPI dosage low. Measurement of myocardial injury markers in blood and echocardiography may be useful for monitoring cardiotoxicity. In particular, two-dimensional speckle tracking may have high sensitivity for the early detection of MPI-induced cardiac dysfunction. The exploration of the potential of new MPIs while understanding their toxicity and how to deal with them will lead to the further development of cancer chemotherapy.
Collapse
Affiliation(s)
- Ryota Tochinai
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiyasu Nagashima
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Sekizawa
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Kuwahara
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Zholudeva AO, Potapov NS, Kozlova EA, Lomakina ME, Alexandrova AY. Impairment of Assembly of the Vimentin Intermediate Filaments Leads to Suppression of Formation and Maturation of Focal Contacts and Alteration of the Type of Cellular Protrusions. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:184-195. [PMID: 38467554 DOI: 10.1134/s0006297924010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 03/13/2024]
Abstract
Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.
Collapse
Affiliation(s)
- Anna O Zholudeva
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Nikolay S Potapov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ekaterina A Kozlova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Maria E Lomakina
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Antonina Y Alexandrova
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
28
|
Xiang XW, Liu HT, Tao XN, Zeng YL, Liu J, Wang C, Yu SX, Zhao H, Liu YJ, Liu KF. Glioblastoma behavior study under different frequency electromagnetic field. iScience 2023; 26:108575. [PMID: 38125027 PMCID: PMC10730381 DOI: 10.1016/j.isci.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The tumor-treating fields (TTFields) technology has revolutionized the management of recurrent and newly diagnosed glioblastoma (GBM) cases. To ameliorate this treatment modality for GBM and other oncological conditions, it is necessary to understand the biophysical principles of TTFields better. In this study, we further analyzed the mechanism of the electromagnetic exposure with varying frequencies and electric field strengths on cells in mitosis, specifically in telophase. In reference to previous studies, an intuitive finite element model of the mitotic cell was built for electromagnetic simulations, predicting a local increase in the cleavage furrow region, which may help explain TTFields' anti-proliferative effects. Cell experiments confirmed that the reduction in proliferation and migration of glioma cell by TTFields was in a frequency- and field-strength-dependent manner. This work provides unique insights into the selection of frequencies in the anti-proliferative effect of TTFields on tumors, which could improve the application of TTFields.
Collapse
Affiliation(s)
- Xiao-Wei Xiang
- Academy for engineering & technology, Fudan University, Shanghai 200433, China
| | - Hao-Tian Liu
- Academy for engineering & technology, Fudan University, Shanghai 200433, China
| | - Xiao-Nan Tao
- School of information science and technology, Fudan University, Shanghai 200433, China
| | - Yu-Lian Zeng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Jing Liu
- School of information science and technology, Fudan University, Shanghai 200433, China
| | - Chen Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Zhao
- School of information science and technology, Fudan University, Shanghai 200433, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ke-Fu Liu
- School of information science and technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Palmbos P, Wang Y, Jerome N, Kelleher A, Henderson M, Day M, Coulombe P. TRIM29 promotes bladder cancer invasion by regulating the intermediate filament network and focal adhesion. RESEARCH SQUARE 2023:rs.3.rs-3697712. [PMID: 38168254 PMCID: PMC10760242 DOI: 10.21203/rs.3.rs-3697712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bladder cancer is a common malignancy whose lethality is determined by invasive potential. We have previously shown that TRIM29, also known as ATDC, is transcriptionally regulated by TP63 in basal bladder cancers where it promotes invasive progression and metastasis, but the molecular events which promote invasion and metastasis downstream of TRIM29 remained poorly understood. Here we identify stimulation of bladder cancer migration as the specific role of TRIM29 during invasion. We show that TRIM29 physically interacts with K14 + intermediate filaments which in turn regulates focal adhesion stability. Further, we find that both K14 and the focal adhesion protein, ZYX are required for bladder cancer migration and invasion. Taken together, these results establish a role for TRIM29 in the regulation of cytoskeleton and focal adhesions during invasion and identify a pathway with therapeutic potential.
Collapse
|
30
|
Lai W, Chen J, Gao X, Jin X, Chen G, Ye L. Design and Synthesis of Novel Chalcone Derivatives: Anti-Breast Cancer Activity Evaluation and Docking Study. Int J Mol Sci 2023; 24:15549. [PMID: 37958533 PMCID: PMC10649752 DOI: 10.3390/ijms242115549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Chalcone is a common simple fragment of natural products with anticancer activity. In a previous study, the research group discovered a series of chalcone derivatives with stronger anticancer activities. To find better anticancer drugs, novel chalcone derivatives A1-A14, B1-B14 have continuously been designed and synthesized. The antiproliferative activity of these compounds against breast cancer cells (MCF-7) was investigated by the Cell Counting Kit-8 (CCK-8) method with 5-fluorouracil (5-Fu) as the control drug. The results showed that compound A14 exhibited excellent antiproliferative ability compared to the control drug 5-Fu. Scratch experiments and cloning experiments further confirmed that compound A14 could inhibit the proliferation and colony formation activity of MCF-7 cells. In addition, molecular docking primarily explains the interaction between compound and protein. These results suggested that compound A14 could be a promising chalcone derivative for further anti-breast cancer research.
Collapse
Affiliation(s)
- Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Jiaxin Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Xinjiao Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (W.L.); (J.C.); (X.G.)
| |
Collapse
|
31
|
Feng S, Yuan S, Hou B, Liu Z, Xu Y, Hao S, Lu Y. CEP20 promotes invasion and metastasis of non-small cell lung cancer cells by depolymerizing microtubules. Sci Rep 2023; 13:17484. [PMID: 37838783 PMCID: PMC10576744 DOI: 10.1038/s41598-023-44754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, Lung cancer is the leading cause of cancer-related death and poses a direct health threat, non-small cell lung cancer (NSCLC) is the most common type. In this study, we demonstrated that centrosomal protein 20 (CEP20) is upregulated in NSCLC tissues and associated with cancer invasion metastasis. Notably, CEP20 depletion inhibited NSCLC cell proliferation, migration, and microtubule polymerization. Mechanistically, we discovered that CEP20 is critical in the development of NSCLC by regulating microtubule dynamics and cell adhesion-related signaling pathways. Furthermore, the knockdown or overexpression of CEP20 affects microtubule polymerization in A549 cell lines. Our research provides a promising therapeutic target for the diagnosis and treatment of lung cancer, as well as a theoretical and experimental basis for clinical application.
Collapse
Affiliation(s)
- Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China.
| | - Yunkun Lu
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China.
| |
Collapse
|
32
|
Cree T, Gomez TR, Timpani CA, Rybalka E, Price JT, Goodman CA. FKBP25 regulates myoblast viability and migration and is differentially expressed in in vivo models of muscle adaptation. FEBS J 2023; 290:4660-4678. [PMID: 37345229 DOI: 10.1111/febs.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
FKBP25 (FKBP3 gene) is a dual-domain PPIase protein that consists of a C-terminal PPIase domain and an N-terminal basic tilted helix bundle (BTHB). The PPIase domain of FKBP25 has been shown to bind to microtubules, which has impacts upon microtubule polymerisation and cell cycle progression. Using quantitative proteomics, it was recently found that FKBP25 was expressed in the top 10% of the mouse skeletal muscle proteome. However, to date there have been few studies investigating the role of FKBP25 in non-transformed systems. As such, this study aimed to investigate potential roles for FKBP25 in myoblast viability, migration and differentiation and in adaptation of mature skeletal muscle. Doxycycline-inducible FKBP25 knockdown in C2C12 myoblasts revealed an increase in cell accumulation/viability and migration in vitro that was independent of alterations in tubulin dynamics; however, FKBP25 knockdown had no discernible impact on myoblast differentiation into myotubes. Finally, a series of in vivo models of muscle adaptation were assessed, where it was observed that FKBP25 protein expression was increased in hypertrophy and regeneration conditions (chronic mechanical overload and the mdx model of Duchenne muscular dystrophy) but decreased in an atrophy model (denervation). Overall, the findings of this study establish FKBP25 as a regulator of myoblast viability and migration, with possible implications for satellite cell proliferation and migration and muscle regeneration, and as a potential regulator of in vivo skeletal muscle adaptation.
Collapse
Affiliation(s)
- Tabitha Cree
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - Tania Ruz Gomez
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
| | - Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - John T Price
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Monash Biomedicine Discovery Institute, Clayton, Australia
| | - Craig A Goodman
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol 2023; 42:2541-2555. [PMID: 37581758 DOI: 10.1007/s10067-023-06738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This narrative review provides a comprehensive examination of the complex interplay between inflammatory arthritis (IA) and cardiovascular pathology. It particularly illuminates the roles of atherosclerosis initiation, endothelial dysfunction, and glycocalyx shedding. IA not only provokes tissue-specific inflammatory responses, but also engenders a considerable degree of non-specific systemic inflammation. This review underscores the accelerating influence of the chronic inflammatory milieu of IA on cardiovascular disease (CVD) progression. A focal point of our exploration is the critical function of the endothelial glycocalyx (EG) in this acceleration process, which possibly characterizes the earliest phases of atherosclerosis. We delve into the influence of inflammatory mediators on microtubule dynamics, EG modulation, immune cell migration and activation, and lipid dysregulation. We also illuminate the impact of microparticles and microRNA on endothelial function. Further, we elucidate the role of systemic inflammation and sheddases in EG degradation, the repercussions of complement activation, and the essential role of syndecans in preserving EG integrity. Our review provides insight into the complex and dynamic interface between systemic circulation and the endothelium.
Collapse
Affiliation(s)
- Alexander Krasimirov Angelov
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Miroslav Markov
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, Varna, 9010, Bulgaria
| | - Mariana Ivanova
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Tsvetoslav Georgiev
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital St. Marina - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
34
|
Wang X, Liu J, Azoitei A, Eiseler T, Meessen S, Jiang W, Zheng X, Makori AW, Eckstein M, Hartmann A, Stilgenbauer S, Elati M, Hohwieler M, Kleger A, John A, Zengerling F, Wezel F, Bolenz C, Günes C. Loss of ORP3 induces aneuploidy and promotes bladder cancer cell invasion through deregulated microtubule and actin dynamics. Cell Mol Life Sci 2023; 80:299. [PMID: 37740130 PMCID: PMC10516806 DOI: 10.1007/s00018-023-04959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
We have recently shown that loss of ORP3 leads to aneuploidy induction and promotes tumor formation. However, the specific mechanisms by which ORP3 contributes to ploidy-control and cancer initiation and progression is still unknown. Here, we report that ORP3 is highly expressed in ureter and bladder epithelium while its expression is downregulated in invasive bladder cancer cell lines and during tumor progression, both in human and in mouse bladder cancer. Moreover, we observed an increase in the incidence of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced invasive bladder carcinoma in the tissue-specific Orp3 knockout mice. Experimental data demonstrate that ORP3 protein interacts with γ-tubulin at the centrosomes and with components of actin cytoskeleton. Altering the expression of ORP3 induces aneuploidy and genomic instability in telomerase-immortalized urothelial cells with a stable karyotype and influences the migration and invasive capacity of bladder cancer cell lines. These findings demonstrate a crucial role of ORP3 in ploidy-control and indicate that ORP3 is a bona fide tumor suppressor protein. Of note, the presented data indicate that ORP3 affects both cell invasion and migration as well as genome stability through interactions with cytoskeletal components, providing a molecular link between aneuploidy and cell invasion and migration, two crucial characteristics of metastatic cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Junnan Liu
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital, Ulm, Germany
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Division of Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Wencheng Jiang
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Xi Zheng
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
- Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Arika W Makori
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, Erlangen, Germany
| | | | - Mohamed Elati
- CANTHER, ONCOLille Institute, University of Lille, CNRS UMR 1277, Inserm U9020, 59045, Lille Cedex, France
| | - Meike Hohwieler
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Mol. Oncology and Stem Cell Biology, University Hospital, Ulm, Germany
| | - Axel John
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, Helmholtzstr. 10, 89081, Ulm, Germany.
| |
Collapse
|
35
|
Thapa N, Wen T, Cryns VL, Anderson RA. Regulation of Cell Adhesion and Migration via Microtubule Cytoskeleton Organization, Cell Polarity, and Phosphoinositide Signaling. Biomolecules 2023; 13:1430. [PMID: 37892112 PMCID: PMC10604632 DOI: 10.3390/biom13101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity for cancer cells to metastasize to distant organs depends on their ability to execute the carefully choreographed processes of cell adhesion and migration. As most human cancers are of epithelial origin (carcinoma), the transcriptional downregulation of adherent/tight junction proteins (e.g., E-cadherin, Claudin and Occludin) with the concomitant gain of adhesive and migratory phenotypes has been extensively studied. Most research and reviews on cell adhesion and migration focus on the actin cytoskeleton and its reorganization. However, metastasizing cancer cells undergo the extensive reorganization of their cytoskeletal system, specifically in originating/nucleation sites of microtubules and their orientation (e.g., from non-centrosomal to centrosomal microtubule organizing centers). The precise mechanisms by which the spatial and temporal reorganization of microtubules are linked functionally with the acquisition of an adhesive and migratory phenotype as epithelial cells reversibly transition into mesenchymal cells during metastasis remains poorly understood. In this Special Issue of "Molecular Mechanisms Underlying Cell Adhesion and Migration", we highlight cell adhesion and migration from the perspectives of microtubule cytoskeletal reorganization, cell polarity and phosphoinositide signaling.
Collapse
Affiliation(s)
- Narendra Thapa
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Tianmu Wen
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| | - Vincent L. Cryns
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Richard A. Anderson
- The Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA; (T.W.); (V.L.C.)
| |
Collapse
|
36
|
Yoshida K, Suzuki S, Yuan H, Sato A, Hirata-Tsuchiya S, Saito M, Yamada S, Shiba H. Public RNA-seq data-based identification and functional analyses reveal that MXRA5 retains proliferative and migratory abilities of dental pulp stem cells. Sci Rep 2023; 13:15574. [PMID: 37730838 PMCID: PMC10511426 DOI: 10.1038/s41598-023-42684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Dental pulp stem cells (DPSC) usually remain quiescent in the dental pulp tissue; however, once the dental pulp tissue is injured, DPSCs potently proliferate and migrate into the injury microenvironment and contribute to immuno-modulation and tissue repair. However, the key molecules that physiologically support the potent proliferation and migration of DPSCs have not been revealed. In this study, we searched publicly available transcriptome raw data sets, which contain comparable (i.e., equivalently cultured) DPSC and mesenchymal stem cell data. Three data sets were extracted from the Gene Expression Omnibus database and then processed and analyzed. MXRA5 was identified as the predominant DPSC-enriched gene associated with the extracellular matrix. MXRA5 is detected in human dental pulp tissues. Loss of MXRA5 drastically decreases the proliferation and migration of DSPCs, concomitantly with reduced expression of the genes associated with the cell cycle and microtubules. In addition to the known full-length isoform of MXRA5, a novel splice variant of MXRA5 was cloned in DPSCs. Recombinant MXRA5 coded by the novel splice variant potently induced the haptotaxis migration of DPSCs, which was inhibited by microtubule inhibitors. Collectively, MXRA5 is a key extracellular matrix protein in dental pulp tissue for maintaining the proliferation and migration of DPSCs.
Collapse
Affiliation(s)
- Kazuma Yoshida
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Shigeki Suzuki
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Hang Yuan
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Akiko Sato
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Shizu Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
37
|
Smart K, Kramer AH, Smart S, Hodgson L, Sharp DJ. Fidgetin-like 2 depletion enhances cell migration by regulating GEF-H1, RhoA, and FAK. Biophys J 2023; 122:3600-3610. [PMID: 36523161 PMCID: PMC10541466 DOI: 10.1016/j.bpj.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The microtubule (MT) cytoskeleton and its dynamics play an important role in cell migration. Depletion of the microtubule-severing enzyme Fidgetin-like 2 (FL2), a regulator of MT dynamics at the leading edge of migrating cells, leads to faster and more efficient cell migration. Here we examine how siRNA knockdown of FL2 increases cell motility. Förster resonance energy transfer biosensor studies shows that FL2 knockdown decreases activation of the p21 Rho GTPase, RhoA, and its activator GEF-H1. Immunofluorescence studies reveal that GEF-H1 is sequestered by the increased MT density resulting from FL2 depletion. Activation of the Rho GTPase, Rac1, however, does not change after FL2 knockdown. Furthermore, FL2 depletion leads to an increase in focal adhesion kinase activation at the leading edge, as shown by immunofluorescence studies, but no change in actin dynamics, as shown by fluorescence recovery after photobleaching. We believe these results expand our understanding of the role of MT dynamics in cell migration and offer new insights into RhoA and Rac1 regulation.
Collapse
Affiliation(s)
- Karishma Smart
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| | - Adam H Kramer
- Microcures, Inc., Research and Development, Bronx, New York
| | | | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York.
| | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; Microcures, Inc., Research and Development, Bronx, New York.
| |
Collapse
|
38
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
39
|
Liu Y, Xu G, Fu H, Li P, Li D, Deng K, Gao W, Shang Y, Wu M. Membrane-bound transcription factor LRRC4 inhibits glioblastoma cell motility. Int J Biol Macromol 2023; 246:125590. [PMID: 37385320 DOI: 10.1016/j.ijbiomac.2023.125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Membrane-bound transcription factors (MTFs) have been observed in many types of organisms, such as plants, animals and microorganisms. However, the routes of MTF nuclear translocation are not well understood. Here, we reported that LRRC4 is a novel MTF that translocates to the nucleus as a full-length protein via endoplasmic reticulum-Golgi transport, which is different from the previously described nuclear entry mechanism. A ChIP-seq assay showed that LRRC4 target genes were mainly involved in cell motility. We confirmed that LRRC4 bound to the enhancer element of the RAP1GAP gene to activate its transcription and inhibited glioblastoma cell movement by affecting cell contraction and polarization. Furthermore, atomic force microscopy (AFM) confirmed that LRRC4 or RAP1GAP altered cellular biophysical properties, such as the surface morphology, adhesion force and cell stiffness. Thus, we propose that LRRC4 is an MTF with a novel route of nuclear translocation. Our observations demonstrate that LRRC4-null glioblastoma led to disordered RAP1GAP gene expression, which increased cellular movement. Re-expression of LRRC4 enabled it to suppress tumors, and this is a potential for targeted treatment in glioblastoma.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Gang Xu
- Diagnostics Department, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haijuan Fu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Peiyao Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Danyang Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Kun Deng
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Wei Gao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Yujie Shang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
40
|
Maksudov F, Kliuchnikov E, Marx KA, Purohit PK, Barsegov V. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles. Acta Biomater 2023; 166:326-345. [PMID: 37142109 DOI: 10.1016/j.actbio.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and Nf is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Evgenii Kliuchnikov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, United States
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.
| |
Collapse
|
41
|
Zocchi R, Bellacchio E, Piccione M, Scardigli R, D’Oria V, Petrini S, Baranano K, Bertini E, Sferra A. Novel loss of function mutation in TUBA1A gene compromises tubulin stability and proteostasis causing spastic paraplegia and ataxia. Front Cell Neurosci 2023; 17:1162363. [PMID: 37435044 PMCID: PMC10332271 DOI: 10.3389/fncel.2023.1162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Microtubules are dynamic cytoskeletal structures involved in several cellular functions, such as intracellular trafficking, cell division and motility. More than other cell types, neurons rely on the proper functioning of microtubules to conduct their activities and achieve complex morphologies. Pathogenic variants in genes encoding for α and β-tubulins, the structural subunits of microtubules, give rise to a wide class of neurological disorders collectively known as "tubulinopathies" and mainly involving a wide and overlapping range of brain malformations resulting from defective neuronal proliferation, migration, differentiation and axon guidance. Although tubulin mutations have been classically linked to neurodevelopmental defects, growing evidence demonstrates that perturbations of tubulin functions and activities may also drive neurodegeneration. In this study, we causally link the previously unreported missense mutation p.I384N in TUBA1A, one of the neuron-specific α-tubulin isotype I, to a neurodegenerative disorder characterized by progressive spastic paraplegia and ataxia. We demonstrate that, in contrast to the p.R402H substitution, which is one of the most recurrent TUBA1A pathogenic variants associated to lissencephaly, the present mutation impairs TUBA1A stability, reducing the abundance of TUBA1A available in the cell and preventing its incorporation into microtubules. We also show that the isoleucine at position 384 is an amino acid residue, which is critical for α-tubulin stability, since the introduction of the p.I384N substitution in three different tubulin paralogs reduces their protein level and assembly into microtubules, increasing their propensity to aggregation. Moreover, we demonstrate that the inhibition of the proteasome degradative systems increases the protein levels of TUBA1A mutant, promoting the formation of tubulin aggregates that, as their size increases, coalesce into inclusions that precipitate within the insoluble cellular fraction. Overall, our data describe a novel pathogenic effect of p.I384N mutation that differs from the previously described substitutions in TUBA1A, and expand both phenotypic and mutational spectrum related to this gene.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Piccione
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Raffaella Scardigli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini,” Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Kristin Baranano
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
42
|
Lavrsen K, Rajendraprasad G, Leda M, Eibes S, Vitiello E, Katopodis V, Goryachev AB, Barisic M. Microtubule detyrosination drives symmetry breaking to polarize cells for directed cell migration. Proc Natl Acad Sci U S A 2023; 120:e2300322120. [PMID: 37216553 PMCID: PMC10235987 DOI: 10.1073/pnas.2300322120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.
Collapse
Affiliation(s)
- Kirstine Lavrsen
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Marcin Leda
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Elisa Vitiello
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Vasileios Katopodis
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
| | - Andrew B. Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200Copenhagen, Denmark
| |
Collapse
|
43
|
Birnbaum R, Biswas J, Singer RH, Sharp DJ. mRNA Localization and Local Translation of the Microtubule Severing Enzyme, Fidgetin-Like 2, in Polarization, Migration and Outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537087. [PMID: 37131812 PMCID: PMC10153175 DOI: 10.1101/2023.04.17.537087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell motility requires strict spatiotemporal control of protein expression. During cell migration, mRNA localization and local translation in subcellular areas like the leading edge and protrusions are particularly advantageous for regulating the reorganization of the cytoskeleton. Fidgetin-Like 2 (FL2), a microtubule severing enzyme (MSE) that restricts migration and outgrowth, localizes to the leading edge of protrusions where it severs dynamic microtubules. FL2 is primarily expressed during development but in adulthood, is spatially upregulated at the leading edge minutes after injury. Here, we show mRNA localization and local translation in protrusions of polarized cells are responsible for FL2 leading edge expression after injury. The data suggests that the RNA binding protein IMP1 is involved in the translational regulation and stabilization of FL2 mRNA, in competition with the miRNA let-7. These data exemplify the role of local translation in microtubule network reorganization during migration and elucidate an unexplored MSE protein localization mechanism.
Collapse
Affiliation(s)
- Rayna Birnbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeetayu Biswas
- Present address: Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David J. Sharp
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Microcures, Inc., Research and Development, Bronx, NY, 10461, USA
| |
Collapse
|
44
|
Heussner RK, Zhang H, Qian G, Baker MJ, Provenzano PP. Differential contractility regulates cancer stem cell migration. Biophys J 2023; 122:1198-1210. [PMID: 36772795 PMCID: PMC10111274 DOI: 10.1016/j.bpj.2023.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cancer stem cells (CSCs) are known to have a high capacity for tumor initiation and the formation of metastases. We have previously shown that in collagen constructs mimetic of aligned extracellular matrix architectures observed in carcinomas, breast CSCs demonstrate enhanced directional and total motility compared with more differentiated carcinoma populations. Here, we show that CSCs maintain increased motility in diverse environments including on 2D elastic polyacrylamide gels of various stiffness, 3D randomly oriented collagen matrices, and ectopic cerebral slices representative of a common metastatic site. A consistent twofold increase of CSC motility across platforms suggests a general shift in cell migration mechanics between well-differentiated carcinoma cells and their stem-like counterparts. To further elucidate the source of differences in migration, we demonstrate that CSCs are less contractile than the whole population (WP) and develop fewer and smaller focal adhesions and show that enhanced CSC migration can be tuned via contractile forces. The WP can be shifted to a CSC-like migratory phenotype using partial myosin II inhibition. Inversely, CSCs can be shifted to a less migratory WP-like phenotype using microtubule-destabilizing drugs that increase contractility or by directly enhancing contractile forces. This work begins to reveal the mechanistic differences driving CSC migration and raises important implications regarding the potentially disparate effects of microtubule-targeting agents on the motility of different cell populations.
Collapse
Affiliation(s)
- Rachel K Heussner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota
| | - Hongrong Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Guhan Qian
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Mikayla J Baker
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota
| | - Paolo P Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota; University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota; University of Minnesota Center for Multiparametric Imaging of Tumor Immune Microenvironments, Minneapolis, Minnesota; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Department of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
45
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
46
|
Zhao G, Ren Y, Yan J, Zhang T, Lu P, Lei J, Rao H, Kang X, Cao Z, Peng F, Peng C, Rao C, Li Y. Neoprzewaquinone A Inhibits Breast Cancer Cell Migration and Promotes Smooth Muscle Relaxation by Targeting PIM1 to Block ROCK2/STAT3 Pathway. Int J Mol Sci 2023; 24:ijms24065464. [PMID: 36982538 PMCID: PMC10051292 DOI: 10.3390/ijms24065464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) has been widely used to treat cancer and cardiovascular diseases in Chinese traditional medicine. Here, we found that Neoprzewaquinone A (NEO), an active component of S. miltiorrhiza, selectively inhibits PIM1. We showed that NEO potently inhibits PIM1 kinase at nanomolar concentrations and significantly suppresses the growth, migration, and Epithelial-Mesenchymal Transition (EMT) in the triple-negative breast cancer cell line, MDA-MB-231 in vitro. Molecular docking simulations revealed that NEO enters the PIM1 pocket, thereby triggering multiple interaction effects. Western blot analysis revealed that both NEO and SGI-1776 (a specific PIM1 inhibitor), inhibited ROCK2/STAT3 signaling in MDA-MB-231 cells, indicating that PIM1 kinase modulates cell migration and EMT via ROCK2 signaling. Recent studies indicated that ROCK2 plays a key role in smooth muscle contraction, and that ROCK2 inhibitors effectively control the symptoms of high intraocular pressure (IOP) in glaucoma patients. Here, we showed that NEO and SGI-1776 significantly reduce IOP in normal rabbits and relax pre-restrained thoracic aortic rings in rats. Taken together, our findings indicated that NEO inhibits TNBC cell migration and relaxes smooth muscles mainly by targeting PIM1 and inhibiting ROCK2/STAT3 signaling, and that PIM1 may be an effective target for IOP and other circulatory diseases.
Collapse
Affiliation(s)
- Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaolong Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.R.); (Y.L.)
| |
Collapse
|
47
|
S100A8/S100A9 Integrates F-Actin and Microtubule Dynamics to Prevent Uncontrolled Extravasation of Leukocytes. Biomedicines 2023; 11:biomedicines11030835. [PMID: 36979814 PMCID: PMC10045313 DOI: 10.3390/biomedicines11030835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Immune reactions are characterized by the rapid immigration of phagocytes into sites of inflammation. Meticulous regulation of these migratory processes is crucial for preventing uncontrolled and harmful phagocyte extravasation. S100A8/S100A9 is the major calcium-binding protein complex expressed in phagocytes. After release, this complex acts as a proinflammatory alarmin in the extracellular space, but the intracellular functions of these highly abundant proteins are less clear. Results of this study reveal an important role of S100A8/S100A9 in coordinated cytoskeleton rearrangement during migration. We found that S100A8/S100A9 was able to cross-link F-actin and microtubules in a calcium- and phosphorylation-dependent manner. Cells deficient in S100A8/S100A9 showed abnormalities in cell adhesion and motility. Missing cytoskeletal interactions of S100A8/S100A9 caused differences in the surface expression and activation of β1-integrins as well as in the regulation of Src/Syk kinase family members. Loss of S100A8/S100A9 led to dysregulated integrin-mediated adhesion and migration, resulting in an overall higher dynamic activity of non-activated S100A8/S100A9-deficient phagocytes. Our data suggest that intracellular S100A8/S100A9 is part of a novel regulatory mechanism that ensures the precise control necessary to facilitate the change between the quiescent and activated state of phagocytes.
Collapse
|
48
|
Leonov S, Inyang O, Achkasov K, Bogdan E, Kontareva E, Chen Y, Fu Y, Osipov AN, Pustovalova M, Merkher Y. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int J Mol Sci 2023; 24:ijms24054773. [PMID: 36902201 PMCID: PMC10003476 DOI: 10.3390/ijms24054773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The major cause (more than 90%) of all cancer-related deaths is metastasis, thus its prediction can critically affect the survival rate. Metastases are currently predicted by lymph-node status, tumor size, histopathology and genetic testing; however, all these are not infallible, and obtaining results may require weeks. The identification of new potential prognostic factors will be an important source of risk information for the practicing oncologist, potentially leading to enhanced patient care through the proactive optimization of treatment strategies. Recently, the new mechanobiology-related techniques, independent of genetics, based on the mechanical invasiveness of cancer cells (microfluidic, gel indentation assays, migration assays etc.), demonstrated a high success rate for the detection of tumor cell metastasis propensity. However, they are still far away from clinical implementation due to complexity. Hence, the exploration of novel markers related to the mechanobiological properties of tumor cells may have a direct impact on the prognosis of metastasis. Our concise review deepens our knowledge of the factors that regulate cancer cell mechanotype and invasion, and incites further studies to develop therapeutics that target multiple mechanisms of invasion for improved clinical benefit. It may open a new clinical dimension that will improve cancer prognosis and increase the effectiveness of tumor therapies.
Collapse
Affiliation(s)
- Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olumide Inyang
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Kontareva
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Andreyan N. Osipov
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical-Biological Agency, 123098 Moscow, Russia
| | - Yulia Merkher
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
49
|
Hashimoto N, Kitai R, Fujita S, Yamauchi T, Isozaki M, Kikuta KI. Single-Cell Analysis of Unidirectional Migration of Glioblastoma Cells Using a Fiber-Based Scaffold. ACS APPLIED BIO MATERIALS 2023; 6:765-773. [PMID: 36758146 PMCID: PMC9945112 DOI: 10.1021/acsabm.2c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Glioblastoma (GBM) is a malignant incurable brain tumor in which immature neoplastic cells infiltrate brain tissue by spreading along nerve fibers. The aim of the study was to compare the migration abilities of glioma cells with those of other cancer cells and elucidate the migratory profiles underlying the differential migration of glioma cells using a fiber-based quantitative migration assay. Here, wound healing and transwell assays were used to assess cell mobility in four cell lines: U87-MG glioblastoma cells, MDA-MB-231 breast cancer cells, HCT116 colorectal cancer cells, and MKN45 gastric cancer cells. We also assessed cell mobility using a fiber model that mimics nerve fibers. Time-lapse video microscopy was used to observe cell migration and morphology. The cytoskeleton arrangement was assessed in the fiber model and compared with that in the conventional cell culture model. The conventional evaluation of cell migration ability revealed that the migration ability of breast cancer and glioblastoma cell lines was higher than that of colon cancer and gastric cancer cell lines. The fiber model confirmed that the glioblastoma cell line had a significantly higher migration ability than other cell lines. Tubulin levels were significantly higher in the glioblastoma cells than in other cell lines. In conclusion, the developed fiber-based culture model revealed the specific migratory profile of GBM cells during invasion.
Collapse
Affiliation(s)
- Norichika Hashimoto
- Division of Medicine, Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Department of Neurosurgery, Fukui General Hospital, 58-16-1 Egami-cho, Fukui-shi, Fukui 910-8561, Japan
| | - Ryuhei Kitai
- Division of Medicine, Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Department of Neurosurgery, Kaga Medical Center, Kaga, Ri 36, Sakumi-machi, Kaga-shi, Ishikawa 922-8522, Japan
| | - Satoshi Fujita
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan.,Organization for Life Science Advancement Programs, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Takahiro Yamauchi
- Division of Medicine, Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Organization for Life Science Advancement Programs, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Makoto Isozaki
- Division of Medicine, Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Ken-Ichiro Kikuta
- Division of Medicine, Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan.,Organization for Life Science Advancement Programs, University of Fukui, 3-9-1, Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| |
Collapse
|
50
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|