1
|
Agellon LB. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J Cell Mol Med 2024; 28:e17703. [PMID: 36876733 PMCID: PMC10902576 DOI: 10.1111/jcmm.17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Fatty acid binding proteins (Fabps) are small soluble proteins that are abundant in the cytosol. These proteins are known to bind a myriad of small hydrophobic molecules and have been postulated to serve a variety of roles, yet their precise functions have remained an enigma over half a century of study. Here, we consider recent findings, along with the cumulative findings contributed by many laboratories working on Fabps over the last half century, to synthesize a new outlook for what functions Fabps serve in cells and organisms. Collectively, the findings illustrate that Fabps function as versatile multi-purpose devices serving as sensors, conveyors and modulators to enable cells to detect and handle a specific class of metabolites, and to adjust their metabolic capacity and efficiency.
Collapse
Affiliation(s)
- Luis B. Agellon
- School of Human NutritionMcGill UniversitySte. Anne de BellevueQuebecCanada
| |
Collapse
|
2
|
Xu B, Chen L, Zhan Y, Marquez KNS, Zhuo L, Qi S, Zhu J, He Y, Chen X, Zhang H, Shen Y, Chen G, Gu J, Guo Y, Liu S, Xie T. The Biological Functions and Regulatory Mechanisms of Fatty Acid Binding Protein 5 in Various Diseases. Front Cell Dev Biol 2022; 10:857919. [PMID: 35445019 PMCID: PMC9013884 DOI: 10.3389/fcell.2022.857919] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, fatty acid binding protein 5 (FABP5), also known as fatty acid transporter, has been widely researched with the help of modern genetic technology. Emerging evidence suggests its critical role in regulating lipid transport, homeostasis, and metabolism. Its involvement in the pathogenesis of various diseases such as metabolic syndrome, skin diseases, cancer, and neurological diseases is the key to understanding the true nature of the protein. This makes FABP5 be a promising component for numerous clinical applications. This review has summarized the most recent advances in the research of FABP5 in modulating cellular processes, providing an in-depth analysis of the protein's biological properties, biological functions, and mechanisms involved in various diseases. In addition, we have discussed the possibility of using FABP5 as a new diagnostic biomarker and therapeutic target for human diseases, shedding light on challenges facing future research.
Collapse
Affiliation(s)
- Binyue Xu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yu Zhan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Karl Nelson S. Marquez
- Clinical Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hankou, China
| | - Lvjia Zhuo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shasha Qi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jinyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ying He
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xudong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Hao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yingying Shen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gongxing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianzhong Gu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiping Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Marion M, Hamilton J, Richardson B, Roeder N, Figueiredo A, Nubelo A, Hetelekides E, Penman S, Owada Y, Kagawa Y, Thanos PK. Environmental Enrichment Sex-dependently Rescues Memory Impairment in FABP5 KO Mice Not Mediated by Brain-Derived Neurotrophic Factor. Behav Brain Res 2022; 425:113814. [PMID: 35202717 DOI: 10.1016/j.bbr.2022.113814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/02/2022]
Abstract
Fatty acid-binding proteins (FABPs) are intracellular carriers of bioactive lipids and play a role in the trafficking of endocannabinoids as well as polyunsaturated fatty acids. Mice lacking the FABP5 gene have memory impairments. Environmental enrichment is a potent manipulation known to rescue or improve memory performance. The extent to which the memory impairments in FABP5 knockout (KO) mice can be rescued or improved through environmental conditions remains to be understood. To address this, we raised wild type (WT) and FABP5 KO mice in either socially isolated or environmental enrichment conditions during adolescence. Once in adulthood, mice were tested for Novel Object Recognition (NOR), T-maze, and Morris Water Maze (MWM) to evaluate memory performance. Mice were then euthanized to assess hippocampal brain-dervied neurotrophic factor (BDNF) concentrations. MWM results showed that male FABP5 KO mice performed worse compared to WT counterparts. Male and female mice raised in an enriched environment improved performance regardless of genotype. Results on the NOR test showed that male FABP5 KO mice displayed lower object recognition compared to WT counterparts across both environments. No differences of genotype or environment were seen in female mice. T maze findings showed that impaired performance in socially isolated FABP5 KO mice. Adolescent environmental enrichment rescued this deficit in male, but not female, FABP5 KO mice. Lastly, environmental enrichment increased hippocampal BDNF levels in male WT mice only. Our results corroborate the previously observed role of the FABP5 gene on memory performance and identify an important interaction with the environment during adolescence.
Collapse
Affiliation(s)
- Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Antonio Figueiredo
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Amanda Nubelo
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Eleftherios Hetelekides
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Roles of Drosophila fatty acid-binding protein in development and behavior. Biochem Biophys Res Commun 2022; 599:87-92. [PMID: 35176630 DOI: 10.1016/j.bbrc.2022.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Fatty acid-binding proteins (FABPs) are lipid chaperones that mediate the intracellular dynamics of the hydrophobic molecules that they physically bind to. FABPs are implicated in sleep and psychiatric disorders, as well as in various cellular processes, such as cell proliferation and survival. FABP is well conserved in insects, and Drosophila has one FABP ortholog, dFabp, in its genome. Although dFabp appears to be evolutionarily conserved in some brain functions, little is known about its development and physiological function. In the present study, we investigated the function of dFabp in Drosophila development and behavior. Knockdown or overexpression of dFabp in the developing brain, wing, and eye resulted in developmental defects, such as decreased survival, altered cell proliferation, and increased apoptosis. Glia-specific knockdown of dFabp affected neuronal development, and neuronal regulation of dFabp affected glial cell proliferation. Moreover, the behavioral phenotypes (circadian rhythm and locomotor activity) of flies with regulated dFabp expression in glia and flies with regulated dFabp expression in neurons were very similar. Collectively, our results suggest that dFabp is involved in the development of various tissues and brain functions to control behavior and is a mediator of neuron-glia interactions in the Drosophila nervous system.
Collapse
|
5
|
Adachi Y. Effects of Fatty Acids on Proliferation of Cultured Wild-type and FABP5-KO Thymic Epithelial Cells. J UOEH 2022; 44:239-248. [PMID: 36089341 DOI: 10.7888/juoeh.44.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipids including fatty acids (FAs), which are water-insoluble molecules, are not only a cellular energy source but also signaling molecules that induce and modulate the expression of various cellular functions. Fatty acid-binding proteins (FABP) bind FAs in the cytoplasm, and are thought to determine the cellular localization of FAs. In a previous observation, FABP5 was expressed in thymic epithelial cells (TEC) in the thymus and was influenced by FAs. Fatty acids have mostly inhibitory effects on various cell types, including cancer cells, but their effects on TEC have not been well investigated. In this study, we investigated the effects of long-chain FAs (LCFAs) and the involvement of FABP5 in cell proliferation using a serum-free primary culture system. The results showed that saturated fatty acids did not affect proliferation, but n-3 long-chain polyunsaturated FA (LCPUFA) reduced, n-6 LCPUFA increased, and retinoic acid strongly reduced the percentage of proliferating wild-type TEC. The proliferation of FABP5-KO TEC was more significantly affected by LCPUFA, suggesting that FABP5 is an important modulator of FA-mediated TEC proliferation. These observations may provide a basis for exploring the properties of TEC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
6
|
Expression and enhancement of FABP4 in septoclasts of the growth plate in FABP5-deficient mouse tibiae. Histochem Cell Biol 2021; 155:439-449. [PMID: 33398436 PMCID: PMC8062382 DOI: 10.1007/s00418-020-01953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 01/13/2023]
Abstract
In our previous study, fatty acid-binding protein 5 (FABP5) was expressed in septoclasts with long processes which are considered to resorb uncalcified matrix of the growth plate (GP) cartilage, and no apparent abnormalities were detected in the histo-architecture of the GP of FABP5-deficient (FABP5−/−) mice. Those finding lead us to hypothesize that another FABP can compensate the deletion of FABP5 in septoclasts of its gene-mutant mice. Based on the hypothesis, the present study examined the expression levels of several other FABPs in septoclasts and their morphology in FABP5−/− mouse tibiae. Processes of FABP5−/− septoclasts tend to be shorter than wild septoclasts. FABP4-positive septoclasts in FABP5−/− mice were more numerous than those cells in wild mice. Peroxisome proliferator-activated receptor (PPAR) γ was expressed in FABP4-positive septoclasts of FABP5−/− mice as well as mice administered with GW1929, a PPARγ agonist, suggesting that the occurrence of PPARγ induces an increase of FABP4-positive septoclasts. The present finding suggests that the functional exertion of FABP5 in septoclasts is supplemented by FABP4 in normal and FABP5−/− mice, and that the expression of FABP4 is up-regulated in accompany with PPARγ in FABP5−/− for maintenance of resorptive activity in the GP.
Collapse
|
7
|
Paskevicius T, Jung J, Pujol M, Eggleton P, Qin W, Robinson A, Gutowski N, Holley J, Smallwood M, Newcombe J, Zochodne D, Chen XZ, Tang J, Kraus A, Michalak M, Agellon LB. The Fabp5/calnexin complex is a prerequisite for sensitization of mice to experimental autoimmune encephalomyelitis. FASEB J 2020; 34:16662-16675. [PMID: 33124722 DOI: 10.1096/fj.202001539rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/11/2022]
Abstract
We previously showed that calnexin (Canx)-deficient mice are desensitized to experimental autoimmune encephalomyelitis (EAE) induction, a model that is frequently used to study inflammatory demyelinating diseases, due to increased resistance of the blood-brain barrier to immune cell transmigration. We also discovered that Fabp5, an abundant cytoplasmic lipid-binding protein found in brain endothelial cells, makes protein-protein contact with the cytoplasmic C-tail domain of Canx. Remarkably, both Canx-deficient and Fabp5-deficient mice commonly manifest resistance to EAE induction. Here, we evaluated the importance of Fabp5/Canx interactions on EAE pathogenesis and on the patency of a model blood-brain barrier to T-cell transcellular migration. The results demonstrate that formation of a complex comprised of Fabp5 and the C-tail domain of Canx dictates the permeability of the model blood-brain barrier to immune cells and is also a prerequisite for EAE pathogenesis.
Collapse
Affiliation(s)
| | - Joanna Jung
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Myriam Pujol
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Eggleton
- Department of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Wenying Qin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nick Gutowski
- Department of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Janet Holley
- Department of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Miranda Smallwood
- Department of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Douglas Zochodne
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China.,Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Allison Kraus
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
8
|
Proksch E, Soeberdt M, Neumann C, Kilic A, Abels C. Modulators of the endocannabinoid system influence skin barrier repair, epidermal proliferation, differentiation and inflammation in a mouse model. Exp Dermatol 2020; 28:1058-1065. [PMID: 31350927 DOI: 10.1111/exd.14012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Endocannabinoids (ECs) are important regulators of cell signalling. Cannabinoid receptors are involved in keratinocyte proliferation/differentiation. Elevation of the endogenous cannabinoid tone leads to strong anti-inflammatory effects. Here, we explored the influence of endocannabinoid system (ECS) modulators on skin permeability barrier repair, epidermal proliferation, differentiation and inflammation in hairless mice. We used WOBE440, a selective fatty acid amide hydrolase (FAAH) inhibitor, WOL067-531, an inhibitor of endocannabinoid reuptake with no relevant FAAH activity, which both signal via cannabinoid receptor-1 and cannabinoid receptor-2 (CB-1R and CB-2R) and compared them to WOBE15 which signals via CB-2R. Barrier disruption and skin irritation were induced by tape stripping or by sodium dodecyl sulphate (SDS) patch testing. Immediately after barrier disruption, 30 μL of 0.5% WOBE440, WOL067-531 and WOBE15 solutions or the vehicle was applied topically. Barrier repair was monitored by transepidermal water loss at 1.5, 3, 5 and 7 hours. We found that barrier repair was significantly delayed by WOL067-531. A tendency for a delay was noticed for WOBE440, whereas for WOBE15, no effect was observed. Immunohistology showed that the tape-stripping-induced increase in epidermal proliferation and filaggrin expression was significantly reduced by topical applications of WOL067-531 and WOBE440, but not by WOBE15. Also, the SDS-induced inflammation, as determined by the number of inflammatory cells, was reduced by WOL067-531 and WOBE440. In summary, we showed that WOL067-531 exhibits a significant effect on skin barrier repair, epidermal proliferation/differentiation and inflammation.
Collapse
Affiliation(s)
| | | | - Claudia Neumann
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG, Bielefeld, Germany
| | | |
Collapse
|
9
|
Fatty acid-binding protein 5 limits ILC2-mediated allergic lung inflammation in a murine asthma model. Sci Rep 2020; 10:16617. [PMID: 33024217 PMCID: PMC7538993 DOI: 10.1038/s41598-020-73935-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Dietary obesity is regarded as a problem worldwide, and it has been revealed the strong linkage between obesity and allergic inflammation. Fatty acid-binding protein 5 (FABP5) is expressed in lung cells, such as alveolar epithelial cells (ECs) and alveolar macrophages, and plays an important role in infectious lung inflammation. However, we do not know precise mechanisms on how lipid metabolic change in the lung affects allergic lung inflammation. In this study, we showed that Fabp5−/− mice exhibited a severe symptom of allergic lung inflammation. We sought to examine the role of FABP5 in the allergic lung inflammation and demonstrated that the expression of FABP5 acts as a novel positive regulator of ST2 expression in alveolar ECs to generate retinoic acid (RA) and supports the synthesis of RA from type II alveolar ECs to suppress excessive activation of innate lymphoid cell (ILC) 2 during allergic lung inflammation. Furthermore, high-fat diet (HFD)-fed mice exhibit the downregulation of FABP5 and ST2 expression in the lung tissue compared with normal diet (ND)-fed mice. These phenomena might be the reason why obese people are more susceptible to allergic lung inflammation. Thus, FABP5 is potentially a therapeutic target for treating ILC2-mediated allergic lung inflammation.
Collapse
|
10
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Senga S, Kobayashi N, Kawaguchi K, Ando A, Fujii H. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1057-1067. [DOI: 10.1016/j.bbalip.2018.06.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/11/2018] [Accepted: 06/10/2018] [Indexed: 01/18/2023]
|
12
|
Lee GS, Pan Y, Scanlon MJ, Porter CJ, Nicolazzo JA. Fatty Acid–Binding Protein 5 Mediates the Uptake of Fatty Acids, but not Drugs, Into Human Brain Endothelial Cells. J Pharm Sci 2018; 107:1185-1193. [DOI: 10.1016/j.xphs.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 11/24/2022]
|
13
|
Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function. J Neurosci 2017; 36:11755-11767. [PMID: 27852782 DOI: 10.1523/jneurosci.1583-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5+/+ and FABP5-/- mice using a battery of memory paradigms. FABP5-/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5+/+ and FABP5-/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14C-DHA uptake into brain endothelial cells and brain capillaries of FABP5-/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5+/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5-/- mice are associated with reduced CNS access of DHA. SIGNIFICANCE STATEMENT Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5-/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5 in the maintenance of cognitive function via regulating the brain uptake of DHA, and suggests that upregulation of FABP5 in neurodegenerative diseases, where brain DHA levels are possibly diminished (e.g., Alzheimer's disease), may provide a novel therapeutic approach for restoring cognitive function.
Collapse
|
14
|
Retinoic acid regulates cell-shape and -death of E-FABP (FABP5)-immunoreactive septoclasts in the growth plate cartilage of mice. Histochem Cell Biol 2017; 148:229-238. [PMID: 28500502 PMCID: PMC5539264 DOI: 10.1007/s00418-017-1578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 01/17/2023]
Abstract
Septoclasts, which are mononuclear and spindle-shaped cells with many processes, have been considered to resorb the transverse septa of the growth plate (GP) cartilage at the chondro-osseous junction (COJ). We previously reported the expression of epidermal-type fatty acid-binding protein (E-FABP, FABP5) and localization of peroxisome proliferator-activated receptor (PPAR)β/δ, which mediates the cell survival or proliferation, in septoclasts. On the other hand, retinoic acid (RA) can bind to E-FABP and is stored abundantly in the GP cartilage. From these information, it is possible to hypothesize that RA in the GP is incorporated into septoclasts during the cartilage resorption and regulates the growth and/or death of septoclasts. To clarify the mechanism of the cartilage resorption induced by RA, we administered an overdose of RA or its precursor vitamin A (VA)-deficient diet to young mice. In mice of both RA excess and VA deficiency, septoclasts decreased in the number and cell size in association with shorter and lesser processes than those in normal mice, suggesting a substantial suppression of resorption by septoclasts in the GP cartilage. Lack of PPARβ/δ-expression, TUNEL reaction, RA receptor (RAR)β, and cellular retinoic acid-binding protein (CRABP)-II were induced in E-FABP-positive septoclasts under RA excess, suggesting the growth arrest/cell-death of septoclasts, whereas cartilage-derived retinoic acid-sensitive protein (CD-RAP) inducing the cell growth arrest or morphological changes was induced in septoclasts under VA deficiency. These results support and do not conflict with our hypothesis, suggesting that endogenous RA in the GP is possibly incorporated in septoclasts and utilized to regulate the activity of septoclasts resorbing the GP cartilage.
Collapse
|
15
|
Zheng M, Lee S, Tsuzuki S, Inoue K, Masuda D, Yamashita S, Iwanaga T. Immunohistochemical localization of fatty acid transporters and MCT1 in the sebaceous glands of mouse skin. Biomed Res 2016; 37:265-70. [PMID: 27545003 DOI: 10.2220/biomedres.37.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The sebaceous glands secrete sebum to protect the epidermis and hairs by the oily products. The glands express several transporters and binding proteins for the production of fatty acids and uptake of their sources. The present immunohistochemical study examined the expression and localization of CD36, MCT1, FATP4, and E-FABP in the sebaceous glands, including the meibomian and preputial glands of mice. CD36 and MCT1 in sebaceous glands were largely co-localized along the plasma membrane of secretory cells, while they were separately expressed in the glandular portion of meibomian and preputial glands. Immunoreactivities for FATP4 and E-FABP appeared diffusely in the cytoplasm of secretory cells. Genetic deletion of CD36 did not affect the immunolocalization of the three other molecules. The sebaceous glands were judged to be useful for analyzing the functions and relation of fatty acid transporters and binding proteins.
Collapse
Affiliation(s)
- Miao Zheng
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
16
|
Shibue K, Yamane S, Harada N, Hamasaki A, Suzuki K, Joo E, Iwasaki K, Nasteska D, Harada T, Hayashi Y, Adachi Y, Owada Y, Takayanagi R, Inagaki N. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion. Am J Physiol Endocrinol Metab 2015; 308:E583-91. [PMID: 25628425 DOI: 10.1152/ajpendo.00543.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.
Collapse
Affiliation(s)
- Kimitaka Shibue
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamane
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Hamasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuyo Suzuki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erina Joo
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanako Iwasaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Nasteska
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takanari Harada
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yasuhiro Adachi
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; and
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan;
| |
Collapse
|
17
|
Islam A, Kagawa Y, Sharifi K, Ebrahimi M, Miyazaki H, Yasumoto Y, Kawamura S, Yamamoto Y, Sakaguti S, Sawada T, Tokuda N, Sugino N, Suzuki R, Owada Y. Fatty Acid Binding Protein 3 Is Involved in n-3 and n-6 PUFA transport in mouse trophoblasts. J Nutr 2014; 144:1509-16. [PMID: 25122651 DOI: 10.3945/jn.114.197202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low placental fatty acid (FA) transport during the embryonic period has been suggested to result in fetal developmental disorders and various adult metabolic diseases, but the molecular mechanism by which FAs are transported through the placental unit remains largely unknown. OBJECTIVE The aim of this study was to examine the distribution and functional relevance of FA binding protein (FABP), a cellular chaperone of FAs, in the mouse placenta. METHODS We clarified the localization of FABPs and sought to examine their function in placental FA transport through the phenotypic analysis of Fabp3-knockout mice. RESULTS Four FABPs (FABP3, FABP4, FABP5, and FABP7) were expressed with spatial heterogeneity in the placenta, and FABP3 was dominantly localized to the trophoblast cells. In placentas from the Fabp3-knockout mice (both sexes), the transport coefficients for linoleic acid (LA) were significantly reduced compared with those from wild-type mice by 25% and 44% at embryonic day (E) 15.5 and E18.5, respectively, whereas those for α-linolenic acid (ALA) were reduced by 19% and 17%, respectively. The accumulation of LA (18% and 27% at E15.5 and E18.5) and ALA (16% at E15.5) was also significantly less in the Fabp3-knockout fetuses than in wild-type fetuses. In contrast, transport and accumulation of palmitic acid (PA) were unaffected and glucose uptake significantly increased by 23% in the gene-ablated mice compared with wild-type mice at E18.5. Incorporation of LA (51% and 52% at 1 and 60 min, respectively) and ALA (23% at 60 min), but not PA, was significantly less in FABP3-knockdown BeWo cells than in controls, whereas glucose uptake was significantly upregulated by 51%, 50%, 31%, and 33% at 1, 20, 40, and 60 min, respectively. CONCLUSIONS Collectively FABP3 regulates n-3 (ω-3) and n-6 (ω-6) polyunsaturated FA transport in trophoblasts and plays a pivotal role in fetal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Syuiti Sakaguti
- Institute of Radioisotope Research and Education, Science Research Center, Organization for Research Initiative, Yamaguchi University, Yamaguchi, Japan; and
| | | | | | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ryoji Suzuki
- Department of Anatomy, Akita University Graduate School of Medicine, Akita, Japan
| | | |
Collapse
|
18
|
Fatty acid binding proteins and the nervous system: Their impact on mental conditions. Neurosci Res 2014; 102:47-55. [PMID: 25205626 DOI: 10.1016/j.neures.2014.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 12/30/2022]
Abstract
The brain is rich in lipid and fatty molecules. In this review article, we focus on fatty acid binding proteins (Fabps) that bind to fatty acids such as arachidonic acid and docosahexianoic acid and transfer these lipid ligands within the cytoplasm. Among Fabp family molecules, Fabp3, Fabp5, and Fabp7 are specifically localized in neural stem/progenitor cells, neurons and glia in a cell-type specific manner. Quantitative trait locus analysis has revealed that Fabp7 is related with performance of prepulse inhibition (PPI) that is used as an endophenotype of psychiatric diseases such as schizophrenia. Fabp5 and Fabp7 play important roles on neurogenesis and differentially regulate acoustic startle response and PPI. However, other behavior performances including spatial memory, anxiety-like behavior, and diurnal changes in general activity were not different in mice deficient for Fabp7 or Fabp5. Considering the importance of fatty acids in neurogenesis, we would like to emphasize that lipid nutrition and its dynamism via Fabps play significant roles in mental conditions. This might provide a good example of how nutritional environment can affect psychiatric conditions at the molecular level.
Collapse
|
19
|
Shimamoto C, Ohnishi T, Maekawa M, Watanabe A, Ohba H, Arai R, Iwayama Y, Hisano Y, Toyota T, Toyoshima M, Suzuki K, Shirayama Y, Nakamura K, Mori N, Owada Y, Kobayashi T, Yoshikawa T. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies. Hum Mol Genet 2014; 23:6495-511. [PMID: 25027319 PMCID: PMC4240203 DOI: 10.1093/hmg/ddu369] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.
Collapse
Affiliation(s)
- Chie Shimamoto
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan, Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tetsuo Ohnishi
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Motoko Maekawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hisako Ohba
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Ryoichi Arai
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yasuko Hisano
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Manabu Toyoshima
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba 299-0111, Japan
| | - Kazuhiko Nakamura
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Aomori 036-8562, Japan and
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan
| | - Tetsuyuki Kobayashi
- Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama 351-0198, Japan,
| |
Collapse
|
20
|
Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:280-94. [PMID: 24262790 DOI: 10.1016/j.bbalip.2013.11.007] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022]
Abstract
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| | - Peter M Elias
- Metabolism Section, Medicine Service and Dermatology Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA
| |
Collapse
|
21
|
Sharifi K, Ebrahimi M, Kagawa Y, Islam A, Tuerxun T, Yasumoto Y, Hara T, Yamamoto Y, Miyazaki H, Tokuda N, Yoshikawa T, Owada Y. Differential expression and regulatory roles of FABP5 and FABP7 in oligodendrocyte lineage cells. Cell Tissue Res 2013; 354:683-95. [PMID: 24114376 DOI: 10.1007/s00441-013-1730-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 09/05/2013] [Indexed: 12/15/2022]
Abstract
Fatty-acid-binding proteins (FABPs) are key intracellular molecules involved in the uptake, transportation and storage of fatty acids and in the mediation of signal transduction and gene transcription. However, little is known regarding their expression and function in the oligodendrocyte lineage. We evaluate the in vivo and in vitro expression of FABP5 and FABP7 in oligodendrocyte lineage cells in the cortex and corpus callosum of adult mice, mixed cortical culture and oligosphere culture by immunofluorescent counter-staining with major oligodendrocyte lineage markers. In all settings, FABP7 expression was detected in NG2(+)/PDGFRα(+) oligodendrocyte progenitor cells (OPCs) that did not express FABP5. FABP5 was detected in mature CC1(+)/MBP(+) oligodendrocytes that did not express FABP7. Analysis of cultured OPCs showed a significant decrease in the population of FABP7-knockout (KO) OPCs and their BrdU uptake compared with wild-type (WT) OPCs. Upon incubation of OPCs in oligodendrocyte differentiation medium, a significantly lower percentage of FABP7-KO OPCs differentiated into O4(+) oligodendrocytes. The percentage of mature MBP(+) oligodendrocytes relative to whole O4(+)/MBP(+) oligodendrocytes was significantly lower in FABP7-KO and FABP5-KO than in WT cell populations. The percentage of terminally mature oligodendrocytes with membrane sheet morphology was significantly lower in FABP5-KO compared with WT cell populations. Thus, FABP7 and FABP5 are differentially expressed in oligodendrocyte lineage cells and regulate their proliferation and/or differentiation. Our findings suggest the involvement of FABP7 and FABP5 in the pathophysiology of demyelinating disorders, neuropsychiatric disorder and glioma, conditions in which OPCs/oligodendrocytes play central roles.
Collapse
Affiliation(s)
- Kazem Sharifi
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Fatty acid transporters in skin development, function and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:362-8. [PMID: 24120574 DOI: 10.1016/j.bbalip.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Fatty acids in the epidermis can be incorporated into complex lipids or exist in a free form, and they are crucial to proper functions of the epidermis and its appendages, such as sebaceous glands. Epidermal fatty acids can be synthesized de novo by keratinocytes or taken up from extracutaneous sources in a process that likely involves protein transporters. Several proteins that are expressed in the epidermis have been proposed to facilitate the uptake of long-chain fatty acids (LCFA) in mammalian cells, including fatty acid translocase/CD36, fatty acid binding protein, and fatty acid transport protein (FATP)/very long-chain acyl-CoA synthetase. In this review, we will discuss the mechanisms by which these candidate transporters facilitate the uptake of fatty acids. We will then discuss the clinical implications of defects in these transporters and relevant animal models, including the FATP4 animal models and ichthyosis prematurity syndrome, a congenital ichthyosis caused by FATP4 deficiency. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
|
23
|
Dallaglio K, Marconi A, Truzzi F, Lotti R, Palazzo E, Petrachi T, Saltari A, Coppini M, Pincelli C. E-FABP induces differentiation in normal human keratinocytes and modulates the differentiation process in psoriatic keratinocytes in vitro. Exp Dermatol 2013; 22:255-61. [PMID: 23528210 DOI: 10.1111/exd.12111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 12/17/2022]
Abstract
Epidermal fatty acid-binding protein (E-FABP) is a lipid carrier, originally discovered in human epidermis. We show that E-FABP is almost exclusively expressed in postmitotic (PM) keratinocytes, corresponding to its localization in the highest suprabasal layers, while it is barely expressed in keratinocyte stem cells (KSC) and transit amplifying (TA) keratinocytes. Transfection of normal human keratinocytes with recombinant (r) E-FABP induces overexpression of K10 and involucrin. On the other hand, E-FABP inhibition by siRNA downregulates K10 and involucrin expression in normal keratinocytes through NF-κB and JNK signalling pathways. E-FABP is highly expressed in psoriatic epidermis, and it is mainly localized in stratum spinosum. Psoriatic PM keratinocytes overexpress E-FABP as compared to the same population in normal epidermis. E-FABP inhibition in psoriatic keratinocytes markedly reduces differentiation, while it upregulates psoriatic markers such as survivin and K16. However, under high-calcium conditions, E-FABP silencing downregulates K10 and involucrin, while survivin and K16 expression is completely abolished. These data strongly indicate that E-FABP plays an important role in keratinocyte differentiation. Moreover, E-FABP modulates differentiation in psoriatic keratinocytes.
Collapse
Affiliation(s)
- Katiuscia Dallaglio
- Institute of Dermatology, School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugawara T, Nemoto K, Adachi Y, Yamano N, Tokuda N, Muto M, Okuyama R, Sakai S, Owada Y. Reduced size of sebaceous gland and altered sebum lipid composition in mice lacking fatty acid binding protein 5 gene. Exp Dermatol 2012; 21:543-6. [PMID: 22716252 DOI: 10.1111/j.1600-0625.2012.01514.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fatty acid binding proteins (FABPs) are capable of binding long-chain FA and are involved in intracellular FA transport and signal transduction. In sebaceous glands, FABP5 is highly expressed in differentiated sebocytes; though, its function remains unclear. In this study, we examined the role of FABP5 in sebocytes using FABP5-deficient mice. The size of sebaceous glands was significantly reduced, while the sebum volume was increased with altered lipid composition in FABP5-deficient mice. However, no significant differences were discerned in the expression of proliferation or differentiation markers including Blimp1, c-myc, Ki67 and peroxisome proliferator-activated receptors (PPAR)γ between wild-type and FABP5-deficient sebaceous glands. The expression of cellular retinoic acid binding protein-2 (CRABP2) that is a competitor of FABP5 for RA signalling was increased in FABP5-deficient mice. These results suggest that FABP5 is involved in the regulation of sebaceous gland activity through modulation of cellular lipid signalling and/or metabolism in the sebocytes.
Collapse
|
25
|
Matsumata M, Sakayori N, Maekawa M, Owada Y, Yoshikawa T, Osumi N. The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse. Stem Cells 2012; 30:1532-43. [PMID: 22581784 DOI: 10.1002/stem.1124] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
New neurons are continually produced after birth from neural stem/progenitor cells (NSCs/NPCs) in the hippocampal dentate gyrus (DG). Recent studies have reported that fatty acid binding protein 7 (Fabp7/brain lipid binding protein (BLBP)) is required for the maintenance of embryonic NSCs/NPCs and have identified an association between the Fabp7 gene and behavioral paradigms that correlate with hippocampal functions. However, the specific roles of Fabps in postnatal neurogenesis remain unknown. Herein, we demonstrate the effects of Fabp7, and another Fabp, Fabp5, on postnatal neurogenesis. Fabp7 and Fabp5 were detected in the subgranular zone (SGZ) of the DG, and Fabp7+ cells were less differentiated than Fabp5+ cells. We analyzed the differentiation state of NSCs/NPCs in the SGZ of 4-week-old (4w) Fabp7 knockout (7KO), Fabp5 KO (5KO), and Fabp7/Fabp5 double KO (7/5KO) mice and found that the number of NSCs/NPCs was dramatically reduced compared with wild-type mice. Although the uptake of BrdU 1 day after injection was decreased in all KO mice, the survival of BrdU+ cells 1 month after injection was increased in the 7/5KO mice compared to other three genotypes. We also observed an enhancement of neuronal differentiation in all Fabp KO mice. In addition, the proliferation and survival of NSCs/NPCs differed along the anterior-posterior axis (A-P axis). A greater number of newborn cells in the posterior region became extinct, but this tendency was not apparent in the Fabps KO mice. These data suggest that Fabp7 and Fabp5 have differential roles for proliferation and survival of the NSCs/NPCs during postnatal DG neurogenesis.
Collapse
Affiliation(s)
- Miho Matsumata
- Division of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Miyake T, Ogawa E, Mikoshiba A, Kobayashi A, Hosoe H, Kashiwabara S, Uhara H, Owada Y, Okuyama R. Epidermal-type FABP is a predictive marker of clinical response to systemic treatment and ultraviolet therapy in psoriatic skin lesions. J Dermatol Sci 2012; 68:199-202. [PMID: 23039948 DOI: 10.1016/j.jdermsci.2012.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/01/2012] [Accepted: 09/08/2012] [Indexed: 11/30/2022]
|
27
|
Adachi Y, Hiramatsu S, Tokuda N, Sharifi K, Ebrahimi M, Islam A, Kagawa Y, Koshy Vaidyan L, Sawada T, Hamano K, Owada Y. Fatty acid-binding protein 4 (FABP4) and FABP5 modulate cytokine production in the mouse thymic epithelial cells. Histochem Cell Biol 2012; 138:397-406. [PMID: 22585040 DOI: 10.1007/s00418-012-0963-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/11/2022]
Abstract
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Organ Anatomy, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-kogushi, Ube, Yamaguchi 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tian Z, Zhao ZA, Liang XH, Zhang XH, Sha AG, Zhang ZR, Yu YS, Yang ZM. Expression and function of fatty acid-binding protein 4 during mouse decidualization. Fertil Steril 2011; 95:2749-52.e1-5. [PMID: 21704217 DOI: 10.1016/j.fertnstert.2011.05.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/10/2011] [Accepted: 05/15/2011] [Indexed: 11/27/2022]
Abstract
Fatty acid-binding protein 4 (Fabp4) is highly expressed in the secondary decidual zone of mouse decidua and deciduoma and stromal cells under in vitro decidualization. Dtprp, a well-known marker of in vitro decidualization, is diminished by small interfering RNA against Fabp4 and FABP4 inhibitor and stimulated through Fabp4 overexpression.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Biology, Santou University, Shantou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Khnykin D, Miner JH, Jahnsen F. Role of fatty acid transporters in epidermis: Implications for health and disease. DERMATO-ENDOCRINOLOGY 2011; 3:53-61. [PMID: 21695012 PMCID: PMC3117002 DOI: 10.4161/derm.3.2.14816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/07/2011] [Accepted: 01/13/2011] [Indexed: 12/31/2022]
Abstract
Skin epidermis is an active site of lipid synthesis. The intercellular lipids of human stratum corneum (SC) are unique in composition and quite different from the lipids found in most biological membranes. The three major lipids in the SC are free fatty acids, cholesterol and ceramides. Fatty acids can be synthesized by keratinocytes de novo and, in addition, need to be taken up from the circulation. The latter process has been shown to be protein mediated, and several fatty acid transporters are expressed in skin. Recent studies of transgenic and knockout animal models for fatty acid transporters and the identification of fatty acid transport protein 4 (FATP4 or SLC27A4) mutations as causative for Ichthyosis Prematurity Syndrome highlight the vital roles of fatty acid transport and metabolism in skin homeostasis. This review provides an overview of our current understanding of the role of fatty acids and their transporters in cutaneous biology, including their involvement in epidermal barrier generation and skin inflammation.
Collapse
Affiliation(s)
- Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT); Department of Pathology; Oslo University Hospital-Rikshospitalet; Oslo, Norway
| | | | | |
Collapse
|
30
|
Epidermal FABP (FABP5) Regulates Keratinocyte Differentiation by 13(S)-HODE-Mediated Activation of the NF-κB Signaling Pathway. J Invest Dermatol 2011; 131:604-12. [DOI: 10.1038/jid.2010.342] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Tokuda N, Adachi T, Adachi Y, Higashi M, Sharifi K, Tuerxun T, Sawada T, Kondo H, Owada Y. Identification of FABP7 in fibroblastic reticular cells of mouse lymph nodes. Histochem Cell Biol 2010; 134:445-52. [PMID: 21042809 DOI: 10.1007/s00418-010-0754-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 02/03/2023]
Abstract
Fatty acids and their metabolites regulate immune cell function. The present study was undertaken to examine the detailed distribution of fatty acid binding proteins (FABPs), the cytosolic chaperones of fatty acids, in mouse peripheral immune organs. Using immunohistochemistry, FABP7 was localized to the alpha-smooth muscle actin (SMA)(+) fibroblastic reticular cells, which construct the stromal reticula in the T cell areas of the peripheral lymph nodes and spleen. Immunoelectron microscopy showed that FABP7(+) cells enclosed the collagen fibers, forming a conduit system, which transport lymph and associated low-molecular-mass proteins. In contrast, FABP5(+) cells were distributed throughout the lymph node and contained well-developed lysosome and phagocytic materials within the cytoplasm. The mesenteric lymph nodes of FABP7 knockout mice showed normal histological features, but the percentage of CD4(+) cells was significantly increased compared with that in wild-type mice. These data indicate that FABP7 may be involved in T cell homeostasis, possibly by modulating lipid metabolism in fibroblastic reticular cells within the peripheral lymph nodes.
Collapse
Affiliation(s)
- Nobuko Tokuda
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
SiRNA against Fabp5 induces 3T3-L1 cells apoptosis during adipocytic induction. Mol Biol Rep 2010; 37:4003-11. [PMID: 20238174 DOI: 10.1007/s11033-010-0059-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/05/2010] [Indexed: 01/10/2023]
Abstract
Fatty acid-binding protein 5 (Fabp5), exhibits an important role in binding free fatty acids, as well as regulating lipid metabolism and transport. The purpose of this study was to evaluate the role of Fabp5 during adipogenesis. 3T3-L1 preadipocytes were selected as cell differentiation model and short interfering RNAs (siRNA) against Fabp5 (siFabp5) were prepared. Our results showed that two potent siFabp5 specifically inhibited endogenous expression of Fabp5 at both mRNA and protein level. SiFabp5 had little effect on undifferentiated 3T3-L1 fibroblasts. However, during adipocytic induction, 3T3-L1 preadipocytes transfected with siFabp5 significantly reduced cell viability, as well as increased both caspase-3 activity and procaspase-3 cleavage. Furthermore, we illustrated that knockdown Fabp5 inhibited the expression of PPARγ and C/EBPα during adipocytic induction. In conclusion, our data suggests that Fabp5 is crucial in maintaining the viability of preadipocytes during adipogenesis via the activation of Akt cascade, and decreased Fabp5 expression induce differentiating preadipocytes apoptosis via caspase-3 activation.
Collapse
|
33
|
Saino-Saito S, Nourani RM, Iwasa H, Kondo H, Owada Y. Discrete localization of various fatty-acid-binding proteins in various cell populations of mouse retina. Cell Tissue Res 2009; 338:191-201. [PMID: 19763623 DOI: 10.1007/s00441-009-0862-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Various fatty acids (FAs) are involved as an energy source in many different functions in the organism. They are also essential ingredients of membranous lipids and act as intracellular signaling molecules. Intracellular fatty-acid-binding proteins (FABPs) comprise a family of soluble lipid-binding proteins with low molecular masses and solubilize long-chain FAs to allow intracellular translocation in the aqueous cytosol. To clarify the functions of FABPs in the retina, which is remarkably rich in polyunsaturated FAs, we have investigated the localization of B (brain type)-, H (heart type)-, E (epidermal type)-, and A (adipocyte type)-FABPs in adult mouse retinae by immunohistochemistry. In order to determine the possible involvement of FABPs in retinal degenerative diseases, we have also examined changes in FABP expression in light-induced photoreceptor cell degeneration (photic injury). The discrete localization of B-, H-, E-, and A-FABP species in various cell populations of the retina has been clarified: B-FABP is mainly localized in the cone photoreceptor cells, H-FABP in some populations of amacrine/bipolar/horizontal interneurons, and E-FABP in ganglion cells, with A-FABP-like immunoreactivity being located in resident microglia of normal retinae. E-FABP has further been localized in invasive macrophages in damaged retinae following photic injury, allowing discrete identification of the resident microglia and invasive macrophages by A- and E-FABP immunoreactivity, respectively.
Collapse
Affiliation(s)
- Sachiko Saino-Saito
- Division of Histology, Department of Cell Biology, Tohoku University Graduate School of Medical Sciences, 980-8575, Sendai, Japan
| | | | | | | | | |
Collapse
|
34
|
Storch J, Corsico B. The emerging functions and mechanisms of mammalian fatty acid-binding proteins. Annu Rev Nutr 2008; 28:73-95. [PMID: 18435590 DOI: 10.1146/annurev.nutr.27.061406.093710] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fatty acid-binding proteins (FABPs) are abundant intracellular proteins that bind long-chain fatty acids with high affinity. Nine separate mammalian FABPs have been identified, and their tertiary structures are highly conserved. The FABPs have unique tissue-specific distributions that have long suggested functional differences among them. In the last decade, considerable progress has been made in understanding the specific functions of the FABPs and, in some cases, their mechanisms of action at the molecular level. The FABPs appear to be involved in the extranuclear compartments of the cell by trafficking their ligands within the cytosol via interactions with organelle membranes and specific proteins. Several members of the FABP family have been shown to function directly in the regulation of cognate nuclear transcription factor activity via ligand-dependent translocation to the nucleus. This review will focus on these emerging functions and mechanisms of the FABPs, highlighting the unique functional properties of each as well as the similarities among them.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
35
|
Yamamoto N, Kaneko I, Motohashi K, Sakagami H, Adachi Y, Tokuda N, Sawada T, Furukawa H, Ueyama Y, Fukunaga K, Ono M, Kondo H, Owada Y. Fatty acid-binding protein regulates LPS-induced TNF-alpha production in mast cells. Prostaglandins Leukot Essent Fatty Acids 2008; 79:21-6. [PMID: 18678477 DOI: 10.1016/j.plefa.2008.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/30/2008] [Accepted: 06/28/2008] [Indexed: 01/09/2023]
Abstract
There has been increasing evidence for the involvement of fatty acid-binding proteins (FABPs) in the cytokine production of macrophages and dendritic cells probably through the control of cellular lipid metabolism and signal transduction. Since mast cells (MCs) are recently shown to be involved in immune response through modification of cytokine production, it is possible that some FABPs could also be involved in the immune response of MCs. In this study, we found that epidermal-type FABP (E-FABP) was expressed in murine bone marrow-derived MCs (BMMCs). Using BMMCs from genetically E-FABP-null mutated mice, we demonstrated that E-FABP in BMMCs plays a key role in the production of TNF-alpha following lipopolysaccharide (LPS) stimulation. In the in vivo septic peritonitis model (cecal ligation and puncture model), E-FABP-null mice showed a significantly increased mortality compared to wild-type mice. However, no significant difference in antigen-induced cytokine production was observed between wild-type and E-FABP-null BMMCs, and systemic anaphylaxis was equally induced in vivo in both wild-type and E-FABP-null mice. These results suggest that E-FABP is specifically involved in the LPS-induced cytokine production of MCs, and could play a role in the host-defense against bacterial infection, possibly through regulation of TNF-alpha production.
Collapse
Affiliation(s)
- Noriko Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Owada Y. Fatty acid binding protein: localization and functional significance in the brain. TOHOKU J EXP MED 2008; 214:213-20. [PMID: 18323691 DOI: 10.1620/tjem.214.213] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long chain fatty acids are important nutrients for brain development and function. However, the molecular basis of their actions in the brain is still to be clarified. Fatty acid-binding proteins (FABPs) belong to the multigene family of the intracellular lipid-binding protein. FABPs bind to long chain fatty acids, being involved in the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the regulation of gene expression. FABPs are widely expressed in mammalian tissues, with distinct expression patterns for the individual protein. Although FABPs have been implicated to serve as regulators in systemic cellular metabolic pathways, recent studies have demonstrated the ability of FABPs to regulate functions of the brain, one of the most fat-enriched tissues in the body. This review summarizes the localization of FABPs in the brain, and recent progress in elucidating the function of FABPs in the brain.
Collapse
Affiliation(s)
- Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine.
| |
Collapse
|
37
|
Feingold KR. Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J Lipid Res 2007; 48:2531-46. [PMID: 17872588 DOI: 10.1194/jlr.r700013-jlr200] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Medical Service, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
38
|
Owada Y, Abdelwahab SA, Kitanaka N, Sakagami H, Takano H, Sugitani Y, Sugawara M, Kawashima H, Kiso Y, Mobarakeh JI, Yanai K, Kaneko K, Sasaki H, Kato H, Saino-Saito S, Matsumoto N, Akaike N, Noda T, Kondo H. Altered emotional behavioral responses in mice lacking brain-type fatty acid-binding protein gene. Eur J Neurosci 2006; 24:175-87. [PMID: 16882015 DOI: 10.1111/j.1460-9568.2006.04855.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Brain-type fatty acid-binding protein (B-FABP) belongs to a family of intracellular lipid-binding proteins. B-FABP exhibits a binding affinity to long-chain fatty acids (FAs) whose effects on brain functions including development, emotion, learning and memory have been proposed. B-FABP is localized in the ventricular germinal cells in embryonic brain and astrocytes in developing and mature brain of rodents. In the present study we generated the mouse harboring a null mutation in the B-FABP gene and studied its phenotype. B-FABP mutant mice exhibited the enhanced anxiety and increased fear memory as well as the decreased content of docosahexaenoic acid (DHA) in their brain during the neonatal period without detection of any histological changes in the brain. In the adult brain, B-FABP was localized more numerously to the astrocytes in the amygdala and septal area than to those in the hippocampal area. Analysis of FA content in the amygdala of adult brain revealed that arachidonic and palmitic acids increased significantly in the mutant mice compared with wild-type. Furthermore, the response of N-methyl-d-aspartate receptor-mediated current to DHA in isolated neurons from B-FABP mutant brain was significantly decreased compared with that of wild-type, while no significant differences were detected in behavioral responses related to the spatial learning/memory or in the hippocampal long-term potentiation. These data indicate that B-FABP is crucially involved in the fear memory and anxiety through its binding with FAs and/or its own direct effects on pertinent metabolism/signaling of FAs.
Collapse
Affiliation(s)
- Yuji Owada
- Division of Histology, Graduate School of Medical Science, Tohoku University, 2-1 Seiryo-machi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kitanaka N, Owada Y, Okuyama R, Sakagami H, Nourani MR, Aiba S, Furukawa H, Watanabe M, Ono M, Ohteki T, Kondo H. Epidermal-type fatty acid binding protein as a negative regulator of IL-12 production in dendritic cells. Biochem Biophys Res Commun 2006; 345:459-66. [PMID: 16684508 DOI: 10.1016/j.bbrc.2006.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 04/17/2006] [Indexed: 01/22/2023]
Abstract
Fatty acids and their metabolites have recently been shown to modulate various functions of dendritic cells (DCs) including their differentiation and cytokine production, although the mechanisms underlying their cellular functions are not fully understood. In view of our previous finding that epidermal-type fatty acid binding protein (E-FABP) was exclusively expressed in splenic DCs among FABP family, we examined the phenotype of E-FABP-null mutant mice in order to elucidate the functional significance of E-FABP expression in DCs. Although E-FABP-null mutant mice showed no apparent abnormalities in the population density and subset distribution of DCs as well as the microscopic morphology in the spleen, DCs isolated from E-FABP-null spleen showed enhanced production of IL-12p70, a key cytokine for innate immune responses, in response to appropriate stimuli as compared with wild-type. In real-time PCR, the expression level of IL-12p35 mRNA after LPS stimuli was much higher in mutant DCs when compared with wild-type, while no apparent change of IL-12p40 mRNA level was detected. Phosphorylated forms of p38 mitogen-activated protein kinase (p38MAPK) and IkappaB-alpha, molecules critical for IL-12 production, were detected at higher levels in E-FABP-null-mutant DCs after LPS stimuli when compared with wild-type counterparts. Collectively, it is suggested that E-FABP may be a novel negative regulator of IL-12 production in DCs, and this regulation may be exerted via its involvement in the p38MAPK-mediated transcription of IL-12p35.
Collapse
Affiliation(s)
- Noriko Kitanaka
- Department of Histology, Graduate School of Medicine, Tohoku University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kusakari Y, Ogawa E, Owada Y, Kitanaka N, Watanabe H, Kimura M, Tagami H, Kondo H, Aiba S, Okuyama R. Decreased keratinocyte motility in skin wound on mice lacking the epidermal fatty acid binding protein gene. Mol Cell Biochem 2006; 284:183-8. [PMID: 16411018 DOI: 10.1007/s11010-005-9048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 09/01/2005] [Indexed: 01/09/2023]
Abstract
Fatty acids are shown to be important in various skin functions. Fatty acid binding protein (FABP) is postulated to serve as a lipid shuttle, solubilizing hydrophobic fatty acids and delivering them to the appropriate metabolic system. Among the FABP family proteins, epidermal-type FABP (E-FABP) is solely expressed in keratinocyte but its specific role in skin is not yet fully established. We found an elevated expression of E-FABP in regenerative keratinocytes of healing wounds. However, E-FABP null mice showed no marked differences compared to wild type mice in the process of wound closure, in vivo. On the other hand, in keratinocyte culture, E-FABP gene disruption decreased the cell motility, but did not affect the cell proliferation. E-FABP deletion may be compensated for in vivo by the microenvironment comprised of various cells such as fibroblasts and endothelial cells around the wound. Our analyses suggest that the E-FABP elevation may be necessary for the activation of cell motility within regenerative epidermis during wound healing.
Collapse
Affiliation(s)
- Yoshiyuki Kusakari
- Department of Dermatology, Tohoku University Graduate School of Medicine, Tohoku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nourani MR, Owada Y, Kitanaka N, Abdelwahab SA, Iwasa H, Sakagami H, Spener F, Kondo H. Localization of epidermal-type fatty acid binding protein in macrophages in advanced atretic follicles of adult mice. J Mol Histol 2006; 36:391-400. [PMID: 16400526 DOI: 10.1007/s10735-005-9005-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 07/27/2005] [Indexed: 12/21/2022]
Abstract
The localization of epidermal-type fatty acid binding protein (E-FABP) in the mature mouse ovary was examined by immuno-light and electron microscopy. Numerous macrophages immunopositive for both anti-E-FABP and F4/80 antibodies, together with immunonegative cells, were found in advanced atretic follicles that had eccentric lumens containing deformed ova. While some E-FABP-immunopositive macrophages were spider in shape and appeared singly, others, especially close to the lumen, were round and voluminous and tended to be aggregated. The voluminous macrophages contained phagosomes of various sizes and they were regarded as those actively involved in the phagocytosis of apoptotic granulosa cells. E-FABP-immunopositive macrophages and their processes were often apposed to adjacent immunonegative cells, and some of them lined the lumen containing deformed ova. On the other hand, E-FABP-immunonegative cells in the atretic follicles were classified into two types: the one, a minority, was characterized by small mitochondria containing non-tubular cristae and presumably represented residual granulosa cells, while the other dominant type was characterized by large mitochondria containing tubular cristae and presumably represented theca cells originally surrounding the follicles to be atretic. The present detection of E-FABP-immunopositivity selectively in macrophages of the atretic follicles suggests possible involvement of E-FABP and/or its ligand fatty acids in the process of follicular atresia, and it makes more reliable the identification of the advanced atretic follicles with the antral spaces obliterated, which could provide further details on the histology of the follicular atresia than before.
Collapse
Affiliation(s)
- Mohammad Reza Nourani
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Fatty acid-binding proteins (FABPs) belong to the conserved multigene family of the intracellular lipid-binding proteins (iLBPs). These proteins are ubiquitously expressed in vertebrate tissues, with distinct expression patterns for the individual FABPs. Various functions have been proposed for these proteins, including the promotion of cellular uptake and transport of fatty acids, the targeting of fatty acids to specific metabolic pathways, and the participation in the regulation of gene expression and cell growth. Novel genetic tools that have become available in recent years, such as transgenic cell lines, animals, and knock-out mice, have provided the opportunity to test these concepts in physiological settings. Such studies have helped to define essential cellular functions of individual FABP-types or of combinations of several different FABPs. The deletion of particular FABP genes, however, has not led to gross phenotypical changes, most likely because of compensatory overexpression of other members of the iLBP gene family, or even of unrelated fatty acid transport proteins. This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.
Collapse
Affiliation(s)
- Norbert H Haunerland
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
43
|
Guthmann F, Schachtrup C, Tölle A, Wissel H, Binas B, Kondo H, Owada Y, Spener F, Rüstow B. Phenotype of palmitic acid transport and of signalling in alveolar type II cells from E/H-FABP double-knockout mice: contribution of caveolin-1 and PPARgamma. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1636:196-204. [PMID: 15164767 DOI: 10.1016/j.bbalip.2003.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/10/2003] [Accepted: 10/23/2003] [Indexed: 11/19/2022]
Abstract
Based on the assumption that fatty-acid-binding proteins (FABPs) of the epidermal-type (E-FABP) and heart-type (H-FABP) in murine alveolar type II (TII) cells mediate the synthesis of dipalmitoyl phosphatidylcholine (DPPC), the main surfactant phospholipid, we analysed TII cells isolated from wild-type (wt) and E/H-FABP double-knockout (double-ko) mice. Application of labelled palmitic acid to these cells revealed a drop in uptake, beta-oxidation, and incorporation into neutral lipids and total phosphatidylcholine (PC) of TII cells from double-ko mice. Whereas incorporation of labelled palmitic acid into DPPC remained unchanged, degradation studies demonstrated a substantial shift in DPPC synthesis from de novo to reacylation. In addition, increased expression of mRNAs and proteins of caveolin-1 and PPARgamma, and an increase of the mRNA encoding fatty acid translocase (FAT) was observed in the double-ko phenotype. As caveolin-1 interacted with PPARgamma, we assumed that FAT, caveolin-1, and PPARgamma form a signalling chain for fatty acid or drug. Consequently, PPARgamma-selective pioglitazone was added to the diet of double-ko mice. We found that further activation of PPARgamma could 'heal' the E/H-FABP double-ko effect in these TII cells as transport and utilisation of labelled palmitic acid restored a wt phenocopy. This indicated that E-FABP and/or H-FABP are involved in the mediation of DPPC synthesis in wt TII cells.
Collapse
Affiliation(s)
- Florian Guthmann
- Clinic for Neonatology, Charité Campus Mitte, Humboldt-Universität zu Berlin, 10098 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kitanaka N, Owada Y, Abdelwahab SA, Iwasa H, Sakagami H, Watanabe M, Spener F, Kondo H. Specific localization of epidermal-type fatty acid binding protein in dendritic cells of splenic white pulp. Histochem Cell Biol 2003; 120:465-73. [PMID: 14614628 DOI: 10.1007/s00418-003-0590-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
Dendritic cells in the splenic white pulp of mice were intensely immunoreactive for epidermal-type fatty acid binding protein (E-FABP). This specific immunostaining revealed a clear difference in morphology between the dendritic cells in the periarterial lymphoid sheath (PALS) and follicular dendritic cells in the follicles in terms of cell sizes and process branching. No immunoreactivity was detected in dendritic cells in the marginal zones and the red pulp, although endothelial cells of almost all capillaries in the red pulp were immunoreactive for E-FABP. After peritoneal injection of lipopolysaccharide, the immunoreactive cells in PALS progressively enlarged and became rounded in shape with a peak in size at 24 h postinjection and they eventually resumed the dendritic form at 48 h postinjection. Within each of the enlarged immunoreactive cell perikarya were included small immunonegative apoptotic cells, presumptive lymphocytes. Taken together, E-FABP is useful as a marker for dendritic cells in the splenic white pulp, and may be involved through combination with fatty acids in antigen presentation and retention as well as in cytokine production.
Collapse
Affiliation(s)
- Noriko Kitanaka
- Division of Histology, Department of Cell Biology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-cho Aoba-ku, 980-8575 Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Martin GG, Danneberg H, Kumar LS, Atshaves BP, Erol E, Bader M, Schroeder F, Binas B. Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid-binding protein gene. J Biol Chem 2003; 278:21429-38. [PMID: 12670956 DOI: 10.1074/jbc.m300287200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although liver fatty acid-binding protein (L-FABP) is an important binding site for various hydrophobic ligands in hepatocytes, its in vivo significance is not understood. We have therefore created L-FABP null mice and report here their initial analysis, focusing on the impact of this mutation on hepatic fatty acid binding capacity, lipid composition, and expression of other lipid-binding proteins. Gel-filtered cytosol from L-FABP null liver lacked the main fatty acid binding peak in the fraction that normally comprises both L-FABP and sterol carrier protein-2 (SCP-2). The binding capacity for cis-parinaric acid was decreased >80% in this region. Molar ratios of cholesterol/cholesterol ester, cholesteryl ester/triglyceride, and cholesterol/phospholipid were 2- to 3-fold greater, reflecting up to 3-fold absolute increases in specific lipid classes in the order cholesterol > cholesterol esters > phospholipids. In contrast, the liver pool sizes of nonesterified fatty acids and triglycerides were not altered. However, hepatic deposition of a bolus of intravenously injected [14C]oleate was markedly reduced, showing altered lipid pool turnover. An increase of approximately 75% of soluble SCP-2 but little or no change of other soluble (glutathione S-transferase, albumin) and membrane (fatty acid transport protein, CD36, aspartate aminotransferase, caveolin) fatty acid transporters was measured. These results (i) provide for the first time a quantitative assessment of the contribution of L-FABP to cytosolic fatty acid binding capacity, (ii) establish L-FABP as an important determinant of hepatic lipid composition and turnover, and (iii) suggest that SCP-2 contributes to the accumulation of cholesterol in L-FABP null liver.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, Raymond Stotzer Parkway, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abdelwahab SA, Owada Y, Kitanaka N, Iwasa H, Sakagami H, Kondo H. Localization of brain-type fatty acid-binding protein in Kupffer cells of mice and its transient decrease in response to lipopolysaccharide. Histochem Cell Biol 2003; 119:469-75. [PMID: 12802594 DOI: 10.1007/s00418-003-0538-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2003] [Indexed: 01/16/2023]
Abstract
Brain-type fatty acid-binding protein (B-FABP) was localized in Kupffer cells of liver of postnatal day 10 (P10) and older mice in immunolight and electron microscopy as well as by in situ hybridization histochemistry. The immunoreaction products were localized in the cytoplasmic matrix but not within the nucleus. After peritoneal injection of lipopolysaccharide (LPS), the immunoreaction for B-FABP decreased markedly in Kupffer cells at 1 h postinjection and thereafter gradually recovered to the preinjection level by 24 h postinjection, although no decrease in the mRNA expression was detected in Northern blotting throughout the course after the injection. The specific localization of B-FABP, but not the other FABPs, in Kupffer cells, and its rapid decrease after LPS injection suggest the intimate involvement of B-FABP in Kupffer cells in the inflammatory reaction, probably through mediation of n-3 polyunsaturated fatty acids, which are strong binders of B-FABP.
Collapse
Affiliation(s)
- Soha Abdelkawi Abdelwahab
- Division of Histology, Department of Cell Biology, Graduate School of Medical Science, Tohoku University, 980-8575 Sendai, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Haunerland NH, Spener F. Properties and physiological significance of fatty acid binding proteins. LIPOBIOLOGY 2003. [DOI: 10.1016/s1569-2558(03)33007-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA. Covalent modification of epithelial fatty acid-binding protein by 4-hydroxynonenal in vitro and in vivo. Evidence for a role in antioxidant biology. J Biol Chem 2002; 277:50693-702. [PMID: 12386159 DOI: 10.1074/jbc.m209493200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
4-Hydroxynonenal (4-HNE) is a cytotoxic alpha,beta-unsaturated acyl aldehyde that is naturally produced from lipid peroxidation and cleavage in response to oxidative stress and aging. Such reactive lipids covalently modify cellular target proteins, thereby affecting biological structure and function. Herein we report the identification of the epithelial fatty acid-binding protein (E-FABP) as a molecular target for 4-HNE modification both in vitro and in vivo. 4-HNE covalently modified (t(12) < 60 s) E-FABP in vitro, as revealed by a combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry and immunochemical reactivity using antibodies directed to 4-HNE-protein conjugates. Identification of Cys-120 as the major site of modification was determined through tandem mass spectral sequencing of tryptic peptides, as well as analysis of E-FABP mutants C120A, C127A, and C120A/C127A. The in vitro modification of Cys-120 by 4-HNE was relatively insensitive to pH (6.4-8.4), and temperature (4-37 degrees C) but was markedly potentiated by noncovalently bound fatty acids. 4-HNE-modified E-FABP was more stable than unmodified E-FABP to chemical denaturation by guanidine hydrochloride, as assessed by changes in intrinsic tryptophan fluorescence. Analysis of soluble protein extracts from rat retina with antibodies directed to 4-HNE-protein conjugates revealed immunoreactivity with a 15-kDa protein that was identified by electrospray ionization and matrix-assisted laser desorption ionization-time of flight mass spectrometry as E-FABP. Evaluation of retinal pigment epithelial cell extracts derived from E-FABP null mice by two-dimensional gel electrophoresis using anti-4-HNE antibodies revealed increased modification in the null cells relative to those from wild type cells. These results indicate that E-FABP is a molecular target for 4-HNE modification and the hypothesis that E-FABP functions as an antioxidant protein by scavenging reactive lipids through covalent modification of Cys-120.
Collapse
|
49
|
Abstract
Acute perturbations are followed by barrier repair and enhanced lipid synthesis, as well as cellular fatty acid trafficking, yet irritation of the skin may be induced by repeat disturbance of barrier function. Recently, new insights in cellular fatty acid transport and metabolism have evolved with respect to skin irritation and barrier disturbances: (1) Employing sodium dodecyl sulfate, skin irritation is accompanied by the induction of an epidermal (E) cytosolic fatty acid binding protein (FABP) associated with enhanced barrier repair. Whether E-FABP contributes to the water barrier function in normal skin remains to be elucidated; (2) Cutaneous inflammation, as it occurs in irritant contact dermatitis, can be reduced by peroxisome proliferating activated receptor (PPAR) agonists, such as linoleic acid, with clinical effects comparable to that of glucocorticoids; (3) PPARalpha agonists accelerate barrier recovery and enhance lamellar body synthesis, neutral lipid synthesis, in particular that of ceramides and cholesterol; (4) PPARalpha agonists increase the minimal erythema dose in UVB-irradiated human skin. This review provides a brief overview of the current understanding of mammalian fatty acid (FA) metabolism with respect to epidermal barrier abrogation and repair, including new insights into cellular FA transport and metabolism.
Collapse
Affiliation(s)
- N Y Schürer
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|