1
|
Wu J, Xu X, Zhang S, Li M, Qiu Y, Lu G, Zheng Z, Huang H. Plastic Events of the Vestibular Nucleus: the Initiation of Central Vestibular Compensation. Mol Neurobiol 2024; 61:9680-9693. [PMID: 38689145 DOI: 10.1007/s12035-024-04208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Vestibular compensation is a physiological response of the vestibular organs within the inner ear. This adaptation manifests during consistent exposure to acceleration or deceleration, with the vestibular organs incrementally adjusting to such changes. The molecular underpinnings of vestibular compensation remain to be fully elucidated, yet emerging studies implicate associations with neuroplasticity and signal transduction pathways. Throughout the compensation process, the vestibular sensory neurons maintain signal transmission to the central equilibrium system, facilitating adaptability through alterations in synaptic transmission and neuronal excitability. Notable molecular candidates implicated in this process include variations in ion channels and neurotransmitter profiles, as well as neuronal and synaptic plasticity, metabolic processes, and electrophysiological modifications. This study consolidates the current understanding of the molecular events in vestibular compensation, augments the existing research landscape, and evaluates contemporary therapeutic strategies. Furthermore, this review posits potential avenues for future research that could enhance our comprehension of vestibular compensation mechanisms.
Collapse
Affiliation(s)
- Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Minping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Kong D, Kong L, Liu C, Wu Q, Wang J, Dai C. Commissural and monosynaptic inputs to medial vestibular nucleus GABAergic neurons in mice. Front Neurol 2024; 15:1484488. [PMID: 39440253 PMCID: PMC11493639 DOI: 10.3389/fneur.2024.1484488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Objective MVN GABAergic neurons is involved in the rebalance of commissural system contributing to alleviating acute peripheral vestibular dysfunction syndrome. This study aims to depict monosynaptic inputs to MVN GABAergic neurons. Methods The modified rabies virus-based retrogradation method combined with the VGAT-IRES-Cre mice was used in this study. Moreover, the commissural connections with MVN GABAergic neurons were analyzed. Results We identified 60 nuclei projecting to MVN GABAergic neurons primarily distributed in the cerebellum and the medulla. The uvula-nodulus, gigantocellular reticular nucleus, prepositus nucleus, intermediate reticular nucleus, and three other nuclei sent dense inputs to MVN GABAergic neurons. The medial (fastigial) cerebellar nucleus, dorsal paragigantocellular nucleus, lateral paragigantocellular nucleus and 10 other nuclei sent moderate inputs to MVN GABAergic neurons. Sparse inputs to MVN GABAergic neurons originated from the nucleus of the solitary tract, lateral reticular nucleus, pedunculopontine tegmental nucleus and 37 other nuclei. The MVN GABAergic neurons were regulated by the contralateral MVN, lateral vestibular nucleus, superior vestibular nucleus, and inferior vestibular nucleus. Conclusion Our study contributes to further understanding of the vestibular dysfunction in terms of neural circuits and search for new strategies to facilitate vestibular compensation.
Collapse
Affiliation(s)
- Dedi Kong
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lingxi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chengwei Liu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Qianru Wu
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chunfu Dai
- Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Hearing Medicine, Ministry of Health, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Magyar A, Racz E, Matesz C, Wolf E, Kiss P, Gaal B. Lesion-induced changes of brevican expression in the perineuronal net of the superior vestibular nucleus. Neural Regen Res 2022; 17:649-654. [PMID: 34380906 PMCID: PMC8504393 DOI: 10.4103/1673-5374.320988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Damage to the vestibular sense organs evokes static and dynamic deficits in the eye movements, posture and vegetative functions. After a shorter or longer period of time, the vestibular function is partially or completely restored via a series of processes such as modification in the efficacy of synaptic inputs. As the plasticity of adult central nervous system is associated with the alteration of extracellular matrix, including its condensed form, the perineuronal net, we studied the changes of brevican expression in the perineuronal nets of the superior vestibular nucleus after unilateral labyrinth lesion. Our results demonstrated that the unilateral labyrinth lesion and subsequent compensation are accompanied by the changing of brevican staining pattern in the perineuronal nets of superior vestibular nucleus of the rat. The reduction of brevican in the perineuronal nets of superior vestibular nucleus may contribute to the vestibular plasticity by suspending the non-permissive role of brevican in the restoration of perineuronal net assembly. After a transitory decrease, the brevican expression restored to the control level parallel to the partial restoration of impaired vestibular function. The bilateral changing in the brevican expression supports the involvement of commissural vestibular fibers in the vestibular compensation. All experimental procedures were approved by the ‘University of Debrecen – Committee of Animal Welfare’ (approval No. 6/2017/DEMAB) and the ‘Scientific Ethics Committee of Animal Experimentation’ (approval No. HB/06/ÉLB/2270-10/2017; approved on June 6, 2017).
Collapse
Affiliation(s)
- Agnes Magyar
- Pediatrics Clinic, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Racz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen; MTA-DE Neuroscience Research Group, Debrecen, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Kiss
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Botond Gaal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Montardy Q, Wei M, Liu X, Yi T, Zhou Z, Lai J, Zhao B, Besnard S, Tighilet B, Chabbert C, Wang L. Selective optogenetic stimulation of glutamatergic, but not GABAergic, vestibular nuclei neurons induces immediate and reversible postural imbalance in mice. Prog Neurobiol 2021; 204:102085. [PMID: 34171443 DOI: 10.1016/j.pneurobio.2021.102085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Glutamatergic and GABAergic neurons represent the neural components of the medial vestibular nuclei. We assessed the functional role of glutamatergic and GABAergic neuronal pathways arising from the vestibular nuclei (VN) in the maintenance of gait and balance by optogenetically stimulating the VN in VGluT2-cre and GAD2-cre mice. We demonstrate that glutamatergic, but not GABAergic VN neuronal subpopulation is responsible for immediate and strong posturo-locomotor deficits, comparable to unilateral vestibular deafferentation models. During optogenetic stimulation, the support surface dramatically increased in VNVGluT2+ mice, and rapidly fell back to baseline after stimulation, whilst it remained unchanged during similar stimulation of VNGAD2+ mice. This effect persisted when vestibular tactilo kinesthesic plantar inputs were removed. Posturo-locomotor alterations evoked in VNVGluT2+ animals were still present immediately after stimulation, while they disappeared 1 h later. Overall, these results indicate a fundamental role for VNVGluT2+ neurons in balance and posturo-locomotor functions, but not for VNGAD2+ neurons, in this specific context. This new optogenetic approach will be useful to characterize the role of the different VN neuronal populations involved in vestibular physiology and pathophysiology.
Collapse
Affiliation(s)
- Q Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - M Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - X Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - T Yi
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Z Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Lai
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - B Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - S Besnard
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; Université de Caen Normandie, CHU de Caen, Caen, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - B Tighilet
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - C Chabbert
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - L Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Ma CW, Kwan PY, Wu KLK, Shum DKY, Chan YS. Regulatory roles of perineuronal nets and semaphorin 3A in the postnatal maturation of the central vestibular circuitry for graviceptive reflex. Brain Struct Funct 2018; 224:613-626. [PMID: 30460552 DOI: 10.1007/s00429-018-1795-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Perineuronal nets (PN) restrict neuronal plasticity in the adult brain. We hypothesize that activity-dependent consolidation of PN is required for functional maturation of behavioral circuits. Using the postnatal maturation of brainstem vestibular nucleus (VN) circuits as a model system, we report a neonatal period in which consolidation of central vestibular circuitry for graviception is accompanied by activity-dependent consolidation of chondroitin sulfate (CS)-rich PN around GABAergic neurons in the VN. Postnatal onset of negative geotaxis was used as an indicator for functional maturation of vestibular circuits. Rats display negative geotaxis from postnatal day (P) 9, coinciding with the condensation of CS-rich PN around GABAergic interneurons in the VN. Delaying PN formation, by removal of primordial CS moieties on VN with chondroitinase ABC (ChABC) treatment at P6, postponed emergence of negative geotaxis to P13. Similar postponement was observed following inhibition of GABAergic transmission with bicuculline, in line with the reported role of PN in increasing excitability of parvalbumin neurons. We further reasoned that PN-CS restricts bioavailability of plasticity-inducing factors such as semaphorin 3A (Sema3A) to bring about circuit maturation. Treatment of VN explants with ChABC to liberate PN-bound Sema3A resulted in dendritic growth and arborization, implicating structural plasticity that delays synapse formation. Evidence is thus provided for the role of PN-CS-Sema3A in regulating structural and circuit plasticity at VN interneurons with impacts on the development of graviceptive postural control.
Collapse
Affiliation(s)
- Chun-Wai Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China
| | - Kenneth Lap-Kei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China
| | - Daisy Kwok-Yan Shum
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China.
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China. .,State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
6
|
Péricat D, Farina A, Agavnian-Couquiaud E, Chabbert C, Tighilet B. Complete and irreversible unilateral vestibular loss: A novel rat model of vestibular pathology. J Neurosci Methods 2017; 283:83-91. [DOI: 10.1016/j.jneumeth.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
7
|
Dutheil S, Watabe I, Sadlaoud K, Tonetto A, Tighilet B. BDNF Signaling Promotes Vestibular Compensation by Increasing Neurogenesis and Remodeling the Expression of Potassium-Chloride Cotransporter KCC2 and GABAA Receptor in the Vestibular Nuclei. J Neurosci 2016; 36:6199-212. [PMID: 27277799 PMCID: PMC6604891 DOI: 10.1523/jneurosci.0945-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABAA receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies. SIGNIFICANCE STATEMENT In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and significantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the potassium-chloride cotransporter KCC2 and GABAA receptors, undergo remarkable fluctuations within vestibular nuclei (VN), strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspectives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.
Collapse
Affiliation(s)
- Sophie Dutheil
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Isabelle Watabe
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Karina Sadlaoud
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle PRATIM, 13331 Marseille Cedex 03, France
| | - Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 Aix-Marseille Université-CNRS, Fédération de Recherche 3C, 13331 Marseille Cedex 03, France, and
| |
Collapse
|
8
|
Tighilet B, Leonard J, Bernard-Demanze L, Lacour M. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat. Eur J Pharmacol 2015; 769:342-9. [PMID: 26607469 DOI: 10.1016/j.ejphar.2015.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France.
| | - Jacques Leonard
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | - Laurence Bernard-Demanze
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France; Service ORL et de Chirurgie cervico-faciale Hôpital de la Conception Marseille, 147 Boulevard Baille, 13005 Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260; FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Aix-Marseille Université - CNRS, Centre Saint-Charles, Case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| |
Collapse
|
9
|
Modifications of perineuronal nets and remodelling of excitatory and inhibitory afferents during vestibular compensation in the adult mouse. Brain Struct Funct 2015; 221:3193-209. [PMID: 26264050 DOI: 10.1007/s00429-015-1095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
Abstract
Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation.
Collapse
|
10
|
Tighilet B, Mourre C, Lacour M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front Integr Neurosci 2014; 7:87. [PMID: 24427120 PMCID: PMC3879797 DOI: 10.3389/fnint.2013.00087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/16/2013] [Indexed: 11/13/2022] Open
Abstract
After unilateral vestibular neurectomy (UVN) many molecular and neurochemical mechanisms underlie the neurophysiological reorganizations occurring in the vestibular nuclei (VN) complex, as well as the behavioral recovery process. As a key regulator, the histaminergic system appears to be a likely candidate because drugs interfering with histamine (HA) neurotransmission facilitate behavioral recovery after vestibular lesion. This study aimed at analyzing the post-lesion changes of the histaminergic system by quantifying binding to histamine H3 receptors (H3R; mediating namely histamine autoinhibition) using a histamine H3 receptor agonist ([3H]N-α-methylhistamine). Experiments were done in brain sections of control cats (N = 6) and cats submitted to UVN and killed 1 (N = 6) or 3 (N = 6) weeks after the lesion. UVN induced a bilateral decrease in binding density of the agonist [3H]N-α-methylhistamine to H3R in the tuberomammillary nuclei (TMN) at 1 week post-lesion, with a predominant down-regulation in the ipsilateral TMN. The bilateral decrease remained at the 3 weeks survival time and became symmetric. Concerning brainstem structures, binding density in the VN, the prepositus hypoglossi, the subdivisions of the inferior olive decreased unilaterally on the ipsilateral side at 1 week and bilaterally 3 weeks after UVN. Similar changes were observed in the subdivisions of the solitary nucleus only 1 week after the lesion. These findings indicate vestibular lesion induces plasticity of the histamine H3R, which could contribute to vestibular function recovery.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Christiane Mourre
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre Saint-Charles, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Michel Lacour
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260, FR - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition), Centre Saint-Charles, Case B, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|
11
|
GABA(A) receptor agonist and antagonist alter vestibular compensation and different steps of reactive neurogenesis in deafferented vestibular nuclei of adult cats. J Neurosci 2013; 33:15555-66. [PMID: 24068822 DOI: 10.1523/jneurosci.5691-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Strong reactive cell proliferation occurs in the vestibular nuclei after unilateral vestibular neurectomy (UVN). Most of the newborn cells survive, differentiate into glial cells and neurons with GABAergic phenotype, and have been reported to contribute to recovery of the posturo-locomotor functions in adult cats. Because the GABAergic system modulates vestibular function recovery and the different steps of neurogenesis in mammals, we aimed to examine in our UVN animal model the effect of chronic infusion of GABA(A) receptor (R) agonist and antagonist in the vestibular nuclei. After UVN and one-month intracerebroventricular infusions of saline, GABA(A)R agonist (muscimol) or antagonist (gabazine), cell proliferation and differentiation into astrocytes, microglial cells, and neurons were revealed using immunohistochemical methods. We also determined the effects of these drug infusions on the recovery of posturo-locomotor and oculomotor functions through behavioral tests. Our results showed that surprisingly, one month after UVN, newborn cells did not survive in the UVN-muscimol group whereas the number of GABAergic pre-existent neurons increased, and the long-term behavioral recovery of the animals was drastically impaired. Conversely, a significant number of newborn cells survived up to 1 month in the UVN-gabazine group whereas the astroglial population increased, and these animals showed the fastest recovery in behavioral functions. This study reports for the first time that GABA plays multiple roles, ranging from beneficial to detrimental on the different steps of a functional postlesion neurogenesis and further, strongly influences the time course of vestibular function recovery.
Collapse
|
12
|
Park MK, Lee BD, Lee JD, Jung HH, Chae SW. Gene profiles during vestibular compensation in rats after unilateral labyrinthectomy. Ann Otol Rhinol Laryngol 2013. [PMID: 23193910 DOI: 10.1177/000348941212101110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aims of this study were to determine changes in gene expression in the chronic state of vestibular compensation by microarray analysis and to validate the asymmetrical levels of gene expression in the ipsilateral and contralateral vestibular nucleus complexes (VNCs). METHODS Microarray analysis was used to examine the expression of genes up-regulated or down-regulated in the ipsilateral VNC at 1 and 7 days after unilateral labyrinthectomy. Up-regulated or down-regulated gene expression in the ipsilateral and contralateral VNCs was then validated by reverse transcriptase polymerase chain reaction at 1, 7, 14, and 28 days after labyrinthectomy. RESULTS The genes down-regulated at 1 day after labyrinthectomy and up-regulated at 7 days after labyrinthectomy as determined by microarray analysis and reverse transcriptase polymerase chain reaction were zinc finger protein 307, zinc metallopeptidase, P34, calcitonin receptor, insulin-like growth factor binding protein 5, GATA binding protein 3, and CD151. Expression of zinc finger protein 307, zinc metallopeptidase, P34, and calcitonin receptor was up-regulated even after 7 days in the contralateral VNC of rats that had labyrinthectomy. CONCLUSIONS This study demonstrated changes in gene expression in rats during the chronic phase of vestibular compensation after unilateral labyrinthectomy and provided profiles of these changes in gene expression.
Collapse
Affiliation(s)
- Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
13
|
Dutheil S, Lacour M, Tighilet B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One 2011; 6:e22262. [PMID: 21853029 PMCID: PMC3154899 DOI: 10.1371/journal.pone.0022262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/22/2011] [Indexed: 12/30/2022] Open
Abstract
Functional and reactive neurogenesis and astrogenesis are observed in deafferented vestibular nuclei after unilateral vestibular nerve section in adult cats. The newborn cells survive up to one month and contribute actively to the successful recovery of posturo-locomotor functions. This study investigates whether the nature of vestibular deafferentation has an incidence on the neurogenic potential of the vestibular nuclei, and on the time course of behavioural recovery. Three animal models that mimic different vestibular pathologies were used: unilateral and permanent suppression of vestibular input by unilateral vestibular neurectomy (UVN), or by unilateral labyrinthectomy (UL, the mechanical destruction of peripheral vestibular receptors), or unilateral and reversible blockade of vestibular nerve input using tetrodotoxin (TTX). Neurogenesis and astrogenesis were revealed in the vestibular nuclei using bromodeoxyuridine (BrdU) as a newborn cell marker, while glial fibrillary acidic protein (GFAP) and glutamate decarboxylase 67 (GAD67) were used to identify astrocytes and GABAergic neurons, respectively. Spontaneous nystagmus and posturo-locomotor tests (static and dynamic balance performance) were carried out to quantify the behavioural recovery process. Results showed that the nature of vestibular loss determined the cellular plastic events occurring in the vestibular nuclei and affected the time course of behavioural recovery. Interestingly, the deafferented vestibular nuclei express neurogenic potential after acute and total vestibular loss only (UVN), while non-structural plastic processes are involved when the vestibular deafferentation is less drastic (UL, TTX). This is the first experimental evidence that the vestibular complex in the brainstem can become neurogenic under specific injury. These new data are of interest for understanding the factors favouring the expression of functional neurogenesis in adult mammals in a brain repair perspective, and are of clinical relevance in vestibular pathology.
Collapse
Affiliation(s)
- Sophie Dutheil
- Département de Neurosciences, UMR 6149 “Neurosciences Intégratives et Adaptatives”, Université de Provence/CNRS - Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France
| | - Michel Lacour
- Département de Neurosciences, UMR 6149 “Neurosciences Intégratives et Adaptatives”, Université de Provence/CNRS - Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France
| | - Brahim Tighilet
- Département de Neurosciences, UMR 6149 “Neurosciences Intégratives et Adaptatives”, Université de Provence/CNRS - Pôle 3C (Comportement, Cerveau, Cognition), Centre de Saint Charles, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Dutheil S, Lacour M, Tighilet B. Une nouvelle zone de neurogenèse fonctionnelle. Med Sci (Paris) 2011; 27:605-13. [DOI: 10.1051/medsci/2011276012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
15
|
Minasyan AL, Aznauryan AV, Meliksetyan IB, Chavushyan VA, Sarkissian JS. Analysis of dynamics of degenerative and regenerative processes in the flexor and extensor collaterals of crushed sciatic nerve: Effects of parathyroid hormone. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712410041026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Liberge M, Manrique C, Bernard-Demanze L, Lacour M. Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation. J Neuroinflammation 2010; 7:91. [PMID: 21143912 PMCID: PMC3004876 DOI: 10.1186/1742-2094-7-91] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/09/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Unilateral vestibular deafferentation results in strong microglial and astroglial activation in the vestibular nuclei (VN) that could be due to an inflammatory response. This study was aimed at determining if markers of inflammation are upregulated in the VN after chemical unilateral labyrinthectomy (UL) in the rat, and if the inflammatory response, if any, induces the expression of neuroprotective factors that could promote the plasticity mechanisms involved in the vestibular compensation process. The expressions of inflammatory and neuroprotective factors after chemical or mechanical UL were also compared to verify that the inflammatory response was not due to the toxicity of sodium arsanilate. METHODS Immunohistological investigations combined the labeling of tumor necrosis factor α (TNFα), as a marker of the VN inflammatory response, and of nuclear transcription factor κB (NFκB) and manganese superoxide dismutase (MnSOD), as markers of neuroprotection that could be expressed in the VN because of inflammation. Immunoreactivity (Ir) of the VN cells was quantified in the VN complex of rats. Behavioral investigations were performed to assess the functional recovery process, including both static (support surface) and dynamic (air-righting and landing reflexes) postural tests. RESULTS Chemical UL (arsanilate transtympanic injection) induced a significant increase in the number of TNFα-Ir cells in the medial and inferior VN on both sides. These changes were detectable as early as 4 h after vestibular lesion, persisted at 1 day, and regained nearly normal values at 3 days. The early increase in TNFα expression was followed by a slightly delayed upregulation of NFκB 8 h after chemical UL, peaking at 1 day, and regaining control values 3 days later. By contrast, upregulation of MnSOD was more strongly delayed (1 day), with a peak at 3 days, and a return to control values at 15 days. Similar changes of TNFα, NFκB, and MnSOD expression were found in rats submitted to mechanical UL. Behavioral observations showed strong posturo-locomotor deficits early after chemical UL (1 day) and a complete functional recovery 6 weeks later. CONCLUSIONS Our results suggest that the upregulation of inflammatory and neuroprotective factors after vestibular deafferentation in the VN may constitute a favorable neuronal environment for the vestibular compensation process.
Collapse
Affiliation(s)
- Martine Liberge
- Université Aix-Marseille, UMR 6149 Université de Provence/CNRS, Neurobiologie Intégrative et Adaptative, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Christine Manrique
- Université Aix-Marseille, UMR 6149 Université de Provence/CNRS, Neurobiologie Intégrative et Adaptative, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Laurence Bernard-Demanze
- Université Aix-Marseille, UMR 6149 Université de Provence/CNRS, Neurobiologie Intégrative et Adaptative, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| | - Michel Lacour
- Université Aix-Marseille, UMR 6149 Université de Provence/CNRS, Neurobiologie Intégrative et Adaptative, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France
| |
Collapse
|
17
|
Popratiloff A, Peusner KD. GABA and glycine immunolabeling in the chicken tangential nucleus. Neuroscience 2010; 175:328-43. [PMID: 21129450 DOI: 10.1016/j.neuroscience.2010.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 11/20/2022]
Abstract
In the vestibular nuclei, GABAergic and glycinergic neurons play important roles in signal processing for normal function, during development, and after peripheral vestibular lesions. The chicken tangential nucleus is a major avian vestibular nucleus, whose principal cells are projection neurons with axons transmitting signals to the oculomotor nuclei and/or cervical spinal cord. Antibodies against GABA, glycine and glutamate were applied to study immunolabeling in the tangential nucleus of 5-7 days old chicken using fluorescence detection and confocal imaging. All the principal cells and primary vestibular fibers were negative for GABA and glycine, but positive for glutamate. GABA is the predominant inhibitory neurotransmitter in the tangential nucleus, labeling most of the longitudinal fibers in transverse tissue sections and more than 50% of all synaptic terminals. A large fraction of GABAergic terminals were derived from the longitudinal fibers, with fewer horizontal GABAergic fibers detected. GABA synapses terminated mainly on dendrites in the tangential nucleus. In contrast, glycine labeling represented about one-third of all synaptic terminals, and originated from horizontally-coursing fibers. A distinct pool of glycine-positive terminals was found consistently around the principal cell bodies. While no GABA or glycine-positive neuron cell bodies were found in the tangential nucleus, several pools of immunopositive neurons were present in the neighboring vestibular nuclei, mainly in the descending vestibular and superior vestibular nuclei. GABA and glycine double-labeling experiments revealed little colocalization of these two neurotransmitters in synaptic terminals or fibers in the tangential nucleus. Our data support the concept of GABA and glycine playing critical roles as inhibitory neurotransmitters in the tangential nucleus. The two inhibitory neurotransmitters have distinct and separate origins and display contrasting subcellular termination patterns, which underscore their discrete roles in vestibular signal processing.
Collapse
Affiliation(s)
- A Popratiloff
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
18
|
Zhang W, Shao J. Biomedical research of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline. J Biomed Mater Res A 2010; 94:450-6. [PMID: 20198698 DOI: 10.1002/jbm.a.32655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The biomedical properties of novel biodegradable copoly(amino acid)s based on 6-aminocaproic acid and L-proline were analyzed in this article. The cytotoxicity of the copolymer films was tested in vitro using human embryonic kidney (HEK) 293 cells. The cell proliferation, cell cycle, cell apoptosis, and hemolysis of the polymers were also investigated. No significant cytotoxic response was detected statistically by cytotoxicity assay, and the results of cell apoptosis and cell cycle showed that there were no statistically significant differences in them. Generally, the cells spread and grew well on polymer film. Meanwhile, the extent of hemolysis on the polymers was acceptable. Evaluation of cytotoxicity by cell cycle and apoptosis as a supplementary assay is correspondingly discussed in this article.
Collapse
Affiliation(s)
- Weipeng Zhang
- School of Materials Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, West Xianning Road, Xi'an 710049, People's Republic of China.
| | | |
Collapse
|
19
|
Protective effects of hypothalamic proline-rich peptide and cobra venom Naja Naja Oxiana on dynamics of vestibular compensation following unilateral labyrinthectomy. Neurochem Res 2010; 35:1747-60. [PMID: 20703940 DOI: 10.1007/s11064-010-0239-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
Abstract
We tested the action of proline-rich peptide (PRP-1) and cobra venom Naja Naja Oxiana (NOX) on Deiters' nucleus neurons at 3rd, 15th and 35th days after unilateral labyrinthectomy (UL). Early and late tetanic, post-tetanic potentiation and depression of Deiters'neurons to bilateral high frequency stimulation of hypothalamic supraoptic and paraventricualar nuclei was studied. The analysis of spike activity was carried out by mean of on-line selection and special program. The complex averaged peri-event time and frequency histograms shows the increase of inhibitory and excitatory reactions of Deiters' neurons at early stage of vestibular compensation following PRP-1 and NOX injection, reaching the norm at the end of tests. In histochemical study the changes in Ca(2+)-dependent acidic phosphatase (AP) activity in neurons was discovered. It was shown that in UL animals the total disappearance or delay of decolorizing of Deiters' neurons lead to neurodegenerative pattern as cellular "shade". AP activity after UL and PRP-1 injection exerts more effective recovery of neurons in comparison with events, observed after the administration of NOX. The data of this study indicate that PRP-1 and NOX are protectors, which may successfully recover the disturbed vestibular functions.
Collapse
|
20
|
Lim R, Callister RJ, Brichta AM. An increase in glycinergic quantal amplitude and frequency during early vestibular compensation in mouse. J Neurophysiol 2009; 103:16-24. [PMID: 19889844 DOI: 10.1152/jn.91223.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The process of vestibular compensation includes both behavioral and neuronal recovery after unilateral loss of peripheral vestibular organs. The mechanisms that underlie this process are poorly understood. Previous research has shown the presence of both gamma-aminobutyric acid type A (GABA(A)) and glycine receptors in the medial vestibular nuclei (MVN). It has been suggested that inhibitory transmission mediated by these receptors may have a role in recovery during vestibular compensation. This study investigated changes in fast inhibitory synaptic transmission of GABA(A)ergic and glycinergic quantal events after unilateral labyrinthectomy (UL) at three different time points. Mice were anesthetized and peripheral vestibular organs were removed from one side of the head. After recovery, transverse brain stem sections (300 mum) were prepared from mice that had undergone UL either 4 hours, 2 days, or 7 days earlier. Our experiments do not show evidence for alterations in synaptic GABA(A) receptor properties in MVN neurons after UL at any time point investigated. In contrast, during early vestibular compensation (4 hours post UL) there is a significant increase in the glycinergic quantal current amplitude in contralesional MVN neurons compared with control. Our results also show an increase in the frequency of glycinergic quantal events of both ipsi- and contralesional MVN neurons during this early period. We suggest that changes in both pre- and postsynaptic glycine receptor mediated inhibitory synaptic transmission after sensory loss is an important mechanism by which neuronal discharge patterns can be modulated.
Collapse
Affiliation(s)
- Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
21
|
Dutheil S, Brezun JM, Leonard J, Lacour M, Tighilet B. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience 2009; 164:1444-56. [PMID: 19782724 DOI: 10.1016/j.neuroscience.2009.09.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 10/20/2022]
Abstract
In physiological conditions, neurogenesis occurs in restricted regions of the adult mammalian brain, giving rise to integrated neurons into functional networks. In pathological or postlesional conditions neurogenesis and astrogenesis can also occur, as demonstrated in the deafferented vestibular nuclei after immediate unilateral vestibular neurectomy (UVN) in the adult cat. To determine whether the reactive cell proliferation and beyond neurogenesis and astrogenesis following UVN plays a functional role in the vestibular functions recovery, we examined the effects of an antimitotic drug: the cytosine-beta-d arabinofuranoside (AraC), infused in the fourth ventricle after UVN. Plasticity mechanisms were evidenced at the immunohistochemical level with bromodeoxyuridine, GAD67 and glial fibrillary acidic protein (GFAP) stainings. Consequences of immediate or delayed AraC infusion on the behavioral recovery processes were evaluated with oculomotor and posturo-locomotor tests. We reported that after UVN, immediate AraC infusion blocked the cell proliferation and decreased the number of GFAP-immunoreactive cells and GABAergic neurons observed in the vestibular nuclei of neurectomized cats. At the behavioral level, after UVN and immediate AraC infusion the time course of posturo-locomotor function recovery was drastically delayed, and no alteration of the horizontal spontaneous nystagmus was observed. In contrast, an infusion of AraC beginning 3 weeks after UVN had no influence neither on the time course of the behavioral recovery, nor on the reactive cell proliferation and its differentiation. We conclude that the first 3 weeks after UVN represent a possible critical period in which important neuroplasticity mechanisms take place for promoting vestibular function recovery: reactive neurogenesis and astrogenesis might contribute highly to vestibular compensation in the adult cat.
Collapse
Affiliation(s)
- S Dutheil
- UMR 6149 Neurosciences Intégratives et Adaptatives, Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B-3 Place Victor Hugo, 13331 Marseille Cedex 3-France
| | | | | | | | | |
Collapse
|
22
|
Licata SC, Jensen JE, Penetar DM, Prescot AP, Lukas SE, Renshaw PF. A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4 T. Psychopharmacology (Berl) 2009; 203:819-29. [PMID: 19125238 PMCID: PMC2818041 DOI: 10.1007/s00213-008-1431-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/30/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Zolpidem is a nonbenzodiazepine sedative/hypnotic that acts at GABA(A) receptors to influence inhibitory neurotransmission throughout the central nervous system. A great deal is known about the behavioral effects of this drug in humans and laboratory animals, but little is known about zolpidem's specific effects on neurochemistry in vivo. OBJECTIVES We evaluated how acute administration of zolpidem affected levels of GABA, glutamate, glutamine, and other brain metabolites. MATERIALS AND METHODS Proton magnetic resonance spectroscopy ((1)H MRS) at 4 T was employed to measure the effects of zolpidem on brain chemistry in 19 healthy volunteers. Participants underwent scanning following acute oral administration of a therapeutic dose of zolpidem (10 mg) in a within-subject, single-blind, placebo-controlled, single-visit study. In addition to neurochemical measurements from single voxels within the anterior cingulate (ACC) and thalamus, a series of questionnaires were administered periodically throughout the experimental session to assess subjective mood states. RESULTS Zolpidem reduced GABA levels in the thalamus, but not the ACC. There were no treatment effects with respect to other metabolite levels. Self-reported ratings of "dizzy," "nauseous," "confused," and "bad effects" were increased relative to placebo, as were ratings on the sedation/intoxication (PCAG) and psychotomimetic/dysphoria (LSD) scales of the Addiction Research Center Inventory. Moreover, there was a significant correlation between the decrease in GABA and "dizzy." CONCLUSIONS Zolpidem engendered primarily dysphoric-like effects and the correlation between reduced thalamic GABA and "dizzy" may be a function of zolpidem's interaction with alpha1GABA(A) receptors in the cerebellum, projecting through the vestibular system to the thalamus.
Collapse
Affiliation(s)
- Stephanie C. Licata
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School
| | - J. Eric Jensen
- Brain Imaging Center, McLean Hospital/Harvard Medical School
| | - David M. Penetar
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School
| | | | - scott E. Lukas
- Behavioral Psychopharmacology Research Laboratory, McLean Hospital/Harvard Medical School,Brain Imaging Center, McLean Hospital/Harvard Medical School
| | - Perry F. Renshaw
- Brain Institute and Department of Psychiatry, University of Utah School of Medicine
| |
Collapse
|
23
|
Bergquist F, Ludwig M, Dutia MB. Role of the commissural inhibitory system in vestibular compensation in the rat. J Physiol 2008; 586:4441-52. [PMID: 18635647 DOI: 10.1113/jphysiol.2008.155291] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated the role of the vestibular commissural inhibitory system in vestibular compensation (VC, the behavioural recovery that follows unilateral vestibular loss), using in vivo microdialysis to measure GABA levels in the bilateral medial vestibular nucleus (MVN) at various times after unilateral labyrinthectomy (UL). Immediately after UL, in close correlation with the appearance of the characteristic oculomotor and postural symptoms, there is a marked increase in GABA release in the ipsi-lesional MVN. This is not prevented by bilateral flocculectomy, indicating that it is due to hyperactivity of vestibular commissural inhibitory neurones. Over the following 96 h, as VC occurs and the behavioural symptoms ameliorate, the ipsi-lesional GABA levels return to near-normal. Contra-lesional GABA levels do not change significantly in the initial stages of VC, but decrease at late stages so that when static symptoms have abated there remains a significant difference between the MVNs of the two sides. We also investigated the role of the commissural inhibition in Bechterew's phenomenon, by reversibly inactivating the intact contra-lesional labyrinth in compensating animals through superfusion of local anaesthetic on the round window. Transient inactivation of the intact labyrinth elicited the lateralized behaviour described by Bechterew, but did not alter the GABA levels in either MVN, suggesting the involvement of distinct cellular mechanisms. These findings indicate that an imbalanced commissural inhibitory system is a root cause of the severe oculomotor and postural symptoms of unilateral vestibular loss, and that re-balancing of commissural inhibition occurs in parallel with the subsequent behavioural recovery during VC.
Collapse
Affiliation(s)
- Filip Bergquist
- Centre for Integrative Physiology, School of Biomedical Sciences, Edinburgh University College of Medicine and Veterinary Medicine, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | |
Collapse
|
24
|
Tighilet B, Mourre C, Trottier S, Lacour M. Histaminergic ligands improve vestibular compensation in the cat: behavioural, neurochemical and molecular evidence. Eur J Pharmacol 2007; 568:149-63. [PMID: 17573072 DOI: 10.1016/j.ejphar.2007.04.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/16/2022]
Abstract
This study analysed the effects of betahistine and thioperamide, two histamine H(3) receptor antagonists, on the recovery process after unilateral vestibular neurectomy (UVN) in the cat. In UVN animals untreated or treated with betahistine or thioperamide, recovery was evaluated by recording the horizontal spontaneous nystagmus and the postural and locomotor performances. The neurochemical effects of these drugs were determined by examining their impact on the histaminergic system. We quantified the mRNA coding for histidine decarboxylase (enzyme synthesizing histamine) by in situ hybridisation in the tuberomammillary nuclei, while binding density to histamine H(3) receptors was assessed using a histamine H(3) receptor agonist ([(3)H]N-alpha-methylhistamine) and autoradiography methods in the tuberomammillary and the vestibular nuclei. Relative to the UVN-untreated group, cats treated with betahistine or thioperamide showed strongly accelerated behavioural recovery. UVN-induced 1) an up-regulation of histidine decarboxylase mRNA in the tuberomammillary nuclei, strongly accentuated under betahistine and thioperamide, 2) a reduction of the binding to histamine H(3) receptors in the vestibular and tuberomammillary nuclei, also strongly enhanced in both groups of treated cats. This study demonstrates that betahistine and thioperamide strongly improve the recovery of vestibular functions in UVN cats by interacting with the histaminergic system.
Collapse
Affiliation(s)
- Brahim Tighilet
- UMR 6149 Neurobiologie Intégrative et Adaptative, Université de Provence/CNRS, Pôle 3C Comportement, Cerveau, Cognition - Case B - Centre de St Charles, 3 Place Victor Hugo-13331 Marseille Cedex 03-France.
| | | | | | | |
Collapse
|
25
|
Tighilet B, Brezun JM, Sylvie GDD, Gaubert C, Lacour M. New neurons in the vestibular nuclei complex after unilateral vestibular neurectomy in the adult cat. Eur J Neurosci 2007; 25:47-58. [PMID: 17241266 DOI: 10.1111/j.1460-9568.2006.05267.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent findings revealed a reactive neurogenesis after lesions and in several models of disease. After unilateral vestibular neurectomy (UVN), we previously reported gamma-aminobutyric acid (GABA)ergic neurons are upregulated in the vestibular nuclei (VN) in the adult cat. Here, we ask whether this upregulation of GABAergic neurons resulted from a reactive neurogenesis. To determine the time course of cell proliferation in response to UVN, 5-bromo-2'-deoxyuridine (BrdU) was injected 3 h, 1, 3, 7, 15 and 30 days after UVN. We investigated the survival and differentiation in UVN cats injected with BrdU at 3 days and perfused 30 days after UVN. Results show a high number of BrdU-immunoreactive nuclei in the deafferented VN with a peak at 3 days after UVN and a decrease at 30 days. Most of the newly generated cells survived up to 1 month after UVN and gave rise to a variety of cell types. Confocal analysis revealed three cell lineages: microglial cells (OX 42/BrdU-immunoreactive cells); astrocytes [glial fibrillary acidic protein (GFAP)/BrdU-immunoreactive cells]; and neurons (NeuN/BrdU-immunoreactive cells). That UVN induced new neurons was confirmed by an additional marker (nestin) expressed by neural precursor cells. We show that most of the newly generated neurons have a GABAergic phenotype [glutamate decarboxylase (GAD)-67/BrdU-immunoreactive cells]. Morphological analysis showed two subtypes of GABAergic neurons: medium and small (30 vs. 10 microm, respectively). This is the first report of reactive neurogenesis in the deafferented VN in the adult mammalian CNS.
Collapse
Affiliation(s)
- Brahim Tighilet
- UMR 6149 Neurobiologie Intégrative et Adaptative Pôle 3C, Comportement, Cerveau, Cognition, Centre de St Charles, Case B, 3 Place Victor Hugo, 13331 Marseille Cedex 3, France.
| | | | | | | | | |
Collapse
|
26
|
Papantchev V, Paloff A, Hinova-Palova D, Hristov S, Todorova D, Ovtscharoff W. Neuronal nitric oxide synthase immunopositive neurons in cat vestibular complex: a light and electron microscopic study. J Mol Histol 2006; 37:343-52. [PMID: 17120106 DOI: 10.1007/s10735-006-9061-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. Nevertheless, there are little data about the neuronal nitric oxide synthase immunoreactivity (nNOS-ir) in the vestibular complex of a cat. In this respect, the aims of this study were to: (1) demonstrate nNOS-ir in the neurons and fibers, from all major and accessory vestibular nuclei; (2) describe their light microscopic morphology and distribution; (3) investigate and analyze the ultrastructure of the NOS I-immunopositive neurons, fibers, and synaptic boutons. For demonstration of the nNOS-ir, the peroxidase-antiperoxidase-diaminobenzidin method was applied. Immunopositive for nNOS neurons and fibers were present in all major and accessory vestibular nuclei. On the light microscope level, the immunopositive neurons were different in shape and size. According to the latter, they were divided into four groups--small (with diameter less than 15 microm), medium-sized (with diameter from 15 to 30 microm), large type I (with diameter from 30 to 40 microm), and large type II (with diameter greater than 40 microm). On the electron microscope level, the immunoproduct was observed in neurons, dendrites, and terminal boutons. According to the ultrastructural features, the neurons were divided into three groups--small (with diameter less than 15 microm), medium-sized (with diameter from 15 to 30 microm), and large (with diameter greater than 30 microm). At least two types of nNOS-ir synaptic boutons were easily distinguished. As a conclusion, we hope that this study will contribute to a better understanding of the functioning of the vestibular complex in cat and that some of the data presented could be extrapolated to other mammals, including human.
Collapse
Affiliation(s)
- V Papantchev
- Department of Anatomy and Histology, Medical University, Sofia 1431, Bulgaria.
| | | | | | | | | | | |
Collapse
|
27
|
Bergquist F, Ruthven A, Ludwig M, Dutia MB. Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. J Physiol 2006; 577:857-68. [PMID: 17038426 PMCID: PMC1890394 DOI: 10.1113/jphysiol.2006.120493] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vestibular compensation (the behavioural recovery that follows unilateral vestibular de-afferentation), is facilitated by histamine, and is associated with increased central histamine release and alterations in histamine H(3) receptor expression in the vestibular nuclei. However, little is known of the effects of histamine on neurotransmission in the vestibular nuclei, and the mechanisms by which histamine may influence compensation are unclear. Here we examined the modulatory effects of histaminergic agents on the release of amino acid neurotransmitters in slices of the medial vestibular nucleus (MVN) prepared from normal and labyrinthectomised rats. The release of GABA, but not glutamate, glycine or aspartate, was robustly and reproducibly evoked by a high-K(+) stimulus applied to normal MVN slices. Histamine inhibited the evoked release of GABA, both through a direct action on presynaptic H(3) receptors (presumably located on GABAergic terminals), and through a novel, indirect pathway that involved the increased release of glycine by activation of postsynaptic H(1)/H(2) receptors (presumably on glycinergic neurons). After unilateral labyrinthectomy (UL), the direct H(3) receptor-mediated inhibition of GABA release was profoundly downregulated in both ipsi-lesional and contra-lesional MVNs. This effect appeared within 25 h post-UL and persisted for at least 3 weeks post-UL. In addition, at 25 h post-UL the indirect glycinergic pathway caused a marked suppression of GABA release in the contra-lesional but not ipsi-lesional MVN, which was overcome by strychnine. Stimulation of histamine H(3) receptors at 25 h post-UL restored contra-lesional GABA release to normal, suggesting that acutely after UL H(3) receptors may strongly modulate glycinergic and GABAergic neurotransmission in the MVN. These findings are the first to demonstrate the modulatory actions of the histaminergic system on neurotransmission in the vestibular nuclei, and the changes that occur during vestibular system plasticity. During vestibular compensation, histaminergic modulation of glycine and GABA release may contribute to the rebalancing of neural activity in the vestibular nuclei of the lesioned and intact sides.
Collapse
Affiliation(s)
- Filip Bergquist
- Centre for Integrative Physiology, School of Biomedical Laboratory Sciences, Edinburgh University Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
28
|
Freichel C, Potschka H, Ebert U, Brandt C, Löscher W. Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience 2006; 141:2177-94. [PMID: 16797850 DOI: 10.1016/j.neuroscience.2006.05.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/23/2022]
Abstract
The piriform cortex (PC) is the largest region of the mammalian olfactory cortex with strong connections to other limbic structures, including the amygdala, hippocampus, and entorhinal cortex. In addition to its functional importance in the classification of olfactory stimuli, the PC has been implicated in the study of memory processing, spread of excitatory information, and the facilitation and propagation of seizures within the limbic system. Previous data from the kindling model of epilepsy indicated that alterations in GABAergic inhibition in the transition zone between the anterior and posterior PC, termed here central PC, are particularly involved in the processes underlying seizure propagation. In the present study we studied alterations in GABAergic neurons in different parts of the PC following seizures induced by kainate or pilocarpine in rats. GABA neurons were labeled either immunohistochemically for GABA or its synthesizing enzyme glutamate decarboxylase (GAD) or by in situ hybridization using antisense probes for GAD65 and GAD67 mRNAs. For comparison with the PC, labeled neurons were examined in the basolateral amygdala, substantia nigra pars reticulata, and the hippocampal formation. In the PC of controls, immunohistochemical labeling for GABA and GAD yielded consistently higher neuronal densities in most cell layers than labeling for GAD65 or GAD67 mRNAs, indicating a low basal activity of these neurons. Eight hours following kainate- or pilocarpine-induced seizures, severe neuronal damage was observed in the PC. Counting of GABA neurons in the PC demonstrated significant decreases in densities of neurons labeled for GABA or GAD proteins. However, a significantly increased density of neurons labeled for GAD65 and GAD67 mRNAs was determined in layer II of the central PC, indicating that a subpopulation of remaining neurons up-regulated the mRNAs for the GAD isoenzymes. One likely explanation for this finding is that remaining GABA neurons in layer II of the central PC maintain high levels of activity to control the increased excitability of the region. In line with previous studies, an up-regulation of GAD67 mRNA, but not GAD65 mRNA, was observed in dentate granule cells following seizures, whereas no indication of such up-regulation was determined for the other brain regions examined. The data substantiate the particular susceptibility of the central PC to seizure-induced plasticity and indicate that this brain region provides an interesting tool to study the regulation of GAD isoenzymes.
Collapse
Affiliation(s)
- C Freichel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
29
|
Eleore L, Vassias I, Bernat I, Vidal PP, de Waele C. An in situ hybridization and immunofluorescence study of GABAA and GABAB receptors in the vestibular nuclei of the intact and unilaterally labyrinthectomized rat. Exp Brain Res 2004; 160:166-79. [PMID: 15452674 DOI: 10.1007/s00221-004-1997-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 05/25/2004] [Indexed: 11/25/2022]
Abstract
We investigated whether the production of the sixteen subunits of the GABA(A) receptors and of the different variants of GABA Breceptors are modulated in rat medial vestibular nuclei (MVN) following unilateral labyrinthectomy. Specific alpha1-6, beta1-3, gamma1-3 and delta GABA(A) and GABA(B) B1 and B2receptor radioactive oligonucleotides were used for in situ hybridization to probe sections of rat vestibular nuclei. Specific antibodies against alpha1, beta2, beta3 and gamma2 subunits of GABA(A) receptors and against GABA( B)receptors were also used to detect a potential protein expression modulation. No asymmetry was observed by autoradiography in the intact and deafferented MVN at any time (5 h to 8 days) following the lesion and for any of the oligonucleotide probes used. Also, no difference in the alpha1, beta2, beta3 and gamma2 of the GABA(A) and in the GABA(B) receptor immunohistochemical signal could be detected between the intact and deafferented vestibular nuclei at any time following the lesion. Our data suggest that GABA(A) and GABA Breceptor density changes most probably were not involved in the early stage of the vestibular compensation process, i.e., in the restoration of a normal resting discharge of the deafferented vestibular neurons and consequently in the recovery of a normal posture and eye position.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Antibody Specificity/physiology
- Denervation
- Ear, Inner/physiology
- Ear, Inner/surgery
- Fluorescent Antibody Technique
- Functional Laterality/physiology
- In Situ Hybridization
- Male
- Neuronal Plasticity/physiology
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-B/genetics
- Receptors, GABA-B/metabolism
- Vestibular Nerve/metabolism
- Vestibular Nerve/physiopathology
- Vestibular Nuclei/metabolism
- Vestibular Nuclei/physiopathology
- Vestibule, Labyrinth/injuries
Collapse
Affiliation(s)
- Lyndell Eleore
- LNRS, CNRS-Paris 5, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | | | | | | | | |
Collapse
|
30
|
Horii A, Kitahara T, Smith PF, Darlington CL, Masumura C, Kubo T. Effects of unilateral labyrinthectomy on GAD, GAT1 and GABA receptor gene expression in the rat vestibular nucleus. Neuroreport 2003; 14:2359-63. [PMID: 14663191 DOI: 10.1097/00001756-200312190-00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To elucidate the role of the GABAergic neuronal system in the recovery from peripheral vestibular damage (unilateral labyrinthectomy), we used a real-time quantitative reverse transcription-polymerase chain reaction method to investigate the mRNA expression of GAD65, GAD67, the GABAA receptor alpha1 subunit, the GABAB R1 subunit, and the GABA transporter GAT1, in the vestibular nucleus complex of the rat 6 and 50 h following the lesion GAD65 and GAD67 gene expression were also measured in the flocculus. The GABAA alpha 1 subunit mRNA was up-regulated in the ipsilateral vestibular nucleus 6 h post-lesion but decreased in expression thereafter. GAD65 mRNA was up-regulated in the vestibular nuclei bilaterally 50 h after the lesion. In the flocculus, GAD65 mRNA expression was bilaterally up-regulated 50 h post-operatively. GAT1 mRNA expression was initially up-regulated in the ipsilateral vestibular nucleus and then underwent a bilateral increase 50 h post-operatively. These results demonstrate that following unilateral labyrinthectomy, major changes in the expression of GAD, GAT and GABA receptor subunit genes occur in the vestibular nucleus, which are likely to affect the process of behavioural recovery.
Collapse
Affiliation(s)
- Arata Horii
- Department of Otolaryngology, Osaka University Medical School, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Shao M, Hirsch JC, Giaume C, Peusner KD. Spontaneous synaptic activity is primarily GABAergic in vestibular nucleus neurons of the chick embryo. J Neurophysiol 2003; 90:1182-92. [PMID: 12904504 DOI: 10.1152/jn.00076.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at -60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABA(A) versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABA(A), whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABA(B) receptor effects were shown, with presynaptic GABA(B) receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased approximately 50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABA(A) receptors that can be modulated by presynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- Mei Shao
- Department of Anatomy and Cell Biology and Neuroscience Program, George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and beta-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.
Collapse
Affiliation(s)
- Neal H Barmack
- Neurological Sciences Institute, Oregon Health and Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
33
|
Valla J, Delfini C, Diagne M, Pinganaud G, Buisseret P, Buisseret-Delmas C. Vestibulotrigeminal and vestibulospinal projections in rats: retrograde tracing coupled to glutamic acid decarboxylase immunoreactivity. Neurosci Lett 2003; 340:225-8. [PMID: 12672547 DOI: 10.1016/s0304-3940(03)00127-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunohistochemical experiments were performed using glutamic acid decarboxylase (GAD) to identify gamma-aminobutyric acid (GABA)ergic neurons in the vestibular nuclei (VN). VN neurons projecting to the sensory trigeminal complex (STC) or to the C1-C2 segments of the spinal cord were identified by injection of wheat germ agglutinin-apo-horseradish peroxidase coupled to colloidal gold (gold-HRP), a retrogradely transported tracer, in these structures. The experiments combining injection of gold-HRP in spinal cord and GAD immunohistochemistry revealed the existence in the medial, inferior and lateral VN of GAD immunoreactive neurons projecting to the spinal C1-C2 level. Experiments combining injection of gold-HRP in the STC and GAD immunohistochemistry demonstrated that, at least, 30-50% of the vestibulo-trigeminal neurons also contained GAD. Injections of two different retrograde tracers (gold-HRP and Biotinylated dextran amine) in the STC and the spinal cord demonstrated that some VN neurons project by axon collaterals to both structures. Because of the GABAergic spinal and STC vestibular projections we assume that these VN neurons with collateral projection are GABAergic. Therefore primary afferents from the face, neck or hindlimb could be modulated by inhibitory influences from GABAergic vestibular neurons.
Collapse
Affiliation(s)
- Jocelyne Valla
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, EA3107, UP7, 2, place Jussieu, case 7077, 75251Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
34
|
Pisu MB, Conforti E, Botta L, Valli P, Bernocchi G. Nitric oxide synthase in the frog cerebellum: response of Purkinje neurons to unilateral eighth nerve transection. THE ANATOMICAL RECORD 2002; 268:73-83. [PMID: 12209567 DOI: 10.1002/ar.10138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When vestibular damage occurs, nitric oxide synthase (NOS) expression in rat cerebellar flocculus is affected. Since compensation for postural symptoms occurs and Purkinje cells play an important role in movement coordination and motor learning, we analyzed in situ the induction of NOS in the Purkinje cell population of the cerebellum (corpus cerebelli) of frog after unilateral transection of the eighth statoacoustic nerve to gain insight into the role of NO in neural plasticity after injury. Three days after neurectomy, the early effects induced NADPH diaphorase reactivity in most of the Purkinje cells on the ipsilateral side, while on the contralateral side the highest labeling was observed at 15 days. This finding can give information on the dynamics of vestibular compensation, in which NOS involvement was investigated. At 30 days, NADPH diaphorase reactivity was present in a large number of Purkinje cells of the whole cerebellum, while at 60 days a down-regulation for NADPH diaphorase reactivity was evident. A similar trend was observed for NOS-immunoreactivity, which was still present at 60 days in a high percentage of Purkinje cells, mainly on the ipsilateral side. On the basis of cell density evaluations, it was proposed that the early induction of NOS after neurectomy was linked to the degeneration of a part of the Purkinje neurons, while the permanence of NOS labeling might be due to a neuroprotective role of NO in the restoration phase of the vestibular compensation process.
Collapse
|
35
|
Darlington CL, Dutia MB, Smith PF. The contribution of the intrinsic excitability of vestibular nucleus neurons to recovery from vestibular damage. Eur J Neurosci 2002; 15:1719-27. [PMID: 12081651 DOI: 10.1046/j.1460-9568.2002.02024.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Damage to the peripheral vestibular system results in a syndrome of ocular motor and postural abnormalities that partially and gradually abate over time in a process known as 'vestibular compensation'. The first, rapid, phase of compensation has been associated with a recovery of spontaneous resting activity in the ipsilateral vestibular nucleus complex (VNC), as a consequence of neuronal and synaptic plasticity. Increasing evidence suggests that normal VNC neurons in labyrinthine-intact animals, as well as ipsilateral VNC neurons following unilateral vestibular deafferentation (UVD), rely to some extent on intrinsic pacemaker activity provided by voltage-dependent conductances for their resting activity. Modification of this intrinsic pacemaker activity may underlie the recovery of resting activity that occurs in ipsilateral VNC neurons following UVD. This review summarizes and critically evaluates the 'intrinsic mechanism hypothesis', identifying discrepancies amongst the current evidence and suggesting experiments that may test it further.
Collapse
Affiliation(s)
- Cynthia L Darlington
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|