1
|
Miller JL, Niewiesk S. Review of impaired immune parameters in RSV infections in the elderly. Virology 2025; 603:110395. [PMID: 39827596 DOI: 10.1016/j.virol.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Respiratory syncytial virus (RSV) infections in elderly individuals are associated with increased rates of severe clinical disease and mortality compared to younger adults. Age-associated declines in numerous innate and adaptive immune parameters during RSV infection contribute to infection susceptibility, impaired viral clearance, and distorted cytokine profiles in the elderly. Impaired immune responses in this age group also adversely affect longevity of RSV immunity following vaccination in experimental settings. This review summarizes the effects of aging on cellular immune responses to RSV in humans and animal models, molecular mechanisms for these impaired responses where they have been elucidated, and the clinical consequences of impaired immunity in the elderly.
Collapse
Affiliation(s)
- Jonathan L Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
4
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Mohapatra L, Mishra D, Shiomurti Tripathi A, Kumar Parida S. Immunosenescence as a convergence pathway in neurodegeneration. Int Immunopharmacol 2023; 121:110521. [PMID: 37385122 DOI: 10.1016/j.intimp.2023.110521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Immunity refers to the body's defense mechanism to protect itself against illness or to produce antibodies against pathogens. Senescence is a cellular phenomenon that integrates a sustainable growth restriction, other phenotypic abnormalities and including a pro-inflammatory secretome. It is highly involved in regulating developmental stages, tissue homeostasis, and tumor proliferation monitoring. Contemporary experimental reports imply that abolition of senescent cells employing evolved genetic and therapeutic approaches augment the chances of survival and boosts the health span of an individual. Immunosenescence is considered as a process in which dysfunction of the immune system occurs with aging and greatly includes remodeling of lymphoid organs. This in turn causes fluctuations in the immune function of the elderly that has strict relation with the expansion of autoimmune diseases, infections, malignant tumors and neurodegenerative disorders. The interaction of the nervous and immune systems during aging is marked by bi-directional influence and mutual correlation of variations. The enhanced systemic inflammatory condition in the elderly, and the neuronal immune cell activity can be modulated by inflamm-aging and peripheral immunosenescence resulting in chronic low-grade inflammatory processes in the central Nervous system known as neuro-inflammaging. For example, glia excitation by cytokines and glia pro-inflammatory productions contribute significantly to memory injury as well as in acute systemic inflammation, which is associated with high levels of Tumor necrosis factor -α and a rise in cognitive decline. In recent years its role in the pathology of Alzheimer's disease has caught research interest to a large extent. This article reviews the connection concerning the immune and nervous systems and highlights how immunosenescence and inflamm-aging can affect neurodegenerative disorders.
Collapse
Affiliation(s)
- Lucy Mohapatra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India.
| | - Deepak Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh Sector-125, Noida, 201313, India
| | | | | |
Collapse
|
6
|
Solá P, Mereu E, Bonjoch J, Casado-Peláez M, Prats N, Aguilera M, Reina O, Blanco E, Esteller M, Di Croce L, Heyn H, Solanas G, Benitah SA. Targeting lymphoid-derived IL-17 signaling to delay skin aging. NATURE AGING 2023; 3:688-704. [PMID: 37291218 PMCID: PMC10275755 DOI: 10.1038/s43587-023-00431-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Skin aging is characterized by structural and functional changes that contribute to age-associated frailty. This probably depends on synergy between alterations in the local niche and stem cell-intrinsic changes, underscored by proinflammatory microenvironments that drive pleotropic changes. The nature of these age-associated inflammatory cues, or how they affect tissue aging, is unknown. Based on single-cell RNA sequencing of the dermal compartment of mouse skin, we show a skew towards an IL-17-expressing phenotype of T helper cells, γδ T cells and innate lymphoid cells in aged skin. Importantly, in vivo blockade of IL-17 signaling during aging reduces the proinflammatory state of the skin, delaying the appearance of age-related traits. Mechanistically, aberrant IL-17 signals through NF-κB in epidermal cells to impair homeostatic functions while promoting an inflammatory state. Our results indicate that aged skin shows signs of chronic inflammation and that increased IL-17 signaling could be targeted to prevent age-associated skin ailments.
Collapse
Affiliation(s)
- Paloma Solá
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Júlia Bonjoch
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Neus Prats
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Badalona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Holger Heyn
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Guiomar Solanas
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
7
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
8
|
Liu F, Liu C, Lee IXY, Lin MTY, Liu YC. Corneal dendritic cells in diabetes mellitus: A narrative review. Front Endocrinol (Lausanne) 2023; 14:1078660. [PMID: 36777336 PMCID: PMC9911453 DOI: 10.3389/fendo.2023.1078660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes mellitus is a global public health problem with both macrovascular and microvascular complications, such as diabetic corneal neuropathy (DCN). Using in-vivo confocal microscopy, corneal nerve changes in DCN patients can be examined. Additionally, changes in the morphology and quantity of corneal dendritic cells (DCs) in diabetic corneas have also been observed. DCs are bone marrow-derived antigen-presenting cells that serve both immunological and non-immunological roles in human corneas. However, the role and pathogenesis of corneal DC in diabetic corneas have not been well understood. In this article, we provide a comprehensive review of both animal and clinical studies that report changes in DCs, including the DC density, maturation stages, as well as relationships between the corneal DCs, corneal nerves, and corneal epithelium, in diabetic corneas. We have also discussed the associations between the changes in corneal DCs and various clinical or imaging parameters, including age, corneal nerve status, and blood metabolic parameters. Such information would provide valuable insight into the development of diagnostic, preventive, and therapeutic strategies for DM-associated ocular surface complications.
Collapse
Affiliation(s)
- Fengyi Liu
- University of Cambridge, Girton College, Cambridgeshire, United Kingdom
| | - Chang Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Isabelle Xin Yu Lee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Molly Tzu Yu Lin
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Yu-Chi Liu,
| |
Collapse
|
9
|
Contact Allergy in the Elderly: A Study of 600 Patients. Life (Basel) 2022; 12:life12081228. [PMID: 36013408 PMCID: PMC9410419 DOI: 10.3390/life12081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The proportion of elderly in the general population is increasing. Ageing of the skin and immune system can modify the features of contact hypersensitivity (CH). The number of epidemiological studies according to the age-related features of CH is very limited. We aimed to analyse the clinical characteristics of CH in an elderly patient population. A total of 600 patients (patient age > 60 years old) were patch tested with the European Environmental Baseline Series (EEBS) and 440 of them with the Complementary Fragrance Series (CFS) at the same time according to the actual international methodological standards in the Allergy Outpatient Unit of Department of Dermatology, Venereology and Dermato-Oncology of Semmelweis University between 2015−2019. Out of 600 tested patients, 54.8% had at least one allergen positivity. Female predominance was observed (78.7%). The most common diagnosis was contact dermatitis (63.7%), followed by psoriasis (6.2%). Most of the cases (58.0%) were found in the age group of 60−69. The five most common contact allergens were benzoic acid, methylisothiazolinone (MI), wood tar, nickel, and balsam of Peru. Allergic skin symptoms are present in all ages and also in the elderly. According to our data, the most common contact allergens are preservatives, followed by balsam of Peru among men and nickel among women. In case of contact dermatitis, stasis dermatitis, rosacea, and atopic dermatitis are worth patch testing to verify CH even in those above 60 years old.
Collapse
|
10
|
Corneal Dendritic Cell Dynamics Are Associated with Clinical Factors in Type 1 Diabetes. J Clin Med 2022; 11:jcm11092611. [PMID: 35566743 PMCID: PMC9101330 DOI: 10.3390/jcm11092611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Time-lapsed in vivo corneal confocal microscopy (IVCCM) has shown that corneal dendritic cells (DCs) migrate at approximately 1 µm/min in healthy humans. We have undertaken IVCCM of the whorl region to compare the density of rounded DCs, and DCs with (wDCs) and without (woDCs) dendrites and dynamics; trajectory (length travelled/time), displacement (distance from origin to endpoint/time) speeds and persistence ratio (displacement/trajectory) of woDCs in subjects with type 1 diabetes (T1D) (n = 20) and healthy controls (n = 10). Only the wDC density was higher (p = 0.02) in subjects with T1D compared to controls. There was no significant difference in cell dynamics between subjects with T1D and controls. woDC density correlated directly with HDL cholesterol (r = 0.59, p = 0.007) and inversely with triglycerides (r = −0.61, p = 0.005), whilst round-shaped cell density correlated inversely with HDL cholesterol (r = −0.54, p = 0.007). Displacement, trajectory, and persistency correlated significantly with eGFR (mL/min) (r = 0.74, p < 0.001; r = 0.48, p = 0.031; r = 0.58, p = 0.008, respectively). We show an increase in wDC density but no change in any other DC sub-type or alteration in cell dynamics in T1D. However, there were associations between DC density and lipid parameters and between DC dynamics and renal function. IVCCM provides evidence of a link between immune cell dynamics with lipid levels and renal function.
Collapse
|
11
|
Hrytsevych NR, Vereschaka VV, Nikitina NS, Stepanova LI, Beregova TV. THE CONTENT OF METALLOPROTEINASE-2 AND METALLOPROTEINASE-9 IN THE SKIN OF RATS OF DIFFERENT AGES AFTER CLOSURE OF THE WOUND BED. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1975-1978. [PMID: 36129081 DOI: 10.36740/wlek202208206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: The aim of the study was to determine the content of metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) in the skin of rats of different ages after closure of the wound bed. PATIENTS AND METHODS Materials and methods: The studies were performed on 40 white nonlinear male rats, 20 of which were 3 months old and 20 - 12 months. In each group 10 rats were control and in 10 others facelift operations were performed and cut wounds on the anterior abdominal wall were simulated. On the day of complete healing, the animals were killed, and the skin was cut in the areas of the former wound bed. In control rats, the skin was excised in the same places. The content of MMPs was determined in the skin by enzyme-linked immunosorbent assay. RESULTS Results: In rats aged 3 months after re-epithelialization of the wound bed, the content of MMP-2 was 17,1% higher compared to control rats but the level of MMP-9 didn't change. In control rats aged 12 months, the levels of MMP-2 and MMP-9 in the skin were 22,9% and 34,4% lower compared to control rats at 3 months of age. In rats 12 months of age after re-epithelialization of the wound bed, the content of MMP-2 and MMP-9 were 92,6% and 102,5% higher compared to control rats. CONCLUSION Conclusions: We suggested that the violation of homeostasis between MMPs in rats 12 months of age disrupts wound healing and promotes the formation of pathological scars.
Collapse
Affiliation(s)
- Nazar R Hrytsevych
- HIGHER EDUCATIONAL COMMUNAL INSTITUTION OF THE LVIV REGIONAL COUNCIL "ANDREI KRUPINSKY LVIV MEDICAL ACADEMY", LVIV, UKRAINE
| | | | | | | | | |
Collapse
|
12
|
Comparison of Therapeutic Effects of Topical Calcineurin Inhibitor and Moisturizing Cream on Pruritic External Auditory Canal. J Clin Med 2021; 10:jcm10194313. [PMID: 34640333 PMCID: PMC8509200 DOI: 10.3390/jcm10194313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Although pruritic external auditory canal (PEAC) is a relatively common symptom, particularly in the geriatric population, its pathophysiology and appropriate treatment remain to be elucidated. We compared the therapeutic efficacy of pimecrolimus, a topical calcineurin inhibitor (CI), and a moisturizing cream (MC) in patients with PEAC. Thirty-nine patients (73 ears) were prospectively enrolled and treated topically twice daily with the CI (n = 20, 39 ears) or the MC (n = 19, 34 ears) for two weeks. The change in itching sensation was evaluated subjectively using a self-questionnaire at immediately, one month, and two months after self-application, and objectively by changes in erythema grading. Although topical treatment with the CI resulted in a more rapid improvement than treatment with the MC in patients with PEAC, the final outcomes did not differ between the groups. Furthermore, similar improvements in erythema scores were noted. The results of this study suggest that the MC, which rejuvenates the normal physiological status of the ear canal skin, may greatly benefit those elderly patients more susceptible to PEAC, without any concerns about adverse events and underlying comorbidities. Expanding upon the understanding of the role of moisturizers in the treatment of pruritic ears merits attention, as this knowledge provides a good example of the clinical guidelines for the management of PEAC.
Collapse
|
13
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
14
|
Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021; 97:1383-1403. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Excessive exposure of skin to solar radiation is associated with greatly increased production of reactive oxygen and nitrogen species (ROS, RNS) resulting in oxidative stress (OS), inflammation, immunosuppression, the production of matrix metalloproteinase, DNA damage and mutations. These events lead to increased incidence of various skin disorders including photoaing and both non-melanoma and melanoma skin cancers. The ultraviolet (UV) part of sunlight, in particular, is responsible for structural and cellular changes across the different layers of the skin. Among other effects, UV photons stimulate oxidative damage to biomolecules via the generation of unstable and highly reactive compounds. In response to oxidative damage, cytoprotective pathways are triggered. One of these is the pathway driven by the nuclear factor erythroid-2 related factor 2 (Nrf2). This transcription factor translocates to the nucleus and drives the expression of numerous genes, among them various detoxifying and antioxidant enzymes. Several studies concerning the effects of UV radiation on Nrf2 activation have been published, but different UV wavelengths, skin cells or tissues and incubation periods were used in the experiments that complicate the evaluation of UV radiation effects. CONCLUSIONS This review summarizes the effects of UVB (280-315 nm) and UVA (315-400 nm) radiation on the Nrf2 signaling pathway in dermal fibroblasts and epidermal keratinocytes and melanocytes. The effects of natural compounds (pure compounds or mixtures) on Nrf2 activation and level as well as on Nrf2-driven genes in UV irradiated human skin fibroblasts, keratinocytes and melanocytes are briefly mentioned as well.HighlightsUVB radiation is a rather poor activator of the Nrf2-driven pathway in fibroblastsUVA radiation stimulates Nrf2 activation in dermal fibroblastsEffects of UVA on the Nrf2 pathway in keratinocytes and melanocytes remain unclearLong-term Nrf2 activation in keratinocytes disturbs their normal differentiationPharmacological activation of Nrf2 in the skin needs to be performed carefully.
Collapse
Affiliation(s)
- Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
15
|
Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the Skin. J Invest Dermatol 2021; 141:1087-1095. [DOI: 10.1016/j.jid.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
|
16
|
Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021; 20:e13316. [PMID: 33524238 PMCID: PMC7884036 DOI: 10.1111/acel.13316] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.
Collapse
Affiliation(s)
- Dingxi Zhou
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Mariana Borsa
- The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
17
|
Ogata Y, Yamada T, Hasegawa S, Sanada A, Iwata Y, Arima M, Nakata S, Sugiura K, Akamatsu H. SASP-induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis. Exp Dermatol 2020; 30:84-91. [PMID: 33010063 DOI: 10.1111/exd.14205] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/31/2022]
Abstract
Recently, increasing attention has been paid to senescence-associated secretory phenotype (SASP), a phenomenon that senescent cells secrete molecules such as inflammatory cytokines and matrix metalloproteinases (MMPs), due to its noxious effects on the surrounding tissue. Senescent cells in the blood and liver are known to be properly depleted by macrophages. In the dermis, accumulation of senescent cells has been reported and is thought to be involved with skin ageing. In this study, to elucidate the clearance mechanism of senescent cells in the dermis, we focused on macrophage functions. Our co-culture experiments of senescent fibroblasts and macrophages revealed a two-step clearance mechanism: first, TNF-α secreted from macrophages induces apoptosis in senescent fibroblasts, and then, dead cells are phagocytosed by macrophages. Furthermore, it was suggested that SASP factors suppress both of the two steps of the senescent cell clearance by macrophages. From these findings, normally senescent cells in the dermis are thought to be removed by macrophages, but when senescent cells are excessively accumulated owing to oxidative stress, ultraviolet (UV) ray or other reasons, SASP was suggested to suppress the macrophage-dependent clearance functions and thereby cause further accumulation of senescent cells.
Collapse
Affiliation(s)
- Yuichiro Ogata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Takaaki Yamada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan.,Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayumi Sanada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satoru Nakata
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
18
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
19
|
Horev Y, Salameh R, Nassar M, Capucha T, Saba Y, Barel O, Zubeidat K, Matanes D, Leibovich A, Heyman O, Eli-Berchoer L, Hanhan S, Betser-Cohen G, Shapiro H, Elinav E, Bercovier H, Wilensky A, Hovav AH. Niche rather than origin dysregulates mucosal Langerhans cells development in aged mice. Mucosal Immunol 2020; 13:767-776. [PMID: 32457449 DOI: 10.1038/s41385-020-0301-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.
Collapse
Affiliation(s)
- Yael Horev
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.,Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Rana Salameh
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Maria Nassar
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Tal Capucha
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Barel
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Daniela Matanes
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit Leibovich
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Luba Eli-Berchoer
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Salem Hanhan
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gili Betser-Cohen
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Avi-Hai Hovav
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
20
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
21
|
Hasegawa T, Feng Z, Yan Z, Ngo KH, Hosoi J, Demehri S. Reduction in Human Epidermal Langerhans Cells with Age Is Associated with Decline in CXCL14-Mediated Recruitment of CD14 + Monocytes. J Invest Dermatol 2019; 140:1327-1334. [PMID: 31881212 DOI: 10.1016/j.jid.2019.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
The skin provides the first line of physical and immunological defense against environmental insults. However, the age-related changes in the immune function of human skin are unclear. Here, we investigated the age-related changes in epidermal Langerhans cells (LCs), which play a sentinel role in the initiation of the immune responses in the skin. We found a significant reduction in the number of epidermal LCs in sun-protected skin with age. Among the possible explanations for this reduction, the number of CD14+ CD207+ CCR6+ dermal-resident monocytes that can differentiate into epidermal LCs was markedly reduced with age (P = 0.0057). Among the chemokines that can recruit these cells into the skin, the expression of CXCL14 was significantly down-regulated in epidermal keratinocytes with age. In addition, we discovered that young skin recruited a significantly higher number of monocytic THP-1 cells compared with old skin ex vivo. This recruitment was blocked by CXCL14 neutralizing antibody and conversely promoted by CXCL14 treatment. Collectively, our findings indicate that decreased CXCL14-mediated recruitment of CD14+ monocytes in human skin results in the reduction of epidermal LCs with age, and CXCL14 may provide a therapeutic target for the prevention of age-related reduction in LCs.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Zhaoyi Feng
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiyu Yan
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth H Ngo
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | | | - Shadmehr Demehri
- Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
22
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
23
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
24
|
Pilkington S, Barron M, Watson R, Griffiths C, Bulfone‐Paus S. Aged human skin accumulates mast cells with altered functionality that localize to macrophages and vasoactive intestinal peptide-positive nerve fibres. Br J Dermatol 2019; 180:849-858. [PMID: 30291626 PMCID: PMC6619242 DOI: 10.1111/bjd.17268] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin health declines with age and this is partially attributed to immunosenescence. Mast cells (MCs) are innate immune cells that coordinate tissue immune responses integral to skin homeostasis and disease. OBJECTIVES To understand how MCs contribute to human skin ageing, we investigated how intrinsic ageing impacts MC phenotype and MC relationships with other immune cells and skin structures. METHODS In photoprotected skin biopsies from young (≤ 30 years) and aged (≥ 75 years) individuals, immunostaining and spatial morphometry were performed to identify changes in MC phenotype, number, distribution and interaction with the vasculature and nerve fibres. Quantitative polymerase chain reaction was used to measure changes in gene expression related to immune cell activity and neuropeptide signalling. RESULTS Skin MCs, macrophages and CD8+ T cells increased in number in intrinsically aged vs. young skin by 40%, 44% and 90%, respectively (P < 0·05), while CD4+ T cells and neutrophils were unchanged. In aged skin, MCs were more numerous in the papillary dermis and showed a reduced incidence of degranulation (50% lower than in young, P < 0·01), a conserved tryptase-chymase phenotype and coexpression of granzyme B. In aged skin, MCs increased their association with macrophages (~ 48% vs. ~27%, P < 0·05) and nerve fibres (~29% vs. 16%, P < 0·001), while reducing their interactions with blood vessels (~34% vs. 45%, P < 0·001). Additionally, we observed modulation of gene expression of vasoactive intestinal peptide (VIP; increased) and substance P (decreased) with age; this was associated with an increased frequency of VIP+ nerve fibres (around three times higher in aged skin, P < 0·05), which were strongly associated with MCs (~19% in aged vs. 8% in young, P < 0·05). CONCLUSIONS In photoprotected skin we observed an accumulation of MCs with increasing age. These MCs have both altered functionality and distribution within the skin, which supports a role for these cells in altered tissue homeostasis during ageing.
Collapse
Affiliation(s)
- S.M. Pilkington
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - M.J. Barron
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - R.E.B. Watson
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - C.E.M. Griffiths
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| | - S. Bulfone‐Paus
- Centre for Dermatology Research, School of Biological Sciences, Faculty of Biology, Medicine and HealthManchester Academic Health Science CentreThe University of ManchesterManchesterM13 9PTU.K
- The Dermatology CentreSalford Royal NHS Foundation TrustSalfordM6 8HDU.K
| |
Collapse
|
25
|
Pilkington SM, Dearman RJ, Kimber I, Griffiths CEM. Langerhans cells express human β-defensin 3: relevance for immunity during skin ageing. Br J Dermatol 2018; 179:1170-1171. [PMID: 29758092 DOI: 10.1111/bjd.16770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- S M Pilkington
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Manchester, U.K
| | - R J Dearman
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K
| | - I Kimber
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, U.K
| | - C E M Griffiths
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Manchester, U.K
| |
Collapse
|
26
|
Abstract
Barrier sites such as the skin play a critical role in immune defense. They must maintain homeostasis with commensals and rapidly detect and limit pathogen invasion. This is accomplished in part through the production of endogenous antimicrobial peptides and proteins, which can be either constitutive or inducible. Here, we focus particularly on the control of innate antiviral proteins and present the basic aspects of their regulation in the skin by interferons (IFNs), IFN-independent immunity, and environmental factors. We also discuss the activity and (dys-)function of antiviral proteins in the context of skin-tropic viruses and highlight the relevance of the innate antiviral pathway as a potential therapeutic avenue for vulnerable patient populations and skin diseases with high risk for virus infections.
Collapse
|
27
|
Atmatzidis DH, Lambert WC, Lambert MW. Langerhans cell: exciting developments in health and disease. J Eur Acad Dermatol Venereol 2017; 31:1817-1824. [PMID: 28833602 DOI: 10.1111/jdv.14522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs) have been the subject of much research since their discovery in 1868. LCs belong to the subset of leucocytes called dendritic cells. They are present in the epidermis and the pilosebaceous apparatus and monitor the cutaneous environment for changes in homeostasis. During embryogenesis, a wave of yolk sac macrophages seed the fetal skin. Then, fetal liver monocytes largely replace the yolk sac macrophages and comprise the majority of adult LCs. In the presence of skin irritation, LCs process antigen and travel to regional lymph nodes to present antigen to reactive T lymphocytes. Changes in LCs' surface markers during the journey occur under the influence of cytokines. The difference in expression of surface markers and the ability to resist radiation have allowed researchers to differentiate LCs from the murine Langerin-positive dermal dendritic cells. Exciting discoveries have been made recently regarding their role in inflammatory skin diseases, cancer and HIV. New research has shown that antibodies blocking CD1a appear to mitigate inflammation in contact hypersensitivity reactions and psoriasis. While it has been established that LCs have the potential to induce effector cells of the adaptive immune system to counter oncogenesis, recent studies have demonstrated that LCs coordinate with natural killer cells to impair development of squamous cell carcinoma caused by chemical carcinogens. However, LCs may also physiologically suppress T cells and permit keratinocyte transformation and tumorigenesis. Although long known to play a primary role in the progression of HIV infection, it is now understood that LCs also possess the ability to restrict the progression of the disease. There is a pressing need to discover more about how these cells affect various aspects of health and disease; new information gathered thus far seems promising and exciting.
Collapse
Affiliation(s)
- D H Atmatzidis
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - W C Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| | - M W Lambert
- Dermatology and Pathology, Rutgers University New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
28
|
Pilkington SM, Ogden S, Eaton LH, Dearman RJ, Kimber I, Griffiths CEM. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. Immunology 2017; 153:60-70. [PMID: 28777886 PMCID: PMC5721243 DOI: 10.1111/imm.12810] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 01/02/2023] Open
Abstract
Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young (< 30 years) and aged (> 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2.
Collapse
Affiliation(s)
- Suzanne M Pilkington
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stephanie Ogden
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura H Eaton
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rebecca J Dearman
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian Kimber
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Christensen L, Suggs A, Baron E. Ultraviolet Photobiology in Dermatology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:89-104. [PMID: 29124693 DOI: 10.1007/978-3-319-56017-5_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The effects of ultraviolet radiation on human skin have been studied for years, and both its harmful and therapeutic effects are well known. Exposure to UV light can lead to sunburn, immunosuppression, skin aging, and carcinogenesis, and photoprotection is strongly advocated. However, when used under controlled conditions, UV radiation can also be helpful in the diagnosis and treatment of many skin conditions.
Collapse
Affiliation(s)
- Luisa Christensen
- Department of Dermatology, UH Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Amanda Suggs
- Department of Dermatology, UH Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Elma Baron
- Department of Dermatology, UH Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
30
|
Abstract
Epithelial senescence is a complex process depending on intrinsic as well as extrinsic factors (e.g., UV or IR light, tobacco smoke) and must be seen in the context of the aging process especially of the corium and the subcutis. Morphological alterations become apparent in the form of epithelial atrophy, structural changes within the basal membrane, and a decrease in cell count of melanocytes and Langerhans cells. Signs of cellular senescence are reduced proliferation of keratinocytes, cumulation of dysplastic keratinocytes, various mutations (e.g., c-Fos/c-Jun, STAT3, FoxO1), as well as multiple lipid or amino acid metabolic aberrations (e.g., production of advanced glycation endproducts). This causes functional changes within the physical (lipid deficiency, water distribution dysfunction, lack of hygroscopic substances), chemical (pH conditions, oxygen radicals), and immunological barrier. Prophylactically, barrier-protective care products, antioxidant substances (e.g., vitamin C, B3, E, polyphenols, flavonoids), sunscreen products/measurements, and retinoids are used. For correcting alterations in aged epidermis, chemical peelings (fruit acids, β-hydroxy acid, trichloroacetic acid, phenolic compounds), non-ablative (IPL, PDL, Nd:YAG) as well as ablative (CO2, Erbium-YAG) light-assisted methods are used.
Collapse
Affiliation(s)
- J Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland. .,An-Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Deutschland.
| | - K Hilpert
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland
| | - L Wolff
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland
| |
Collapse
|
31
|
Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A. Aging of the immune system: Focus on inflammation and vaccination. Eur J Immunol 2016; 46:2286-2301. [PMID: 27595500 PMCID: PMC5156481 DOI: 10.1002/eji.201546178] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Major advances in preventing, delaying, or curing individual pathologies are responsible for an increasingly long life span in the developed parts of our planet, and indeed reaching eight to nine decades of life is nowadays extremely frequent. However, medical and sanitary advances have not prevented or delayed the underlying cause of the disparate pathologies occurring in the elderly: aging itself. The identification of the basis of the aging processes that drives the multiple pathologies and loss of function typical of older individuals is a major challenge in current aging research. Among the possible causes, an impairment of the immune system plays a major role, and indeed numerous studies have described immunological changes which occur with age. Far from the intention of being exhaustive, this review will focus on recent advances and views on the role that modifications of cell signalling and remodelling of the immune response play during human aging and longevity, paying particular attention to phenomena which are linked to the so called inflammaging process, such as dysregulation of innate immunity, altered T-cell or B-cell maturation and differentiation, as well as to the implications of immune aging for vaccination strategies in the elderly.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Victor Appay
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Judith Campisi
- USA and Lawrence Berkeley National Laboratory, Buck Institute for Research on Aging, Berkeley, CA, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tamas Fülöp
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Canada
| | - Delphine Sauce
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, A*STAR, Singapore
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| |
Collapse
|
32
|
Abstract
Cutaneous science has seen considerable development in the last 25 years, in part due to the Omics revolution, and the appreciation that this organ is hardwired into the body's key neuro-immuno-endocrine axes. Moreover, there is greater appreciation of how stratification of skin disorders will permit more targeted and more effective treatments. Against this has been how the remarkable extension in the average human life-span, though in the West at least, this parallels worrying increases in lifestyle-associated conditions like diabetes, skin cancer etc. These demographic trends bring greater urgency to finding clinical solutions for numerous age-related deficits in skin function caused by extrinsic and intrinsic factors. Mechanisms for aging skin include the actions of reactive oxygen species (ROS), mtDNA mutations, and telomere shortening, as well as hormonal changes. We have also significantly improved our understanding of how to harness the skin's considerable regenerative capacity e.g., via its remarkable investment of stem cell subpopulations. In this way we hope to develop new strategies to selectively target the skin's capacity to undergo optimal wound repair and regeneration. Here, the unsung hero of the skin regenerative power may be the humble hair follicle, replete with its compliment of epithelial, mesenchymal, neural and other stem cells. This review introduces the topic of human skin aging, with a focus on how maintenance of function in this complex multi-cell type organ is key for retaining quality of life into old age.
Collapse
|
33
|
Sparber F. Langerhans cells: an update. J Dtsch Dermatol Ges 2015; 12:1107-11. [PMID: 25482693 DOI: 10.1111/ddg.12506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/13/2014] [Indexed: 11/26/2022]
Abstract
Langerhans cells belong to the family of dendritic cells, professional antigen-presenting cells, and populate the skin and epithelia of mammals. It was the extensive investigation of this particular dendritic cell subpopulation in earlier days, which contributed crucially to the current understanding of the regulation of antigen processing and presentation, a concept, which was termed "the Langerhans cell paradigm". Extensive research during the last decades has revealed that Langerhans cells might not only be involved in the induction of adaptive immune responses but also in the maintenance of peripheral tolerance in order to prevent auto-immunity. In addition it appeared that Langerhans cells represent a rather extravagant dendritic cell population with a unique origin and homeostatic regulation. This review highlights the most important findings about Langerhans cell ontogeny and homeostasis as well as their function in the immune system.
Collapse
|
34
|
Sparber F. Langerhans-Zellen: ein Update. J Dtsch Dermatol Ges 2014. [DOI: 10.1111/ddg.12506_suppl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Al-Nuaimi Y, Sherratt MJ, Griffiths CEM. Skin health in older age. Maturitas 2014; 79:256-64. [PMID: 25213594 DOI: 10.1016/j.maturitas.2014.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 01/09/2023]
Abstract
As people age, their skin undergoes changes which result in reduced elasticity, increased fragility and an altered immune response; in essence it becomes frail. As life expectancy is increasing the health of older skin is becoming a progressively more important facet of overall care. In addition to the consequences of ageing for otherwise healthy skin, the relative incidence of some dermatological conditions is age-dependent. In particular, xerosis (dry skin), cutaneous malignancies and skin injuries are more common in older people. In this review we describe the functional consequences of skin ageing and discuss the current evidence on how skin health may be maintained and dermatological conditions prevented in an ageing population. The future of dermatological health-care provision in the older population relies on the development of coordinated pathways of care, which start from a young age. Better quality research coordinated by the establishment of institutions dealing with skin health and ageing would be a method of addressing these needs.
Collapse
Affiliation(s)
- Yusur Al-Nuaimi
- Manchester Academic Health Sciences Centre, The University of Manchester, Manchester M13 9PT, UK; The Dermatology Centre, Barnes Building, Salford Royal NHS Foundation Trust M6 8HD, UK.
| | - Michael J Sherratt
- Manchester Academic Health Sciences Centre, The University of Manchester, Manchester M13 9PT, UK; School of Biomedicine, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher E M Griffiths
- Manchester Academic Health Sciences Centre, The University of Manchester, Manchester M13 9PT, UK; The Dermatology Centre, Barnes Building, Salford Royal NHS Foundation Trust M6 8HD, UK
| |
Collapse
|
36
|
Hazeldine J, Lord JM. Innate immunesenescence: underlying mechanisms and clinical relevance. Biogerontology 2014; 16:187-201. [PMID: 25009085 DOI: 10.1007/s10522-014-9514-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
A well-established feature of physiological ageing is altered immune function, a phenomenon termed immunesenescence. Thought to be responsible in part for the increased incidence and severity of infection reported by older adults, as well as the age-related decline in vaccine efficacy and autoimmunity, immunesenescence affects both the innate and adaptive arms of the immune system. Whilst much is known regarding the impact of age on adaptive immunity, innate immunity has received far less attention from immune gerontologists. However, over the last decade it has become increasingly apparent that this non-specific arm of the immune response undergoes considerable functional and phenotypical alterations with age. Here, we provide a detailed overview of innate immunesenescence and its underlying molecular mechanisms, and highlight those studies whose results indicate that changes in innate immunity with age have a significant impact upon the health and well-being of older adults.
Collapse
Affiliation(s)
- Jon Hazeldine
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Immunity and Infection, University of Birmingham, Birmingham, B15 2TT, UK,
| | | |
Collapse
|
37
|
|
38
|
Abstract
The oral cavity contains distinct mucosal surfaces, each with its own unique distribution of dendritic cell (DC) subsets. In addition to tissue-specific properties, such organization might confer differential immune outcomes guided by tissue-resident DCs, which translate in the lymph node into an overall immune response. This process is further complicated by continual exposure and colonization of the oral cavity with enormous numbers of diverse microbes, some of which might induce destructive immunity. As a central cell type constantly monitoring changes in oral microbiota and orchestrating T-cell function, oral DCs are of major importance in deciding whether to induce immunity or tolerance. In this review, an overview of the phenotype and distribution of DCs in the oral mucosa is provided. In addition, the role of the various oral DC subsets in inducing immunity vs. tolerance, as well as their involvement in several oral pathologies is discussed.
Collapse
|
39
|
McFadden JP, White IR, Basketter D, Puangpet P, Kimber I. The cosmetic allergy conundrum: inference of an immunoregulatory response to cosmetic allergens. Contact Dermatitis 2013; 69:129-37. [DOI: 10.1111/cod.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 01/10/2023]
Affiliation(s)
- John P. McFadden
- St John's Institute of Dermatology; St Thomas Hospital; London; SE1 7EH; UK
| | - Ian R. White
- St John's Institute of Dermatology; St Thomas Hospital; London; SE1 7EH; UK
| | | | - Pailin Puangpet
- St John's Institute of Dermatology; St Thomas Hospital; London; SE1 7EH; UK
| | - Ian Kimber
- Faculty of Life Sciences; University of Manchester; Manchester; M13 9PT; UK
| |
Collapse
|
40
|
Xu YP, Qi RQ, Chen W, Shi Y, Cui ZZ, Gao XH, Chen HD, Zhou L, Mi QS. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY) 2013. [PMID: 23178507 PMCID: PMC3560442 DOI: 10.18632/aging.100501] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.
Collapse
Affiliation(s)
- Ying-Ping Xu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Doss ALN, Smith PG. Nerve-Langerhans cell interactions in diabetes and aging. Histol Histopathol 2013; 27:1589-98. [PMID: 23059889 DOI: 10.14670/hh-27.1589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cutaneous infections are a leading cause of hospitalization of diabetic patients. Langerhans cells (LCs) are antigen-presenting cutaneous dendritic cells that protect against infections, and effects of diabetes and aging on these cells are unclear. We examined LCs in footpads of rats with streptozotocin-induced diabetes at 3 months of age following 4 weeks of diabetes, and at 6 months following 16 weeks of diabetes. Immunostaining of LCs using the selective marker protein langerin showed cutaneous LC composition increased between 3 and 6 months of age owing to increased LC numbers and size in control rats. In diabetic rats, LC numbers increased with age but, unlike 6 month old controls, cell size did not, suggesting that diabetes impairs the increase in cell size that is a hallmark of LC maturation. Diabetes reduced LC numbers after 4 weeks and numbers and sizes following 16 weeks. We examined the relation between LC and innervation and found that, while axon density decreased with aging, it was not affected by 16 weeks of diabetes. However, LCs expressing the neuronal marker PGP9.5 represented a source of error in axonal counts. These findings support the hypothesis that diabetes substantially impacts LC proliferation and maturation independent of effects on cutaneous innervation. Accordingly, the interactions of diabetes and aging on LCs may be important factors in predisposing diabetic patients to cutaneous ulcers and infections.
Collapse
Affiliation(s)
- A L N Doss
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
42
|
NS1-truncated live attenuated virus vaccine provides robust protection to aged mice from viral challenge. J Virol 2012; 86:10293-301. [PMID: 22787224 DOI: 10.1128/jvi.01131-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunological changes associated with age contribute to the high rates of influenza virus morbidity and mortality in the elderly. Compounding this problem, aged individuals do not respond to vaccination as well as younger, healthy adults. Efforts to increase protection to this demographic group are of utmost importance, as the proportion of the population above the age of 65 is projected to increase in the coming decade. Using a live influenza virus with a truncated nonstructural protein 1 (NS1), we are able to stimulate cellular and humoral immune responses of aged mice comparable to levels seen in young mice. Impressively, a single vaccination provided protection following stringent lethal challenge in aged mice.
Collapse
|
43
|
Tan SY, Cavanagh LL, d'Advigor W, Shackel N, Fazekas de St Groth B, Weninger W. Phenotype and functions of conventional dendritic cells are not compromised in aged mice. Immunol Cell Biol 2012; 90:722-32. [PMID: 22231652 DOI: 10.1038/icb.2011.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging has profound effects on the immune system, including thymic involution, reduced diversity of the T cell receptor repertoire, reduced effector T cell and B cell function and chronic increase of proinflammatory cytokine production by innate immune cells. The precise effects of aging on conventional dendritic cells (cDC), the main antigen presenting cells of the immune system, however, are not well understood. We found that in aged mice the number of cDC in the spleen and lymph nodes remained stable, whereas the number of cDC in the lungs increased with age. Whereas cDC in mice showed similar cycling kinetics in all organs tested, cDC reconstitution by aged bone marrow precursors was relatively higher than that of their young counterparts. With the exception of CD86, young and aged cDC did not differ in their expression of co-stimulatory molecules at steady state. Most toll-like receptor (TLR) ligands induced comparable upregulation of co-stimulatory molecules CD40, CD86 and B7H1 on young and aged cDC, whereas TLR2 and TLR5 stimulation resulted in reduced upregulation of CD80 and CD86 on aged cDC in vitro. In vivo, influenza infection-induced upregulation of CD86, but not other co-stimulatory molecules, was lower in aged DC. Young and aged DC were equally capable of direct and cross presentation of antigens in vitro. Transcriptome analysis did not reveal any significant difference between young and aged cDC. These data show that unlike T and B cells, the maintenance of cDC throughout the life of a healthy animal is relatively robust during the aging process.
Collapse
Affiliation(s)
- Sioh-Yang Tan
- Immune Imaging Program, The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10:336-45. [PMID: 20619360 DOI: 10.1016/j.arr.2010.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self-antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-α in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, CA, USA.
| | | |
Collapse
|
45
|
Ogden S, Dearman RJ, Kimber I, Griffiths CEM. The effect of ageing on phenotype and function of monocyte-derived Langerhans cells. Br J Dermatol 2011; 165:184-8. [PMID: 21410677 PMCID: PMC3178785 DOI: 10.1111/j.1365-2133.2011.10313.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background With increasing age the immune system shows functional decline. In the skin this is associated with an increased incidence of epidermal malignancies and infections. Epidermal Langerhans cells (LCs) act as sentinels of the immune system, recognizing, processing and presenting antigen and inducing T-cell responses. Previous investigations have demonstrated a reduction in the number of epidermal LCs in elderly subjects. Moreover, the ability of LCs to migrate in response to tumour necrosis factor (TNF)-α, but not interleukin (IL)-1β, is significantly impaired in the elderly. Objectives To characterize further the changes in LC function that are associated with increasing chronological age, we have evaluated age-related changes in the response of monocyte-derived LCs (mLCs) to IL-1β and TNF-α. Methods The phenotype and function of mLCs were compared in six young (≤ 30 years) and six aged (≥ 70 years) healthy individuals using a combination of flow cytometry, cytokine and chemokine array, and a Transwell migration assay. Results Monocytes from aged individuals were able to differentiate into LCs. There were no significant differences in expression of activation markers, or in baseline or inducible cytokine secretion, by mLCs derived from aged or young subjects. Furthermore, migration in response to a chemokine ligand, CCL19, was equivalent in both age groups. Conclusions These data demonstrate that changes in LC function in the elderly are not associated with changes in systemic dendritic cell phenotype and function. Conditioning of LCs in situ by the epidermal microenvironment is likely to be more important.
Collapse
Affiliation(s)
- S Ogden
- Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester M6 8HD, UK.
| | | | | | | |
Collapse
|
46
|
Abstract
Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed "immune senescence," manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551-1585.
Collapse
Affiliation(s)
- Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA
| | | |
Collapse
|
47
|
Abstract
This contribution will address the effect of aging on skin functions, with a particular focus on skin permeability, wound healing, angiogenesis, lipogenesis, sweat production, immune function, and vitamin D synthesis. With accelerating age, skin functions deteriorate due to structural and morphologic changes. Skin is prone to the development of several diseases, varying from benign to malignant. Because the number of persons aged 80 and older is expected to rise in the next decades, disease prevention will become an important issue. Screening examinations and prevention through public education starting at an early age regarding sun avoidance, the use of sunscreens and the importance of a balanced nutrition are the first steps for successful healthy aging. Although the fundamental mechanisms in the pathogenesis of aged skin are still poorly understood, a growing body of evidence points toward the involvement of multiple pathways. Recent data obtained by expression profiling studies and studies of progeroid syndromes illustrate that among the most important biologic processes involved in skin aging are alterations in DNA repair and stability, mitochondrial function, cell cycle and apoptosis, extracellular matrix, lipid synthesis, ubiquitin-induced proteolysis and cellular metabolism. Among others, a major factor that has been implicated in the initiation of aging is the physiologic decline of hormones occurring with age. However, hormones at age-specific levels may regulate not only age-associated mechanisms but also tumor suppressor pathways that influence carcinogenesis. Understanding the molecular mechanisms of aging may open new strategies to deal with the various diseases accompanying high age, including cancer.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany.
| | | |
Collapse
|
48
|
Abstract
The relationship between advanced age and immunologic deficits is becoming an area of rapidly advancing research. Many of the clinical hurdles in the elderly population result from dysregulation of the immune system leading to the inability of the elderly to swiftly combat infection and to the increased incidence of chronic disease states and autoimmune conditions. Herein, we address the crucial alterations in the innate immune system that occur with advancing age. Specifically, we discuss how the effects of advanced age may lead to functional changes in the neutrophil, macrophage, dendritic cell, natural killer cell, and natural killer T cell populations in human and murine models that translate into aberrant innate immune responses. Furthermore, we elucidate how these changes may contribute to documented deficits in adaptive immunity as well as the pathological conditions and the increased morbidity and mortality seen in the elderly population.
Collapse
Affiliation(s)
- Shegufta Mahbub
- The Burn and Shock Trauma Institute, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | |
Collapse
|
49
|
Abstract
Like the entire human organism, the skin is subject to an intrinsic unpreventable aging process. But exogenous factors also influence skin aging. Ultraviolet radiation in particular results in premature skin aging, also referred to as extrinsic skin aging or photo aging, causing in large part aging-associated changes in sun-exposed areas. Intrinsic and extrinsic aging share several molecular similarities despite morphological and pathophysiological differences. The formation of reactive oxygen species and the induction of metalloproteinases reflect central aspects of skin aging. Accumulation of fragmented collagen fibrils prevents neocollagenesis and accounts for further degradation of extracellular matrix by means of positive feedback regulation. The importance of extrinsic factors in skin aging and the detection of its mechanisms has given rise to development of various therapeutic and preventive strategies.
Collapse
Affiliation(s)
- E Kohl
- Klinik und Poliklinik für Dermatologie, Universitätsklinikum Regensburg, 93053 Regensburg.
| | | | | |
Collapse
|
50
|
Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol 2010; 87:1001-9. [PMID: 20200405 DOI: 10.1189/jlb.0809542] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with a progressive dysregulation of immune responses. Whether these changes are solely responsible for the observed increased mortality and morbidity amongst the elderly is uncertain. Recent advances have highlighted the age-associated changes that occur beyond T and B lymphocytes. Additionally, multiple human and animal studies have identified a relationship between chronic low-grade inflammation and geriatric syndromes, such as frailty, suggesting that the phenomenon of "inflamm-aging" may provide a rationale for the increased vulnerability to chronic inflammatory diseases in older adults. In the present review, we broadly summarize our current understanding of age-dependent changes in leukocyte function and their contribution to aging-related disease processes.
Collapse
Affiliation(s)
- Anjali Desai
- Division of Geriatric Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|