1
|
Petropavlovskaia M, Assouline-Thomas B, Cuerquis J, Zhao J, Violette-Deslauriers S, Nano E, Eliopoulos N, Rosenberg L. Characterization of MSCs expressing islet neogenesis associated protein (INGAP): INGAP secretion and cell survival in vitro and in vivo. Heliyon 2024; 10:e35372. [PMID: 39170459 PMCID: PMC11336584 DOI: 10.1016/j.heliyon.2024.e35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Jessica Cuerquis
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Jing Zhao
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
| | - Shaun Violette-Deslauriers
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Eni Nano
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lawrence Rosenberg
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Tanaka S, Ariyoshi Y, Taniguchi T, Nakagawa ACS, Hamaoka N, Iwaya-Inoue M, Suriyasak C, Ishibashi Y. Heat shock protein 70 is associated with duration of cell proliferation in early pod development of soybean. Commun Biol 2024; 7:755. [PMID: 38906939 PMCID: PMC11192946 DOI: 10.1038/s42003-024-06443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Pod is an important organ for seed production in soybean. Pod size varies among soybean cultivars, but the mechanism is largely unknown. Here we reveal one of the factors for pod size regulation. We investigate pod size differences between two cultivars. The longer pod of 'Tachinagaha' is due to more cell number than in the short pod of 'Iyodaizu'. POD SIZE OF SOYBEAN 8 (GmPSS8), a member of the heat shock protein 70 (HSP70) family, is identified as a candidate gene for determining pod length in a major QTL for pod length. Expression of GmPSS8 in pods is higher in 'Tachinagaha' than 'Iyodaizu' and is highest in early pod development. The difference in expression is the result of an in/del polymorphism which includes an enhancer motif. Treatment with an HSP70 inhibitor reduces pod length and cell number in the pod. Additionally, shorter pods in Arabidopsis hsp70-1/-4 double mutant are rescued by overexpression of GmPSS8. Our results identify GmPSS8 as a target gene for pod length, which regulates cell number during early pod development through regulation of transcription in soybean. Our findings provide the mechanisms of pod development and suggest possible strategies enhancing yield potential in soybean.
Collapse
Affiliation(s)
- Seiya Tanaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuri Ariyoshi
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Andressa C S Nakagawa
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | | | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Yushi Ishibashi
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Cordani M, Garufi A, Benedetti R, Tafani M, Aventaggiato M, D’Orazi G, Cirone M. Recent Advances on Mutant p53: Unveiling Novel Oncogenic Roles, Degradation Pathways, and Therapeutic Interventions. Biomolecules 2024; 14:649. [PMID: 38927053 PMCID: PMC11201733 DOI: 10.3390/biom14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Rossella Benedetti
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Marco Tafani
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Michele Aventaggiato
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D’Annunzio, 00131 Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy; (R.B.); (M.T.); (M.A.); (M.C.)
| |
Collapse
|
4
|
Zhang W, Liu J, Zhou Y, Liu S, Wu J, Jiang H, Xu J, Mao H, Liu S, Chen B. Signaling pathways and regulatory networks in quail skeletal muscle development: insights from whole transcriptome sequencing. Poult Sci 2024; 103:103603. [PMID: 38457990 PMCID: PMC11067775 DOI: 10.1016/j.psj.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jiguo Xu
- Biotech Research Institute of Nanchang Normal University, Nanchang 330032, Jiangxi, P. R. China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| |
Collapse
|
5
|
Lattos A, Feidantsis K, Giantsis IA, Theodorou JA, Michaelidis B. Seasonality in Synergism with Multi-Pathogen Presence Leads to Mass Mortalities of the Highly Endangered Pinna nobilis in Greek Coastlines: A Pathophysiological Approach. Microorganisms 2023; 11:1117. [PMID: 37317091 DOI: 10.3390/microorganisms11051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Mortalities of Pinna nobilis populations set at risk the survival of the species from many Mediterranean coastline habitats. In many cases, both Haplosporidium pinnae and Mycobacterium spp. are implicated in mass mortalities of P. nobilis populations, leading the species into extinction. In the context of the importance of these pathogens' role in P. nobilis mortalities, the present study investigated two Greek populations of the species hosting different microbial loads (one only H. pinnae and the second both pathogens) by the means of pathophysiological markers. More specifically, the populations from Kalloni Gulf (Lesvos Island) and from Maliakos Gulf (Fthiotis), seasonally sampled, were chosen based on the host pathogens in order to investigate physiological and immunological biomarkers to assess those pathogens' roles. In order to determine if the haplosporidian parasite possesses a major role in the mortalities or if both pathogens are involved in these phenomena, a variety of biomarkers, including apoptosis, autophagy, inflammation and heat shock response were applied. The results indicated a decreased physiological performance of individuals hosting both pathogens in comparison with those hosting only H. pinnae. Our findings provide evidence for the synergistic role of those pathogens in the mortality events, which is also enhanced by the influence of seasonality.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-23200 Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Liao Z, Tang C, Luo R, Gu X, Zhou J, Gao J. Current Concepts of Precancerous Lesions of Hepatocellular Carcinoma: Recent Progress in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13071211. [PMID: 37046429 PMCID: PMC10093043 DOI: 10.3390/diagnostics13071211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
The most common cause of hepatocellular carcinoma (HCC) is chronic hepatitis and cirrhosis. It is proposed that precancerous lesions of HCC include all stages of the disease, from dysplastic foci (DF), and dysplastic nodule (DN), to early HCC (eHCC) and progressed HCC (pHCC), which is a complex multi-step process. Accurately identifying precancerous hepatocellular lesions can significantly impact the early detection and treatment of HCC. The changes in high-grade dysplastic nodules (HGDN) were similar to those seen in HCC, and the risk of malignant transformation significantly increased. Nevertheless, it is challenging to diagnose precancerous lesions of HCC. We integrated the literature and combined imaging, pathology, laboratory, and other relevant examinations to improve the accuracy of the diagnosis of precancerous lesions.
Collapse
Affiliation(s)
- Ziyue Liao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Cuiping Tang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Rui Luo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xiling Gu
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Yuzhong District, Chongqing 400010, China
| |
Collapse
|
7
|
Yamogenin-Induced Cell Cycle Arrest, Oxidative Stress, and Apoptosis in Human Ovarian Cancer Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238181. [PMID: 36500274 PMCID: PMC9740764 DOI: 10.3390/molecules27238181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Steroidal saponins are a group of compounds with complex structures and biological activities. They have anti-inflammatory, antimicrobial, fungicidal, and antitumor properties. Yamogenin is one of the spirostane saponins and occurs in Trigonella foenum-graecum, Asparagus officinalis, and Dioscorea collettii. It is a stereoisomer of diosgenin-a well-known compound whose activity and mechanisms of action in cancer cells are determined. However, the antitumor effect of yamogenin is still little known, and the mechanism of action has not been determined. In this study, we evaluated the effect of yamogenin on human ovarian cancer SKOV-3 cells in vitro by determining the cellular factors that trigger cell death. The viability of the cells was assessed with a Real-Time xCELLigence system and the cell cycle arrest with flow cytometry. The activity of initiator and executioner caspases (-8, -9, and -3/7) was estimated with luminometry and flow cytometry, respectively. The mitochondrial membrane depolarization, the level of oxidative stress, and DNA damage in the yamogenin-treated cells were also evaluated by flow cytometry. Genes expression analysis at the mRNA level was conducted with Real-Time PCR. Bid activation and chromatin condensation were estimated with fluorescent microscopy. The obtained results indicate that yamogenin has cytotoxic activity in SKOV-3 cells with an IC50 value of 23.90 ± 1.48 µg/mL and strongly inhibits the cell cycle in the sub-G1 phase. The compound also triggers cell death with a significant decrease in mitochondrial membrane potential, an increase in the level of oxidative stress (over two times higher in comparison to the control), and activation of caspase-8, -9, -3/7, as well as Bid. The results of genes expression indicate that the Tumor Necrosis Factor (TNF) Receptor Superfamily Members (TNF, TNFRSF10, TNFRSF10B, TNFRSF1B, and TNFRSF25), Fas Associated via Death Domain (FADD), and Death Effector Domain Containing 2 (DEDD2) were significantly upregulated and their relative expression was at least two times higher than in the control. Our work shows that yamogenin induces apoptosis in ovarian cancer cells, and both the extrinsic and mitochondrial-intrinsic pathways are involved in this process.
Collapse
|
8
|
Dose-related shifts in proteome and function of extracellular vesicles secreted by fetal neural stem cells following chronic alcohol exposure. Heliyon 2022; 8:e11348. [PMID: 36387439 PMCID: PMC9649983 DOI: 10.1016/j.heliyon.2022.e11348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that extracellular vesicles (EVs) mediate endocrine functions and also pathogenic effects of neurodevelopmental perturbagens like ethanol. We performed mass-spectrometry on EVs secreted by fetal murine cerebral cortical neural stem cells (NSCs), cultured ex-vivo as sex-specific neurosphere cultures, to identify overrepresented proteins and signaling pathways in EVs relative to parental NSCs in controls, and following exposure of parental NSCs to a dose range of ethanol. EV proteomes differ substantially from parental NSCs, and though EVs sequester proteins across sub-cellular compartments, they are enriched for distinct morphogenetic signals including the planar cell polarity pathway. Ethanol exposure favored selective protein sequestration in EVs and depletion in parental NSCs, and also resulted in dose-independent overrepresentation of cell-cycle and DNA replication pathways in EVs as well as dose-dependent overrepresentation of rRNA processing and mTor stress pathways. Transfer of untreated EVs to naïve cells resulted in decreased oxidative metabolism and S-phase, while EVs derived from ethanol-treated NSCs exhibited diminished effect. Collectively, these data show that NSCs secrete EVs with a distinct proteome that may have a general growth-inhibitory effect on recipient cells. Moreover, while ethanol results in selective transfer of proteins from NSCs to EVs, the efficacy of these exposure-derived EVs is diminished.
Collapse
|
9
|
Hasan A, Rizvi SF, Parveen S, Mir SS. Molecular chaperones in DNA repair mechanisms: Role in genomic instability and proteostasis in cancer. Life Sci 2022; 306:120852. [DOI: 10.1016/j.lfs.2022.120852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023]
|
10
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
11
|
Yu H, Yang Z, Sui M, Cui C, Hu Y, Hou X, Xing Q, Huang X, Bao Z. Identification and Characterization of HSP90 Gene Family Reveals Involvement of HSP90, GRP94 and Not TRAP1 in Heat Stress Response in Chlamys farreri. Genes (Basel) 2021; 12:1592. [PMID: 34680986 PMCID: PMC8535295 DOI: 10.3390/genes12101592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/15/2023] Open
Abstract
Heat shock proteins 90 (HSP90s) are a class of ubiquitous, highly conserved, and multi-functional molecular chaperones present in all living organisms. They assist protein folding processes to form functional proteins. In the present study, three HSP90 genes, CfHSP90, CfGRP94 and CfTRAP1, were successfully identified in the genome of Chlamys farreri. The length of CfHSP90, CfGRP94 and CfTRAP1 were 7211 bp, 26,457 bp, and 28,699 bp, each containing an open reading frame (ORF) of 2181 bp, 2397 bp, and 2181 bp, and encoding proteins of 726, 798, and 726 amino acids, respectively. A transcriptomic database demonstrated that CfHSP90 and CfGRP94 were the primary functional executors with high expression during larval development and in adult tissues, while CfTRAP1 expression was low. Furthermore, all of the three CfHSP90s showed higher expression in gonads and ganglia as compared with other tissues, which indicated their probable involvement in gametogenesis and nerve signal transmission in C. farreri. In addition, under heat stress, the expressions of CfHSP90 and CfGRP94 were significantly up-regulated in the mantle, gill, and blood, but not in the heart. Nevertheless, the expression of CfTRAP1 did not change significantly in the four tested tissues. Taken together, in coping with heat stress, CfHSP90 and CfGRP94 could help correct protein folding or salvage damaged proteins for cell homeostasis in C. farreri. Collectively, a comprehensive analysis of CfHSP90s in C. farreri was conducted. The study indicates the functional diversity of CfHSP90s in growth, development, and environmental response, and our findings may have implications for the subsequent in-depth exploration of HSP90s in invertebrates.
Collapse
Affiliation(s)
- Haitao Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Mingyi Sui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Chang Cui
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Yuqing Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.Y.); (Z.Y.); (M.S.); (C.C.); (Y.H.); (X.H.); (Q.X.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, SANYA Oceanographic Institution of the Ocean University of CHINA (SOI-OUC), Sanya 572000, China
| |
Collapse
|
12
|
Sytar O, Kotta K, Valasiadis D, Kosyan A, Brestic M, Koidou V, Papadopoulou E, Kroustalaki M, Emmanouilidou C, Pashalidis A, Avdikos I, Hilioti Z. The Effects of Photosensitizing Dyes Fagopyrin and Hypericin on Planktonic Growth and Multicellular Life in Budding Yeast. Molecules 2021; 26:molecules26164708. [PMID: 34443298 PMCID: PMC8398373 DOI: 10.3390/molecules26164708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022] Open
Abstract
Naphthodianthrones such as fagopyrin and hypericin found mainly in buckwheat (Fagopyrum spp.) and St. John’s wort (SJW) (Hypericum perforatum L.) are natural photosensitizers inside the cell. The effect of photosensitizers was studied under dark conditions on growth, morphogenesis and induction of death in Saccharomyces cerevisiae. Fagopyrin and hypericin induced a biphasic and triphasic dose response in cellular growth, respectively, over a 10-fold concentration change. In fagopyrin-treated cells, disruptions in the normal cell cycle progression were evident by microscopy. DAPI staining revealed several cells that underwent premature mitosis without budding, a striking morphological abnormality. Flow Cytometric (FC) analysis using a concentration of 100 µM showed reduced cell viability by 41% in fagopyrin-treated cells and by 15% in hypericin-treated cells. FC revealed the development of a secondary population of G1 cells in photosensitizer-treated cultures characterized by small size and dense structures. Further, we show that fagopyrin and the closely related hypericin altered the shape and the associated fluorescence of biofilm-like structures. Colonies grown on solid medium containing photosensitizer had restricted growth, while cell-to-cell adherence within the colony was also affected. In conclusion, the photosensitizers under dark conditions affected culture growth, caused toxicity, and disrupted multicellular growth, albeit with different efficiencies.
Collapse
Affiliation(s)
- Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrskya str., 64, 01033 Kyiv, Ukraine; (O.S.); (A.K.)
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Konstantia Kotta
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Dimitrios Valasiadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Anatoliy Kosyan
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrskya str., 64, 01033 Kyiv, Ukraine; (O.S.); (A.K.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Venetia Koidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Eleftheria Papadopoulou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Maria Kroustalaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Christina Emmanouilidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Alexandros Pashalidis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Ilias Avdikos
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
| | - Zoe Hilioti
- Institute of Applied Biosciences, Centre for Research & Technology Hellas, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (K.K.); (D.V.); (V.K.); (E.P.); (M.K.); (C.E.); (A.P.); (I.A.)
- Correspondence: ; Tel.: +30-23-1049-8273
| |
Collapse
|
13
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Zhou Z, Xie J, Ma S, Luo X, Liu J, Wang S, Chen Y, Yan J, Luo F. Construction of Smart Nanotheranostic Platform Bi-Ag@PVP: Multimodal CT/PA Imaging-Guided PDT/PTT for Cancer Therapy. ACS OMEGA 2021; 6:10723-10734. [PMID: 34056226 PMCID: PMC8153791 DOI: 10.1021/acsomega.1c00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 05/11/2023]
Abstract
High-efficiency nanotheranostic agents with multimodal imaging guidance have attracted considerable interest in the field of cancer therapy. Herein, novel silver-decorated bismuth-based heterostructured polyvinyl pyrrolidone nanoparticles (NPs) with good biocompatibility (Bi-Ag@PVP NPs) were synthesized for accurate theranostic treatment, which can integrate computed tomography (CT)/photoacoustic (PA) imaging and photodynamic therapy/photothermal therapy (PDT/PTT) into one platform. The Bi-Ag@PVP NPs can enhance light absorption and achieve a better photothermal effect than bismuth NPs. Moreover, after irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can efficiently induce the generation of reactive oxygen species (ROS), thereby synergizing PDT/PTT to exert an efficient tumor ablation effect both in vitro and in vivo. Furthermore, Bi-Ag@PVP NPs can also be employed to perform enhanced CT/PA imaging because of their high X-ray absorption attenuation and enhanced photothermal conversion. Thus, they can be utilized as a highly effective CT/PA imaging-guided nanotheranostic agent. In addition, an excellent antibacterial effect was achieved. After irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can destroy the integrity of Escherichia coli, thereby inhibiting E. coli growth, which can minimize the risk of infection during cancer therapy. In conclusion, our study provides a novel nanotheranostic platform that can achieve CT/PA-guided PDT/PTT synergistic therapy and have potential antibacterial properties. Thus, this work provides an effective strategy for further broad clinical application prospects.
Collapse
Affiliation(s)
- Zonglang Zhou
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jun Xie
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Sihan Ma
- College
of Energy, Xiamen University, Xiamen 361005, China
| | - Xian Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Jiajing Liu
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Shengyu Wang
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuqiang Chen
- The
174th Clinic College of People’s Liberation Army, Anhui Medical University, Hefei 230031, China
- The
73rd Army Hospital of the Chinese People’s Liberation Army, Xiamen 361003, China
| | - Jianghua Yan
- School
of Medicine, Xiamen University, Xiamen 361005, China
| | - Fanghong Luo
- School
of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Zeng Z, Chen H, Cai J, Huang Y, Yue J. IL-10 regulates the malignancy of hemangioma-derived endothelial cells via regulation of PCNA. Arch Biochem Biophys 2020; 688:108404. [PMID: 32416101 DOI: 10.1016/j.abb.2020.108404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Hemangioma (HA) is the most common benign tumor and formed by the proliferating endothelial cells of blood vessels. Interleukins (ILs) have been reported to be critical for HA progression. Our present study found that the expression of IL-10 was decreased in HA cells and tissues as compared to their corresponding controls. Treatment with recombinant IL-10 (rIL-10) can suppress the proliferation of HA cells via suppression of proliferating cell nuclear antigen (PCNA), while over expression of PCNA can attenuate rIL-10-inhibited cell proliferation. Further, rIL-10 can decrease the promoter activity and mRNA stability of PCNA in HA cells. Mechanistically, rIL-10 can increase expression of miR-27b-3p to decrease mRNA stability of PCNA, while down regulation of YY1 is involved in rIL-10 suppressed transcription of PCNA. Collectively, IL-10 can suppress the expression of PCNA via miR-27b-3p mediated suppression of mRNA stability and YY1 mediated down regulation of transcription. It suggested that rIL-10 might be a potential therapeutic approach for HA development and progression.
Collapse
Affiliation(s)
- Zhaofan Zeng
- Department of Vascular Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Hao Chen
- Department of Vascular Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Junhong Cai
- Molecular Laboratory Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Yanjing Huang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Jie Yue
- Department of Cardiovascula Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, PR China.
| |
Collapse
|
16
|
Investigation of the Short-term Effects of Heat Shock on Human Hamstring Tenocytes In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-018-0070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
The value of heat shock protein (HSP) 60 on in-hospital and short-term prognosis in patients with acute ST segment elevation myocardial infarction. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.601334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Liao H, Xiong T, Peng J, Xu L, Liao M, Zhang Z, Wu Z, Yuan K, Zeng Y. Classification and Prognosis Prediction from Histopathological Images of Hepatocellular Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Ann Surg Oncol 2020; 27:2359-2369. [PMID: 31916093 DOI: 10.1245/s10434-019-08190-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to develop quantitative feature-based models from histopathological images to distinguish hepatocellular carcinoma (HCC) from adjacent normal tissue and predict the prognosis of HCC patients after surgical resection. METHODS A fully automated pipeline was constructed using computational approaches to analyze the quantitative features of histopathological slides of HCC patients, in which the features were extracted from the hematoxylin and eosin (H&E)-stained whole-slide images of HCC patients from The Cancer Genome Atlas and tissue microarray images from West China Hospital. The extracted features were used to train the statistical models that classify tissue slides and predict patients' survival outcomes by machine-learning methods. RESULTS A total of 1733 quantitative image features were extracted from each histopathological slide. The diagnostic classifier based on 31 features was able to successfully distinguish HCC from adjacent normal tissues in both the test [area under the receiver operating characteristic curve (AUC) 0.988] and external validation sets (AUC 0.886). The random-forest prognostic model using 46 features was able to significantly stratify patients in each set into longer- or shorter-term survival groups according to their assigned risk scores. Moreover, the prognostic model we constructed showed comparable predicting accuracy as TNM staging systems in predicting patients' survival at different time points after surgery. CONCLUSIONS Our findings suggest that machine-learning models derived from image features can assist clinicians in HCC diagnosis and its prognosis prediction after hepatectomy.
Collapse
Affiliation(s)
- Haotian Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tianyuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajie Peng
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Lin Xu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Mingheng Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Yong Zeng
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
19
|
Cheng D, Liu H, Zhang H, Tan K, Ye T, Ma H, Li S, Zheng H. Effects of thermal stress on mortality and HSP90 expression levels in the noble scallops Chlamys nobilis with different total carotenoid content. Cell Stress Chaperones 2020; 25:105-117. [PMID: 31768900 PMCID: PMC6985358 DOI: 10.1007/s12192-019-01052-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
The noble scallop Chlamys nobilis is an economically important marine bivalve cultivated in the southern sea of China since the 1980s. Unfortunately, mass mortality of this scallop species often occurs in summer. The present study was conducted to investigate whether the expression of heat shock protein 90 (HSP90) and level of carotenoids could enhance high-temperature stress resistance in scallop. First, the HSP90 homolog of C. nobilis (designated CnHSP90) was identified and cloned. The complete cDNA sequence of CnHSP90 was 2631 bp, including a 2181-bp open reading frame (ORF) encoding a 726 amino acid polypeptide with five HSP90 family signatures, and sharing high homology with members of the HSP90 family. CnHSP90 was ubiquitously expressed in all examined tissues including the intestine, kidney, adductor, mantle, gill, and gonad, with the highest in the gonad. Golden and brown scallops, which contain significantly different total carotenoid content (TCC), were subjected to acute thermal challenge, and the LTE50 (semi-lethal temperature at 36 h heat shock) and LTI50 (semi-lethal time after heat shock) as well as the correlation between CnHSP90 gene expression and TCC were determined. The LTE50 of golden scallop (32.14 °C) was higher than that of brown scallops (31.19 °C), with longer LTI50 at all tested temperatures, indicating that golden scallops were more resistant to thermal stress than brown scallops. Similarly, the mRNA expression levels of CnHSP90 in gill of golden scallops were significantly higher (P < 0.05) than that of brown scallops at 6, 12, 24, and 36 h, with a strong positive correlation between CnHSP90 expression level and TCC. This suggests that both carotenoids and HSP90 levels could improve thermal resistance in the noble scallops.
Collapse
Affiliation(s)
- Dewei Cheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongxing Liu
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ting Ye
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Shantou University, Shantou, 515063, China.
- Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou, 515063, China.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
20
|
Chiaramonte M, Inguglia L, Vazzana M, Deidun A, Arizza V. Stress and immune response to bacterial LPS in the sea urchin Paracentrotus lividus (Lamarck, 1816). FISH & SHELLFISH IMMUNOLOGY 2019; 92:384-394. [PMID: 31220574 DOI: 10.1016/j.fsi.2019.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The immune system of the sea urchin species Paracentrotus lividus is highly complex and, as yet, poorly understood. P. lividus coelomocytes mediate immune response through phagocytosis and encapsulation of non-self particles, in addition to the production of antimicrobial molecules. Despite this understanding, details of exactly how these processes occur and the mechanisms which drive them are still in need of clarification. In this study, we show how the bacterial lipopolysaccharides (LPS) is able to induce a stress response which increases the levels of the heat shock proteins HSP70 and HSP90 only a few hours after treatment. This study also shows that LPS treatment increases the expression of the β-thymosin-derivated protein paracentrin, the precursor of antimicrobial peptides.
Collapse
Affiliation(s)
- Marco Chiaramonte
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Luigi Inguglia
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy.
| | - Mirella Vazzana
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| | - Alan Deidun
- Dept. of Geosciences, University of Malta, Msida, MSD, 2080, Malta
| | - Vincenzo Arizza
- Dept. STEBICEF, Università Degli Studi di Palermo, Via Archirafi, 18, 90123, Palermo, Italy
| |
Collapse
|
21
|
Wang Y, Zhao S, Chen Y, Wang T, Dong C, Wo X, Zhang J, Dong Y, Xu W, Feng X, Qu C, Wang Y, Zhong Z, Zhao W. The Capsid Protein VP1 of Coxsackievirus B Induces Cell Cycle Arrest by Up-Regulating Heat Shock Protein 70. Front Microbiol 2019; 10:1633. [PMID: 31379784 PMCID: PMC6653663 DOI: 10.3389/fmicb.2019.01633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
Manipulating cell cycle is one of the common strategies used by viruses to generate favorable cellular environment to facilitate viral replication. Coxsackievirus B (CVB) is one of the major viral pathogens of human myocarditis and cardiomyopathy. Because of its small genome, CVB depends on cellular machineries for productive replication. However, how the structural and non-structural components of CVB would manipulate cell cycle is not clearly understood. In this study, we demonstrated that the capsid protein VP1 of CVB type 3 (CVB3) induced cell cycle arrest at G1 phase. G1 arrest was the result of the decrease level of cyclin E and the accumulation of p27Kip1. Study on the gene expression profile of the cells expressing VP1 showed that the expression of both heat shock protein 70-1 (Hsp70-1) and Hsp70-2 was significantly up-regulated. Knockdown of Hsp70 resulted in the increased level of cyclin E and the reduction of p27Kip1. We further demonstrated that the phosphorylation of the heat shock factor 1, which directly promotes the expression of Hsp70, was also increased in the cell expressing VP1. Moreover, we show that CVB3 infection also induced G1 arrest, likely due to dysregulating Hsp70, cyclin E, and p27, while knockdown of Hsp70 dramatically inhibited viral replication. Cell cycle arrest at G1 phase facilitated CVB3 infection, since viral replication in the cells synchronized at G1 phase dramatically increased. Taken together, this study demonstrates that the VP1 of CVB3 induces cell cycle arrest at G1 phase through up-regulating Hsp70. Our findings suggest that the capsid protein VP1 of CVB is capable of manipulating cellular activities during viral infection.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chaorun Dong
- Northern Translational Medicine Research Center, Harbin Medical University, Harbin, China
| | - Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Jian Zhang
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weizhen Xu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiaofeng Feng
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Cong Qu
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
23
|
Cho W, Jin X, Pang J, Wang Y, Mivechi NF, Moskophidis D. The Molecular Chaperone Heat Shock Protein 70 Controls Liver Cancer Initiation and Progression by Regulating Adaptive DNA Damage and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Signaling Pathways. Mol Cell Biol 2019; 39:e00391-18. [PMID: 30745413 PMCID: PMC6469921 DOI: 10.1128/mcb.00391-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/21/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Delineating the mechanisms that drive hepatic injury and hepatocellular carcinoma (HCC) progression is critical for development of novel treatments for recurrent and advanced HCC but also for the development of diagnostic and preventive strategies. Heat shock protein 70 (HSP70) acts in concert with several cochaperones and nucleotide exchange factors and plays an essential role in protein quality control that increases survival by protecting cells against environmental stressors. Specifically, the HSP70-mediated response has been implicated in the pathogenesis of cancer, but the specific mechanisms by which HSP70 may support malignant cell transformation remains to be fully elucidated. Here, we show that genetic ablation of HSP70 markedly impairs HCC initiation and progression by distinct but overlapping pathways. This includes the potentiation of the carcinogen-induced DNA damage response, at the tumor initiation stage, to increase the p53-dependent surveillance response leading to the cell cycle exit or death of genomically damaged differentiated pericentral hepatocytes, and this may also prevent their conversion into more proliferating HCC progenitor cells. Subsequently, activation of a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) negative feedback pathway diminishes oncogenic signals, thereby attenuating premalignant cell transformation and tumor progression. Modulation of HSP70 function may be a strategy for interfering with oncogenic signals driving liver cell transformation and tumor progression, thus providing an opportunity for human cancer control.
Collapse
Affiliation(s)
- Wonkyoung Cho
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Yan Wang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Radiology and Imaging, Augusta University, Augusta, Georgia, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
24
|
Affiliation(s)
- Samin Seddigh
- Department of Plant Protection, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
25
|
Huang YH, Lin KH, Yu JS, Wu TJ, Lee WC, Chao CCK, Pan TL, Yeh CT. Targeting HSP60 by subcutaneous injections of jetPEI/HSP60-shRNA destabilizes cytoplasmic survivin and inhibits hepatocellular carcinoma growth. Mol Carcinog 2018; 57:1087-1101. [PMID: 29672920 DOI: 10.1002/mc.22827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Heat shock protein 60 (HSP60) overexpresses in various types of cancer, but its expression levels and functions in hepatocellular carcinoma (HCC) are still in dispute. We aim to clarify this issue and examine whether HSP60 could be a therapeutic target for HCC. We found drastically enhanced cell apoptosis and suppressed cell proliferation in two HCC cell lines with HSP60-silencing, and also indicated survivin was involved in this regulatory process in vitro and in vivo. However, HSP60-silencing in normal human hepatocytes only resulted in a minimal reduction of cell proliferation but without effects on cell apoptosis. We also showed HSP60 interacted with cytosolic but not mitochondrial survivin by immunoprecipitation assay. A rigorous method was used to standardize quantification from immunoblot assay to obtain more precise expression levels of HSP60 and survivin. The expression of HSP60 and survivin positively correlated in both cancerous and non-cancerous liver tissues (P < 0.001) after analyzing 145 surgically removed HCC tissues. A total of 56.6% of HCC patients overexpressed HSP60 in cancerous tissues, and 40.0% under-expressed HSP60. Higher expression of HSP60 and survivin in non-cancerous tissues both correlated with shorter overall survival (P = 0.029 and P < 0.001, respectively). Finally, we evaluated the therapeutic potential of HSP60 using extraneous delivery of jetPEI/shHSP60 complexes. The treatment results showed significant reduction of tumor weight by 44.3% (P < 0.05), accompanied by under-expression of survivin. These studies suggested that HSP60 not only served as a prognostic marker but also served as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuck C-K Chao
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang-Gung University, Taoyuan, Taiwan.,Research Center of Industry of Human Ecology, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Hoter A, Amiri M, Prince A, Amer H, Warda M, Naim HY. Differential Glycosylation and Modulation of Camel and Human HSP Isoforms in Response to Thermal and Hypoxic Stresses. Int J Mol Sci 2018; 19:ijms19020402. [PMID: 29385708 PMCID: PMC5855624 DOI: 10.3390/ijms19020402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/11/2023] Open
Abstract
Increased expression of heat shock proteins (HSPs) following heat stress or other stress conditions is a common physiological response in almost all living organisms. Modification of cytosolic proteins including HSPs by O-GlcNAc has been shown to enhance their capabilities for counteracting lethal levels of cellular stress. Since HSPs are key players in stress resistance and protein homeostasis, we aimed to analyze their forms at the cellular and molecular level using camel and human HSPs as models for efficient and moderate thermotolerant mammals, respectively. In this study, we cloned the cDNA encoding two inducible HSP members, HSPA6 and CRYAB from both camel (Camelus dromedarius) and human in a Myc-tagged mammalian expression vector. Expression of these chaperones in COS-1 cells revealed protein bands of approximately 25-kDa for both camel and human CRYAB and 70-kDa for camel HSPA6 and its human homologue. While localization and trafficking of the camel and human HSPs revealed similar cytosolic localization, we could demonstrate altered glycan structure between camel and human HSPA6. Interestingly, the glycoform of camel HSPA6 was rapidly formed and stabilized under normal and stress culture conditions whereas human HSPA6 reacted differently under similar thermal and hypoxic stress conditions. Our data suggest that efficient glycosylation of camel HSPA6 is among the mechanisms that provide camelids with a superior capability for alleviating stressful environmental circumstances.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Abdelbary Prince
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Amer
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
27
|
Choi SB, Han HJ, Kim WB, Song TJ, Choi SY. VEGF Overexpression Predicts Poor Survival in Hepatocellular Carcinoma. Open Med (Wars) 2017; 12:430-439. [PMID: 29318189 PMCID: PMC5757349 DOI: 10.1515/med-2017-0061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The aim of this study was to investigate the clinicopathological and immunohistochemical (including VEGF, Akt, HSP70, and HSP20 expression) factors that affect the overall and disease-free survival of HCC patients following surgical resection. Methods 234 patients with HCC following surgical resection were enrolled. Clinicopathological and survival data were analyzed, and immunohistochemical staining was performed on tissue microarray sections using the anti-VEGF, anti-Akt, anti-HSP70, and anti-HSP27 antibodies. Results The 3- and 5-year overall survival rates were 86.5 and 81.54%, respectively. Multivariate analysis revealed that VEGF expression (P = 0.017, HR = 2.573) and T stage (P < 0.001, HR = 4.953) were independent prognostic factors for overall survival. Immunohistochemical staining showed that the expression of Akt, HSP70, and HSP27 did not affect the overall survival rate. The 3- and 5-year disease-free survival rates were 58.2 and 49.4%, respectively. Compared to the VEGF(−)/(+) group, the VEGF(++)/(+++) group demonstrated significantly higher proportion of patients with AFP levels > 400 ng/mL, capsule invasion, and microvascular invasion. Conclusion VEGF overexpression was associated with capsule invasion, microvascular invasion, and a poor overall survival rate.
Collapse
Affiliation(s)
- Sae Byeol Choi
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyung Joon Han
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Wan Bae Kim
- Department of Surgery, Korea University Guro Hospital, 80, Guro-dong, Guro-gu, Seoul152-703, Korea, Tel: +82-2-2626-3076
| | - Tae Jin Song
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang Yong Choi
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Solana JC, Ramírez L, Corvo L, de Oliveira CI, Barral-Netto M, Requena JM, Iborra S, Soto M. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models. PLoS Negl Trop Dis 2017; 11:e0005644. [PMID: 28558043 PMCID: PMC5466331 DOI: 10.1371/journal.pntd.0005644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. Despite numerous efforts made, a vaccine against leishmaniasis for humans is not available. Attempts based on parasite fractions or selected antigens failed to confer long lasting protection. On the other side, leishmanization, which consists in the inoculation of live virulent parasites in hidden parts of the body, is effective against cutaneous leishmaniasis in humans but objectionable in terms of biosafety. Some efforts have been made to design live vaccines to make leishmanization safer. A promising strategy is the development of genetically attenuated parasites, able to confer immunity without undesirable side effects. Here, we have employed an attenuated L. infantum line (LiΔHSP70-II) as a vaccine against heterologous challenge with L. major in two experimental models. Infection with LiΔHSP70-II parasites does not cause pathology and induces long-term protection based on the induction of IFN-γ producing T cells that are recruited rapidly and specifically to the site of challenge with the virulent parasites. These results support the idea of using attenuated parasites for vaccination.
Collapse
Affiliation(s)
- José Carlos Solana
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Ramírez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz (Fundação Oswaldo Cruz-FIOCRUZ). Salvador, Bahia, Brazil
| | - José María Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail: (SI); (MS)
| |
Collapse
|
29
|
Ariyasu S, Mu J, Zhang X, Huang Y, Yeow EKL, Zhang H, Xing B. Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS2-Based Nanocomposite. Bioconjug Chem 2017; 28:1059-1067. [DOI: 10.1021/acs.bioconjchem.6b00741] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shinya Ariyasu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jing Mu
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiao Zhang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ying Huang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Edwin Kok Lee Yeow
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Hua Zhang
- Center
for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bengang Xing
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Institute
of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 117602, Singapore
| |
Collapse
|
30
|
Wang Q, Wang J, Wang G, Wu C, Li J. Molecular cloning, sequencing, and expression profiles of heat shock protein 90 ( HSP90 ) in Hyriopsis cumingii exposed to different stressors: Temperature, cadmium and Aeromonas hydrophila. AQUACULTURE AND FISHERIES 2017. [DOI: 10.1016/j.aaf.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Kim W, Cheon MG, Kim JE. Mitochondrial CCAR2/DBC1 is required for cell survival against rotenone-induced mitochondrial stress. Biochem Biophys Res Commun 2017; 485:782-789. [PMID: 28254432 DOI: 10.1016/j.bbrc.2017.02.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
CCAR2 (cell cycle and apoptosis regulator protein 2; formerly DBC1, deleted in breast cancer 1) functions in diverse cellular processes including responses to genotoxic and metabolic stresses. However, its role in the mitochondrial stress response has not been fully elucidated. To investigate how CCAR2 regulates stress response, we purified CCAR2-containing complexes. Interestingly, the results revealed that CCAR2 localized to the mitochondria, and also bound Hsp60 (heat shock protein 60), a mitochondrial chaperone. The binding of CCAR2 to Hsp60 increased following rotenone-induced mitochondrial stress. The deficiencies in CCAR2 and Hsp60 also disrupted the mitochondrial membrane potential, thereby promoting apoptosis following mitochondrial stress. In summary, the CCAR2-Hsp60 complex promoted cell survival during mitochondrial stress-induced apoptosis. These data suggest that CCAR2 is critical for maintaining mitochondrial homeostasis in response to stress.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Gyeong Cheon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Boyko AA, Azhikina TL, Streltsova MA, Sapozhnikov AM, Kovalenko EI. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes. Cell Stress Chaperones 2017; 22:67-76. [PMID: 27783273 PMCID: PMC5225062 DOI: 10.1007/s12192-016-0744-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Collapse
Affiliation(s)
- Anna A Boyko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Tatyana L Azhikina
- Laboratory of Human Genes Structure and Functions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Maria A Streltsova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997
| | - Elena I Kovalenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya Street, Moscow, Russian Federation, 117997.
| |
Collapse
|
33
|
Sivéry A, Courtade E, Thommen Q. A minimal titration model of the mammalian dynamical heat shock response. Phys Biol 2016; 13:066008. [DOI: 10.1088/1478-3975/13/6/066008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Zhou X, Qian G, Yi X, Li X, Liu W. Systematic Analysis of the Lysine Acetylome in Candida albicans. J Proteome Res 2016; 15:2525-36. [PMID: 27297460 DOI: 10.1021/acs.jproteome.6b00052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Candida albicans (C. albicans) is a worldwide cause of fungal infectious diseases. As a general post-translational modification (PTM), lysine acetylation of proteins play an important regulatory role in almost every cell. In our research, we used a high-resolution proteomic technique (LC-MS/MS) to present the comprehensive analysis of the acetylome in C. albicans. In general, we detected 477 acetylated proteins among all 9038 proteins (5.28%) in C. albicans, which had 1073 specific acetylated sites. The bioinformatics analysis of the acetylome showed a significant role in the regulation of metabolism. To be more precise, proteins involved in carbon metabolism and biosynthesis were the underlying objectives of acetylation. Besides, through the study of the acetylome, we found a universal rule in acetylated motifs: the +4, +5, or +6 position, which is an alkaline residue with a long side chain (K or R), and the +1 or +2 position, which is a residue with a long side chain (Y, H, W, or F). To the best of our knowledge, all screening acetylated histone sites of this study have not been previously reported. Moreover, protein-protein interaction network (PPI) study demonstrated that a variety of connections in glycolysis/gluconeogenesis, oxidative phosphorylation, and the ribosome were modulated by acetylation and phosphorylation, but the phosphorylated proteins in oxidative phosphorylation PPI network were not abundant, which indicated that acetylation may have a more significant effect than phosphorylation on oxidative phosphorylation. This is the first study of the acetylome in human pathogenic fungi, providing an important starting point for the in-depth discovery of the functional analysis of acetylated proteins in such fungal pathogens.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guanyu Qian
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingling Yi
- Jingjie PTM Bio (Hangzhou) Co., Ltd., Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xiaofang Li
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College , Nanjing 210042, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
35
|
Deepak P, Kumar S, Acharya A. Heat Shock Proteins (HSP): Future Trends in Cancer Immunotherapy. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0600400101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heat Shock Proteins (HSPs) are a large family of highly conserved proteins involved in assisting protein folding and unfolding in the cells. HSPs are expressed constitutively as well as inducibly and, interacting with antigen presenting cells, induce the expression of various cytokines and chemokines as well as the maturation and migration of dendritic cells, thus acting themselves as cytokines. HSP-chaperoned antigenic peptides are also generated within the tumor cells. Such chaperoned peptides are released in the extra cellular medium with an association of HSPs by cell stress, death or tumor cell lyses. HSP-peptide complexes from extra cellular medium are taken up by antigen presenting cells through CD91 receptor and are represented or cross-presented by their MHC class I molecules for specific anti-tumor immune response. In addition, HSPs expressed on the cell surface of tumor cells stimulate αβ T-cells and γδ T-cells as well as natural killer (NK) cells that are first-line defense mechanisms. In this manner, HSPs have the ability to stimulate both arms of the effecter mechanism of the immune system. These unique immunological attributes of HSPs are presently becoming the basis for tumor immunotherapy. Tumor-derived HSP-peptide complexes have been demonstrated to serve as anti-tumor vaccines. To date various approaches of vaccination using HSPs have been developed and tested clinically. These HSP-based vaccine approaches can be combined with hyperthermia and CTLA-4 blockade to enhance their anti-tumor potentiality.
Collapse
Affiliation(s)
- P. Deepak
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, U.P., India
| | - S. Kumar
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, U.P., India
| | - A. Acharya
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, U.P., India
| |
Collapse
|
36
|
Wyatt TT, Wösten HAB, Dijksterhuis J. Fungal spores for dispersion in space and time. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:43-91. [PMID: 23942148 DOI: 10.1016/b978-0-12-407672-3.00002-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spores are an integral part of the life cycle of the gross majority of fungi. Their morphology and the mode of formation are both highly variable among the fungi, as is their resistance to stressors. The main aim for spores is to be dispersed, both in space, by various mechanisms or in time, by an extended period of dormancy. Some fungal ascospores belong to the most stress-resistant eukaryotic cells described to date. Stabilization is a process in which biomolecules and complexes thereof are protected by different types of molecules against heat, drought, or other molecules. This review discusses the most important compounds that are known to protect fungal spores and also addresses the biophysics of cell protection. It further covers the phenomena of dormancy, breaking of dormancy, and early germination. Germination is the transition from a dormant cell toward a vegetative cell and includes a number of specific changes. Finally, the applied aspects of spore biology are discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- Department of Applied and Industrial Mycology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | |
Collapse
|
37
|
Srivastava K, Narang R, Bhatia J, Saluja D. Expression of Heat Shock Protein 70 Gene and Its Correlation with Inflammatory Markers in Essential Hypertension. PLoS One 2016; 11:e0151060. [PMID: 26989902 PMCID: PMC4798713 DOI: 10.1371/journal.pone.0151060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/22/2016] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Hypertension is characterized by systemic high blood pressure and is the most common and important risk factor for the development of cardiovascular diseases. Studies have shown that the circulating levels of certain inflammatory markers such as tumor necrosis factor-alpha (TNF-alpha), interlukin-6 (IL-6), c-reactive protein (CRP), and tumor suppressor protein-53 (p53) are upregulated and are independently associated with essential hypertension. However, mechanism of increase in the levels of HSP70 protein is not clear. No such studies are reported in the blood circulation of patients with essential hypertension. In the present study, we investigated the expression of circulating HSP70 at mRNA and protein levels and its relationship with other inflammatory markers in patients with essential hypertension. MATERIALS AND METHODS We recruited 132 patients with essential hypertension and 132 normal controls from similar socio-economic-geographical background. The expression of HSP70 at mRNA levels was determined by Real Time PCR and at protein levels by indirect Elisa and Western Blot techniques. RESULTS We found a significantly higher expression of HSP70 gene expression (approximately 6.45 fold, P < 0.0001) in hypertensive patients as compared to healthy controls. A significant difference (P < 0.0001) in the protein expression of HSP70 was also observed in plasma of patients as compared to that of controls. CONCLUSION Higher expression of HSP70 is positively correlated with inflammatory markers in patients with essential hypertension and this correlation could play an important role in essential hypertension.
Collapse
Affiliation(s)
- Kamna Srivastava
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Rajiv Narang
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jagriti Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Daman Saluja
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| |
Collapse
|
38
|
Nika H, Angeletti RH, Hawke DH. Phosphopeptide Enrichment by Covalent Chromatography After Solid Phase Derivatization of Protein Digests on Reversed Phase Supports. Methods Mol Biol 2016; 1355:31-50. [PMID: 26584917 DOI: 10.1007/978-1-4939-3049-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The isolation of the phosphopeptide constituents from phosphoprotein digests is prerequisite to facilitate the mass spectrometric characterization of phosphorylation events. Here, we describe a chemical proteomics approach which combines solid phase derivatization of phosphoprotein digests with phosphopeptide enrichment by covalent chromatography. The use of the solid phase support for derivatization ensures for speed and completeness of reactions. The isolates proved highly suitable for mapping of the sites of phosphorylation by collisionally induced dissociation (CID). The method combines robustness with simplicity of operation using equipment available in biological laboratories, and may be readily extended to map the sites of O-glycosylation.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:150-9. [DOI: 10.1016/j.cbpa.2015.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
|
40
|
Jardim SS, Schuch AP, Pereira CM, Loreto ELS. Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1. Cell Stress Chaperones 2015; 20:843-51. [PMID: 26092118 PMCID: PMC4529857 DOI: 10.1007/s12192-015-0611-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 01/04/2023] Open
Abstract
There are many complex interactions between transposable elements (TEs) and host genomes. Environmental changes that induce stressful conditions help to contribute for increasing complexity of these interactions. The transposon mariner-Mos1 increases its mobilization under mild heat stress. It has putative heat shock elements (HSEs), which are probably activated by heat shock factors (HSFs). Ultraviolet radiation (UVC) is a stressor that has been suggested as able to activate heat shock protein genes (Hsp). In this study, we test the hypothesis that if UVC induces Hsp expression, as heat does, it could also promote mariner-Mos1 transposition and mobilization. The Drosophila simulans white-peach is a mutant lineage that indicates the mariner-Mos1 transposition phenotypically through the formation of mosaic eyes. This lineage was exposed to UVC or mild heat stress (28 °C) in order to evaluate the induction of mariner-Mos1 expression by RT-qPCR, as well as the mariner-Mos1 mobilization activity based on the count number of red spots in the eyes. The effects of both treatments on the developmental time of flies and cell cycle progression were also investigated. Both the analysis of eyes and mariner-Mos1 gene expression indicate that UVC radiation has no effect in mariner-Mos1 transposition, although heat increases the expression and mobilization of this TE soon after the treatment. However, the expression of Hsp70 gene increased after 24 h of UVC exposure, suggesting different pathway of activation. These results showed that heat promotes mariner-Mos1 mobilization, although UVC does not induce the expression or mobilization of this TE.
Collapse
Affiliation(s)
- Sinara Santos Jardim
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - André Passaglia Schuch
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - Camila Moura Pereira
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
| | - Elgion Lucio Silva Loreto
- />Postgraduate Program in Animal Biodiversity, University of Santa Maria, Santa Maria, RS Brazil
- />Department of Biochemistry and Molecular Biology, University of Santa Maria, Ave. Roraima, 1000, Building 16-A, 3210, Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
41
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that result in autoimmunity, not in homeostasis. Immunol Res 2015; 60:208-18. [PMID: 25403694 DOI: 10.1007/s12026-014-8585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The viruses stand salient as environmental factors that trigger autoimmunity. The virus realizes its effects through induction of heat-shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. By virtue of its regulation of apoptosis, the HSP is also involved in autoimmunity: (1) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to competent antigen presenters, the operatus APCs, liable to apoptosis that becomes the initiator of organ damages; (2) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; (3) regulation of MHC class II DR-mediated apoptosis of operatus APCS which can result in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for apoptosis of the professional APCs is benevolence: as a principal regulator of immune homeostasis. But the apoptosis of our postulated operatus APCs can result in autoimmunity. The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs through their acquisition of HSP-induced costimulatory molecules. What happens to mature DCs as antigen presenters that end in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmunity.
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia,
| | | |
Collapse
|
42
|
Misa-Agustiño MJ, Jorge-Mora T, Jorge-Barreiro FJ, Suarez-Quintanilla J, Moreno-Piquero E, Ares-Pena FJ, López-Martín E. Exposure to non-ionizing radiation provokes changes in rat thyroid morphology and expression of HSP-90. Exp Biol Med (Maywood) 2015; 240:1123-35. [PMID: 25649190 DOI: 10.1177/1535370214567611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 11/21/2014] [Indexed: 11/15/2022] Open
Abstract
Non-ionizing radiation at 2.45 GHz may modify the morphology and expression of genes that codify heat shock proteins (HSP) in the thyroid gland. Diathermy is the therapeutic application of non-ionizing radiation to humans for its beneficial effects in rheumatological and musculo-skeletal pain processes. We used a diathermy model on laboratory rats subjected to maximum exposure in the left front leg, in order to study the effects of radiation on the nearby thyroid tissue. Fifty-six rats were individually exposed once or repeatedly (10 times in two weeks) for 30 min to 2.45 GHz radiation in a commercial chamber at different non-thermal specific absorption rates (SARs), which were calculated using the finite difference time domain technique. We used immunohistochemistry methods to study the expression of HSP-90 and morphological changes in thyroid gland tissues. Ninety minutes after radiation with the highest SAR, the central and peripheral follicles presented increased size and the thickness of the peripheral septa had decreased. Twenty-four hours after radiation, only peripheral follicles radiated at 12 W were found to be smaller. Peripheral follicles increased in size with repeated exposure at 3 W power. Morphological changes in the thyroid tissue may indicate a glandular response to acute or repeated stress from radiation in the hypothalamic-pituitary-thyroid axis. Further research is needed to determine if the effect of this physical agent over time may cause disease in the human thyroid gland.
Collapse
Affiliation(s)
- Maria J Misa-Agustiño
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Jorge-Mora
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco J Jorge-Barreiro
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Juan Suarez-Quintanilla
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo Moreno-Piquero
- Applied Physics Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Applied Physics Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elena López-Martín
- Morphological Sciences Department, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
43
|
Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, Parak WJ, Gálvez EM, Pardo J, de la Fuente JM. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS NANO 2015; 9:52-61. [PMID: 25493329 DOI: 10.1021/nn505468v] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photothermal response of plasmonic nanomaterials can be exploited for a number of biomedical applications in diagnostics (biosensing and optoacoustic imaging) and therapy (drug delivery and photothermal therapy). The most common cellular response to photothermal cancer treatment (ablation of solid tumors) using plasmonic nanomaterials is necrosis, a process that releases intracellular constituents into the extracellular milieu producing detrimental inflammatory responses. Here we report the use of laser-induced photothermal therapy employing gold nanoprisms (NPRs) to specifically induce apoptosis in mouse embryonic fibroblast cells transformed with the SV40 virus. Laser-irradiated "hot" NPRs activate the intrinsic/mitochondrial pathway of apoptosis (programmed cell death), which is mediated by the nuclear-encoded proteins Bak and Bax through the activation of the BH3-only protein Bid. We confirm that an apoptosis mechanism is responsible by showing how the NPR-mediated cell death is dependent on the presence of caspase-9 and caspase-3 proteins. The ability to selectively induce apoptotic cell death and to understand the subsequent mechanisms provides the foundations to predict and optimize NP-based photothermal therapy to treat cancer patients suffering from chemo- and radioresistance.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza , 50018 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dobo C, Stavale JN, Lima FDO, Ribeiro DA, Arias V, Gomes TS, Oshima CTF. HSP27 is commonly expressed in cervical intraepithelial lesions of Brazilian women. Asian Pac J Cancer Prev 2014; 14:5007-10. [PMID: 24175767 DOI: 10.7314/apjcp.2013.14.9.5007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heat shock proteins are molecular chaperones that may be constitutively present in cells protecting them from various stresses, such as extreme temperature, anoxia or chemical agents. Cervical cancer is the second most prevalent malignancy of women. In this study, we analyzed the expression of Hsp27 by immunohistochemistry in cervical intraepithelial lesions of Brazilian women, along with samples from non neoplasic lesions (NN). Cervical intraepithelial neoplasia I (CIN I), II (CIN II) and III (CIN III)/in situ carcinoma and squamous cell carcinoma (SCC) were included. Immunostaining was observed in 30 (100%) samples of NN, 46 (92%) in CIN I, 50 (100%) in CIN II, 52 (98.11%) in CIN III/CIS, and 46 (98.11%) in SCC. In group NN Hsp27 immunostaining was heterogeneous, more intense in basal and parabasal layers of the epithelium and less or absent in the intermediate and superficial layer. The majority of the samples of CIS and SCC presented strong staining in allepithelial layers. Metaplasic cells, when present, were strongly stained. In this study, Hsp27 protein was found to be commonly expressed in cervical epithelial cells.
Collapse
Affiliation(s)
- Cristine Dobo
- Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP, Sao Paulo, Brazil E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
45
|
Tsai MF, Wang CC, Chen JJW. Tumour suppressor HLJ1: A potential diagnostic, preventive and therapeutic target in non-small cell lung cancer. World J Clin Oncol 2014; 5:865-873. [PMID: 25493224 PMCID: PMC4259948 DOI: 10.5306/wjco.v5.i5.865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/10/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality throughout the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all diagnosed lung cancers. Despite considerable progress in the diagnosis and treatment of the disease, the overall 5-year survival rate of NSCLC patients remains lower than 15%. The most common causes of death in lung cancer patients are treatment failure and metastasis. Therefore, developing novel strategies that target both tumour growth and metastasis is an important and urgent mission for the next generation of anticancer therapy research. Heat shock proteins (HSPs), which are involved in the fundamental defence mechanism for maintaining cellular viability, are markedly activated during environmental or pathogenic stress. HSPs facilitate rapid cell division, metastasis, and the evasion of apoptosis in cancer development. These proteins are essential players in the development of cancer and are prime therapeutic targets. In this review, we focus on the current understanding of the molecular mechanisms responsible for HLJ1’s role in lung cancer carcinogenesis and progression. HLJ1, a member of the human HSP 40 family, has been characterised as a tumour suppressor. Research studies have also reported that HLJ1 shows promising dual anticancer effects, inhibiting both tumour growth and metastasis in NSCLC. The accumulated evidence suggests that HLJ1 is a potential biomarker and treatment target for NSCLC.
Collapse
|
46
|
Chakravarti A. Editorial on "targeting Wee1 for the treatment of pediatric high-grade gliomas". Neuro Oncol 2014; 16:325. [PMID: 24523450 DOI: 10.1093/neuonc/nou014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arnab Chakravarti
- Chair and Professor, Department of Radiation Oncology, Max Morehouse Chair of Cancer Research, Director, Brain Tumor Program, Ohio State University Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard L. Solove Research Institute, The Ohio State University College of Medicine, 300 W. 10th Ave. Room 080B, Columbus, Ohio 43210
| |
Collapse
|
47
|
Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operatus APCs that results in autoimmunity, not in homeostasis. Autoimmun Rev 2014; 13:1013-9. [PMID: 25183243 DOI: 10.1016/j.autrev.2014.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
The viruses are salient in the roles of environmental factors that trigger autoimmunity. The virus realizes its effects by the power of its induction of heat shock proteins (HSPs) as well as by the viral IE-axis-mediated conversion of organ epithelial cells into virgin de novo professional antigen-presenting cells (APCs). The HSP is the accomplished operator in homeostasis by the logic of it being the regulator of apoptosis. That HSP which regulates and controls different points in the pathways of apoptosis is rationally propitious as both HSP and apoptosis are highly conserved in multicellular organisms. By virtue of its regulation of apoptosis, the HSP is also involved in human autoimmunity and this involvement is tripartite: (i) adornment of viral IE-axis-generated virgin de novo professional APCs with HSP-induced co-stimulatory molecules which transform these otherwise epithelial cells to achieve the status of fledged competent antigen-presenters, the operatus APCs, which are liable to apoptosis that becomes the initiator of organ damages that can culminate in the autoimmune syndrome(s); apoptosis is a routine fate that befalls all APCs following their antigen presentation; (ii) molecular mimicry mechanism: epitopes on the HSP may be mistaken for viral peptides and be presented by operatus APCs to autoreactive TCRs resulting in the apoptosis of the operatus APCs; and (iii) regulation of MHC class II-DR-mediated apoptosis of operatus APCs which can ultimately consequent in organ-specific autoimmune syndromes. We should remember, however, that Nature's intended purpose for the apoptosis of the professional APCs is benevolence: as a principal regulator of homeostasis. It is only from the apoptosis of our postulated operatus APCs that the apoptotic consequence can be deleterious, an autoimmune syndrome(s). The transformation of virgin de novo professional APCs to operatus APCs mirrors the maturation of DCs, through their acquisition of HSP-induced co-stimulatory molecules; and what happens to mature DCs as antigen-presenters that ends in homeostasis is replicated by what happens to operatus APCs that ends instead in autoimmune syndromes (Fig. 1).
Collapse
Affiliation(s)
- Norbert O Temajo
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Neville Howard
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| |
Collapse
|
48
|
Garip-İnhan A, İşal-Tugut I, Kalkan M. Effect of ELF-EMF on K562 Cell Differentiation in the Presence or Absence of Quercetin and Heat-Shock. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2007.10817441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
49
|
Roesslein M, Froehlich C, Jans F, Piegeler T, Goebel U, Loop T. Dobutamine mediates cytoprotection by induction of heat shock protein 70 in vitro. Life Sci 2014; 98:88-95. [PMID: 24447628 DOI: 10.1016/j.lfs.2014.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 01/20/2023]
Abstract
AIMS Dobutamine is cytoprotective when applied before a subsequent stress. However, the underlying molecular mechanism is unknown. Dobutamine also inhibits nuclear factor (NF)-κB in human T lymphocytes. Other inhibitors of NF-κB induce a so-called heat shock response. We hypothesized that dobutamine mediates protection from apoptotic cell death by the induction of a heat shock response. MAIN METHODS Jurkat T lymphoma cells were preincubated with dobutamine (0.1, 0.5 mM) before the induction of apoptosis (staurosporine, 2 μM). DNA-binding of heat shock factor (HSF)-1 was analyzed by electrophoretic mobility shift assay, mRNA-expression of heat shock protein (hsp)70 and hsp90 by Northern Blot, activity of caspase-3 by fluorogenic caspase activity assay and cleavage of pro-caspase-3 by Western Blot. Apoptosis was assessed by flow cytometry after annexin V-fluorescein isothiocyanate staining. Hsp70 and hsp90 were inhibited using N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolaetam and 17-allylamino-17-demethoxygeldana-mycin, respectively. All data are given as median and 25/75% percentile. KEY FINDINGS Pre-incubation with dobutamine inhibited staurosporine-induced annexin V-fluorescence (28 [20-32] % vs. 12 [9-15] % for dobutamine 0.1 mM and 7 [5-12] % for dobutamine 0.5 mM, p<0.001), cleavage of pro-caspase-3 as well as caspase-3-like activity (0.46 [0.40-0.48] vs. 0.32 [0.27-0.39] for Dobutamine 0.1 mM and 0.20 [0.19-0.23] for Dobutamine 0.5 mM, p<0.01). Dobutamine induced DNA-binding of HSF-1 and mRNA-expression of hsp70 and hsp90. While inhibition of Hsp90 had no effect, inhibition of Hsp70 increased the number of annexin V-positive cells (33 [32-36] % vs. 18 [16-24] %) and caspase-3-like activity (0.21 [0.19-0.23] vs. 0.16 [0.13-0.17], p<0.05). SIGNIFICANCE Dobutamine protects from apoptotic cell death via the induction of Hsp70.
Collapse
Affiliation(s)
- Martin Roesslein
- Dept. of Anaesthesiology and Critical Care Medicine, University Medical Center, Freiburg, Germany.
| | - Christian Froehlich
- Dept. of Anaesthesiology and Critical Care Medicine, University Medical Center, Freiburg, Germany
| | - Frank Jans
- Dept. of Anaesthesiology and Critical Care Medicine, Ziekenhuis Oost-Limburg, Genk and Biomedical Research Institute, UHasselt, Diepenbeek, Belgium
| | - Tobias Piegeler
- Institute of Anaesthesiology, University Hospital Zurich, Switzerland; Dept. of Anesthesiology, University of Illinois at Chicago, USA
| | - Ulrich Goebel
- Dept. of Anaesthesiology and Critical Care Medicine, University Medical Center, Freiburg, Germany
| | - Torsten Loop
- Dept. of Anaesthesiology and Critical Care Medicine, University Medical Center, Freiburg, Germany
| |
Collapse
|
50
|
Tarone G, Brancaccio M. Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res 2014; 102:346-61. [PMID: 24585203 DOI: 10.1093/cvr/cvu049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite major advances in the treatment of cardiac diseases, there is still a great need for drugs capable of counteracting the deterioration of cardiac muscle function in congestive heart failure. The role of misfolded protein accumulation as a causal event in the physiopathology of common cardiac diseases is an important emerging concept. Indeed, diverse stress conditions, including mechanical stretching and oxidative stress, can induce misfolded protein accumulation, causing cardiomyocyte death. Cells react to these stress conditions by activating molecular chaperones, a class of proteins that represents an endogenous salvage machinery, essential for rescuing physiological cell functions and sustaining cell survival. Chaperones, also known as heat shock proteins (Hsps), prevent accumulation of damaged proteins by promoting either their refolding or degradation via the proteasome or the autophagosome systems. In addition, molecular chaperones play a key role in intracellular signalling by controlling conformational changes required for activation/deactivation of signalling proteins, and their assembly in specific signalosome complexes. The key role of molecular chaperones in heart function is highlighted by the fact that a number of genetic mutations in chaperone proteins result in different forms of cardiomyopathies. Moreover, a considerable amount of experimental evidence indicates that increasing expression of chaperone proteins leads to an important cardio-protective role in ischaemia/reperfusion injury, heart failure, and arrhythmia, implicating these molecules as potential innovative therapeutic agents.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|