1
|
Abnousian A, Vasquez J, Sasaninia K, Kelley M, Venketaraman V. Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis. Biomedicines 2023; 11:biomedicines11051340. [PMID: 37239011 DOI: 10.3390/biomedicines11051340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB.
Collapse
Affiliation(s)
- Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Joshua Vasquez
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Coco-Bassey SB, Asemota EA, Okoroiwu HU, Etura JE, Efiong EE, Inyang IJ, Uko EK. Glutathione, glutathione peroxidase and some hematological parameters of HIV-seropositive subjects attending clinic in University of Calabar teaching hospital, Calabar, Nigeria. BMC Infect Dis 2019; 19:944. [PMID: 31703562 PMCID: PMC6842150 DOI: 10.1186/s12879-019-4562-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/15/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite the numerous intervention programmes, HIV still remains a public health concern with a high impact in Sub-Saharan Africa region. Oxidative stress has been documented in HIV subjects as viral infection promotes prolonged activation of immune system, hence, production of increased reactive oxygen species. METHODS We studied 180 subjects. Of these, 60 were HIV-infected on antiretroviral therapy (ART), 40 were ART naïve HIV-infected and 80 were apparent healthy non HIV-infected subjects. The complete blood count was performed by automated hemoanalyzer, the CD4+ T-cell count was performed by cyflow cytometer, while the antioxidant assay was performed using ELISA technique. RESULT All evaluated parameters; glutathione (GSH), glutathione peroxidase (GPX), CD4+ T-cell count, haemoglobin (Hb), total white blood cell count (WBC) and platelet count were significantly (P < 0.05) reduced in the HIV-infected subjects. All assessed parameters were found to be significantly (P < 0.5) reduced in the HIV-infected subjects that are ART naive when compared with those on ART. HIV-infected subjects with CD4+ T-cell count < 200 cells/mm3 had significantly (P < 0.05) reduced values in all assessed parameters when compared to those with CD4+ T-cell count ≥200 cells/mm3. GSH and WBC were found to be significantly (P < 0.05) increased in the female HIV-infected subjects when compared with the male counterpart. Anemia prevalence of 74 and 33% were recorded for the HIV-infected and control subjects, respectively. Gender and ART treatment were found to be associated with anemia in HIV. Male HIV-infected subjects on ART were found to be more likely to have anemia. CONCLUSION Antioxidants; GSH and GPX were found to be significantly reduced in HIV infection. Further probe showed that the antioxidant status was improved in the HIV-infected group on ART.
Collapse
Affiliation(s)
| | - Enosakhare A Asemota
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | - Henshaw Uchechi Okoroiwu
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria.
| | - Joyce E Etura
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | | | - Imeobong J Inyang
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| | - Emmanuel K Uko
- Haematology Unit, Department of Medical Laboratory Science, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
El-Amine R, Germini D, Zakharova VV, Tsfasman T, Sheval EV, Louzada RAN, Dupuy C, Bilhou-Nabera C, Hamade A, Najjar F, Oksenhendler E, Lipinski M, Chernyak BV, Vassetzky YS. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol 2017; 15:97-108. [PMID: 29220699 PMCID: PMC5725280 DOI: 10.1016/j.redox.2017.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/25/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with B-cell malignancies in patients though HIV-1 is not able to infect B-cells. The rate of B-cell lymphomas in HIV-infected individuals remains high even under the combined antiretroviral therapy (cART) that reconstitutes the immune function. Thus, the contribution of HIV-1 to B-cell oncogenesis remains enigmatic. HIV-1 induces oxidative stress and DNA damage in infected cells via multiple mechanisms, including viral Tat protein. We have detected elevated levels of reactive oxygen species (ROS) and DNA damage in B-cells of HIV-infected individuals. As Tat is present in blood of infected individuals and is able to transduce cells, we hypothesized that it could induce oxidative DNA damage in B-cells promoting genetic instability and malignant transformation. Indeed, incubation of B-cells isolated from healthy donors with purified Tat protein led to oxidative stress, a decrease in the glutathione (GSH) levels, DNA damage and appearance of chromosomal aberrations. The effects of Tat relied on its transcriptional activity and were mediated by NF-κB activation. Tat stimulated oxidative stress in B-cells mostly via mitochondrial ROS production which depended on the reverse electron flow in Complex I of respiratory chain. We propose that Tat-induced oxidative stress, DNA damage and chromosomal aberrations are novel oncogenic factors favoring B-cell lymphomas in HIV-1 infected individuals. B-cells of HIV-infected individuals exhibit elevated levels of oxidative stress, DNA damage and chromosomal aberrations. Purified HIV-1 Tat protein reproduces this effect and induces oxidative stress and DNA damage in B-cells. HIV-1 Tat induces mitochondrial oxidative stress and activates NF-kB in B-cells. This condition increases the risk of developing chromosomal abnormalities and translocations.
Collapse
Affiliation(s)
- Rawan El-Amine
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia; Doctoral school of Sciences and Technology (EDST), Lebanese University, Hadath, Lebanon; Department of Life and Earth Sciences, Faculty of Sciences II/Doctoral School of Sciences and Technology (EDST), Lebanese University, Jdeidet El Metn-Fanar, Lebanon; Department of Chemistry and Biochemistry, Faculty of Sciences II/EDST, Lebanese University, Jdeidet El Metn-Fanar, Lebanon
| | - Diego Germini
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia
| | - Vlada V Zakharova
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Tatyana Tsfasman
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia
| | - Eugene V Sheval
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ruy A N Louzada
- UMR 8200, Institut Gustave Roussy, CNRS, Villejuif 94805, France
| | - Corinne Dupuy
- UMR 8200, Institut Gustave Roussy, CNRS, Villejuif 94805, France
| | - Chrystèle Bilhou-Nabera
- Biological Hematology Service-U.F. of Onco-Hematology Cytogenetics-Hôpital Saint-Antoine, 75012 Paris, France
| | - Aline Hamade
- Department of Life and Earth Sciences, Faculty of Sciences II/Doctoral School of Sciences and Technology (EDST), Lebanese University, Jdeidet El Metn-Fanar, Lebanon
| | - Fadia Najjar
- Department of Chemistry and Biochemistry, Faculty of Sciences II/EDST, Lebanese University, Jdeidet El Metn-Fanar, Lebanon
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, 75010 Paris, France
| | - Marс Lipinski
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia
| | - Boris V Chernyak
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yegor S Vassetzky
- UMR 8126, Paris Saclay University, Paris-Sud University, Institut Gustave Roussy, CNRS, Villejuif 94805, France; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France, 119334 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
4
|
Fraternale A, Brundu S, Magnani M. Glutathione and glutathione derivatives in immunotherapy. Biol Chem 2017; 398:261-275. [PMID: 27514076 DOI: 10.1515/hsz-2016-0202] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/03/2016] [Indexed: 11/15/2022]
Abstract
Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment, which is important for several cellular functions. Altered intracellular GSH levels are observed in a wide range of pathologies, including several viral infections, as well as in aging, all of which are also characterized by an unbalanced Th1/Th2 immune response. A central role in influencing the immune response has been ascribed to GSH. Specifically, GSH depletion in antigen-presenting cells (APCs) correlates with altered antigen processing and reduced secretion of Th1 cytokines. Conversely, an increase in intracellular GSH content stimulates IL-12 and/or IL-27, which in turn induces differentiation of naive CD4+ T cells to Th1 cells. In addition, GSH has been shown to inhibit the replication/survival of several pathogens, i.e. viruses and bacteria. Hence, molecules able to increase GSH levels have been proposed as new tools to more effectively hinder different pathogens by acting as both immunomodulators and antimicrobials. Herein, the new role of GSH and its derivatives as immunotherapeutics will be discussed.
Collapse
|
5
|
Shi C, Zhou X, Zhang J, Wang J, Xie H, Wu Z. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:274-281. [PMID: 27343752 DOI: 10.1016/j.etap.2016.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Chunli Shi
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jiayu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Jiachun Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Hong Xie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Zhigang Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
6
|
Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process. BBA CLINICAL 2016; 6:38-44. [PMID: 27335804 PMCID: PMC4908271 DOI: 10.1016/j.bbacli.2016.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
HIV-1 positive individuals are at high risk for susceptibility to both pulmonary tuberculosis (TB) and extra-pulmonary TB, including TB meningitis (TBM) which is an extreme form of TB. The goals of this study are to determine the mechanisms responsible for compromised levels of glutathione (GSH) in the brain tissue samples derived from HIV-1-infected individuals and individuals with Alzheimer's disease (AD), investigate the possible underlying mechanisms responsible for GSH deficiency in these pathological conditions, and establish a link between GSH levels and pathophysiology of the disease processes. We demonstrated in the autopsied human brain tissues that the levels of total and reduced forms of GSH were significantly compromised in HIV-1 infected individuals compared to in healthy subjects and individuals with AD. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals than that derived from healthy and AD individuals. Enzymes that are responsible for the de novo synthesis of GSH such as γ-glutamate cysteine-ligase catalytic subunit (GCLC-rate limiting step enzyme) and glutathione synthetase (GSS-enzyme involved in the second step reaction) were significantly decreased in the brain tissue samples derived from HIV-1-positive individuals with low CD4 + T-cells (< 200 cells/mm3) compared to healthy and AD individuals. Levels of glutathione reductase (GSR) were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals explaining the possible reasons for increased susceptibility to the most severe form of extra-pulmonary TB, TBM. Total and reduced forms of GSH were significantly compromised in the brain tissues derived from HIV-1 infected individuals. Brain tissue samples derived from HIV-1-positive individuals had substantially higher levels of free radicals. GSH de novo synthesis enzymes were significantly decreased in HIV-1-positive individuals with low CD4 + T-cells. Levels of GSR were also decreased in the brain tissue samples derived from HIV-1 infected individuals. Overall, our findings demonstrate causes for GSH deficiency in the brain tissue from HIV-1 infected individuals.
Collapse
|
7
|
Benhar M, Shytaj IL, Stamler JS, Savarino A. Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest 2016; 126:1630-9. [PMID: 27135880 PMCID: PMC4855928 DOI: 10.1172/jci85339] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the use of antioxidants for the treatment of cancer and HIV/AIDS has been proposed for decades, new insights gained from redox research have suggested a very different scenario. These new data show that the major cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, actually promote cancer growth and HIV infection, while suppressing an effective immune response. Mechanistically, these systems control both the redox- and NO-based pathways (nitroso-redox homeostasis), which subserve innate and cellular immune defenses. Dual inhibition of the Trx and GSH systems synergistically kills neoplastic cells in vitro and in mice and decreases resistance to anticancer therapy. Similarly, the population of HIV reservoir cells that constitutes the major barrier to a cure for AIDS is exquisitely redox sensitive and could be selectively targeted by Trx and GSH inhibitors. Trx and GSH inhibition may lead to a reprogramming of the immune response, tilting the balance between the immune system and cancer or HIV in favor of the former, allowing elimination of diseased cells. Thus, therapies based on silencing of the Trx and GSH pathways represent a promising approach for the cure of both cancer and AIDS and warrant further investigation.
Collapse
Affiliation(s)
- Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | | | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, and Harrington Discovery Institute, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | |
Collapse
|
8
|
Jeeva JS, Sunitha J, Ananthalakshmi R, Rajkumari S, Ramesh M, Krishnan R. Enzymatic antioxidants and its role in oral diseases. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2015; 7:S331-3. [PMID: 26538872 PMCID: PMC4606614 DOI: 10.4103/0975-7406.163438] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antioxidants are substances that when present at very low concentration inhibits the oxidation of a molecule. It has the capacity to nullify the ill effects of oxidation caused by free radicals in the living organisms. The unpaired electrons of these free radicals are highly reactive and neutralize the harmful reactions of human metabolism. Protection of the body against free radicals is provided by some enzymes which come under a distinctive group, concerned solely with the detoxification of these radicals. Superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase are the key enzymatic antioxidants of this defense system by which the free radicals that are produced during metabolic reactions are removed. This review highlights the mechanism of action of enzymatic antioxidants SOD, GPX and catalase and its role in oral disease.
Collapse
Affiliation(s)
- J Sathiya Jeeva
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - J Sunitha
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - R Ananthalakshmi
- Department of Oral Pathology and Microbiology, Thai Moogambigai Dental College and Hospital, Chennai, Tamil Nadu, India
| | - S Rajkumari
- Department of Oral Pathology and Microbiology, Sathyabama Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Maya Ramesh
- Department of Oral Pathology and Microbiology, Vinayaka Mission Dental College and Hospital, Salem, Tamil Nadu, India
| | - Ramesh Krishnan
- Department of Pedodontics, Vinayaka Mission Dental College and Hospital, Salem, Tamil Nadu, India
| |
Collapse
|
9
|
Mathys L, Balzarini J. The role of cellular oxidoreductases in viral entry and virus infection-associated oxidative stress: potential therapeutic applications. Expert Opin Ther Targets 2015; 20:123-43. [PMID: 26178644 DOI: 10.1517/14728222.2015.1068760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cellular oxidoreductases catalyze thiol/disulfide exchange reactions in susceptible proteins and contribute to the cellular defense against oxidative stress. Oxidoreductases and oxidative stress are also involved in viral infections. In this overview, different aspects of the role of cellular oxidoreductases and oxidative stress during viral infections are discussed from a chemotherapeutic viewpoint. AREAS COVERED Entry of enveloped viruses into their target cells is triggered by the interaction of viral envelope glycoproteins with cellular (co)receptor(s) and depends on obligatory conformational changes in these viral envelope glycoproteins and/or cellular receptors. For some viruses, these conformational changes are mediated by cell surface-associated cellular oxidoreductases, which mediate disulfide bridge reductions in viral envelope glycoprotein(s). Therefore, targeting these oxidoreductases using oxidoreductase inhibitors might yield an interesting strategy to block viral entry of these viruses. Furthermore, since viral infections are often associated with systemic oxidative stress, contributing to disease progression, the enhancement of the cellular antioxidant defense systems might have potential as an adjuvant antiviral strategy, slowing down disease progression. EXPERT OPINION Promising antiviral data were obtained for both strategies. However, potential pitfalls have also been identified for these strategies, indicating that it is important to carefully assess the benefits versus risks of these antiviral strategies.
Collapse
Affiliation(s)
- Leen Mathys
- a 1 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium
| | - Jan Balzarini
- b 2 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium +32 16 3 37352 ; +32 16 3 37340 ;
| |
Collapse
|
10
|
D’souza SL, Pati R, Kailasa SK. Ascorbic acid-functionalized Ag NPs as a probe for colorimetric sensing of glutathione. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0371-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol 2014; 5:196. [PMID: 25206336 PMCID: PMC4144092 DOI: 10.3389/fphar.2014.00196] [Citation(s) in RCA: 562] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/06/2014] [Indexed: 12/26/2022] Open
Abstract
The physiological roles played by the tripeptide glutathione have greatly advanced over the past decades superimposing the research on free radicals, oxidative stress and, more recently, redox signaling. In particular, GSH is involved in nutrient metabolism, antioxidant defense, and regulation of cellular metabolic functions ranging from gene expression, DNA and protein synthesis to signal transduction, cell proliferation and apoptosis. This review will be focused on the role of GSH in cell signaling by analysing the more recent advancements about its capability to modulate nitroxidative stress, autophagy, and viral infection.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| | - Sara Baldelli
- Scientific Institute for Research, Hospitalization and Health Care, Università Telematica San Raffaele Roma Rome, Italy
| | - Maria R Ciriolo
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| |
Collapse
|
12
|
Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, Yung R. Aging is associated with increased regulatory T-cell function. Aging Cell 2014; 13:441-8. [PMID: 24325345 PMCID: PMC4032602 DOI: 10.1111/acel.12191] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 12/13/2022] Open
Abstract
Regulatory T-cell (Treg, CD4(+) CD25(+)) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T-cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3-4 months) and aged (18-20 months) C57BL/6 mice. DNA from CD4(+) T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T-cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling-mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL-10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T-cell activity. Taken together, these results reveal a potential mechanism of higher Treg-mediated activity that may contribute to increased immune suppression with age.
Collapse
Affiliation(s)
- Sanjay K Garg
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Colin Delaney
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Amiya Ghosh
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI-48109, USA
| | - Raymond Yung
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
- Geriatrics Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Healthcare System, 2215 Fuller RoadAnn Arbor, MI-48105, USA
| |
Collapse
|
13
|
The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 2014; 50:1059-84. [DOI: 10.1007/s12035-014-8705-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023]
|
14
|
Morris D, Ly J, Chi PT, Daliva J, Nguyen T, Soofer C, Chen YC, Lagman M, Venketaraman V. Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Front Pharmacol 2014; 5:73. [PMID: 24782776 PMCID: PMC3990052 DOI: 10.3389/fphar.2014.00073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/28/2014] [Indexed: 02/02/2023] Open
Abstract
We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH) such as glutathione synthase (GSS), glutamate-cysteine ligase-catalytic subunit (GCLC), and glutathione reductase (GSR) were significantly reduced in the red blood cells (RBCs) isolated from individuals with human immunodeficiency virus (HIV) infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals’ is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients’ indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells.
Collapse
Affiliation(s)
- Devin Morris
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| | - Judy Ly
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| | - Po-Ting Chi
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - John Daliva
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Truongson Nguyen
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Charleen Soofer
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Yung C Chen
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Minette Lagman
- Graduate College of Biomedical Sciences, Western University of Health Sciences Pomona, CA, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences Pomona, CA, USA
| |
Collapse
|
15
|
Capone C, Cervelli M, Angelucci E, Colasanti M, Macone A, Mariottini P, Persichini T. A role for spermine oxidase as a mediator of reactive oxygen species production in HIV-Tat-induced neuronal toxicity. Free Radic Biol Med 2013; 63:99-107. [PMID: 23665428 DOI: 10.1016/j.freeradbiomed.2013.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/05/2013] [Accepted: 05/02/2013] [Indexed: 01/20/2023]
Abstract
Chronic oxidative stress, which occurs in brain tissues of HIV-infected patients, is involved in the pathogenesis of HIV-associated dementia. Oxidative stress can be induced by HIV-1-secreted proteins, either directly or indirectly through the release of cytotoxic factors. In particular, HIV-1 Tat is able to induce neuronal death by interacting with and activating the polyamine-sensitive subtype of the NMDA receptor (NMDAR). Here, we focused on the role of polyamine catabolism in Tat-induced oxidative stress in human neuroblastoma (SH-SY5Y) cells. First, Tat was found to induce reactive oxygen species production and to affect cell viability in SH-SY5Y cells, these effects being mediated by spermine oxidase (SMO). Second, Tat was observed to increase SMO activity as well as decreasing the intracellular spermine levels. Third, Tat-induced SMO activation was completely prevented by the NMDAR antagonist MK-801, clearly indicating an involvement of NMDAR stimulation. Finally, pretreatment of cells with N-acetylcysteine, a scavenger of H₂O₂, and with MK-801 was able to completely inhibit reactive oxygen species formation and to restore cell viability. Altogether, these data strongly suggest a role for polyamine catabolism-derived H₂O₂ in neurotoxicity as elicited by Tat-stimulated NMDAR.
Collapse
Affiliation(s)
- Caterina Capone
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Guerra C, Morris D, Sipin A, Kung S, Franklin M, Gray D, Tanzil M, Guilford F, Khasawneh FT, Venketaraman V. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PLoS One 2011; 6:e28378. [PMID: 22164280 PMCID: PMC3229597 DOI: 10.1371/journal.pone.0028378] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Glutathione (GSH), a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV) are known to be susceptible to Mycobacterium tuberculosis (M. tb) infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2), Interleukin-12 (IL-12), and Interferon-gamma (IFN-γ), cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages.
Collapse
Affiliation(s)
- Carlos Guerra
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Devin Morris
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Andrea Sipin
- California State Polytechnic University, Pomona, California, United States of America
| | - Steven Kung
- California State Polytechnic University, Pomona, California, United States of America
| | - Mesharee Franklin
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Dennis Gray
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | - Michelle Tanzil
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
| | | | - Fadi T. Khasawneh
- College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
- Graduate of College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Gupta S, Knight AG, Gupta S, Knapp PE, Hauser KF, Keller JN, Bruce-Keller AJ. HIV-Tat elicits microglial glutamate release: role of NAPDH oxidase and the cystine-glutamate antiporter. Neurosci Lett 2010; 485:233-6. [PMID: 20849923 PMCID: PMC2956797 DOI: 10.1016/j.neulet.2010.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/16/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Excitotoxicity and/or microglial reactivity might underlie neurologic dysfunction in HIV patients. The HIV regulatory protein Tat is both neurotoxic and pro-inflammatory, suggesting that Tat might participate in the pathogenesis of HIV-associated neurocognitive disorders (HAND). The present study was undertaken to evaluate if Tat can increase extracellular glutamate, and was specifically designed to determine the degree to which, and the mechanisms by which Tat could drive microglial glutamate release. Data show that application of Tat to cultured primary microglia caused dose-dependent increases in extracellular glutamate that were exacerbated by morphine, which is known to worsen Tat cytotoxicity. Tat-induced glutamate release was decreased by inhibitors of p38 and p42/44 MAPK, and by inhibitors of NADPH oxidase and the x(c)(-) cystine-glutamate antiporter. Furthermore, Tat increased expression of the catalytic subunit of x(c)(-) (xCT), but Tat-induced increases in xCT mRNA were not affected by inhibition of NADPH oxidase or x(c)(-) activity. Together, these data describe a specific and biologically significant signaling component of the microglial response to Tat, and suggest that excitotoxic neuropathology associated with HIV infection might originate in part with Tat-induced activation of microglial glutamate release.
Collapse
Affiliation(s)
- Sunita Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Alecia G. Knight
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Shruti Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808
| | | |
Collapse
|
18
|
Yan Z, Garg SK, Banerjee R. Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 2010; 285:41525-32. [PMID: 21037289 DOI: 10.1074/jbc.m110.189944] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) suppress proliferation of CD4(+)CD25(-) effector T cells (Teffs) by mechanisms that are not well understood. We have previously demonstrated a novel mechanism of Treg suppression, i.e. interference with extracellular redox remodeling that occurs during activation of T cells by dendritic cells. In this study, we demonstrate that Treg-mediated redox perturbation is antigen-dependent but not antigen-specific, is CTLA-4-dependent, and requires cell-cell contact. Furthermore, we show that Tregs use multiple strategies for extracellular redox remodeling, including diminished GSH synthesis in dendritic cells via decreased expression of γ-glutamylcysteine synthetase, the limiting enzyme for GSH synthesis. Tregs also consume extracellular cysteine and partition it more proficiently to the oxidation product (sulfate), whereas Teffs divert more of the cysteine pool toward protein and GSH synthesis. Tregs appear to block GSH redistribution from the nucleus to the cytoplasm in Teffs, which is abrogated by the addition of exogenous cysteine. Together, these data provide novel insights into modulation of sulfur-based redox metabolism by Tregs, leading to suppression of T cell activation and proliferation.
Collapse
Affiliation(s)
- Zhonghua Yan
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-5606, USA
| | | | | |
Collapse
|
19
|
Guilford T, Morris D, Gray D, Venketaraman V. Atherosclerosis: pathogenesis and increased occurrence in individuals with HIV and Mycobacterium tuberculosis infection. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2010; 2:211-8. [PMID: 22096400 PMCID: PMC3218695 DOI: 10.2147/hiv.s11977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a leading cause of coronary heart disease and stroke. Since 1981, more than 980,000 cases of AIDS have been reported in the United States. According to the Centers for Disease Control, more than 1 million Americans may be infected with HIV. By killing or damaging CD4+ T cells of the body’s immune system, HIV progressively destroys the body’s ability to fight infections. People diagnosed with AIDS often suffer from life-threatening diseases caused by opportunistic infections such as tuberculosis. HIV-infected individuals have increased risks for atherosclerosis. This review summarizes the effects of oxidized low density lipoproteins in impairing macrophage functions in individuals with atherosclerosis (with and without HIV infection) thereby enhancing the susceptibility to Mycobacterium tuberculosis infection.
Collapse
|
20
|
Golling M, Kellner H, Fonouni H, Rad MT, Urbaschek R, Breitkreutz R, Gebhard MM, Mehrabi A. Reduced glutathione in the liver as a potential viability marker in non-heart-beating donors. Liver Transpl 2008; 14:1637-47. [PMID: 18975272 DOI: 10.1002/lt.21585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although the use of non-heart-beating donors (NHBD) is the oldest type of organ transplantation, the results were and still are disappointing. To consider using a liver from NHBD, it is of importance to assess the graft viability. Our aim was to assess the role of reduced liver glutathione (rGSHL) as a potential predictive marker of liver function before transplantation. Autotransplanted livers were subjected to 0, 60, and 90 minutes of ischemia in 20 pigs. We analyzed systemic cardiocirculatory parameters, bowel ischemia by endotoxin, endotoxin-neutralizing capacity, oxidative stress, hepatic perfusion parameters, liver enzymes, local bowel ischemia, and liver oxidative stress (rGSHL and oxidized glutathione in the liver). Autotransplantation was comparable to donor explantation/recipient transplantation with respect to systemic and hepatic parameters. Liver ischemia for 0, 60, and 90 minutes resulted in survival in 100% (NHBD-0), 71% (NHBD-60), and 57% (NHBD-90) of animals. Of all parameters, only hepatic microperfusion, pHi of the sigmoid colon, and bowel ischemia by endotoxin in the NHBD-90 group showed significant changes compared to NHBD-60 and control animals. Although systemic endotoxin-neutralizing capacity and total glutathione in erythrocytes levels were mainly influenced by cold perfusion, hepatic oxidative stress increased with ischemia time. The cut-off value of 11.5 ng/mmol of rGSHL could distinguish survivors from nonsurvivors, independent of the ischemia time. In conclusion, rGSHL has the potential of becoming an important viability marker, as it could predict survival in autotransplantation NHBD model regardless of the ischemia time. Further investigation to declare reasons for differing rGSHL levels within the liver is required.
Collapse
Affiliation(s)
- Markus Golling
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zapletal C, Heyne S, Breitkreutz R, Gebhard MM, Golling M. The influence of selenium substitution on microcirculation and glutathione metabolism after warm liver ischemia/reperfusion in a rat model. Microvasc Res 2008; 76:104-9. [PMID: 18572201 DOI: 10.1016/j.mvr.2008.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 04/14/2008] [Accepted: 04/30/2008] [Indexed: 01/20/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a variable yet unavoidable complication in liver surgery and transplantation. Selenium-dependent glutathione-peroxidases (GPx) and selenoproteins function as antioxidant defense systems. One target in preventing I/R injury is enhancing the capacity of endogenous redox defense. It was the aim of this study to analyze the effects of selenium substitution on liver microcirculation, hepatocellular injury and glutathione status in a model of partial warm liver ischemia in the rat. Sodium selenite was administered in three different dosages i.v.: 0.125 microg/g, 0.25 microg/g and 0.375 microg/g body weight and compared to an untreated control group (each n=10). Intravital microscopy was performed after 70 min of partial warm liver ischemia and 90 min of reperfusion. Liver tissue and plasma samples were taken at the end of the experiment for laboratory analysis. Microcirculation improved significantly in all therapy groups in contrast to control animals. ALT levels decreased significantly whereas malondialdehyde levels remained unchanged. In liver tissue, selenium supplementation caused an increase in the amount of total and reduced glutathione without changes in oxidized glutathione. This effect is likely mediated by selenite itself and selenoprotein P rather than by modulating GPx activity. We were able to show that selenite substitution has an immediate protective effect on I/R injury after warm hepatic ischemia by acting as a radical scavenger and preserving the antioxidative capacity of the liver.
Collapse
Affiliation(s)
- Christina Zapletal
- Department of Surgery, Johann Wolfgang Goethe-University Frankfurt, Main, Germany.
| | | | | | | | | |
Collapse
|
22
|
Golling M, Jahnke C, Fonouni H, Ahmadi R, Urbaschek R, Breitkreutz R, Schemmer P, Kraus TW, Gebhard MM, Büchler MW, Mehrabi A. Distinct effects of surgical denervation on hepatic perfusion, bowel ischemia, and oxidative stress in brain dead and living donor porcine models. Liver Transpl 2007; 13:607-617. [PMID: 17394167 DOI: 10.1002/lt.21069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver function and perfusion following brain death is mainly influenced by the sympathetic nerves and hormones. We examined the specific influence of surgical liver denervation on systemic and hepatic perfusion parameters, bowel ischemia and oxidative stress in hemodynamically stable BD and control (living donor [LD]) pigs. Brain death was induced in 8 pigs via saline infusion into the balloon of an epidural Tieman-catheter (1 mL/15 minutes) and compared to the control group (n = 6) over 4 hours. At 2 hours postoperatively, complete liver denervation was initiated. We analyzed systemic cardiocirculatory parameters (mean arterial pressure, aortic flow, bowel ischemia (endotoxin, and endotoxin-neutralizing capacity) and oxidative stress (total glutathione in erythrocytes [tGSH(E)]) and compared them to local/hepatic perfusion parameters (hepatic artery and portal venous flow, liver blood flow index, and microperfusion), local bowel ischemia (intramucosal pH [pHi] of stomach [pHi(S)]/colon[pHi(C)]), and liver oxidative stress (glutathione [rGSH(L), GSSG(L)]). Following brain death, the parameters including mean arterial pressure, aortic flow, pHi, endotoxin, and tGSH(E) showed no significant changes at 2 hours. Portal venous flow and microperfusion were decreased significantly and hepatic arterial buffer response was ineffective. Hepatic oxidative stress was increased in BD animals (decrease rGSH(L), increase GSSG(L)). Surgical denervation/manipulation increased portal venous flow significantly, hepatic arterial buffer response became effective, and stomach pHi decreased (BD and LD groups). Hepatic oxidative stress was reduced in the BD group (increase rGSH(L)/GSSG(L); P < 0.001) while it was increased in the LD group (decrease rGSH(L)/GSSG(L); P < 0.001). In conclusion, denervation reduces hepatic oxidative stress in BD only in contrast to the LD. The reciprocal effect of denervation depends on the state of neural activation and postulates a potential benefit of surgical denervation before organ harvesting in brain death.
Collapse
Affiliation(s)
- Markus Golling
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Webb C, Bedwell C, Guth A, Avery P, Dow S. Use of flow cytometry and monochlorobimane to quantitate intracellular glutathione concentrations in feline leukocytes. Vet Immunol Immunopathol 2006; 112:129-40. [PMID: 16730073 DOI: 10.1016/j.vetimm.2006.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/31/2006] [Accepted: 02/13/2006] [Indexed: 01/08/2023]
Abstract
Oxidative stress and abnormal glutathione metabolism is thought to play an important role in various diseases of cats. However, current assays for the reduced form of glutathione (GSH) are time-consuming and semi-quantitative and do not allow assessment of GSH concentrations in individual cell populations. Therefore, we developed a flow cytometric assay for rapid determination of intracellular GSH concentrations in feline blood leukocytes. The assay was based on the ability of the non-fluorescent substrate monochlorobimane (mBCl) to form fluorescent adducts with GSH in a reaction catalyzed by the enzyme glutathione-S-transferase. Using flow cytometry, we found that mBCl was sensitive and specific for intracellular detection of the reduced form of GSH in feline leukocytes. Intracellular GSH concentrations were also stable for at least 24h in EDTA preserved whole blood samples stored at 4 degrees C. Neutrophils and monocytes from normal cats had significantly higher intracellular concentrations of GSH than T cells and B cells. The effects of FIV infection on intracellular GSH concentrations in cats were assessed using flow cytometry. We found that neutrophils from FIV-infected cats had significantly increased GSH concentrations, whereas intracellular GSH concentrations were significantly decreased in CD4(+) and CD8(+) lymphocytes from FIV-infected cats, compared to age-matched control animals. We conclude that a flow cytometric assay based on mBCl may be used to accurately and rapidly assess the effects of various disease states and treatments on GSH concentration in cat leukocytes and to help assess intracellular oxidative stress.
Collapse
Affiliation(s)
- Craig Webb
- Department of Clinical Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
24
|
Smith AD, Dawson H. Glutathione is required for efficient production of infectious picornavirus virions. Virology 2006; 353:258-67. [PMID: 16860836 DOI: 10.1016/j.virol.2006.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 01/31/2006] [Accepted: 06/08/2006] [Indexed: 11/27/2022]
Abstract
Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log10, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.
Collapse
Affiliation(s)
- Allen D Smith
- Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA.
| | | |
Collapse
|
25
|
Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA. HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. ACTA ACUST UNITED AC 2005; 50:14-26. [PMID: 15890409 DOI: 10.1016/j.brainresrev.2005.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 03/30/2005] [Accepted: 04/04/2005] [Indexed: 01/01/2023]
Abstract
Oxidative stress is thought to play a role in the onset of dementia. HIV-dementia has recently been demonstrated to be associated with oxidative stress as indexed by increased protein and lipid peroxidation in the brain and cerebrospinal fluid compared to HIV non-demented patients. The HIV protein Tat induces neurotoxicity, and, more recently, Tat was found to induce oxidative stress directly and indirectly. The role of Tat in HIV-dementia and possible therapeutic strategies involving endogenous and exogenous antioxidants are discussed.
Collapse
Affiliation(s)
- Chava B Pocernich
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
26
|
Noble M, Mayer-Pröschel M, Pröschel C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal 2005; 7:1456-67. [PMID: 16356108 DOI: 10.1089/ars.2005.7.1456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Studies on oligodendrocytes, the myelin-forming cells of the central nervous system, and on the progenitor cells from which they are derived, have provided several novel insights into the role of intracellular redox state in cell function. This review discusses our findings indicating that intracellular redox state is utilized by the organism as a means of regulating the balance between progenitor cell division and differentiation. This regulation is achieved in part through cell-intrinsic differences that modify the response of cells to extracellular signaling molecules, such that cells that are slightly more reduced are more responsive to inducers of cell survival and division and less responsive to inducers of differentiation or cell death. Cells that are slightly more oxidized, in contrast, show a greater response to inducers of differentiation or cell death, but less response to inducers of proliferation or survival. Regulation is also achieved by the ability of exogenous signaling molecules to modify intracellular redox state in a highly predictable manner, such that signaling molecules that promote self-renewal make progenitor cells more reduced and those that promote differentiation make cells more oxidized. In both cases, the redox changes induced by exposure to exogenous signaling molecules are a necessary component of their mode of action. Paradoxically, the results obtained through studies on the oligodendrocyte lineage are precisely the opposite of what might be predicted from a large number of studies demonstrating the ability of reactive oxidative species to enhance the effects of signaling through receptor tyrosine kinase receptors and to promote cell proliferation. Taken in sum, available data demonstrate clearly the existence of two distinct programs of cellular responses to changes in oxidative status. In one of these, becoming even slightly more oxidized is sufficient to inhibit proliferation and induce differentiation. In the second program, similar changes enhance proliferation. It is not yet clear how cells can interpret putatively identical signals in such opposite manners, but it does already seem clear that resolving this paradox will provide insights of considerable relevance to the understanding of normal development, tissue repair, and tumorigenesis.
Collapse
Affiliation(s)
- Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
27
|
Bridges CC, Hu H, Miyauchi S, Siddaramappa UN, Ganapathy ME, Ignatowicz L, Maddox DM, Smith SB, Ganapathy V. Induction of cystine-glutamate transporter xc- by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2004; 45:2906-14. [PMID: 15326101 PMCID: PMC2735043 DOI: 10.1167/iovs.03-1355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The transactivator protein Tat encoded by the human immunodeficiency virus-1 (HIV-1) genome reduces glutathione levels in mammalian cells. Because the retina contains large amounts of glutathione, a study was undertaken to determine the influence of Tat on glutathione levels, gamma-glutamyl transpeptidase activity, and the expression and activity of the cystine-glutamate transporter xc- in the human retinal pigment epithelial cell line ARPE-19 and in retina from Tat-transgenic mice. METHODS The transport function of xc- was measured as glutamate uptake in the absence of Na+. mRNA levels for xCT and 4F2hc, the two subunits of system xc-, were monitored by RT-PCR and Northern blot and protein levels by Western blot. The expression pattern of xCT and 4F2hc in the mouse retina was analyzed by immunofluorescence. RESULTS Expression of Tat in ARPE-19 cells led to a decrease in glutathione levels and an increase in gamma-glutamyl transpeptidase activity. The transport function of xc- was upregulated, and this increase was accompanied by increases in the levels of mRNAs for xCT and 4F2hc and in corresponding protein levels. The influence of Tat on the expression of xc- was independent of the cellular status of glutathione. Most of these findings were confirmed in the retina of Tat-transgenic mice. CONCLUSIONS Expression of HIV-1 Tat in the retina decreases glutathione levels and increases gamma-glutamyl transpeptidase activity. Tat also upregulates the expression of system xc-. Glutathione levels may be decreased and the expression of xc- enhanced in the retina of patients with HIV-1 infection, leading to oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- Christy C. Bridges
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Huankai Hu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Seiji Miyauchi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | | | | | - Leszek Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia
| | - Dennis M. Maddox
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
28
|
Winiarska K, Drozak J, Wegrzynowicz M, Jagielski AK, Bryła J. Relationship between gluconeogenesis and glutathione redox state in rabbit kidney-cortex tubules. Metabolism 2003; 52:739-46. [PMID: 12800101 DOI: 10.1016/s0026-0495(03)00035-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The intracellular glutathione redox state and the rate of glucose formation were studied in rabbit kidney-cortex tubules. In the presence of substrates effectively utilized for glucose formation, ie, aspartate + glycerol + octanoate, alanine + glycerol + octanoate, malate, or pyruvate, the intracellular reduced glutathione/oxidized glutathione (GSH/GSSG) ratios were significantly higher than those under conditions of negligible glucose production. Changes in the intracellular GSH/GSSG ratio corresponded to those in glucose-6-phosphate content and reduced nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP(+)) ratio obtained from malate/pyruvate measurements. Gluconeogenesis stimulation by extracellular adenosine triphosphate (ATP) or inosine caused an elevation of the intracellular GSH/GSSG and NADPH/NADP(+) ratios, as well as glucose-6-phosphate level. Surprisingly, in the presence of 5 mmol/L glucose, both the intracellular GSH/GSSG and NADPH/NADP(+) ratios and glucose-6-phosphate content were almost as low as under conditions of negligible glucose synthesis. L-buthionine sulfoximine (BSO)-induced decline in both the intracellular glutathione level and redox state resulted in inhibition of gluconeogenesis accompanied by accumulation of phosphotrioses and a decrease in fructose-1,6-bisphosphate content, while cysteine precursors altered neither GSH redox state nor the rate of glucose formation. In view of the data, it seems likely that: (1) intensive gluconeogenesis rather than extracellular glucose is responsible for maintaining a high intracellular GSH/GSSG ratio due to effective glucose-6-phosphate delivery for NADPH generation via the pentose phosphate pathway; (2) a decline in the intracellular glutathione level and/or redox state causes a decrease in glucose synthesis resulting from a diminished flux through aldolase; (3) induced by cysteine precursors, elevation of the intracellular GSH level does not affect the rate of glucose formation, probably due to no changes in the intracellular GSH/GSSG ratio.
Collapse
|
29
|
Golling M, Mehrabi A, Blum K, Jahnke C, Kellner H, Bud O, Hashemi B, Breitkreutz R, Becker-Brandenburg K, Schemmer P, Gebhard MM, Herfarth C, Kraus T. Effects of hemodynamic instability on brain death-induced prepreservation liver damage. Transplantation 2003; 75:1154-1159. [PMID: 12717195 DOI: 10.1097/01.tp.0000062868.34247.8f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Brain death (BD) is an important multifactorial variable contributing to donor-specific liver damage. Our study aimed at assessing the specific effects of hemodynamic instability on systemic and hepatic parameters of perfusion, bowel ischemia, and oxidative stress in a porcine model of BD. METHODS BD was induced in 16 pigs (German Landrace, 18-28 kg) in two groups (hypotension-BD [HYPO-BD], n=8; normotension-BD [NORM-BD], n=8), which were compared with control animals/living donors (n=6) for a period of 2 hr. We analyzed systemic hemodynamic parameters, bowel ischemia (intramucosal pH in the stomach and colon, plasma endotoxin levels, and endotoxin-neutralizing capacity [ENC]), and oxidative stress (total glutathione levels in erythrocytes) and compared the findings with hepatic parameters of perfusion (hepatic arterial flow, portal venous flow, and microperfusion) and liver oxidative stress (reduced glutathione and oxidized glutathione levels in the liver). RESULTS Independent of the hemodynamic stability, liver macrocirculation and microcirculation decreased (HYPO-BD, 79+/-6 to 69+/-10 mL/100 g/min; NORM-BD, 81+/-10 to 73+/-7 mL/100 g/min; P<0.05). Hepatocellular damage (aspartate aminotransferase: NORM-BD, 49+/-20 units/L; HYPO-BD, 170+/-140 units/L; P<0.01) and hepatic oxidative stress (reduced glutathione in the liver/oxidized glutathione in the liver: NORM-BD, 29.4+/-2.3 to 13.0+/-1.3; HYPO-BD, 29.4+/-2.3 to 9.05+/-0.81; P<0.001) increased in both BD groups. With dependence on systemic hemodynamic parameters, bowel ischemia increased (intramucosal pH in the colon, 7.22+/-0.01, P<0.01; ENC, 75+/-14 endotoxin-neutralizing units/mL, P<0.01; endotoxin levels, 7+/-2 to 43+/-10 pg/mL, P<0.01) in the HYPO-BD group but not in the NORM-BD group or the living donor group. Furthermore, systemic oxidative stress was increased in the HYPO-BD group only (total glutathione levels in erythrocytes, 2.65+/-0.25 to 0.15+/-0.25 mM; P<0.01). CONCLUSIONS During BD, liver-specific parameters (portal venous flow, microperfusion, aspartate aminotransferase activity, ENC, and hepatic oxidative stress) were compromised, independent of the hemodynamic status. Therefore, the systemic hemodynamic status does not reflect the functional status of the liver during BD.
Collapse
Affiliation(s)
- Markus Golling
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stempak D, Dallas S, Klein J, Bendayan R, Koren G, Baruchel S. Glutathione stability in whole blood: effects of various deproteinizing acids. Ther Drug Monit 2001; 23:542-9. [PMID: 11591901 DOI: 10.1097/00007691-200110000-00008] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-performance liquid chromatography separation of reduced and oxidized glutathione (GSH and GSSG) in biologic samples using electrochemical detection offers the convenience of both simultaneous quantitation and simple sample preparation. Rapid acidification is required to prevent GSH autooxidation, GSH and GSSG degradation, and precipitate proteins that interfere with analysis. Currently, little consistency exists in the literature regarding acid selection or the feasibility of sample storage before analysis. The purpose of this work was to examine the effects of perchloric (PCA), trichloroacetic (TCA), metaphosphoric (MPA), and 5-sulfosalicylic (SSA) acids on the short-term stability of GSH and GSSG measurements in whole blood. Samples were collected from adult volunteers and treated with multiple concentrations of each acid. The samples were analyzed immediately and aliquots were stored at -80 degrees C for up to 28 days. The suitability of each acid was assessed by percentage change of GSH and GSSG from baseline, efficiency of protein removal, and alteration of chromatogram characteristics. In general, increasing the acid concentration improved sample stability. Nevertheless, SSA did not achieve acceptable sample stability at any concentration tested. MPA was found to leave substantial amounts of protein in the samples, and TCA may interfere with the peaks of interest. Based on these results, a final concentration of 15% PCA is suggested for analysis of glutathione in whole blood. Although immediate sample preparation is preferred, 15% PCA can maintain sample integrity for 4 weeks after storage at -80 degrees C.
Collapse
Affiliation(s)
- D Stempak
- Division of Clinical Pharmacology/Toxicology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Micke P, Beeh KM, Schlaak JF, Buhl R. Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients. Eur J Clin Invest 2001; 31:171-8. [PMID: 11168457 DOI: 10.1046/j.1365-2362.2001.00781.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
HIV infection is characterized by an enhanced oxidant burden and a systemic deficiency of the tripeptide glutathione (GSH), a major antioxidant. The semi-essential amino acid cysteine is the main source of the free sulfhydryl group of GSH and limits its synthesis. Therefore, different strategies to supplement cysteine supply have been suggested to increase glutathione levels in HIV-infected individuals. The aim of this study was to evaluate the effect of oral supplementation with two different cysteine-rich whey protein formulas on plasma GSH levels and parameters of oxidative stress and immune status in HIV-infected patients. In a prospective double blind clinical trial, 30 patients (25 male, 5 female; mean age (+/- SD) 42 +/- 9.8 years) with stable HIV infection (221 +/- 102 CD4 + lymphocytes L-1) were randomized to a supplemental diet with a daily dose of 45 g whey proteins of either Protectamin (Fresenius Kabi, Bad Hamburg, Germany) or Immunocal (Immunotec, Vandreuil, Canada) for two weeks. Plasma concentrations of total, reduced and oxidized GSH, superoxide anion (O2-) release by blood mononuclear cells, plasma levels of TNF-alpha and interleukins 2 and 12 were quantified with standard methods at baseline and after therapy. Pre-therapy, plasma GSH levels (Protectamin: 1.92 +/- 0.6 microM; Immunocal: 1.98 +/- 0.9 microM) were less than normal (2.64 +/- 0.7 microM, P = 0.03). Following two weeks of oral supplementation with whey proteins, plasma GSH levels increased in the Protectamin group by 44 +/- 56% (2.79 +/- 1.2 microM, P = 0.004) while the difference in the Immunocal group did not reach significance (+ 24.5 +/- 59%, 2.51 +/- 1.48 microM, P = 0.43). Spontaneous O2- release by blood mononuclear cells was stable (20.1 +/- 14.2 vs. 22.6 +/- 16.1 nmol h-1 10-6 cells, P = 0.52) whereas PMA-induced O2- release decreased in the Protectamin group (53.7 +/- 19 vs. 39.8 +/- 18 nmol h-1 10-6 cells, P = 0.04). Plasma concentrations of TNF-alpha and interleukins 2 and 12 (P > 0.08, all comparisons) as well as routine clinical parameters remained unchanged. Therapy was well tolerated. In glutathione-deficient patients with advanced HIV-infection, short-term oral supplementation with whey proteins increases plasma glutathione levels. A long-term clinical trial is clearly warranted to see if this "biochemical efficacy" of whey proteins translates into a more favourable course of the disease.
Collapse
Affiliation(s)
- P Micke
- Pulmonary Division, III. Medical Department, Mainz University Hospital, D-455101 Mainz, Germany.
| | | | | | | |
Collapse
|
32
|
Naisbitt DJ, Vilar FJ, Stalford AC, Wilkins EG, Pirmohamed M, Park BK. Plasma cysteine deficiency and decreased reduction of nitrososulfamethoxazole with HIV infection. AIDS Res Hum Retroviruses 2000; 16:1929-38. [PMID: 11153075 DOI: 10.1089/088922200750054657] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of these studies was to determine whether HIV-infected patients have a plasma thiol deficiency and whether this is associated with decreased detoxification of the toxic metabolites of sulfamethoxazole. Reduced, oxidized, protein-bound, and total thiol levels were measured in 33 HIV-positive patients and 33 control subjects by an HPLC method utilizing the fluorescent probe bromobimane. The reduction of sulfamethoxazole hydroxylamine and nitrososulfamethoxazole by plasma and the plasma redox balance in the presence of nitrososulphamethoxazole were also determined by HPLC. Reduced plasma cysteine was significantly (p<0.0001) lower in HIV-positive patients (13.0+/-3.0 microM) when compared with control subjects (16.9+/-3.0 microM). Although there was no difference in oxidized, protein-bound, and total cysteine, the thiol/disulfide ratios were lower in HIV-positive patients. Reduced homocysteine was elevated in patients. Plasma from HIV-positive patients was less able to detoxify nitrososulfamethoxazole than control plasma. These findings show that the disturbance in redox balance in HIV-positive patients may alter metabolic detoxification capacity, and thereby predispose to sulfamethoxazole hypersensitivity.
Collapse
Affiliation(s)
- D J Naisbitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3BX, UK
| | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- O A Levander
- Beltsville Human Nutrition Research Center, U. S. Department of Agriculture, Maryland 20705, USA
| |
Collapse
|
34
|
Perl A, Banki K. Genetic and metabolic control of the mitochondrial transmembrane potential and reactive oxygen intermediate production in HIV disease. Antioxid Redox Signal 2000; 2:551-73. [PMID: 11229368 DOI: 10.1089/15230860050192323] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Redox mechanims play important roles in replication of human immunodeficiency virus type 1 (HIV-1) and cellular susceptibility to apoptosis signals. Viral replication and accelerated turnover of CD4+ T cells occur throughout a prolonged asymptomatic phase in patients infected by HIV-1. Disease development is associated with steady loss of CD4+ T cells by apoptosis, increased rate of opportunistic infections and lymphoproliferative diseases, disruption of energy metabolism, and generalized wasting. Such pathological states are preceded by: (i) depletion of intracellular antioxidants, glutathione (GSH) and thioredoxin (TRX), (ii) increased reactive oxygen species (ROS) production, and (iii) changes in mitochondrial transmembrane potential (deltapsi(m)). Disruption of deltapsi(m) appears to be the point of no return in the effector phase of apoptosis. Viral proteins Tat, Nef, Vpr, protease, and gp120, have been implicated in initiation and/or intensification of oxidative stress and disruption of deltapsi(m). Redox-sensitive transcription factors, NF-kappaB, AP-1, and p53, support expression of viral genes and proinflammatory lymphokines. ROS regulate apoptosis signaling through Fas, tumor necrosis factor (TNF), and related cell death receptors, as well as the T-cell receptor. Oxidative stress in HIV-infected donors is accompanied by increased glucose utilization both on the cellular and organismal levels. Generation of GSH and TRX from their corresponding oxidized forms is dependent on NADPH provided through the pentose phosphate pathway of glucose metabolism. This article seeks to delineate the genetic and metabolic bases of HIV-induced oxidative stress. Such understanding should lead to development of effective antioxidant therapies in HIV disease.
Collapse
Affiliation(s)
- A Perl
- Department of Medicine, State University of New York Health Science Center, College of Medicine, Syracuse 13210, USA.
| | | |
Collapse
|
35
|
Abstract
Randomly selected asymptomatic HIV-positive persons reveal, on average, a massive daily loss of sulphur, which appears to represent in first approximation the mean loss throughout the asymptomatic stage, and may explain the widely observed decrease in cyst(e)ine and glutathione levels. This sulphur loss is reasonably expected to lead, within a few years, to a life-threatening condition and may, therefore, contribute decisively to disease progression. Importantly, the rate of sulphur loss is not ameliorated by highly active antiretroviral therapy and may contribute to antiretroviral treatment failure. Several clinical trials on N-acetyl-cysteine treatment of HIV-positive patients have revealed various therapeutic effects, but did not meet the rigorous standards for approval by the health authorities.
Collapse
Affiliation(s)
- W Dröge
- Division of Immunochemistry, Deutsches Krebforschungszentrum, Heidelberg, Germany.
| | | |
Collapse
|