1
|
Sanborn RE, Pishvaian MJ, Callahan MK, Weise A, Sikic BI, Rahma O, Cho DC, Rizvi NA, Sznol M, Lutzky J, Bauman JE, Bitting RL, Starodub A, Jimeno A, Reardon DA, Kaley T, Iwamoto F, Baehring JM, Subramaniam DS, Aragon-Ching JB, Hawthorne TR, Rawls T, Yellin M, Keler T. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005147. [PMID: 35940825 PMCID: PMC9364417 DOI: 10.1136/jitc-2022-005147] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Phase 1/2 dose-escalation and expansion study evaluating varlilumab, a fully human agonist anti-CD27 mAb, with nivolumab in anti-PD-1/L1 naïve, refractory solid tumors. METHODS Phase 1 evaluated the safety of varlilumab (0.1-10 mg/kg) with nivolumab (3 mg/kg) administered once every 2 weeks. Phase 2 evaluated varlilumab regimens (3 mg/kg once every 2 weeks, 3 mg/kg once every 12 weeks, and 0.3 mg/kg once every 4 weeks) with nivolumab 240 mg once every 2 weeks in tumor-specific cohorts. Primary objective was safety; key clinical endpoints included objective response rate (ORR) and overall survival rate at 12 months (OS12) (glioblastoma (GBM) only). Exploratory objectives included determination of effects on peripheral blood and intratumoral immune signatures. RESULTS 175 patients were enrolled (36 in phase 1 and 139 in phase 2). Phase 1 dose-escalation proceeded to the highest varlilumab dose level without determining a maximum tolerated dose. In phase 2, ORR were ovarian 12.5%, squamous cell carcinoma of the head and neck 12.5%, colorectal cancer 5%, and renal cell carcinoma 0%; GBM OS12 was 40.9%. Increased tumor PD-L1 and intratumoral T cell infiltration were observed in ovarian cancer patients, with increases of ≥5% associated with better progression-free survival. The most common treatment related adverse events were fatigue (18%), pruritus (16%), and rash (15%). CONCLUSION Varlilumab and nivolumab were well tolerated, without significant toxicity beyond that expected for each agent alone. Clinical activity was observed in patients that are typically refractory to anti-PD-1 therapy, however, overall was not greater than expected for nivolumab monotherapy. Treatment was associated with proinflammatory changes in the tumor microenvironment, particularly in ovarian cancer where the changes were associated with better clinical outcomes. TRIAL REGISTRATION NUMBER NCT02335918.
Collapse
Affiliation(s)
- Rachel E Sanborn
- Providence Cancer Institute, Earle A. Chiles Research Institute, Portland, Oregon, USA
| | - Michael J Pishvaian
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Margaret K Callahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Amy Weise
- Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Branimir I Sikic
- Clinical and Translational Research Unit, Stanford Cancer Institute, Stanford, California, USA
| | - Osama Rahma
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Daniel C Cho
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | - Mario Sznol
- Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Jose Lutzky
- Mount Sinai Comprehensive Cancer Center, Miami Beach, Florida, USA
| | - Julie E Bauman
- University of Arizona Cancer Center, Tuscon, Arizona, USA
| | | | | | - Antonio Jimeno
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Thomas Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fabio Iwamoto
- Department of Neurology, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Joachim M Baehring
- Department of Neurosurgery, Yale New Haven Health Smilow Cancer Hospital, New Haven, Connecticut, USA
| | - Deepa S Subramaniam
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | | | | | - Tracey Rawls
- Celldex Therapeutics Inc, Hampton, New Jersey, USA
| | | | - Tibor Keler
- R & D, Celldex Therapeutics Inc, Hampton, New Jersey, USA
| |
Collapse
|
2
|
Muench DE, Sun Z, Sharma A, Tang C, Crampton JS, Lao C, Kersjes K, Chang W, Na S. A Pathogenic Th17/CD38 + Macrophage Feedback Loop Drives Inflammatory Arthritis through TNF-α. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1315-1328. [PMID: 35197330 DOI: 10.4049/jimmunol.2101025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
The pathobiology of rheumatoid inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis, involves the interplay between innate and adaptive immune components and resident synoviocytes. Single-cell analyses of patient samples and relevant mouse models have characterized many cellular subsets in RA. However, the impact of interactions between cell types is not fully understood. In this study, we temporally profiled murine arthritic synovial isolates at the single-cell level to identify perturbations similar to those found in human RA. Notably, murine macrophage subtypes like those found in RA patients were expanded in arthritis and linked to promoting the function of Th17 cells in the joint. In vitro experiments identified a capacity for murine macrophages to maintain the functionality and expansion of Th17 cells. Reciprocally, murine Th17 cell-derived TNF-α induced CD38+ macrophages that enhanced Th17 functionality. Murine synovial CD38+ macrophages were expanded during arthritis, and their depletion or blockade via TNF-α neutralization alleviated disease while reducing IL-17A-producing cells. These findings identify a cellular feedback loop that promotes Th17 cell pathogenicity through TNF-α to drive inflammatory arthritis.
Collapse
Affiliation(s)
- David E Muench
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - Zhe Sun
- Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN; and
| | - Anchal Sharma
- Research Information and Digital Solutions, Lilly Research Laboratories, Eli Lilly and Company, New York, NY
| | - Crystal Tang
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - Jordan S Crampton
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - Christopher Lao
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - Kara Kersjes
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - William Chang
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA
| | - Songqing Na
- Immunology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA;
| |
Collapse
|
3
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
4
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
6
|
Ramírez-Toloza G, Sosoniuk-Roche E, Valck C, Aguilar-Guzmán L, Ferreira VP, Ferreira A. Trypanosoma cruzi Calreticulin: Immune Evasion, Infectivity, and Tumorigenesis. Trends Parasitol 2020; 36:368-381. [PMID: 32191851 DOI: 10.1016/j.pt.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
To successfully infect, Trypanosoma cruzi evades and modulates the host immune response. T. cruzi calreticulin (TcCalr) is a multifunctional, endoplasmic reticulum (ER)-resident chaperone that, translocated to the external microenvironment, mediates crucial host-parasite interactions. TcCalr binds and inactivates C1 and mannose-binding lectin (MBL)/ficolins, important pattern- recognition receptors (PRRs) of the complement system. Using an apoptotic mimicry strategy, the C1-TcCalr association facilitates the infection of target cells. T. cruzi infection also seems to confer protection against tumorigenesis. Thus, recombinant TcCalr has important antiangiogenic properties, detected in vitro, ex vivo, and in ovum, most likely contributing at least in part, to its antitumor properties. Consequently, TcCalr is useful for investigating key issues of host-parasite interactions and possible new immunological/pharmacological interventions in the areas of Chagas' disease and experimental cancer.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile.
| | | | - Carolina Valck
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile, Santiago, Chile
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Arturo Ferreira
- Department of Immunology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Influenza virus N-linked glycosylation and innate immunity. Biosci Rep 2019; 39:BSR20171505. [PMID: 30552137 PMCID: PMC6328934 DOI: 10.1042/bsr20171505] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses cause seasonal epidemics and sporadic pandemics in humans. The virus’s ability to change its antigenic nature through mutation and recombination, and the difficulty in developing highly effective universal vaccines against it, make it a serious global public health challenge. Influenza virus’s surface glycoproteins, hemagglutinin and neuraminidase, are all modified by the host cell’s N-linked glycosylation pathways. Host innate immune responses are the first line of defense against infection, and glycosylation of these major antigens plays an important role in the generation of host innate responses toward the virus. Here, we review the principal findings in the analytical techniques used to study influenza N-linked glycosylation, the evolutionary dynamics of N-linked glycosylation in seasonal versus pandemic and zoonotic strains, its role in host innate immune responses, and the prospects for lectin-based therapies. As the efficiency of innate immune responses is a critical determinant of disease severity and adaptive immunity, the study of influenza glycobiology is of clinical as well as research interest.
Collapse
|
8
|
Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J Innate Immun 2018; 11:13-28. [PMID: 30293076 PMCID: PMC6738215 DOI: 10.1159/000492974] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins. These secreted, soluble proteins are pattern recognition receptors (PRRs) which recognise pathogen-associated molecular patterns (PAMPs), including viral glycoproteins. These innate immune proteins are composed of trimerized units which oligomerise into higher-order structures and facilitate the clearance of viral pathogens through multiple mechanisms. Similarly, many viral surface proteins form trimeric configurations, despite not showing primary protein sequence similarities across the virus classes and families to which they belong. In this review, we discuss the role of the lung collectins, i.e., surfactant proteins A and D (SP-A and SP-D) in viral recognition. We focus particularly on the structural similarity and complementarity of these trimeric collectins with the trimeric viral fusion proteins with which, we hypothesise, they have elegantly co-evolved. Recombinant versions of these innate immune proteins may have therapeutic potential in a range of infectious and inflammatory lung diseases including anti-viral therapeutics.
Collapse
Affiliation(s)
- Alastair Watson
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Maximillian J S Phipps
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Chris-Kriton Skylaris
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United .,Institute for Life Sciences, University of Southampton, Southampton, United .,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United
| |
Collapse
|
9
|
Llull L, Thiel S, Amaro S, Cervera Á, Planas AM, Chamorro Á. Ficolin-1 Levels in Patients Developing Vasospasm and Cerebral Ischemia After Spontaneous Subarachnoid Hemorrhage. Mol Neurobiol 2017; 54:6572-6580. [PMID: 27734336 DOI: 10.1007/s12035-016-0180-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022]
Abstract
Activation of the inflammatory generating complement system might play a pathogenic role in spontaneous subarachnoid hemorrhage (SAH). We studied whether plasma and cerebrospinal fluid (CSF) levels of complement proteins were associated with angiographic vasospasm and cerebral ischemic lesions after SAH. Ficolin-1 (M-ficolin), ficolin-3 (H-ficolin), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), MASP-3, and MAp44 were analyzed in plasma of 45 SAH patients at 24 h after bleeding. Additionally, ficolin-1 levels were measured in cerebrospinal fluid (CSF) samples obtained 24 h after bleeding in 19 patients with external ventricular drainage placement. Angiographic vasospasm was identified using transcranial Doppler or angio-CT and considered symptomatic when new focal deficits or ischemic lesions appeared in follow-up neuroimaging. Functional outcome was assessed using modified Rankin scale (mRS) at 90 days. Higher plasma ficolin-1 levels (ng/ml) at 24 h were associated with poor Hunt and Hess (HH) grade at admission (mean 1158 (SD 360) vs 1654 (871), p = 0.004) and were higher in patients developing angiographic vasospasm (1119.44 (374) vs 1514 (755), p = 0.025) and cerebral ischemia (1067 (325) vs 1610 (766), p = 0.003). In multivariate models adjusted for confounders, higher ficolin-1 remained associated with brain ischemic lesions (OR per 100 ng/ml 1.34, 95 %CI 1.04-1.73, p = 0.026) and vasospasm (OR per 100 ng/ml of increase 1.26, 95 %CI 1.02-1.56, p = 0.031). Patients with angiographic vasospasm and cerebral ischemic lesions had non-significantly lower ficolin-1 concentration in the CSF. Plasma ficolin-1 emerged as a marker of clinical severity and brain ischemia after SAH. Larger studies will be required to establish the therapeutic implications of this finding.
Collapse
Affiliation(s)
- Laura Llull
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain.
| | - Steffen Thiel
- Department of Biomedicine, Health Aarhus University, Aarhus, Denmark
| | - Sergio Amaro
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain
| | - Álvaro Cervera
- Neurosciences Department, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration IIBB-CSIC, IDIBAPS, Barcelona, Spain
| | - Ángel Chamorro
- Neurology Service, Hospital Clinic, Comprehensive Stroke Center, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
10
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
11
|
Lu J, Kishore U. C1 Complex: An Adaptable Proteolytic Module for Complement and Non-Complement Functions. Front Immunol 2017; 8:592. [PMID: 28596769 PMCID: PMC5442170 DOI: 10.3389/fimmu.2017.00592] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
Complement C1 is the defining component of the classical pathway. Within the C1qC1r2C1s2 complex, C1q functions as a molecular scaffold for C1r2C1s2 and C1q binding to its ligands activates these two serine proteases. The classic C1q ligands are antigen-bound antibodies and activated C1s cleaves C4 and C2 to initiate the complement cascade. Recent studies suggest broad C1 functions beyond the complement system. C1q binds to the Frizzled receptors to activate C1s, which cleaves lipoprotein receptor-related protein 6 to trigger aging-associated Wnt receptor signaling. C1q binds to apoptotic cells and the activated C1 proteases cleave nuclear antigens. C1s also cleaves MHC class I molecule and potentially numerous other proteins. The diversity of C1q ligands and C1 protease substrates renders C1 complex versatile and modular so that it can adapt to multiple molecular and cellular processes besides the complement system.
Collapse
Affiliation(s)
- Jinhua Lu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine and Immunology Programme, National University of Singapore, Singapore
| | - Uday Kishore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
12
|
Teoh JJ, Gamache AE, Gillespie AL, Stadnisky MD, Yagita H, Bullock TNJ, Brown MG. Acute Virus Control Mediated by Licensed NK Cells Sets Primary CD8+ T Cell Dependence on CD27 Costimulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:4360-4370. [PMID: 27798162 DOI: 10.4049/jimmunol.1601049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022]
Abstract
NK cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC class I Dk (Dk), a major murine CMV (MCMV) resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against MCMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T cell effectors in response to MCMV. However, relatively little is known about the NK cell effect on costimulatory ligand patterns displayed by DCs or on ensuing effector and memory T cell responses. In this study, we found that CD27-dependent CD8+ T cell priming and differentiation are shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC costimulatory patterns. Nonetheless, although CD27 deficiency did not impede licensed NK-mediated resistance, CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T cell differentiation in response to MCMV, which eventually resulted in biased memory T cell precursor formation in Dk mice. In contrast, CD8+ T cells accrued more slowly in non-Dk mice and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC costimulatory signals needed to prime CD8+ T cells and eventual T cell fate decisions.
Collapse
Affiliation(s)
- Jeffrey J Teoh
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Awndre E Gamache
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Michael D Stadnisky
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; .,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
13
|
Luo F, Chen T, Liu J, Shen X, Zhao Y, Yang R, Zhang X. Ficolin-2 binds to HIV-1 gp120 and blocks viral infection. Virol Sin 2016; 31:406-414. [PMID: 27576476 PMCID: PMC8193375 DOI: 10.1007/s12250-016-3808-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
Ficolin-2 is a lectin complement pathway activator present in normal human plasma and usually associated with infectious diseases, but little is known about the role of ficolin-2 in human immunodeficiency virus (HIV) infection. Here, we describe our novel findings that serum ficolin-2 concentrations of 103 HIV-1 patients were much higher compared to those of 57 healthy donors. In vitro analysis showed that HIV-1 infection could enhance ficolin-2 expression. We further demonstrated that recombinant ficolin-2 protein could bind with HIV-1 envelope glycoprotein gp120, and subsequently induce complement dependent cytotoxicity. Moreover, ficolin-2 could block the entry of HIV-1 into target cells (TZM-b1 and MT-2 cells) and infection in a ficolin-2 dosedependent manner. To our knowledge, this is the first report about the protective role of ficolin-2 against HIV-1 infection and our study suggests that ficolin-2 is an important human innate immune molecule against HIV.
Collapse
Affiliation(s)
- Fengling Luo
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Tielong Chen
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Liu
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Xihui Shen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yinnan Zhao
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Rongge Yang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xiaolian Zhang
- The State Key Laboratory of Virology, Department of Immunology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
14
|
Abstract
Ficolins are pattern-recognition molecules of the innate immune system able to trigger the lectin pathway of the complement activation upon binding to microbial surfaces. In humans, two plasma ficolins have been identified and characterized, whereas a third cell-associated ficolin (M-ficolin) was found on monocyte surfaces. The mouse homologue of M-ficolin is called ficolin B. Although the spatial—temporal expression patterns of mouse ficolins have been described recently, the subcellular localization of ficolin B protein is so far unknown. By using ficolin B-specific antibodies and confocal microscopy, we show that ficolin B is expressed within mouse peritoneal exudate macrophages and is co-localized with Lamp-1, a marker for lysosomes and late endosomes. In addition, the data indicate that ficolin B expression is up-regulated upon macrophage activation.
Collapse
|
15
|
Sahagún-Ruiz A, Breda LCD, Valencia MMC, Elias WP, Munthe-Fog L, Garred P, Barbosa AS, Isaac L. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli. Immunobiology 2015; 220:1177-85. [PMID: 26074063 DOI: 10.1016/j.imbio.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Ficolins recognize pathogen associated molecular patterns and activate the lectin pathway of complement system. However, our knowledge regarding pathogen recognition of human ficolins is still limited. We therefore set out to explore and investigate the possible interactions of the two main serum ficolins, ficolin-2 and ficolin-3 with different Gram-negative bacteria. We used recombinant ficolin molecules and normal human serum, which were detected with anti-ficolin monoclonal antibodies. In addition we investigated the capacity of these pathogens to activate the lectin pathway of complement system. We show for the first time that human ficolin-2 recognizes the nonpathogenic spirochete Leptospira biflexa serovar Patoc, but not the pathogenic Leptospira interrogans serovar Kennewicki strain Fromm. Additionally, human ficolin-2 and ficolin-3 recognize pathogenic Pasteurella pneumotropica, enteropathogenic Escherichia coli (EPEC) serotype O111ab:H2 and enteroaggregative E. coli (EAEC) serogroup O71 but not four enterohemorrhagic E. coli, three EPEC, three EAEC and two nonpathogenic E. coli strains (DH5α and HB101). The lectin pathway was activated by Pasteurella pneumotropica, EPEC O111ab:H2 and EAEC O71 after incubation with C1q depleted human serum. In conclusion, this study provide novel insight in the binding and complement activating capacity of the lectin pathway initiation molecules ficolin-2 and ficolin-3 towards relevant Gram-negative pathogens of pathophysiological relevance.
Collapse
Affiliation(s)
- Alfredo Sahagún-Ruiz
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Brazil
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
16
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
17
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
18
|
Ghebrehiwet B, Hosszu KK, Valentino A, Ji Y, Peerschke EIB. Monocyte Expressed Macromolecular C1 and C1q Receptors as Molecular Sensors of Danger: Implications in SLE. Front Immunol 2014; 5:278. [PMID: 25018754 PMCID: PMC4071343 DOI: 10.3389/fimmu.2014.00278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/28/2014] [Indexed: 01/07/2023] Open
Abstract
The ability of circulating blood monocytes to express C1q receptors (cC1qR and gC1qR) as well as to synthesize and secrete the classical pathway proteins C1q, C1r, and C1s and their regulator, C1-INH is very well established. What is intriguing, however, is that, in addition to secretion of the individual C1 proteins monocytes are also able to display macromolecular C1 on their surface in a manner that is stable and functional. The cell surface C1 complex is presumably formed by a Ca2+-dependent association of the C1r2⋅C1s2 tetramer to C1q, which in turn is anchored via a membrane-binding domain located in the N-terminus of its A-chain as shown previously. Monocytes, which circulate in the blood for 1–3 days before they move into tissues throughout the body, not only serve as precursors of macrophages and dendritic cells (DCs), but also fulfill three main functions in the immune system: phagocytosis, antigen presentation, and cytokine production. Since the globular heads of C1q within the membrane associated C1 are displayed outwardly, we hypothesize that their main function – especially in circulating monocytes – is to recognize and capture circulating immune complexes or pathogen-associated molecular patterns in the blood. This in turn may give crucial signal, which drives the monocytes to migrate into tissues, differentiate into macrophages or DCs, and initiate the process of antigen elimination. Unoccupied C1q on the other hand may serve to keep monocytes in a pre-dendritic phenotype by silencing key molecular players thus ensuring that unwarranted DC-driven immune response does not occur. In this paper, we will discuss the role of monocyte/DC-associated C1q receptors, macromolecular C1 as well as secreted C1q in both innate and acquired immune responses.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- Departments of Medicine and Pathology, Stony Brook University , Stony Brook, NY , USA
| | - Kinga K Hosszu
- Departments of Medicine and Pathology, Stony Brook University , Stony Brook, NY , USA
| | - Alisa Valentino
- Departments of Medicine and Pathology, Stony Brook University , Stony Brook, NY , USA
| | - Yan Ji
- Departments of Medicine and Pathology, Stony Brook University , Stony Brook, NY , USA
| | - Ellinor I B Peerschke
- Departments of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, and Laboratory Medicine and Pathology, Weill-Cornell Medical College , New York, NY , USA
| |
Collapse
|
19
|
Weber-Steffens D, Hunold K, Kürschner J, Martinez SG, Elumalai P, Schmidt D, Trevani A, Runza VL, Männel DN. Immature mouse granulocytic myeloid cells are characterized by production of ficolin-B. Mol Immunol 2013; 56:488-96. [PMID: 23911405 DOI: 10.1016/j.molimm.2013.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022]
Abstract
Ficolins activate the lectin pathway of the complement system upon binding to carbohydrate patterns on pathogens. To characterize the producer cells of ficolin-B the expression of mouse ficolin-B, the orthologue of human M-ficolin, was studied in macrophages and dendritic cells during differentiation from bone marrow cells, in primary granulocytes, and during differentiation of granulocytes derived from ER-Hoxb8 cells. Expression of ficolin-B mRNA declined in all myeloid cell types to low levels during terminal differentiation. However, in contrast to macrophages and dendritic cells, ficolin-B expression was enhanced upon activation in granulocytes. High expression of ficolin-B was observed in primary immature neutrophilic CD11b(+) Ly-6C(int) Ly-6G(high) granulocytes when isolated from the bone marrow, in particular during sepsis. Ficolin-B was demonstrated in lysates of primary granulocytes, ER-Hoxb8-derived granulocytes, bone marrow-derived macrophages, and dendritic cells. Native ficolin-B from cell lysates and supernatants of granulocytes activated the lectin pathway as measured by binding to MASP-2 and inducing C4 deposition. Specific staining demonstrated intra-cellular or cell associated ficolin-B protein in activated immature granulocytes deposited in a granular fashion. This study shows that ficolin-B is stored in and set free from immature granulocytic myeloid cells indicating a role in the early infection-induced cellular response of these inflammatory cells.
Collapse
|
20
|
He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ, Marsh H, Keler T. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:4174-83. [PMID: 24026078 DOI: 10.4049/jimmunol.1300409] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The CD70/CD27 pathway plays a significant role in the control of immunity and tolerance, and previous studies demonstrated that targeting murine CD27 (mCD27) with agonist mAbs can mediate antitumor efficacy. We sought to exploit the potential of this pathway for immunotherapy by developing 1F5, a fully human IgG1 mAb to human CD27 (hCD27) with agonist activity. We developed transgenic mice expressing hCD27 under control of its native promoter for in vivo testing of the Ab. The expression and regulation of hCD27 in hCD27-transgenic (hCD27-Tg) mice were consistent with the understood biology of CD27 in humans. In vitro, 1F5 effectively induced proliferation and cytokine production from hCD27-Tg-derived T cells when combined with TCR stimulation. Administration of 1F5 to hCD27-Tg mice enhanced Ag-specific CD8(+) T cell responses to protein vaccination comparably to an agonist anti-mCD27 mAb. In syngeneic mouse tumor models, 1F5 showed potent antitumor efficacy and induction of protective immunity, which was dependent on CD4(+) and CD8(+) T cells. The requirement of FcR engagement for the agonistic and antitumor activities of 1F5 was demonstrated using an aglycosylated version of the 1F5 mAb. These data with regard to the targeting of hCD27 are consistent with previous reports on targeting mCD27 and provide a rationale for the clinical development of the 1F5 mAb, for which studies in advanced cancer patients have been initiated under the name CDX-1127.
Collapse
Affiliation(s)
- Li-Zhen He
- Celldex Therapeutics, Inc., Phillipsburg, NJ 08865
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Matsushita M. Ficolins in complement activation. Mol Immunol 2013; 55:22-6. [PMID: 22959617 DOI: 10.1016/j.molimm.2012.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 11/30/2022]
Abstract
Ficolins are a group of multimeric lectins made up of single subunits each of which is composed of a collagen-like domain and a fibrinogen-like domain. Most of the ficolins identified to date bind to acetylated compounds such as N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc). Ficolins in serum are complexed with MBL-associated serine proteases (MASPs) and their truncated proteins. These lectins play an important role in innate immunity. Binding of the ficolin-MASP complex to carbohydrates present on the surface of microbes initiates complement activation via the lectin pathway.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan.
| |
Collapse
|
22
|
Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz) 2013; 61:273-83. [PMID: 23563865 DOI: 10.1007/s00005-013-0229-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/25/2013] [Indexed: 01/19/2023]
Abstract
The complement system is an effector mechanism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin pathway is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP-2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding specificity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
Collapse
Affiliation(s)
- Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
23
|
Degn SE, Thiel S. Humoral Pattern Recognition and the Complement System. Scand J Immunol 2013; 78:181-93. [DOI: 10.1111/sji.12070] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/16/2022]
Affiliation(s)
- S. E. Degn
- Department of Biomedicine; Aarhus University; Aarhus; Denmark
| | - S. Thiel
- Department of Biomedicine; Aarhus University; Aarhus; Denmark
| |
Collapse
|
24
|
The emerging role of complement lectin pathway in trypanosomatids: molecular bases in activation, genetic deficiencies, susceptibility to infection, and complement system-based therapeutics. ScientificWorldJournal 2013; 2013:675898. [PMID: 23533355 PMCID: PMC3595680 DOI: 10.1155/2013/675898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection.
Collapse
|
25
|
Munthe-Fog L, Hummelshoj T, Honoré C, Moller ME, Skjoedt MO, Palsgaard I, Borregaard N, Madsen HO, Garred P. Variation in FCN1 affects biosynthesis of ficolin-1 and is associated with outcome of systemic inflammation. Genes Immun 2012; 13:515-22. [PMID: 22673311 DOI: 10.1038/gene.2012.27] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/12/2012] [Accepted: 05/04/2012] [Indexed: 11/08/2022]
Abstract
Ficolin-1 is a recognition molecule of the lectin complement pathway. The ficolin-1 gene FCN1 is polymorphic, but the functional and clinical consequences are unknown.The concentration of ficolin-1 in plasma and FCN1 polymorphisms in positions -1981 (rs2989727), -791 (rs28909068), -542 (rs10120023), -271 (rs28909976), -144 (rs10117466) and +7918 (rs1071583) were determined in 100 healthy individuals. FCN1 expression by isolated monocytes and granulocytes and ficolin-1 levels in monocyte culture supernatants were assessed in 21 FCN1-genotyped individuals. FCN1 polymorphisms were determined in a cohort of 251 patients with systemic inflammation. High ficolin-1 plasma levels were significantly associated with the minor alleles in position -542 and -144. These alleles were also significantly associated with high FCN1 mRNA expression. The level of ficolin-1 in culture supernatants was significantly higher in individuals homozygous for the minor alleles at positions -542 and -144. Homozygosity for these alleles was significantly associated with fatal outcome in patients with systemic inflammation. None of the other investigated polymorphisms were associated with FCN1 and ficolin-1 expression, concentration or disease outcome. Functional polymorphic sites in the promoter region of FCN1 regulate both the expression and synthesis of ficolin-1 and are associated with outcome in severe inflammation.
Collapse
Affiliation(s)
- L Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schlapbach LJ, Kjaer TR, Thiel S, Mattmann M, Nelle M, Wagner BP, Ammann RA, Aebi C, Jensenius JC. M-ficolin concentrations in cord blood are related to circulating phagocytes and to early-onset sepsis. Pediatr Res 2012; 71:368-74. [PMID: 22391637 DOI: 10.1038/pr.2011.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The pattern-recognition molecule M-ficolin is synthesized by monocytes and neutrophils. M-ficolin activates the complement system in a manner similar to mannan-binding lectin (MBL), but little is known about its role in host defense. Neonates are highly vulnerable to bacterial sepsis, in particular, due to their decreased phagocytic function. RESULTS M-ficolin cord blood concentration was positively correlated with the absolute phagocyte count (ρ 0.51, P < 0.001) and with immature/total neutrophil ratio (ρ 0.34, P < 0.001). When comparing infants with sepsis and controls, a high M-ficolin cord blood concentration (>1,000 ng/ml) was associated with early-onset sepsis (EOS) (multivariate odds ratio 10.92, 95% confidence interval 2.21-54.02, P = 0.003). Experimental exposure of phagocytes isolated from adult donors to Escherichia coli resulted in a significant time- and dose-dependent release of M-ficolin. DISCUSSION In conclusion, M-ficolin concentrations were related to circulating phagocytes and EOS. Our results indicate that bacterial sepsis can trigger M-ficolin release by phagocytes. Future studies should investigate whether M-ficolin may be used as a marker of neutrophil activation during invasive infections. METHODS We investigated M-ficolin in 47 infants with culture-positive sepsis during the first 30 days of life (13 with EOS and in 94 matched controls. M-ficolin was measured in cord blood using time-resolved immunofluorometric assay (TRIFMA). Multivariate logistic regression was performed.
Collapse
Affiliation(s)
- Luregn J Schlapbach
- Pediatric Critical Care Research Group, Mater Children's Hospital, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hosszu KK, Valentino A, Ji Y, Matkovic M, Pednekar L, Rehage N, Tumma N, Peerschke EIB, Ghebrehiwet B. Cell surface expression and function of the macromolecular c1 complex on the surface of human monocytes. Front Immunol 2012; 3:38. [PMID: 22566921 PMCID: PMC3342062 DOI: 10.3389/fimmu.2012.00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 11/13/2022] Open
Abstract
The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.
Collapse
Affiliation(s)
- Kinga K Hosszu
- The Department of Medicine, Stony Brook University Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zacho RM, Jensen L, Terp R, Jensenius JC, Thiel S. Studies of the pattern recognition molecule H-ficolin: specificity and purification. J Biol Chem 2012; 287:8071-81. [PMID: 22238349 DOI: 10.1074/jbc.m111.301044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ficolins are pattern recognition molecules of the innate immune system. H-ficolin is found in plasma associated with mannan-binding lectin-associated serine proteases (MASPs). When H-ficolin binds to microorganisms the MASPs are activated, which in turn activate the complement system. H-ficolin is the most abundant ficolin in humans, yet its ligand binding characteristics and biological role remain obscure. We examined the binding of H-ficolin to Aerococcus viridans as well as to a more defined artificial target, i.e. acetylated bovine serum albumin. A strict dependence for calcium ions and inhibition at high NaCl concentration was found. The binding to acetylated bovine serum albumin was inhibited by acetylsalicylic acid and sodium acetate as well as by N-acetylated glucosamine and galactosamine (GlcNAc and GalNAc) and glycine (GlyNAc). The binding to A. viridans was sensitive to the same compounds, but, importantly, higher concentrations were needed for inhibition. N-Acetylated cysteine was also inhibitory, but this inhibition was parallel with reduction in the oligomerization of H-ficolin and thus represents structural changes of the molecule. Based on our findings, we developed a procedure for the purification of H-ficolin from serum, involving PEG precipitation, affinity chromatography on Sepharose derivatized with acetylated serum albumin, ion exchange chromatography, and gel permeation chromatography. The purified H-ficolin was observed to elute at 700 kDa, similar to what we find for H-ficolin in whole serum. MASP-2 was co-purified with H-ficolin, and the purified H-ficolin·MASP-2 complex could activate complement as measured by cleavage of complement factor C4. This study extends our knowledge of the specificity of this pattern recognition molecule, and the purified product will enable further studies.
Collapse
Affiliation(s)
- Rikke M Zacho
- Department of Medical Microbiology and Immunology, Aarhus University, 8000 Aarhus, Denmark
| | | | | | | | | |
Collapse
|
29
|
Hummelshøj T, Nissen J, Munthe-Fog L, Koch C, Frost Bertelsen M, Garred P. Allelic lineages of the ficolin genes (FCNs) are passed from ancestral to descendant primates. PLoS One 2011; 6:e28187. [PMID: 22194813 PMCID: PMC3240626 DOI: 10.1371/journal.pone.0028187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/02/2011] [Indexed: 12/02/2022] Open
Abstract
The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.
Collapse
Affiliation(s)
- Tina Hummelshøj
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janna Nissen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Koch
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Kjaer TR, Hansen AG, Sørensen UBS, Nielsen O, Thiel S, Jensenius JC. Investigations on the pattern recognition molecule M-ficolin: quantitative aspects of bacterial binding and leukocyte association. J Leukoc Biol 2011; 90:425-37. [PMID: 21730084 DOI: 10.1189/jlb.0411201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
M-ficolin is a PRM of the innate immune system, found in serum and associated with leukocytes. We used the soluble form to study specificity toward Gram-positive bacteria and characterized and quantified cell-associated M-ficolin. The binding of M-ficolin to capsulated and noncapsulated strains of Streptococcus agalactiae (GBS) and Staphylococcus aureus was investigated. We did not observe binding of M-ficolin to any of 13 serotypes of S. aureus. Dose-dependent binding of M-ficolin was demonstrated for all of the capsulated GBS strains. The binding was abolished by prior treatment of the bacteria with sialidase, indicating that sialic acid is the ligand for M-ficolin on these bacteria. GlcNAc could inhibit the binding, suggesting that M-ficolin binds via its FBG. M-ficolin was found associated with the complement-activating enzyme in serum, and M-ficolin bound to GBS mediated activation of the complement system. M-ficolin expression on leukocytes was evaluated by flow cytometry with anti-M-ficolin mAb. Total M-ficolin of different leukocytes was quantified in detergent extracts. Monocytes and granulocytes showed similar M-ficolin surface expression, 1.1 × 10(5) and 0.7 × 10(5) M-ficolin molecules/cell, respectively. The total M-ficolin content of the cells was 1.5 × 10(6) molecules/monocyte and approximately one-third of this for granulocytes. Lymphocytes contained <1.5% of the amount estimated for monocytes, and none was revealed on the surface of lymphocytes by flow cytometry. Immunohistochemical analysis of the distribution of M-ficolin in 25 tissues revealed staining of only granulocytes and monocytes. Reported M-ficolin expression by type II pneumocytes could not be verified. We demonstrate the specific binding of M-ficolin to sialic acids in the capsule of GBS and give quantitative aspects of the cell-associated M-ficolin.
Collapse
Affiliation(s)
- Troels R Kjaer
- Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol 2011; 70:125-32. [PMID: 21343881 DOI: 10.1097/nen.0b013e31820805b9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation of the complement system promotes the removal of pathogens and tissue damage products from the brain and may also be involved in neuronal cell death in neurodegenerative diseases. Here, we analyzed the expression of C1q, the initial recognition subcomponent of the classic complement cascade, in the substantia nigra pars compacta (SNc) in Parkinson disease (PD) and control cases using immunohistochemistry and in situ hybridization. Microglia were determined to be the only cells that expressed C1q in the SNc and other brain areas. In the SNc of PD cases, there was increased deposition of extracellular neuromelanin in the parenchyma, resulting from degeneration of dopaminergic neurons. Neuromelanin granules and blebs of degenerated neurons seemed to be opsonized by C1q and phagocytosed by C1q-positive microglia and macrophages in the parenchyma and in the perivascular spaces. Neuromelanin-laden C1q-positive cells were also attached to the luminal surfaces of blood vessels in the SNc in PD. Thus, we present evidence suggesting that microglia are capable of phagocytosing and clearing cellular debris of degenerating neurons from the SNc through a C1q-mediated pathway in PD.
Collapse
|
32
|
Teh BK, Yeo JG, Chern LM, Lu J. C1q regulation of dendritic cell development from monocytes with distinct cytokine production and T cell stimulation. Mol Immunol 2011; 48:1128-38. [PMID: 21429584 DOI: 10.1016/j.molimm.2011.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/12/2011] [Accepted: 02/15/2011] [Indexed: 12/29/2022]
Abstract
The causative association of complement C1q deficiency with systemic lupus erythematosus (SLE), which inevitably involves the breakdown of tolerance, remains poorly explained. Its non-hepatic, macrophage and dendritic cell (DC) origin may be highly relevant. In tissues, C1q is produced by DCs and macrophages which deposits around these cells and we ask whether this pericellular form of C1q regulates DC development from monocytes. DCs cultured on immobilized C1q (C1q-DCs) show similar MHC, CD40, CD80, CD86, CD83 and CCR7 expression as normal DCs, but these cells exhibit increased phagocytosis of apoptotic cells and elevated IL-10 but reduced IL-12 and IL-23 production. Intracellularly, C1q-DCs exhibit increased ERK, p38 and p70S6 kinase activity. By mixed leukocyte reaction, C1q-DCs show reduced Th1 and Th17 induction from allogeneic CD4(+) T cells. LPS and IFNγ, which cause normal DCs to induce increased CD25 expression on CD4(+) T cells, attenuate C1q-DC induction of CD25. These imply that the DC pericellular C1q may induce tolerogenic properties in developing DCs.
Collapse
Affiliation(s)
- Boon King Teh
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
33
|
Thomsen T, Schlosser A, Holmskov U, Sorensen GL. Ficolins and FIBCD1: soluble and membrane bound pattern recognition molecules with acetyl group selectivity. Mol Immunol 2011; 48:369-81. [PMID: 21071088 DOI: 10.1016/j.molimm.2010.09.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/30/2010] [Indexed: 12/27/2022]
Abstract
A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins have acetyl-binding properties, which have been localized to different binding sites in the FReD-region. A newly discovered tetrameric transmembrane protein, FIBCD1, likewise binds acetylated structures via the highly conserved FReD. This review presents current knowledge on acetyl binding FReD-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands.
Collapse
Affiliation(s)
- Theresa Thomsen
- Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | | | | | | |
Collapse
|
34
|
Jalili A, Marquez-Curtis L, Shirvaikar N, Wysoczynski M, Ratajczak M, Janowska-Wieczorek A. Complement C1q enhances homing-related responses of hematopoietic stem/progenitor cells. Transfusion 2010; 50:2002-10. [PMID: 20456695 DOI: 10.1111/j.1537-2995.2010.02664.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Previously, we reported that the complement cleavage fragments C3a and C5a are important modulators of trafficking of hematopoietic stem/progenitor cells (HSPCs). The aim of this study was to examine a possible role for complement component 1, subcomponent q (C1q) in HSPC migration. STUDY DESIGN AND METHODS CD34+ HSPCs isolated from cord blood (CB), bone marrow (BM), and granulocyte-colony-stimulating factor (G-CSF)-mobilized peripheral blood (mPB) were evaluated for the expression of C1q and its receptor for phagocytosis (C1qRp) using reverse transcription-polymerase chain reaction, Western blotting, and fluorescence-activated cell sorting. Chemotactic responses and chemoinvasiveness toward stromal cell-derived factor (SDF)-1 and expression of matrix metalloproteinase (MMP)-9 were also examined after C1q stimulation. Moreover, G-CSF- and zymosan-induced mobilization was evaluated in C1q-deficient mice. RESULTS C1q was expressed in CD34+ cells from mPB, but not from CB or steady-state BM; however, stimulation of the latter with G-CSF induced C1q expression. C1qRp receptor was found on BM, CB, and mPB CD34+ cells and more mature ex vivo expanded myeloid and megakaryocytic precursors. Although C1q itself was not a chemoattractant for HSPCs, it primed/enhanced the chemotactic response of CD34+ cells to a low SDF-1 gradient and their chemoinvasion across the reconstituted basement membrane Matrigel and increased secretion of MMP-9 by these cells. Moreover, in in vivo studies C1q-deficient mice were found to be easy G-CSF mobilizers compared to wild-type mice and normal zymosan mobilizers. CONCLUSION We demonstrated that C1q primes the responses of CD34+ HSPCs to an SDF-1 gradient, which may enhance their ability to stay within BM niches, suggesting that the C1q/C1qRp axis contributes to HSPC homing/retention in BM.
Collapse
Affiliation(s)
- Ali Jalili
- Canadian Blood Services, Research & Development, and the Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Urban TJ, Thompson AJ, Bradrick S, Fellay J, Schuppan D, Cronin KD, Hong L, McKenzie A, Patel K, Shianna KV, McHutchison JG, Goldstein DB, Afdhal N. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 2010; 52:1888-96. [PMID: 20931559 PMCID: PMC3653303 DOI: 10.1002/hep.23912] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/03/2010] [Indexed: 12/12/2022]
Abstract
UNLABELLED Genetic variation in the IL28B (interleukin 28B; interferon lambda 3) region has been associated with sustained virological response (SVR) rates in patients with chronic hepatitis C (CHC) who were treated with peginterferon-α and ribavirin. We hypothesized that IL28B polymorphism is associated with intrahepatic expression of interferon-stimulated genes (ISGs), known to influence treatment outcome. IL28B genotyping (rs12979860) and whole-genome RNA expression were performed using liver biopsies from 61 North American patients with CHC. After correction for multiple testing (false discovery rate < 0.10), 164 transcripts were found to be differentially expressed by IL28B-type. The interferon signaling pathway was the most enriched canonical pathway differentially expressed by IL28B-type (P < 10(-5)), with most genes showing higher expression in livers of individuals carrying the poor-response IL28B-type. In 25 patients for which treatment response data were available, IL28B-type was associated with SVR (P = 0.0054). ISG expression was also associated with SVR; however, this was not independent of IL28B-type. Analysis of miR-122 expression in liver biopsies showed reduced miR-122 levels associated with poorer treatment outcome, independently of IL28B-type. No association was observed between IL28B-type and levels of liver IL28B or IL28A messenger RNA expression. IL28B protein sequence variants associated with rs12979860 were therefore investigated in vitro: no differences in ISG induction or inhibition of HCV replication were observed in Huh7.5 cells. CONCLUSION The good response IL28B variant was strongly associated with lower level ISG expression. The results suggest that IL28B genotype may explain the relationship between hepatic ISG expression and HCV treatment outcome, and this is independent of miR-122 expression. IL28B-type was not associated with intrahepatic IL28B messenger RNA expression in vivo. Further investigation of the precise molecular mechanism(s) by which IL28B genetic variation influences HCV outcomes is warranted.
Collapse
Affiliation(s)
- Thomas J. Urban
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | | | - Shelton Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jacques Fellay
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | - Detlef Schuppan
- Beth Israel Deaconess Medical Center, Harvard School of Medicine, Boston, MA, USA
| | - Kenneth D. Cronin
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | - Linda Hong
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | - Alexander McKenzie
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | - Keyur Patel
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Kevin V. Shianna
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
| | - John G. McHutchison
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - David B. Goldstein
- Center for Human Genome Variation, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nezam Afdhal
- Beth Israel Deaconess Medical Center, Harvard School of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Tanio M, Wakamatsu K, Kohno T. Binding site of C-reactive protein on M-ficolin. Mol Immunol 2009; 47:215-21. [PMID: 19853918 DOI: 10.1016/j.molimm.2009.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/04/2009] [Accepted: 09/25/2009] [Indexed: 01/03/2023]
Abstract
The binding abilities of human C-reactive protein (CRP) with the C-terminal fibrinogen-like (FBG) domain and the full-length form of human M-ficolin were investigated by pull-down and zonal affinity chromatography analyses. Pull-down assays using an N-acetyl-D-glucosamine (GlcNAc)-agarose column demonstrated that CRP binds to the trimeric FBG domains, and that the GlcNAc-binding ability of the FBG domain is unaffected by CRP binding. Interestingly, the full-length M-ficolin, comprising the N-terminal collagen-like (COL) and C-terminal FBG domains, displayed lower affinity for CRP, and the monomeric FBG domain showed virtually no binding to CRP, as qualitatively judged by zonal affinity chromatography using a GlcNAc column. These results indicated that CRP binding requires the trimeric form of the FBG domain, and that the presence of the COL domain reduces the interaction between CRP and M-ficolin. In addition, pull-down assays using a histidine-tag affinity column demonstrated that neither the full-length M-ficolin nor the trimeric FBG domains, immobilized through their C-terminal histidine tags, showed any affinity for CRP, indicating that the CRP binding site is located near Ala326 at the C-terminus of M-ficolin, spatially close to a neck region (around Pro115) between the FBG and COL domains. From these findings, we concluded that CRP binding is enhanced by conformational bending at the neck region of M-ficolin, to avoid steric hindrance by the COL domain. Such a situation may be generated by oligomeric M-ficolin binding to surfaces with widely distributed ligands, such as pathogens.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
37
|
Abstract
Human M-ficolin is a pathogen-associated molecular recognition molecule in the innate immune system, and it binds to some sugars, such as GlcNAc (N-acetylglucosamine), on pathogen surfaces. From previous structural and functional studies of the FD1 (M-ficolin fibrinogen-like domain), we proposed that the ligand-binding region of FD1 exists in a conformational equilibrium between active and non-active states depending on three groups with a pK(a) of 6.2, which are probably histidine residues, and suggested that the 2-state conformational equilibrium as well as the trimer formation contributes to the discrimination mechanism between self and non-self of FD1 [Tanio, M., Kondo, S., Sugio, S. and Kohno, T. (2007) J. Biol. Chem. 282, 3889-3895]. To investigate the origins of the pH dependency, mutational analyses were performed on FD1 expressed by Brevibacillus choshinensis. The GlcNAc binding study of a series of single histidine mutants of FD1 demonstrated that His(251), His(284) and His(297) are required for the activity, and thus we concluded that the three histidines are the origins of the pH dependency of FD1. Monomeric mutants of FD1 show weaker affinity for the ligand than the trimeric wild-type, indicating that trimer formation confers high avidity for the ligand. In addition, analyses of the GlcNAc association and dissociation of FD1 provided evidence that FD1 always exchanges between the active and non-active states with the pH-dependent populations in solution. The biological roles of the histidine-regulated conformational equilibrium of M-ficolin are discussed in terms of the self and non-self discrimination mechanism.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo, Japan
| | | |
Collapse
|
38
|
Thiel S, Gadjeva M. Humoral pattern recognition molecules: mannan-binding lectin and ficolins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:58-73. [PMID: 19799112 DOI: 10.1007/978-1-4419-0901-5_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Innate immunity comprises a sophisticated network of molecules, which recognize pathogens, and effector molecules, working together to establish a quick and efficient immune response to infectious agents. Complement activation triggered by mannan binding lectin (MBL) or ficolins represents a beautiful example of this network Both MBL and ficolins recognize specific chemical structures on the surface of antigens and pathogens, thus bind to a broad variety of pathogens. Once bound further complement deposition is achieved through a cascade of proteolytic reactions. MBL and ficolin induced complement activation is critical for adequate anti-bacterial, anti-fungal and anti-viral responses. This is well illustrated by numerous and convincing studies that demonstrate associations between MBL deficiency and infections. Recent work has also highlighted that MBL and ficolins recognize self-structures, thus extending the role of these molecules beyond the traditional view of first line defense molecules. It appears that MBL deficiency may modulate the prognosis of inflammatory and autoimmune diseases. What is known about the mechanisms behind this broad scope of activities of MBL and ficolins is discussed in this chapter.
Collapse
Affiliation(s)
- Steffen Thiel
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|
39
|
Sorensen B, Jones JF, Vernon SD, Rajeevan MS. Transcriptional control of complement activation in an exercise model of chronic fatigue syndrome. Mol Med 2008; 15:34-42. [PMID: 19015737 DOI: 10.2119/molmed.2008.00098] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 11/07/2008] [Indexed: 11/06/2022] Open
Abstract
Complement activation resulting in significant increases of C4a split product may be a marker of postexertional malaise in individuals with chronic fatigue syndrome (CFS). This study focused on identification of the transcriptional control that may contribute to the increased C4a in CFS subjects after exercise. We used quantitative reverse-transcription polymerase chain reaction to evaluate differential expression of genes in the classical and lectin pathways in peripheral blood mononuclear cells (PBMCs). Calibrated expression values were normalized to the internal reference gene peptidylpropyl isomerase B (PPIB), the external reference gene ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL), or the geometric mean (GM) of the genes ribosomal protein, large, P0 (RPLP0) and phosphoglycerate kinase 1 (PGK1). All nine genes tested, except mannose-binding lectin 2 (MBL2), were expressed in PBMCs. At 1 hour postexercise, C4, mannan-binding lectin serine protease 2 (MASP2) and ficolin 1 (FCN1) transcripts were detected at higher levels (> or = 2-fold) in at least 50% (4 of 8) of CFS subjects and were detected in 88% (7 of 8) CFS subjects when subjects with overexpression of either C4 or MASP2 were combined. Only an increase in the MASP2 transcript was statistically significant (PPIB, P = 0.001; GM, P = 0.047; rbcL, P = 0.045). This result may be due to the significant but transient downregulation of MASP2 in control subjects (PPIB, P = 0.023; rbcL, P = 0.027). By 6 hours postexercise, MASP2 expression was similar in both groups. In conclusion, lectin pathway responded to exercise differentially in CFS than in control subjects. MASP2 down-regulation may act as an antiinflammatory acute-phase response in healthy subjects, whereas its elevated level may account for increased C4a and inflammation-mediated postexertional malaise in CFS subjects.
Collapse
Affiliation(s)
- Bristol Sorensen
- Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States of America
| | | | | | | |
Collapse
|
40
|
Honoré C, Rørvig S, Munthe-Fog L, Hummelshøj T, Madsen HO, Borregaard N, Garred P. The innate pattern recognition molecule Ficolin-1 is secreted by monocytes/macrophages and is circulating in human plasma. Mol Immunol 2008; 45:2782-9. [PMID: 18343499 DOI: 10.1016/j.molimm.2008.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
Ficolin-1 (M-Ficolin) is a pattern recognition molecule of the complement system that is expressed by myeloid cells and type II alveolar epithelial cells. Ficolin-1 has been shown to localize in the secretory granules of these cells and attached to cell surfaces, but whether Ficolin-1 exists a soluble molecule in the extracellular environment or in plasma is unknown. In this study we explored the possibility that Ficolin-1 may be secreted from monocytes, macrophages or immature dendritic cells and may exist in human plasma. Expression of Ficolin-1 was analyzed using real-time quantitative PCR and SDS-PAGE/western blot. Secretion of Ficolin-1 was investigated in cells and plasma from healthy donors through affinity purification using N-acetyl-d-glucosamine-agarose beads and ELISA. Ficolin-1 was found differentially expressed and synthesised by monocytes, macrophages and immature dendritic cells. Notably monocytes and macrophages, but not immature dendritic cells are able to secrete Ficolin-1 into the extracellular environment. Moreover, Ficolin-1 was detected in human plasma from healthy donors with a median concentration of 60.5 ng/ml ranging from 45.7 to 100.4 ng/ml. We show that Ficolin-1 is secreted into the extracellular environment from human monocytes/macrophages, but not immature dendritic cells. Importantly, these results demonstrate that Ficolin-1 exists in human plasma and serum under normal conditions, hereby revising the general assumption that Ficolin-1 is solely a cellular associated protein.
Collapse
Affiliation(s)
- Christian Honoré
- Department of Clinical Immunology, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Silva A, Andrews DM, Brooks AG, Smyth MJ, Hayakawa Y. Application of CD27 as a marker for distinguishing human NK cell subsets. Int Immunol 2008; 20:625-30. [PMID: 18326863 DOI: 10.1093/intimm/dxn022] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It has long been recognized that human NK cells can be divided into two phenotypically and functionally distinct subsets, based on their levels of expression of CD56. We recently found that CD27 distinguishes subsets of mature mouse NK cells. Here we report that CD27 can be used as a marker to discriminate human NK cell subsets. The majority of peripheral blood human NK cells were CD27(lo)/CD56(dim) NK cells, whereas the minor CD27(hi) NK cell population correspondingly displayed a CD56(bright) phenotype. Distinctions between CD27(lo) and CD27(hi) NK cells in their receptor expression and typical NK cell functions such as cytotoxicity and cytokine production can be easily delineated. Therefore, we propose the dual use of CD27 and CD56 as maturation/subset markers for human NK cells. The identification of CD27 subsets in both mice and humans will allow more accurate projections of the role of NK cell subsets in murine models of human pathologies where NK cells are involved.
Collapse
Affiliation(s)
- Anabel Silva
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia
| | | | | | | | | |
Collapse
|
42
|
Frankenberger M, Schwaeble W, Ziegler-Heitbrock L. Expression of M-Ficolin in human monocytes and macrophages. Mol Immunol 2008; 45:1424-30. [PMID: 17928056 DOI: 10.1016/j.molimm.2007.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 11/23/2022]
Abstract
M-Ficolin is a member of the ficolin family of proteins, which is expressed by monocytes. We have determined the expression of this gene in various populations of this lineage in man and found lower levels of M-Ficolin mRNA in the more mature CD14(+)CD16(+) monocytes as compared to the classical CD14(++) monocytes. Monocyte-derived macrophages generated by in vitro culture for 5 days strongly reduced M-Ficolin mRNA and protein. Mature tissue macrophages from the lung and from breast milk also showed a very low level of M-Ficolin transcripts. When cells of the monocytic cell line Mono Mac 6 cell were treated with TLR2 and TLR4 ligands for 24 h then there was an average of 6- and 9-fold induction of the M-Ficolin mRNA, respectively. After 72 h induction was in average 30- and 80-fold for TLR2 and TLR4 stimulation, respectively. Treatment of monocyte-derived macrophages for 3 days with TLR4 ligand gave an average 4-fold induction and alveolar macrophages treated with TLR4 ligand showed a 12-fold induction. These data show that M-Ficolin expression is silenced in macrophages but can be re-activated after prolonged activation via TLRs.
Collapse
Affiliation(s)
- Marion Frankenberger
- Clinical Cooperation Group, Inflammatory Lung Diseases, GSF-National Research Center for Environment and Health and Asklepios Fachkliniken-Gauting, Robert-Koch Allee 29, D-82131, Gauting/Munich, Germany
| | | | | |
Collapse
|
43
|
Lu J, Wu X, Teh BK. The regulatory roles of C1q. Immunobiology 2007; 212:245-52. [PMID: 17544810 DOI: 10.1016/j.imbio.2006.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
C1q binds to immune complexes to elicit complement-dependent microbial killing and enhance phagocytosis. Besides this classical role, C1q also opsonizes apoptotic cells for clearance by phagocytes. C1q deficiency increases susceptibility to microbial infections and is also associated with elevated autoimmunity as characterized by increased apoptotic bodies in tissues. Most complement proteins are of liver origin, but C1q is predominantly synthesized by peripheral tissue macrophages and dendritic cells. Besides being found in the blood, C1q has also been found deposited in extracellular tissues around these cells. In vitro, immobilized C1q inhibits monocyte, macrophage and T-cell production of inflammatory cytokines. It also regulates T-cell activation. Therefore, mounting evidence suggest a major regulatory role for C1q in inflammation and autoimmunity.
Collapse
Affiliation(s)
- Jinhua Lu
- Department of Microbiology, Yong Loo Lin School of Medicine and NUS Immunology Program, National University of Singapore, Blk MD4, 5 Science Drive 2, Singapore 117597, Singapore.
| | | | | |
Collapse
|
44
|
Tanio M, Kondo S, Sugio S, Kohno T. Trivalent recognition unit of innate immunity system: crystal structure of trimeric human M-ficolin fibrinogen-like domain. J Biol Chem 2007; 282:3889-95. [PMID: 17148457 DOI: 10.1074/jbc.m608627200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ficolins are a kind of pathogen-recognition molecule in the innate immune systems. To investigate the discrimination mechanism between self and non-self by ficolins, we determined the crystal structure of the human M-ficolin fibrinogen-like domain (FD1), which is the ligand-binding domain, at 1.9A resolution. Although the FD1 monomer shares a common fold with the fibrinogen gamma fragment and tachylectin-5A, the Asp-282-Cys-283 peptide bond, which is the predicted ligand-binding site on the C-terminal P domain, is a normal trans bond, unlike the cases of the other two proteins. The trimeric formation of FD1 results in the separation of the three P domains, and the spatial arrangement of the three predicted ligand-binding sites on the trimer is very similar to that of the trimeric collectin, indicating that such an arrangement is generally required for pathogen-recognition. The ligand binding study of FD1 in solution indicated that the recombinant protein binds to N-acetyl-d-glucosamine and the peptide Gly-Pro-Arg-Pro and suggested that the ligand-binding region exhibits a conformational equilibrium involving cis-trans isomerization of the Asp-282-Cys-283 peptide bond. The crystal structure and the ligand binding study of FD1 provide an insight of the self- and non-self discrimination mechanism by ficolins.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | |
Collapse
|
45
|
Jensen ML, Honoré C, Hummelshøj T, Hansen BE, Madsen HO, Garred P. Ficolin-2 recognizes DNA and participates in the clearance of dying host cells. Mol Immunol 2007; 44:856-65. [PMID: 16730064 DOI: 10.1016/j.molimm.2006.04.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/06/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
Ficolin-2 is a serum opsonin, which has been shown to be a pattern recognition molecule in the lectin complement activation pathway. Because innate immune mechanisms are involved in maintaining tissue homeostasis we hypothesized that Ficolin-2 also participate in the clearance of dying host cells. We found that Ficolin-2 binds to late apoptotic cells, as well as to apoptotic bodies and necrotic cells, but not to early apoptotic cells. We demonstrated that Ficolin-2 binds DNA in a calcium dependent manner and that DNA inhibits the binding to late apoptotic and necrotic cells, suggesting that DNA on permeable dying cells is a plausible ligand. Reconstituting serum deficient of Ficolin-2, C1q and mannose-binding lectin with Ficolin-2 augmented deposition of complement C4 on necrotic cells. Opsonization leads to an enhanced attachment/uptake of necrotic cells by macrophages. In conclusion dying host cells expose ligands with the capacity of binding Ficolin-2, which in turn leads to increased attachment and engulfment. Binding of Ficolin-2 to DNA points at nucleic acid exposed by permeable late apoptotic and necrotic cells as one of the ligands for Ficolin-2. Ficolin-2 may therefore be a scavenger molecule participating in the removal of host cells and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Maria Lund Jensen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen O, Denmark
| | | | | | | | | | | |
Collapse
|
46
|
Tanio M, Kondo S, Sugio S, Kohno T. Overexpression, purification and preliminary crystallographic analysis of human M-ficolin fibrinogen-like domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:652-5. [PMID: 16820685 PMCID: PMC2242945 DOI: 10.1107/s1744309106019786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/26/2006] [Indexed: 11/11/2022]
Abstract
Ficolins, which are comprised of a collagen-like domain and a fibrinogen-like domain, are a kind of pattern-recognition molecule for pathogens in the innate immunity system. To investigate the molecular mechanism of the discrimination between self and non-self by ficolins, human M-ficolin fibrinogen-like domain (FD1), which contains the ligand-binding site, was overexpressed in Pichia pastoris, purified and crystallized using the vapour-diffusion method at 293 K. The crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 55.16, b = 117.45, c = 55.19 angstroms, beta = 99.88 degrees, and contain three molecules per asymmetric unit. An X-ray data set was collected to 1.9 angstroms resolution using synchrotron radiation at beamline BL24XU at the SPring-8 facility in Japan.
Collapse
Affiliation(s)
- Michikazu Tanio
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Minamiooya 11, Machida, Tokyo 194-8511, Japan
| | - Shin Kondo
- ZOEGENE Corporation, 1000 Kamoshida, Aoba, Yokohama 227-8502, Japan
| | - Shigetoshi Sugio
- ZOEGENE Corporation, 1000 Kamoshida, Aoba, Yokohama 227-8502, Japan
| | - Toshiyuki Kohno
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Minamiooya 11, Machida, Tokyo 194-8511, Japan
| |
Collapse
|
47
|
Kaufmann Y, Amariglio N, Rosenthal E, Hirsch YJ, Many A, Rechavi G. Proliferation response of leukemic cells to CD70 ligation oscillates with recurrent remission and relapse in a low-grade lymphoma. THE JOURNAL OF IMMUNOLOGY 2006; 175:6940-7. [PMID: 16272354 DOI: 10.4049/jimmunol.175.10.6940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions of the TNF-related cell surface ligand CD70 with its receptor CD27 provide a costimulatory signal in B and T cell activation. Functional CD70-CD27 interactions could contribute to lymphoma and leukemia progression. This possibility was studied using DNA microarrays on a unique case of low-grade lymphoma/leukemia characterized by recurrent cycles of acute leukemic phase alternating with spontaneous remission. Upon induction of the acute phase expression of CD70 and CD27 in the leukemic cells increased 38- and 25-fold, respectively. Coexpression of membrane CD70 and CD27 on the leukemic (CD5+CD19+) cells was maximal 2-3 days following initiation of the attack. Soluble CD27 in the patient's serum was elevated during remission and further increased in the attack. Functional tests showed that neither anti-CD70 nor anti-CD27 Abs affect the rate of apoptosis. However, the anti-CD70 Ab specifically enhanced proliferation of the remission phase leukemic cells, whereas proliferation of the acute-phase counterparts that express higher level of membrane CD70 was unaffected. Hence, in this lymphoma/leukemia, membrane CD70 is presented on the leukemic cells in a responsive state during the remission and a nonresponsive state during the attack. Presumably, CD70 in its responsive state provides a costimulatory receptor for initiating the next acute phase while its nonresponsive state enables the remission.
Collapse
Affiliation(s)
- Yael Kaufmann
- Institute of Hematology, Safra Children's Hospital, Tel-Hashomer, Israel.
| | | | | | | | | | | |
Collapse
|
48
|
Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet Immunol Immunopathol 2005; 108:97-110. [PMID: 16098608 DOI: 10.1016/j.vetimm.2005.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagenous lectins such as mannan-binding lectins (MBLs), ficolins (FCNs), surfactant proteins A and D (SP-A, SP-D), conglutinin (CG), and related ruminant lectins are multimeric proteins with carbohydrate-binding domains aligned in a manner that facilitates binding to microbial surface polysaccharides. MBLs and FCNs are structurally related to C1q, but activate the lectin complement pathway via interaction with MBL-associated serine proteases (MASPs). MBLs, FCNs, and other collagenous lectins also bind to some host macromolecules and contribute to their removal. While there is evidence that some lectins and the lectin complement pathway are conserved in vertebrates, many differences in collagenous lectins have been observed among humans, rodents, and other vertebrates. For example, humans have only one MBL but three FCNs, whereas most other species express two FCNs and two MBLs. Bovidae express CG and other SP-D-related collectins that are not found in monogastric species. Some dysfunctions of human MBL are due to single nucleotide polymorphisms (SNPs) that affect its expression or structure and thereby increase susceptibility to some infections. Collagenous lectins have well-established roles in innate immunity to various microorganisms, so it is possible that some lectin genotypes or induced phenotypes influence resistance to some infectious or inflammatory diseases in animals.
Collapse
Affiliation(s)
- Brandon N Lillie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | |
Collapse
|
49
|
Frederiksen PD, Thiel S, Larsen CB, Jensenius JC. M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and activates complement. Scand J Immunol 2005; 62:462-73. [PMID: 16305643 DOI: 10.1111/j.1365-3083.2005.01685.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ficolins play a role in the innate immune defence as pathogen-associated molecular pattern recognition molecules. Three ficolins are found in humans: H-ficolin, L-ficolin and M-ficolin. L-ficolin and H-ficolin circulate in blood in complexes with mannan-binding lectin-associated serine proteases (MASPs) and are capable of activating the complement system. L-ficolin shows affinity for acetylated compounds and binds to various capsulated strains of bacteria. H-ficolin has been shown to bind Aerococcus viridans. Less is known about M-ficolin, but it is thought to be present only on monocytes. We have synthesized recombinant M-ficolin and find that it, in a manner similar to L-ficolin, is able to bind to acetylated compounds and to associate with recombinant MASP-2. Upon binding to M-ficolin ligands, the associated MASP-2 zymogen is activated and cleaves C4, thus triggering the complement system. We developed a monoclonal rat anti-human-M/L-ficolin antibody and verified by flow cytometric analysis the presence of ficolin on the surface of peripheral blood monocytes.
Collapse
Affiliation(s)
- P D Frederiksen
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, DK, Denmark.
| | | | | | | |
Collapse
|
50
|
Liu Y, Endo Y, Iwaki D, Nakata M, Matsushita M, Wada I, Inoue K, Munakata M, Fujita T. Human M-ficolin is a secretory protein that activates the lectin complement pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 175:3150-6. [PMID: 16116205 DOI: 10.4049/jimmunol.175.5.3150] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three types of ficolins have been identified in humans: L-ficolin, M-ficolin, and H-ficolin. Similar to mannose-binding lectin, L-ficolin and H-ficolin are the recognition molecules in the lectin complement pathway. Another human ficolin, M-ficolin, is a nonserum ficolin that is expressed in leukocytes and lung; however, little is known about its physiologic roles. In this study, we report the characterization of M-ficolin in terms of its protein localization and lectin activity. M-ficolin was localized in secretory granules in the cytoplasm of neutrophils, monocytes, and type II alveolar epithelial cells in lung. M-ficolin precipitated with mannose-binding lectin-associated serine proteases (MASP)-1 and MASP-2 in a co-immunoprecipitation assay, indicating that M-ficolin forms complexes with MASP-1 and MASP-2. M-ficolin-MASP complexes activated complement on N-acetylglucosamine (GlcNAc)-coated microplates in a C4 deposition assay. M-ficolin bound to several neoglycoproteins bearing GlcNAc, N-acetylgalactosamine, and sialyl-N-acetyllactosamine, suggesting that M-ficolin can recognize the common carbohydrate residues found in microbes. Indeed, M-ficolin bound to Staphylococcus aureus through GlcNAc. These results indicate that M-ficolin, like its family members, functions as a recognition molecule of the lectin complement pathway and plays an important role in innate immunity.
Collapse
Affiliation(s)
- Yu Liu
- Department of Immunology, Institute of Biomedical Sciences, Fukushima Medical University, 1-Hikarigaoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|