1
|
Nesbitt C, Van Der Walt A, Butzkueven H, Devitt B, Jokubaitis VG. Multiple sclerosis and cancer: Navigating a dual diagnosis. Mult Scler 2024; 30:1714-1736. [PMID: 39347791 DOI: 10.1177/13524585241274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthcare breakthroughs are extending the lives of multiple sclerosis (MS) patients and cancer survivors, creating a growing cohort of individuals navigating a dual diagnosis. Determining the relationship between MS and cancer risk remains challenging, with inconclusive findings confounded by age, risk exposures, comorbidities, genetics and the ongoing introduction of new MS disease-modifying therapies (DMTs) across study periods.This research places significant emphasis on cancer survival, with less attention given to the impact on MS outcomes. Our review explores the existing literature on MS, cancer risk and the intersection of DMTs and cancer treatments. We aim to navigate the complexities of managing MS in cancer survivors to optimise outcomes for both conditions. Continuous research and the formulation of treatment guidelines are essential for guiding future care. Collaboration between neuro-immunology and oncology is crucial, with a need to establish databases for retrospective and ultimately prospective analysis of outcomes in these rapidly evolving fields.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Bianca Devitt
- Department of Oncology, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
- Oncology Clinical Trials Unit, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Dixon-Douglas J, Virassamy B, Clarke K, Hun M, Luen SJ, Savas P, van Geelen CT, David S, Francis PA, Salgado R, Michiels S, Loi S. Sustained lymphocyte decreases after treatment for early breast cancer. NPJ Breast Cancer 2024; 10:94. [PMID: 39433772 PMCID: PMC11493948 DOI: 10.1038/s41523-024-00698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
The role of adaptive immunity in long-term outcomes in early breast cancer is increasingly recognised. Standard (neo)adjuvant chemotherapy can have adverse effects on immune cells. We conducted a retrospective longitudinal study of full blood counts (FBC) of 200 patients receiving (neo)adjuvant chemotherapy for early breast cancer at a single institution. FBC results at four time points from pre-treatment to 12 months post-chemotherapy were analysed. Flow cytometry was performed for patients with matched pre- and post-chemotherapy peripheral blood mononuclear cell samples. A significant decrease in absolute lymphocyte count at 12 months post-chemotherapy was observed (p < 0.01), most pronounced in pre-menopausal patients (n = 73; p < 0.01), patients receiving dose-dense chemotherapy regimens (n = 60; p < 0.01) and patients receiving adjuvant radiotherapy (n = 147, p < 0.01). In pre-menopausal patients, significant changes in CD4+ T cells subsets post-chemotherapy were observed. Further investigation, including long-term clinical outcomes, is needed to meaningfully improve long-term anti-tumour immunity.
Collapse
Affiliation(s)
- Julia Dixon-Douglas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
- Institut Gustave Roussy, INSERM U981, PRISM Center, F-94805, Villejuif, France
| | - Balaji Virassamy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kylie Clarke
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Hun
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen J Luen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
| | - Peter Savas
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
| | | | - Steven David
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Prudence A Francis
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Pathology, ZAS-Hospitals, Antwerp, Belgium
| | - Stefan Michiels
- Institut Gustave Roussy, INSERM U981, PRISM Center, F-94805, Villejuif, France
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Maneechai K, Khopanlert W, Noiperm P, Udomsak P, Viboonjuntra P, Julamanee J. Generation of ex vivo autologous hematopoietic stem cell-derived T lymphocytes for cancer immunotherapy. Heliyon 2024; 10:e38447. [PMID: 39398019 PMCID: PMC11467635 DOI: 10.1016/j.heliyon.2024.e38447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
CD19CAR-T cell therapy demonstrated promising outcomes in relapsed/refractory B-cell malignancies. Nonetheless, the limited T-cell function and ineffective T-cell apheresis for therapeutic purposes are still concern in heavily pretreated patients. We investigated the feasibility of generating hematopoietic stem cell-derived T lymphocytes (HSC-T) for cancer immunotherapy. The patients' autologous peripheral blood HSCs were enriched for CD34+ and CD3+ cells. The CD34+ cells were then cultured following three steps of lymphoid progenitor differentiation, T-cell differentiation, and T-cell maturation processes. HSC-T cells were successfully generated with robust fold expansion of 3735 times. After lymphoid progenitor differentiation, CD5+ and CD7+ cells remarkably increased (65-84 %) while CD34+ cells consequentially declined. The mature CD3+ cells were detected up to 40 % and 90 % on days 42 and 52, respectively. The majority of HSC-T population was naïve phenotype compared to CD3-T cells (73 % vs 34 %) and CD8:CD4 ratio was 2:1. The higher level of cytokine and cytotoxic granule secretion in HSC-T was observed after activation. HSC-T cells were assessed for clinical application and found that CD19CAR-transduced HSC-T cells demonstrated higher cytokine secretion and a trend of superior cytotoxicity against CD19+ target cells compared to control CAR-T cells. A chronic antigen stimulation assay revealed similar T-cell proliferation, stemness, and exhaustion phenotypes among CAR-T cell types. In conclusions, autologous HSC-T was feasible to generate with preserved T-cell efficacy. The HSC-T cells are potentially utilized as an alternative option for cellular immunotherapy.
Collapse
Affiliation(s)
- Kajornkiat Maneechai
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Wannakorn Khopanlert
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Anatomical Pathology Unit, Division of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Panarat Noiperm
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Phakaporn Udomsak
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| | - Pongtep Viboonjuntra
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Jakrawadee Julamanee
- Stem Cell Laboratory, Hematology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Thailand
| |
Collapse
|
4
|
Kientega T, Marcoux S, Bourbonnais J, Montpetit J, Caru M, Cardin GB, Arbour N, Marcil V, Curnier D, Laverdière C, Sinnett D, Rodier F. Premature thymic functional senescence is a hallmark of childhood acute lymphoblastic leukemia survivorship. Blood Cancer J 2024; 14:96. [PMID: 38871704 PMCID: PMC11176394 DOI: 10.1038/s41408-024-01071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (cALL) survivors suffer early-onset chronic diseases classically associated with aging. Normal aging is accompanied by organ dysfunctions, including immunological ones. We hypothesize that thymic immunosenescence occurs in cALL survivors and that its severity may correlate with early-onset chronic diseases. The PETALE study is a cALL survivor cohort with an extensive cardiovascular and metabolic evaluation. The thymic immunosenescence biomarker, signal joint T-cell receptor excision circles (TREC), was evaluated and was highly correlated with age in healthy participants (n = 281) and cALL survivors (n = 248). We observed a systematic thymic immunoage accentuation in each cALL survivor compared to controls ranging from 5.9 to 88.3 years. The immunoage gain was independent of age at diagnosis and treatment modalities and was more severe for females. Thymic aging was associated with several pathophysiological parameters, was greater in survivors suffering from metabolic syndrome, but there was no significant association with global physical condition. The decrease in TREC was independent from blood cell counts, which were normal, suggesting a segmental aging of the thymic compartment. Indeed, increased plasmatic T cell regulatory cytokines IL-6, IL-7 and GM-CSF accompanied high immunoage gain. Our data reveal that cALL or its treatment trigger a rapid immunoage gain followed by further gradual thymic immunosenescence, similar to normal aging. This leads to an enduring shift in accentuated immunoage compared to chronological age. Thus, accentuated thymic immunosenescence is a hallmark of cALL survivorship and TREC levels could be useful immunosenescence biomarkers to help monitoring the health of cancer survivors.
Collapse
Affiliation(s)
- Tibila Kientega
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Sophie Marcoux
- Université Laval, Département de médecine sociale et préventive, Québec, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Jessica Bourbonnais
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Jade Montpetit
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Maxime Caru
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Department of Pediatrics, Division of Hematology and Oncology, Penn State College of Medicine, Hershey, PA, USA
| | - Guillaume B Cardin
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Institut du cancer de Montréal, Montréal, QC, Canada
| | - Nathalie Arbour
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Université de Montréal, Département de Neurosciences, Montréal, QC, Canada
| | - Valérie Marcil
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Nutrition, Montréal, QC, Canada
| | - Daniel Curnier
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Faculté de médecine, École de kinésiologie et des sciences de l'activité physique, Laboratoire de physiopathologie de l'exercice (LPEX), Montréal, QC, Canada
| | - Caroline Laverdière
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Pédiatrie, Montréal, QC, Canada
| | - Daniel Sinnett
- Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
- Université de Montréal, Département de Pédiatrie, Montréal, QC, Canada
| | - Francis Rodier
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
- Institut du cancer de Montréal, Montréal, QC, Canada.
- Université de Montréal, Département de Radiologie, radio-oncologie et médecine nucléaire, Montréal, QC, Canada.
| |
Collapse
|
5
|
Chauhan SK, Dunn C, Andresen NK, Røssevold AH, Skorstad G, Sike A, Gilje B, Raj SX, Huse K, Naume B, Kyte JA. Peripheral immune cells in metastatic breast cancer patients display a systemic immunosuppressed signature consistent with chronic inflammation. NPJ Breast Cancer 2024; 10:30. [PMID: 38653982 DOI: 10.1038/s41523-024-00638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/13/2024] [Indexed: 04/25/2024] Open
Abstract
Immunotherapies blocking the PD-1/PD-L1 checkpoint show some efficacy in metastatic breast cancer (mBC) but are often hindered by immunosuppressive mechanisms. Understanding these mechanisms is crucial for personalized treatments, with peripheral blood monitoring representing a practical alternative to repeated biopsies. In the present study, we performed a comprehensive mass cytometry analysis of peripheral blood immune cells in 104 patients with HER2 negative mBC and 20 healthy donors (HD). We found that mBC patients had significantly elevated monocyte levels and reduced levels of CD4+ T cells and plasmacytoid dendritic cells, when compared to HD. Furthermore, mBC patients had more effector T cells and regulatory T cells, increased expression of immune checkpoints and other activation/exhaustion markers, and a shift to a Th2/Th17 phenotype. Furthermore, T-cell phenotypes identified by mass cytometry correlated with functionality as assessed by IFN-γ production. Additional analysis indicated that previous chemotherapy and CDK4/6 inhibition impacted the numbers and phenotype of immune cells. From 63 of the patients, fresh tumor samples were analyzed by flow cytometry. Paired PBMC-tumor analysis showed moderate correlations between peripheral CD4+ T and NK cells with their counterparts in tumors. Further, a CD4+ T cell cluster in PBMCs, that co-expressed multiple checkpoint receptors, was negatively associated with CD4+ T cell tumor infiltration. In conclusion, the identified systemic immune signatures indicate an immune-suppressed environment in mBC patients who had progressed/relapsed on standard treatments, and is consistent with ongoing chronic inflammation. These activated immuno-suppressive mechanisms may be investigated as therapeutic targets, and for use as biomarkers of response or treatment resistance.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Claire Dunn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nikolai Kragøe Andresen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Hagen Røssevold
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gjertrud Skorstad
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Adam Sike
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Sunil Xavier Raj
- Department of Oncology, St Olav University Hospital, Trondheim, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjørn Naume
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Clinical Cancer Research, Oslo University Hospital, Oslo, Norway.
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
6
|
Heiser RA, Cao AT, Zeng W, Ulrich M, Younan P, Anderson ME, Trueblood ES, Jonas M, Thurman R, Law CL, Gardai SJ. Brentuximab Vedotin-Driven Microtubule Disruption Results in Endoplasmic Reticulum Stress Leading to Immunogenic Cell Death and Antitumor Immunity. Mol Cancer Ther 2024; 23:68-83. [PMID: 37775098 PMCID: PMC10762337 DOI: 10.1158/1535-7163.mct-23-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Brentuximab vedotin, a CD30-directed antibody-drug conjugate (ADC), is approved for clinical use in multiple CD30-expressing lymphomas. The cytotoxic payload component of brentuximab vedotin is monomethyl auristatin E (MMAE), a highly potent microtubule-disrupting agent. Preclinical results provided here demonstrate that treatment of cancer cells with brentuximab vedotin or free MMAE leads to a catastrophic disruption of the microtubule network eliciting a robust endoplasmic reticulum (ER) stress response that culminates in the induction of the classic hallmarks of immunogenic cell death (ICD). In accordance with the induction of ICD, brentuximab vedotin-killed lymphoma cells drove innate immune cell activation in vitro and in vivo. In the "gold-standard" test of ICD, vaccination of mice with brentuximab vedotin or free MMAE-killed tumor cells protected animals from tumor rechallenge; in addition, T cells transferred from previously vaccinated animals slowed tumor growth in immunodeficient mice. Immunity acquired from killed tumor cell vaccination was further amplified by the addition of PD-1 blockade. In a humanized model of CD30+ B-cell tumors, treatment with brentuximab vedotin drove the expansion and recruitment of autologous Epstein-Barr virus-reactive CD8+ T cells potentiating the activity of anti-PD-1 therapy. Together, these data support the ability of brentuximab vedotin and MMAE to drive ICD in tumor cells resulting in the activation of antigen-presenting cells and augmented T-cell immunity. These data provide a strong rationale for the clinical combination of brentuximab vedotin and other MMAE-based ADCs with checkpoint inhibitors.
Collapse
|
7
|
Rodríguez IJ, Bernal-Estévez DA, Llano-León M, Bonilla CE, Parra-López CA. Neoadjuvant chemotherapy modulates exhaustion of T cells in breast cancer patients. PLoS One 2023; 18:e0280851. [PMID: 36763585 PMCID: PMC9916600 DOI: 10.1371/journal.pone.0280851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer deaths in women worldwide. It has been observed that the incidence of breast cancer increases linearly with age after 45, which suggest a link between cancer, aging, and senescence. A growing body of evidence indicates that the immunosuppressive tumor network in breast cancer patients can lead to T-cell exhaustion and senescence. Cytotoxic chemotherapy is a common treatment for many cancers, and it is hypothesized that its efficacy may be related to immune activation. However, the effects of neoadjuvant chemotherapy on T-cell dysfunction in breast cancer patients are not fully understood. This study aimed to evaluate the impact of neoadjuvant chemotherapy on the expression of exhaustion and senescence markers in T cells in women with breast cancer. Our results showed that T cells from breast cancer patients have a reduced ability to respond to stimulation in-vitro and an increased expression of senescence and exhaustion-associated markers, such as TIM-3, LAG3, and CD57. Furthermore, we found that neoadjuvant chemotherapy has an immunomodulatory effect and reduces the expression of exhaustion markers. Our observations of the immune phenotype of T cells during neoadjuvant chemotherapy treatment highlight its ability to stimulate the immune system against cancer. Therefore, monitoring the response of T cells during chemotherapy may enable early prediction of clinical response.
Collapse
Affiliation(s)
- Ivon Johanna Rodríguez
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Movimiento Corporal Humano, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David A. Bernal-Estévez
- Immunology and Clinical Oncology Research Group (GIIOC), Fundación Salud de los Andes, Bogotá, Colombia
| | - Manuela Llano-León
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Carlos Alberto Parra-López
- Departamento de Microbiología, Laboratorio de Inmunología y Medicina Traslacional, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
8
|
Wang AX, Ong XJ, D’Souza C, Neeson PJ, Zhu JJ. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front Immunol 2023; 14:1140541. [PMID: 36949946 PMCID: PMC10026332 DOI: 10.3389/fimmu.2023.1140541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Chemotherapy has long been a standard treatment for a wide range of malignancies, where patients typically undergo multiple rounds of chemotherapy regimens to control tumor growth. In the clinic, the chemotherapy drugs cyclophosphamide and fludarabine are commonly used prior to Chimeric Antigen Receptor T (CAR-T) cell therapy to lymphodeplete and improve CAR-T cell engraftment. In this review, we discuss the use of chemotherapy in combination with CAR-T cell therapy. We also show that chemotherapy can deplete immunosuppressive cells, promote a pro-inflammatory tumor microenvironment, disrupt tumor stroma, and improve CAR-T cell recruitment to the tumor. Although the combination of chemotherapy plus CAR-T cell therapy is promising, certain aspects of chemotherapy also pose a challenge. In addition, the combined therapeutic effect may be heavily dependent on the dose and the treatment schedule. Thus, we also discussed the obstacles to effective clinical outcomes of the combination therapy.
Collapse
Affiliation(s)
- Arthur Xuan Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Xiao Jing Ong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Criselle D’Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Joe Jiang Zhu,
| |
Collapse
|
9
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
10
|
Liu M, Tayob N, Penter L, Sellars M, Tarren A, Chea V, Carulli I, Huang T, Li S, Cheng SC, Le P, Frackiewicz L, Fasse J, Qi C, Liu JF, Stover EH, Curtis J, Livak KJ, Neuberg D, Zhang G, Matulonis UA, Wu CJ, Keskin DB, Konstantinopoulos PA. Improved T-cell Immunity Following Neoadjuvant Chemotherapy in Ovarian Cancer. Clin Cancer Res 2022; 28:3356-3366. [PMID: 35443043 PMCID: PMC9357177 DOI: 10.1158/1078-0432.ccr-21-2834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Although local tissue-based immune responses are critical for elucidating direct tumor-immune cell interactions, peripheral immune responses are increasingly recognized as occupying an important role in anticancer immunity. We evaluated serial blood samples from patients with advanced epithelial ovarian cancer (EOC) undergoing standard-of-care neoadjuvant carboplatin and paclitaxel chemotherapy (including dexamethasone for prophylaxis of paclitaxel-associated hypersensitivity reactions) to characterize the evolution of the peripheral immune cell function and composition across the course of therapy. EXPERIMENTAL DESIGN Serial blood samples from 10 patients with advanced high-grade serous ovarian cancer treated with neoadjuvant chemotherapy (NACT) were collected before the initiation of chemotherapy, after the third and sixth cycles, and approximately 2 months after completion of chemotherapy. T-cell function was evaluated using ex vivo IFNγ ELISpot assays, and the dynamics of T-cell repertoire and immune cell composition were assessed using bulk and single-cell RNA sequencing (RNAseq). RESULTS T cells exhibited an improved response to viral antigens after NACT, which paralleled the decrease in CA125 levels. Single-cell analysis revealed increased numbers of memory T-cell receptor (TCR) clonotypes and increased central memory CD8+ and regulatory T cells throughout chemotherapy. Finally, administration of NACT was associated with increased monocyte frequency and expression of HLA class II and antigen presentation genes; single-cell RNAseq analyses showed that although driven largely by classical monocytes, increased class II gene expression was a feature observed across monocyte subpopulations after chemotherapy. CONCLUSIONS NACT may alleviate tumor-associated immunosuppression by reducing tumor burden and may enhance antigen processing and presentation. These findings have implications for the successful combinatorial applications of immune checkpoint blockade and therapeutic vaccine approaches in EOC.
Collapse
Affiliation(s)
- Min Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nabihah Tayob
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Hematology, Oncology, and Tumor Immunology, Campus Virchow Klinikum, Berlin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - MacLean Sellars
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna Tarren
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vipheaviny Chea
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Isabel Carulli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Su-Chun Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Phuong Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Laura Frackiewicz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Julia Fasse
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Courtney Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joyce F. Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elizabeth H. Stover
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jennifer Curtis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guanglan Zhang
- Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts
| | - Ursula A. Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts.,Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark.,Corresponding Authors: Panagiotis A. Konstantinopoulos, Dana-Farber Cancer Institute, 450 Brookline Avenue, YC-1424, Boston, MA 02215. E-mail: ; and Derin B. Keskin,
| | - Panagiotis A. Konstantinopoulos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Authors: Panagiotis A. Konstantinopoulos, Dana-Farber Cancer Institute, 450 Brookline Avenue, YC-1424, Boston, MA 02215. E-mail: ; and Derin B. Keskin,
| |
Collapse
|
11
|
Rationale for Combing Stereotactic Body Radiation Therapy with Immune Checkpoint Inhibitors in Medically Inoperable Early-Stage Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14133144. [PMID: 35804917 PMCID: PMC9264861 DOI: 10.3390/cancers14133144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The rate of recurrence remains high for lymph node negative early-stage non-small cell lung cancer that are over 2–3 cm in size following stereotactic body radiation therapy (SBRT). This is due to the increased incidence of out-of-field failures, which warrants the addition of systemic therapy. Immune checkpoint inhibitors (ICIs), a class of immunotherapy, may induce a strong distant therapeutic effect known as the “abscopal” effect. This makes them a very suitable class of drugs to be combined with SBRT when treating early lung cancer with high-risk features, such as larger tumor size. In this review, we discuss the rationale and evidence for doing so. Abstract Stereotactic body radiation therapy (SBRT) has been widely adopted as an alternative to lobar resection in medically inoperable patients with lymph-node negative (N0) early-stage (ES) non-small cell lung cancer (NSCLC). Excellent in-field local control has been consistently achieved with SBRT in ES NSCLC ≤ 3 cm in size. However, the out-of-field control following SBRT remains suboptimal. The rate of recurrence, especially distant recurrence remains high for larger tumors. Additional systemic therapy is warranted in N0 ES NSCLC that is larger in size. Radiation has been shown to have immunomodulatory effects on cancer, which is most prominent with higher fractional doses. Strong synergistic effects are observed when immune checkpoint inhibitors (ICIs) are combined with radiation doses in SBRT’s dose range. Unlike chemotherapy, ICIs can potentiate a strong systemic response outside of the irradiated field when combined with SBRT. Together with their less toxic nature, ICIs represent a very suitable class of systemic agents to be combined with SBRT when treating ES NSCLC with high-risk features, such as larger tumor size. In this review, we describe the rationale and emerging evidence, as well as ongoing investigations in this area.
Collapse
|
12
|
Tang TCY, Xu N, Nordon R, Haber M, Micklethwaite K, Dolnikov A. Donor T cells for CAR T cell therapy. Biomark Res 2022; 10:14. [PMID: 35365224 PMCID: PMC8973942 DOI: 10.1186/s40364-022-00359-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/26/2022] [Indexed: 01/01/2023] Open
Abstract
Adoptive cell therapy using patient-derived chimeric receptor antigen (CAR) T cells redirected against tumor cells has shown remarkable success in treating hematologic cancers. However, wider accessibility of cellular therapies for all patients is needed. Manufacture of patient-derived CAR T cells is limited by prolonged lymphopenia in heavily pre-treated patients and risk of contamination with tumor cells when isolating T cells from patient blood rich in malignant blasts. Donor T cells provide a good source of immune cells for adoptive immunotherapy and can be used to generate universal off-the-shelf CAR T cells that are readily available for administration into patients as required. Genome editing tools such as TALENs and CRISPR-Cas9 and non-gene editing methods such as short hairpin RNA and blockade of protein expression are currently used to enhance CAR T cell safety and efficacy by abrogating non-specific toxicity in the form of graft versus host disease (GVHD) and preventing CAR T cell rejection by the host.
Collapse
Affiliation(s)
- Tiffany C Y Tang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW, Australia. .,Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.
| | - Ning Xu
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Robert Nordon
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Kids Cancer Center, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Hematology, Westmead Hospital, Sydney, NSW, Australia.,Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, ICPMR Westmead, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Alla Dolnikov
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Kids Cancer Center, Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
13
|
Titov A, Kaminskiy Y, Ganeeva I, Zmievskaya E, Valiullina A, Rakhmatullina A, Petukhov A, Miftakhova R, Rizvanov A, Bulatov E. Knowns and Unknowns about CAR-T Cell Dysfunction. Cancers (Basel) 2022; 14:1078. [PMID: 35205827 PMCID: PMC8870103 DOI: 10.3390/cancers14041078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a promising option for cancer treatment. However, T cells and CAR-T cells frequently become dysfunctional in cancer, where numerous evasion mechanisms impair antitumor immunity. Cancer frequently exploits intrinsic T cell dysfunction mechanisms that evolved for the purpose of defending against autoimmunity. T cell exhaustion is the most studied type of T cell dysfunction. It is characterized by impaired proliferation and cytokine secretion and is often misdefined solely by the expression of the inhibitory receptors. Another type of dysfunction is T cell senescence, which occurs when T cells permanently arrest their cell cycle and proliferation while retaining cytotoxic capability. The first section of this review provides a broad overview of T cell dysfunctional states, including exhaustion and senescence; the second section is focused on the impact of T cell dysfunction on the CAR-T therapeutic potential. Finally, we discuss the recent efforts to mitigate CAR-T cell exhaustion, with an emphasis on epigenetic and transcriptional modulation.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Yaroslav Kaminskiy
- Laboratory of Transplantation Immunology, National Research Centre for Hematology, 125167 Moscow, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Alexey Petukhov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
14
|
Nayak SP, Bagchi B, Roy S. Effects of immunosuppressants on T-cell dynamics: Understanding from a generic coarse-grained immune network model. J Biosci 2022; 47:70. [PMID: 36503907 PMCID: PMC9734612 DOI: 10.1007/s12038-022-00312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term immunosuppressive therapy is a drug regimen often used to lower aggressive immune responses in various chronic inflammatory diseases. However, such long-term therapy leading to immune suppression may trigger other adverse reactions in the immune system. The rising concern regarding the optimal dose and duration of such treatment has motivated us to understand non-classical immunomodulatory responses induced by various immunosuppressive steroid and secosteroid drugs such as glucocorticoid and vitamin D supplements. The immunomodulatory actions of such immunosuppressants (that govern the adaptive immune response) are often mediated through their characteristic control over CD4+ T-cells involving pro- and antiinflammatory T-cells. Several early studies attempted to decode temporal and dose-dependent behaviors of such pro- and anti-inflammatory T-cells using the chemical dynamics approach. We first summarize these early works. Then, we develop a minimal coarse-grained kinetic network model to capture the commonality in their immunomodulatory functions. This generic model successfully reproduces the characteristic dynamical features, including the clinical latency period in long-term T-cell dynamics. The temporal behavior of T-cells is found to be sensitive to specific rate parameters and doses of immunosuppressants. The steady-state analysis reflects the transition from an early classified weakly regulated (autoimmune-prone) immune state to a strongly regulated state (immunocompromised state), separated by an intervening state of moderate/balanced regulation. An optimal dose and duration are essential in rescuing balanced immune regulation. This review elucidates how developing a simple generic coarse-grained immune network model may provide immense information that helps diagnose inefficacy in adaptive immune function before and after administering immunosuppressants such as glucocorticoid or vitamin D.
Collapse
Affiliation(s)
- Sonali Priyadarshini Nayak
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
- Max Planck School Matter to Life, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, 560012 India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246 India
| |
Collapse
|
15
|
Comont T, Nicolau-Travers ML, Bertoli S, Recher C, Vergez F, Treiner E. MAIT cells numbers and frequencies in patients with acute myeloid leukemia at diagnosis: association with cytogenetic profile and gene mutations. Cancer Immunol Immunother 2021; 71:875-887. [PMID: 34477901 DOI: 10.1007/s00262-021-03037-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Harnessing or monitoring immune cells is actually a major topic in pre-clinical and clinical studies in acute myeloid leukemia (AML). Mucosal-Associated Invariant T cells (MAIT) constitute one of the largest subset of innate-like, cytotoxic T cell subsets in humans. Despite some papers suggesting a role for MAIT cells in cancer, their specific involvement remains unclear, especially in myeloid malignancies. This prospective monocentric study included 216 patients with a newly diagnosed AML. Circulating MAIT cells were quantified by flow cytometry at diagnosis and during intensive chemotherapy. We observed that circulating MAIT cells show a specific decline in AML patients at diagnosis compared to healthy donors. Post-induction monitored patients presented with a drastic drop in MAIT cell numbers, with recovery after one month. We also found correlation between decrease in MAIT cells number and adverse cytogenetic profile. FLT3-ITD and IDH ½ mutations were associated with higher MAIT cell numbers. Patients with high level of activated MAIT cells are under-represented within patients with a favorable cytogenetic profile, and over-represented among patients with IDH1 mutations or bi-allelic CEBPA mutations. We show for the first time that circulating MAIT cells are affected in newly diagnosed AML patients, suggesting a link between MAIT cells and AML progression. Our work fosters new studies to deepen our knowledge about the role of MAIT cells in cancer.
Collapse
Affiliation(s)
- Thibault Comont
- Department of Internal Medicine, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
| | | | - Sarah Bertoli
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Christian Recher
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- Department of Clinical Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Francois Vergez
- Laboratory of Hematology, IUCT-Oncopole, CHU Toulouse, Toulouse, France
- Cancer Research Center of Toulouse, Unité Mixte de Recherche (UMR) 1037 INSERM, ERL5294 Centre National de La Recherche Scientifique, Toulouse, France
- University Paul Sabatier III, Toulouse, France
| | - Emmanuel Treiner
- Laboratory of Immunology, CHU Toulouse, Toulouse, France.
- University Paul Sabatier III, Toulouse, France.
- Infinity, Inserm UMR1291, 330 Avenue de Grande Bretagne, 31000, Toulouse, France.
| |
Collapse
|
16
|
Nayak SP, Roy S. Immune phase transition under steroid treatment. Phys Rev E 2021; 103:062401. [PMID: 34271610 DOI: 10.1103/physreve.103.062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
The steroid hormone glucocorticoid (GC) is a well-known immunosuppressant that controls T-cell-mediated adaptive immune response. In this work, we have developed a minimal kinetic network model of T-cell regulation connecting relevant experimental and clinical studies to quantitatively understand the long-term effects of GC on pro-inflammatory T-cell (T_{pro}) and anti-inflammatory T-cell (T_{anti}) dynamics. Due to the antagonistic relation between these two types of T cells, their long-term steady-state population ratio helps us to characterize three classified immune regulations: (i) weak ([T_{pro}]>[T_{anti}]), (ii) strong ([T_{pro}]<[T_{anti}]), and (iii) moderate ([T_{pro}]∼[T_{anti}]), holding the characteristic bistability. In addition to the differences in their long-term steady-state outcome, each immune regulation shows distinct dynamical phases. In the presteady state, a characteristic intermediate stationary phase is observed to develop only in the moderate regulation regime. In the medicinal field, the resting time in this stationary phase is distinguished as a clinical latent period. GC dose-dependent steady-state analysis shows an optimal level of GC to drive a phase transition from the weak or autoimmune prone to the moderate regulation regime. Subsequently, the presteady state clinical latent period tends to diverge near that optimal GC level where [T_{pro}]:[T_{anti}] is highly balanced. The GC-optimized elongated stationary phase explains the rationale behind the requirement of long-term immune diagnostics, especially when long-term GC-based chemotherapeutics and other immunosuppressive drugs are administrated. Moreover, our study reveals GC sensitivity of clinical latent period, which might serve as an early warning signal in diagnosing different immune phases and determining immune phasewise steroid treatment.
Collapse
Affiliation(s)
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| |
Collapse
|
17
|
Effects of Chemotherapy Agents on Circulating Leukocyte Populations: Potential Implications for the Success of CAR-T Cell Therapies. Cancers (Basel) 2021; 13:cancers13092225. [PMID: 34066414 PMCID: PMC8124952 DOI: 10.3390/cancers13092225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary CAR-T cell therapy is a new approach to cancer treatment that is based on manipulating a patient’s own T cells such that they become able to seek and destroy cancer cells in a highly specific manner. This approach is showing remarkable efficacy in treating some types of blood cancers but so far has been much less effective against solid cancers. Here, we review the diverse effects of chemotherapy agents on circulating leukocyte populations and find that, despite some negative effects over the short term, chemotherapy can favourably modulate the immune systems of cancer patients over the longer term. Since blood is the starting material for CAR-T cell production, we propose that these effects could significantly influence the success of manufacturing, and anti-cancer activity, of CAR-T cells. Thus, if timed correctly, chemotherapy-induced changes to circulating immune cells could allow CAR-T cells to unleash more effective anti-tumour responses. Abstract Adoptive T-cell therapy using autologous T cells genetically modified to express cancer-specific chimeric antigen receptors (CAR) has emerged as a novel approach for cancer treatment. CAR-T cell therapy has been approved in several major jurisdictions for treating refractory or relapsed cases of B-cell precursor acute lymphoblastic leukaemia and diffuse large B-cell lymphoma. However, in solid cancer patients, several clinical studies of CAR-T cell therapy have demonstrated minimal therapeutic effects, thus encouraging interest in better integrating CAR-T cells with other treatments such as conventional cytotoxic chemotherapy. Increasing evidence shows that not only do chemotherapy drugs have tumoricidal effects, but also significantly modulate the immune system. Here, we discuss immunomodulatory effects of chemotherapy drugs on circulating leukocyte populations, including their ability to enhance cytotoxic effects and preserve the frequency of CD8+ T cells and to deplete immunosuppressive populations including regulatory T cells and myeloid-derived suppressor cells. By modulating the abundance and phenotype of leukocytes in the blood (the ‘raw material’ for CAR-T cell manufacturing), we propose that prior chemotherapy could facilitate production of the most effective CAR-T cell products. Further research is required to directly test this concept and identify strategies for the optimal integration of CAR-T cell therapies with cytotoxic chemotherapy for solid cancers.
Collapse
|
18
|
Roy S, Bagchi B. Fluctuation theory of immune response: A statistical mechanical approach to understand pathogen induced T-cell population dynamics. J Chem Phys 2021; 153:045107. [PMID: 32752668 DOI: 10.1063/5.0009747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this period of intense interest in human immunity, we attempt here to quantify the immune response against pathogen invasion through T-cell population dynamics. Borrowing concepts from equilibrium statistical mechanics, we introduce a new description of the immune response function (IMRF) in terms of fluctuations in the population number of relevant biological cells (effector and regulatory T-cells). We use a coarse-grained chemical reaction network model (CG-CRNM) to calculate the number fluctuations and show that the response function derived as such can, indeed, capture the crossover observed in a T-cell driven immune response. We employ the network model to learn the effect of vitamin-D as an immunomodulator. We solve our CG-CRNM using a stochastic Gillespie algorithm. Depending on the effector T-cell concentration, we can classify immune regulation regimes into three categories: weak, strong, and moderate. The IMRF is found to behave differently in these three regimes. A damped cross-regulatory behavior found in the dynamics of effector and regulatory T-cell concentration in the diseased states correlates well with the same found in a cohort of patients with specific malignancies and autoimmune diseases. Importantly, the crossover from the weakly regulated steady state to the other (the strongly regulated) is accompanied by a divergence-like growth in the fluctuation of both the effector and the regulatory T-cell concentration, characteristic of a dynamic phase transition. We believe such steady-state IMRF analyses could help not only to phase-separate different immune stages but also aid in the valuable connection between autoimmunity, optimal vitamin-D, and consequences of immunosuppressive stress and malignancy.
Collapse
Affiliation(s)
- Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Lo Presti V, Cornel AM, Plantinga M, Dünnebach E, Kuball J, Boelens JJ, Nierkens S, van Til NP. Efficient lentiviral transduction method to gene modify cord blood CD8 + T cells for cancer therapy applications. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:357-368. [PMID: 33898633 PMCID: PMC8056177 DOI: 10.1016/j.omtm.2021.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy utilizing tumor-specific autologous T cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific T cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic T cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB T cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB T cells represent major challenges for the harmonized production of T cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ T cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ T cells, with minor effects on the proliferation capacity and cell viability of the T cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ T cells were more amenable to LV transduction than peripheral blood (PB) CD8+ T cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ T cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment.
Collapse
Affiliation(s)
- Vania Lo Presti
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Department of Hematology, UMC Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Stem Cell Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Niek P van Til
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,AVROBIO, Inc., Cambridge, MA, USA.,Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
20
|
De Padova S, Urbini M, Schepisi G, Virga A, Meggiolaro E, Rossi L, Fabbri F, Bertelli T, Ulivi P, Ruffilli F, Casadei C, Gurioli G, Rosti G, Grassi L, De Giorgi U. Immunosenescence in Testicular Cancer Survivors: Potential Implications of Cancer Therapies and Psychological Distress. Front Oncol 2021; 10:564346. [PMID: 33520693 PMCID: PMC7844142 DOI: 10.3389/fonc.2020.564346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Testicular cancer (TC) is the most frequent solid tumor diagnosed in young adult males. Although it is a curable tumor, it is frequently associated with considerable short-term and long-term morbidity. Both biological and psychological stress experienced during cancer therapy may be responsible for stimulating molecular processes that induce premature aging and deterioration of immune system (immunosenescence) in TC survivors, leading to an increased susceptibility to infections, cancer, and autoimmune diseases. Immunosenescence is a remodeling of immune cell populations with inversion of the CD4:CD8 ratio, accumulation of highly differentiated memory cells, shrinkage of telomeres, shift of T-cell response to Th2 type, and release of pro-inflammatory signals. TC survivors exposed to chemotherapy show features of immunological aging, including an increase in memory T-cells (CD4+ and CD8+) and high expression of the senescence biomarker p16INK4a in CD3+ lymphocytes. However, the plethora of factors involved in the premature aging of TC survivors make the situation more complex if we also take into account the psychological stress and hormonal changes experienced by patients, as well as the high-dose chemotherapy and hematopoietic stem cell transplantation that some individuals may be required to undergo. The relatively young age and the long life expectancy of TC patients bear witness to the importance of improving quality of life and of alleviating long-term side-effects of cancer treatments. Within this context, the present review takes an in-depth look at the molecular mechanisms of immunosenescence, describing experimental evidence of cancer survivor aging and highlighting the interconnected relationship between the many factors modulating the aging of the immune system of TC survivors.
Collapse
Affiliation(s)
- Silvia De Padova
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Meggiolaro
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Tatiana Bertelli
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federica Ruffilli
- Psycho-Oncology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giovanni Rosti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Luigi Grassi
- Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara and University Hospital Psychiatry Unit, Integrated Department of Mental Health S. Anna University Hospital and Health Authorities, Ferrara, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
21
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
22
|
Wang JH. Why the Outcome of Anti-Tumor Immune Responses is Heterogeneous: A Novel Idea in the Context of Immunological Heterogeneity in Cancers. Bioessays 2020; 42:e2000024. [PMID: 32767371 DOI: 10.1002/bies.202000024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/12/2020] [Indexed: 12/12/2022]
Abstract
The question as to why some hosts can eradicate their tumors while others succumb to tumor-progression remains unanswered. Here, a provocative concept is proposed that intrinsic differences in the T cell receptor (TCR) repertoire of individuals may influence the outcome of anti-tumor immunity by affecting the frequency and/or variety of tumor-reactive CD8 and/or CD4 tumor-infiltrating lymphocytes. This idea implicates that the TCR repertoire in a given patient might not provide sufficiently different TCR clones that can recognize tumor antigens, namely, "a hole in the TCR repertoire" might exist. This idea may provide a novel perspective to further dissect the mechanisms underlying heterogeneous anti-tumor immune responses in different hosts. Besides tumor-intrinsic heterogeneity and host microbiome, the various factors that may constantly shape the dynamic TCR repertoire are also discussed. Elucidating mechanistic differences in different individuals' immune systems will allow to better harness immune system to design new personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
23
|
Park J, Lim SH, Kim SH, Yun J, Kim CK, Lee SC, Won JH, Hong DS, Park SK. Is immunological recovery clinically relevant at 100 days after allogeneic transplantation? Korean J Intern Med 2020; 35:957-969. [PMID: 32306712 PMCID: PMC7373953 DOI: 10.3904/kjim.2018.414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/AIMS Immune reconstitution following allogeneic hematopoietic stem cell transplantation (HSCT) is affected by multiple variables during the transplantation. METHODS We assessed the clinical factors contributing to immune function reconstitution at 100 days post-allogeneic HSCT in 114 patients receiving fludarabine-based conditioning. Immunophenotypic analysis using flow cytometry was performed to evaluate the percentage and the absolute numbers of T-cell subsets, natural killer cells, and B-cells as clinical outcomes. RESULTS Tacrolimus-based graft-versus-host disease (GVHD) prophylaxis, T-cell depletion, and acute GVHD were significantly associated with delayed immune reconstitution of T-cell subsets. The incidence of chronic GVHD was significantly increased in the normal recovery group compared to the abnormal group (p = 0.01). Epstein-Barr virus reactivation was more frequently observed in the abnormal group of T-cell subsets (p = 0.045). All viral reactivation events including cytomegalovirus reactivation appeared to be more frequent in the abnormal group of T-cell subsets. CONCLUSION The immune recovery status post-allogeneic HSCT was affected by GVHD prophylactic regimens, especially in cases receiving tacrolimus-based GVHD prophylaxis, T-cell depletion, and possibly those manifesting acute GVHD. Delayed immune reconstitution might increase the morbidity due to viral reactivation. Treatment strategies are needed to prevent infectious complications and enhance immune reconstitution based on the immune recovery status following allogeneic HSCT with fludarabine-based conditioning.
Collapse
Affiliation(s)
- Jin Park
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sung Hee Lim
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Se Hyung Kim
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jina Yun
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Chan Kyu Kim
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang Cheol Lee
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jong Ho Won
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dae Sik Hong
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seong Kyu Park
- Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Correspondence to Seong Kyu Park, M.D. Division of Hemato-oncology, Department of Internal Medicine, Soonchunhyang University Bucheon, Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea Tel: +82-32-621-5185 Fax: +82-32-621-5018 E-mail:
| |
Collapse
|
24
|
Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 2020; 123:339-348. [PMID: 32581341 PMCID: PMC7403362 DOI: 10.1038/s41416-020-0942-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is a pivotal component in the curative treatment of patients with localised cancer and isolated metastasis, as well as being used as a palliative strategy for patients with disseminated disease. The clinical efficacy of radiotherapy has traditionally been attributed to the local effects of ionising radiation, which induces cell death by directly and indirectly inducing DNA damage, but substantial work has uncovered an unexpected and dual relationship between tumour irradiation and the host immune system. In clinical practice, it is, therefore, tempting to tailor immunotherapies with radiotherapy in order to synergise innate and adaptive immunity against cancer cells, as well as to bypass immune tolerance and exhaustion, with the aim of facilitating tumour regression. However, our understanding of how radiation impacts on immune system activation is still in its early stages, and concerns and challenges regarding therapeutic applications still need to be overcome. With the increasing use of immunotherapy and its common combination with ionising radiation, this review briefly delineates current knowledge about the non-targeted effects of radiotherapy, and aims to provide insights, at the preclinical level, into the mechanisms that are involved with the potential to yield clinically relevant combinatorial approaches of radiotherapy and immunotherapy.
Collapse
|
25
|
Gustafson CE, Jadhav R, Cao W, Qi Q, Pegram M, Tian L, Weyand CM, Goronzy JJ. Immune cell repertoires in breast cancer patients after adjuvant chemotherapy. JCI Insight 2020; 5:134569. [PMID: 32102986 PMCID: PMC7101137 DOI: 10.1172/jci.insight.134569] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
Adjuvant chemotherapy in breast cancer patients causes immune cell depletion at an age when the regenerative capacity is compromised. Successful regeneration requires the recovery of both quantity and quality of immune cell subsets. Although immune cell numbers rebound within a year after treatment, it is unclear whether overall compositional diversity is recovered. We investigated the regeneration of immune cell complexity by comparing peripheral blood mononuclear cells from breast cancer patients ranging from 1-5 years after chemotherapy with those of age-matched healthy controls using mass cytometry and T cell receptor sequencing. These data reveal universal changes in patients' CD4+ T cells that persisted for years and consisted of expansion of Th17-like CD4 memory populations with incomplete recovery of CD4+ naive T cells. Conversely, CD8+ T cells fully recovered within a year. Mechanisms of T cell regeneration, however, were unbiased, as CD4+ and CD8+ T cell receptor diversity remained high. Likewise, terminal differentiated effector memory cells were not expanded, indicating that regeneration was not driven by recognition of latent viruses. These data suggest that, while CD8+ T cell immunity is successfully regenerated, the CD4 compartment may be irreversibly affected. Moreover, the bias of CD4 memory toward inflammatory effector cells may impact responses to vaccination and infection.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Rohit Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Qian Qi
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | | | - Lu Tian
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| | - Jorg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Veterans Administration Healthcare System, Palo Alto, California, USA
| |
Collapse
|
26
|
Brix N, Tiefenthaller A, Anders H, Belka C, Lauber K. Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunol Rev 2018; 280:249-279. [PMID: 29027221 DOI: 10.1111/imr.12573] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy-despite being a local therapy that meanwhile is characterized by an impressively high degree of spatial accuracy-can stimulate systemic phenomena which occasionally lead to regression and rejection of non-irradiated, distant tumor lesions. These abscopal effects of local irradiation have been observed in sporadic clinical case reports since the beginning of the 20th century, and extensive preclinical work has contributed to identify systemic anti-tumor immune responses as the underlying driving forces. Although abscopal tumor regression still remains a rare event in the radiotherapeutic routine, increasing numbers of cases are being reported, particularly since the clinical implementation of immune checkpoint inhibiting agents. Accordingly, interests to systematically exploit the therapeutic potential of radiotherapy-stimulated systemic responses are constantly growing. The present review briefly delineates the history of radiotherapy-induced abscopal effects and the activation of systemic anti-tumor immune responses by local irradiation. We discuss preclinical and clinical reports with specific focus on the corresponding controversies, and we propose issues that should be addressed in the future in order to narrow the gap between preclinical knowledge and clinical experiences.
Collapse
Affiliation(s)
- Nikko Brix
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Tiefenthaller
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Heike Anders
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium Partner Site München, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
27
|
Impact of Persistent Cytomegalovirus Infection on Dynamic Changes in Human Immune System Profile. PLoS One 2016; 11:e0151965. [PMID: 26990192 PMCID: PMC4798275 DOI: 10.1371/journal.pone.0151965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) imprints the immune system after primary infection, however its effect during chronic infection still needs to be deciphered. In this study we report the variation of blood cell count along with anti-HCMV IgG and T cell responses to pp-65 and IE-1 antigens, that occurred after an interval of five years in a cohort of 25 seropositive healthy adults. We found increased anti-viral IgG antibody responses and intracellular interferon-gamma secreting CD8+ T cell responses to pp-65: a result consistent with memory inflation. With the only exception of shortage in naive CD8+ T cells most memory T cell subsets as well as total CD8+ T cells, T cells, lymphocytes, monocytes and leukocytes had increased. By contrast, none of the cell types tested were found to have increased in 14 subjects stably seronegative. Rather, in addition to a shortage in naive CD8+ T cells, also memory T cell subsets and most other cell types decreased, either in a statistically significant or non-significant manner. The trend of T cell pool representation with regard to CD4/CD8 ratio was in the opposing directions depending on HCMV serology. Globally, this study demonstrates different dynamic changes of most blood cell types depending on presence or absence of HCMV infection. Therefore, HCMV plays a continual role in modulating homeostasis of blood T cells and a broader expanding effect on other cell populations of lymphoid and myeloid origin.
Collapse
|
28
|
Lymphocyte depletion and repopulation after chemotherapy for primary breast cancer. Breast Cancer Res 2016; 18:10. [PMID: 26810608 PMCID: PMC4727393 DOI: 10.1186/s13058-015-0669-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023] Open
Abstract
Background Approximately 30 % of breast cancer patients receive chemotherapy, yet little is known about influences of current regimens on circulating lymphocyte levels and phenotypes. Similarly, clinico-pathological factors that modify these influences, and implications for future immune health remain mainly unexplored. Methods We used flow-cytometry to assess circulating lymphocyte levels and phenotypes in 88 primary breast cancer patients before chemotherapy and at time-points from 2 weeks to 9 months after chemotherapy completion. We examined circulating titres of antibodies against pneumococcal and tetanus antigens using ELISAs. Results Levels of B, T and NK cells were significantly reduced 2 weeks after chemotherapy (p < 0.001). B cells demonstrated particularly dramatic depletion, falling to 5.4 % of pre-chemotherapy levels. Levels of all cells recovered to some extent, although B and CD4+ T cells remained significantly depleted even 9 months post-chemotherapy (p < 0.001). Phenotypes of repopulating B and CD4+ T cells were significantly different from, and showed no sign of returning to pre-chemotherapy profiles. Repopulating B cells were highly depleted in memory cells, with proportions of memory cells falling from 38 % to 10 % (p < 0.001). Conversely, repopulating CD4+ T cells were enriched in memory cells, which increased from 63 % to 75 % (p < 0.001). Differences in chemotherapy regimen and patient smoking were associated with significant differences in depletion extent or repopulation dynamics. Titres of anti-pneumococcal and anti-tetanus antibodies were both significantly reduced post-chemotherapy and did not recover during the study (p < 0.001). Conclusion Breast cancer chemotherapy is associated with long-term changes in immune parameters that should be considered during clinical management. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0669-x) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Onyema OO, Decoster L, Njemini R, Forti LN, Bautmans I, De Waele M, Mets T. Shifts in subsets of CD8+ T-cells as evidence of immunosenescence in patients with cancers affecting the lungs: an observational case-control study. BMC Cancer 2015; 15:1016. [PMID: 26711627 PMCID: PMC4692066 DOI: 10.1186/s12885-015-2013-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
Background Shifts in CD8+ T-cell subsets that are hallmarks of immunosenescence are observed in ageing and in conditions of chronic immune stimulation. Presently, there is limited documentation of such changes in lung cancer and other malignancies affecting the lungs. Methods Changes in CD8+ T-cell subsets, based on the expression of CD28 and CD57, were analysed in patients with various forms of cancer affecting the lungs, undergoing chemotherapy and in a control group over six months, using multi-colour flow cytometry. Results The differences between patients and controls, and the changes in the frequency of CD8+ T-cell subpopulations among lung cancer patients corresponded to those seen in immunosenescence: lower CD8-/CD8+ ratio, lower proportions of CD28+CD57- cells consisting of naïve and central memory cells, and higher proportions of senescent-enriched CD28-CD57+ cells among the lung cancer patients, with the stage IV lung cancer patients showing the most pronounced changes. Also observed was a tendency of chemotherapy to induce the formation of CD28+CD57+ cells, which, in line with the capacity of chemotherapy to induce the formation of senescent cells, might provide more evidence supporting CD28+CD57+ cells as senescent cells. Conclusion Immunosenescence was present before the start of the treatment; it appeared to be pronounced in patients with advanced cases of malignancies affecting the lungs, and might not be averted by chemotherapy.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Lore Decoster
- Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis Brussel & Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| | - Rose Njemini
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Louis Nuvagah Forti
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Ivan Bautmans
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium.
| | - Marc De Waele
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| | - Tony Mets
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussel, Belgium. .,Department of Geriatrics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090, Brussel, Belgium.
| |
Collapse
|
30
|
Wilson RM, Marshall NE, Jeske DR, Purnell JQ, Thornburg K, Messaoudi I. Maternal obesity alters immune cell frequencies and responses in umbilical cord blood samples. Pediatr Allergy Immunol 2015; 26:344-51. [PMID: 25858482 PMCID: PMC9271931 DOI: 10.1111/pai.12387] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Maternal obesity is one of the several key factors thought to modulate neonatal immune system development. Data from murine studies demonstrate worse outcomes in models of infection, autoimmunity, and allergic sensitization in offspring of obese dams. In humans, children born to obese mothers are at increased risk for asthma. These findings suggest a dysregulation of immune function in the children of obese mothers; however, the underlying mechanisms remain poorly understood. The aim of this study was to examine the relationship between maternal body weight and the human neonatal immune system. METHODS Umbilical cord blood samples were collected from infants born to lean, overweight, and obese mothers. Frequency and function of major innate and adaptive immune cell populations were quantified using flow cytometry and multiplex analysis of circulating factors. RESULTS Compared to babies born to lean mothers, babies of obese mothers had fewer eosinophils and CD4 T helper cells, reduced monocyte and dendritic cell responses to Toll-like receptor ligands, and increased plasma levels of IFN-α2 and IL-6 in cord blood. CONCLUSION These results support the hypothesis that maternal obesity influences programming of the neonatal immune system, providing a potential link to increased incidence of chronic inflammatory diseases such as asthma and cardiovascular disease in the offspring.
Collapse
Affiliation(s)
- Randall M Wilson
- Graduate program in Cel, Molecular and Developmental Biology, University of California, Riverside, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel R Jeske
- Department of Statistics, University of California, Riverside, CA, USA
| | - Jonathan Q Purnell
- Department of Medicine, The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kent Thornburg
- Department of Medicine, The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ilhem Messaoudi
- Graduate program in Cel, Molecular and Developmental Biology, University of California, Riverside, CA, USA.,Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|
31
|
van den Brink MRM, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:215-219. [PMID: 26637724 DOI: 10.1182/asheducation-2015.1.215] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Marcel R M van den Brink
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY; and Division of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, New York, NY
| |
Collapse
|
32
|
Vescovini R, Fagnoni FF, Telera AR, Bucci L, Pedrazzoni M, Magalini F, Stella A, Pasin F, Medici MC, Calderaro A, Volpi R, Monti D, Franceschi C, Nikolich-Žugich J, Sansoni P. Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus. AGE (DORDRECHT, NETHERLANDS) 2014; 36:625-40. [PMID: 24318918 PMCID: PMC4039262 DOI: 10.1007/s11357-013-9594-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 10/22/2013] [Indexed: 05/10/2023]
Abstract
Alterations in the circulating CD8+ T cell pool, with a loss of naïve and accumulation of effector/effector memory cells, are pronounced in older adults. However, homeostatic forces that dictate such changes remain incompletely understood. This observational cross-sectional study explored the basis for variability of CD8+ T cell number and composition of its main subsets: naïve, central memory and effector memory T cells, in 131 cytomegalovirus (CMV) seropositive subjects aged over 60 years. We found great heterogeneity of CD8+ T cell numbers, which was mainly due to variability of the CD8 + CD28- T cell subset regardless of age. Analysis, by multiple regression, of distinct factors revealed that age was a predictor for the loss in absolute number of naïve T cells, but was not associated with changes in central or effector memory CD8+ T cell subsets. By contrast, the size of CD8+ T cells specific to pp65 and IE-1 antigens of CMV, predicted CD28 - CD8+ T cell, antigen-experienced CD8+ T cell, and even total CD8+ T cell numbers, but not naïve CD8+ T cell loss. These results indicate a clear dichotomy between the homeostasis of naïve and antigen-experienced subsets of CD8+ T cells which are independently affected, in human later life, by age and antigen-specific responses to CMV, respectively.
Collapse
Affiliation(s)
- Rosanna Vescovini
- Department of Clinical and Experimental Medicine, University of Parma, via Gramsci 14, 43126, Parma, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Emu B, Moretto WJ, Hoh R, Krone M, Martin JN, Nixon DF, Deeks SG, McCune JM. Composition and function of T cell subpopulations are slow to change despite effective antiretroviral treatment of HIV disease. PLoS One 2014; 9:e85613. [PMID: 24465619 PMCID: PMC3897457 DOI: 10.1371/journal.pone.0085613] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to reconstitute a normal immune system with antiretroviral therapy in the setting of HIV infection remains uncertain. This study aimed to characterize quantitative and qualitative aspects of various T cell subpopulations that do not improve despite effective ART. CD4∶CD8 ratio was evaluated in HIV-infected subjects with viral loads >10,000 copies/µl (“non-controllers”, n = 42), those with undetectable viral loads on ART (“ART-suppressed”, n = 53), and HIV-uninfected subjects (n = 22). In addition, T cell phenotype and function were examined in 25 non-controllers, 18 ART-suppressed, and 7 HIV-uninfected subjects. CD4∶CD8 ratio in non-controllers, ART-suppressed, and HIV-uninfected subjects was 0.25, 0.48, and 1.95 respectively (P<0.0001 for all comparisons). The increased ratio in ART-suppressed compared to non-controllers was driven by an increase of CD4+ T cells, with no change in the expanded CD8+ T cell population. Expansion of differentiated (CD28−CD27−CD45RA+/−CCR7−) T cell subpopulations persisted despite ART and minimal changes were noted in naïve T cell frequencies over time. Increased number of CD8+CD28− T cells and increased CD8+ CMV-specific T cell responses were associated with a decreased CD4∶CD8 ratio. Measures of T cell function demonstrated persistence of high frequencies of CD8+ T cells producing IFN–γ. Lastly, though all CD8+ subpopulations demonstrated significantly lower Ki67 expression in ART-suppressed subjects, CD4+ T cell subpopulations did not consistently show this decrease, thus demonstrating different proliferative responses in the setting of T cell depletion. In summary, this study demonstrated that CD4∶CD8 ratios remained significantly decreased and naïve T cell numbers were slow to increase despite long-term viral suppression on ART. In addition, there is a evidence of differential regulation of the CD4+ and CD8+ T cell subpopulations, suggesting independent homeostatic regulation of the two compartments.
Collapse
Affiliation(s)
- Brinda Emu
- Department of Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Walter J. Moretto
- Gladstone Institute of Virology and Immunology, San Francisco, California, United States of America
| | - Rebecca Hoh
- Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Douglas F. Nixon
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
| | - Joseph M. McCune
- Positive Health Program, University of California San Francisco, San Francisco, California, United States of America
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
34
|
Dudakov JA, van den Brink MRM. Greater than the sum of their parts: combination strategies for immune regeneration following allogeneic hematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2011; 24:467-76. [PMID: 21925100 DOI: 10.1016/j.beha.2011.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytoreductive conditioning regimes designed to allow for successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) paradoxically are also detrimental to recovery of the immune system in general but lymphopoiesis in particular. Post-transplant immune depletion is particularly striking within the T cell compartment which is exquisitely sensitive to negative regulation, evidenced by the profound decline in thymic function with age. As a consequence, regeneration of the immune system remains a significant unmet clinical need. Over the past decade studies have revealed several promising therapeutic strategies to address ineffective lymphopoiesis and post-transplant immune deficiency. These include the use of cytokines such as IL-7, IL-12 and IL-15; growth factors and hormones like keratinocyte growth factor (KGF), insulin-like growth factor (IGF)-1 and growth hormone (GH); adoptive transfer of ex vivo-generated precursor T cells (pre-T) and sex steroid ablation (SSA). Moreover, recently several novel approaches have been proposed to generate whole thymii ex vivo using stem cell technologies and bioscaffolds. Increasingly, however, when transferred to the clinic, these strategies alone are not sufficient to restore thymopoiesis in all patients leading to the potential of combination strategies as a way to reign in non-responders. Synergistic enhancement in combination may be due to differential targets may therefore be effective in improving clinical outcomes in the transplant settings as well as in other lymphopenic states induced by high dose chemotherapy/radiation therapy or HIV, and may also be useful in improving responses to vaccination and augmenting anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
35
|
Goldberg GL, Dudakov JA, Reiseger JJ, Seach N, Ueno T, Vlahos K, Hammett MV, Young LF, Heng TSP, Boyd RL, Chidgey AP. Sex steroid ablation enhances immune reconstitution following cytotoxic antineoplastic therapy in young mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:6014-24. [PMID: 20483779 DOI: 10.4049/jimmunol.0802445] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytotoxic antineoplastic therapy is used to treat malignant disease but results in long-term immunosuppression in postpubertal and adult individuals, leading to increased incidence and severity of opportunistic infections. We have previously shown that sex steroid ablation (SSA) reverses immunodeficiencies associated with age and hematopoietic stem cell transplantation in both autologous and allogeneic settings. In this study, we have assessed the effects of SSA by surgical castration on T cell recovery of young male mice following cyclophosphamide treatment as a model for the impact of chemotherapy. SSA increased thymic cellularity, involving all of the thymocyte subsets and early T lineage progenitors. It also induced early repair of damage to the thymic stromal microenvironment, which is crucial to the recovery of a fully functional T cell-based immune system. These functional changes in thymic stromal subsets included enhanced production of growth factors and chemokines important for thymopoiesis, which preceded increases in both thymocyte and stromal cellularity. These effects collectively translated to an increase in peripheral and splenic naive T cells. In conclusion, SSA enhances T cell recovery following cyclophosphamide treatment of mice, at the level of the thymocytes and their stromal niches. This provides a new approach to immune reconstitution following antineoplastic therapy.
Collapse
Affiliation(s)
- Gabrielle L Goldberg
- Immune Regeneration Laboratory, Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ling Y, Fan L, Dong C, Zhu J, Liu Y, Ni Y, Zhu C, Zhang C. Combined influence of adjuvant therapy and interval after surgery on peripheral CD4(+) T lymphocytes in patients with esophageal squamous cell carcinoma. Exp Ther Med 2010; 1:113-120. [PMID: 23136603 DOI: 10.3892/etm_00000020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/26/2009] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate possible differences in cellular immunity between chemo- and/or radiotherapy groups during a long interval after surgery in esophageal squamous cell carcinoma (ESCC) patients. Cellular immunity was assessed as peripheral lymphocyte subsets in response to chemotherapy (CT), radiotherapy (RT) and CT+RT by flow cytometric analysis. There were 139 blood samples obtained at different time points relative to surgery from 73 patients with ESCC. The changes in the absolute and relative proportions of lymphocyte phenotypes were significant among the adjuvant therapy groups. There were significant differences in the absolute counts of CD4(+) and CD8(+) T cells among the interval groups, and a lower CD4/CD8 ratio was found in patients following a prolonged interval. RT alone had a profound effect on the absolute counts of CD3(+), CD4(+) and CD8(+) T cells compared with the other groups. CD4(+) T cells exhibited a decreasing trend during a long interval, leading to a prolonged T-cell imbalance after surgery. Univariate analysis revealed that the interaction of the type of adjuvant therapy and the interval after surgery was correlated only with the percentage of CD4(+) T cells. The percentage of CD4(+) T cells can be used as an indicator of the cellular immunity after surgery in ESCC patients. However, natural killer cells consistently remained suppressed in ESCC patients following adjuvant therapy after surgery. These findings confirm an interaction between adjuvant therapy and the interval after surgery on peripheral CD4(+) T cells, and implies that adjuvant therapy may have selective influence on the cellular immunity of ESCC patients after surgery.
Collapse
Affiliation(s)
- Yang Ling
- Laboratory of Clinical Oncology, Changzhou Tumor Hospital, Medical College of Soochow University, Jiangsu
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:7084-94. [PMID: 19890044 DOI: 10.4049/jimmunol.0900196] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytotoxic antineoplastic therapy is widely used in the clinic as a treatment for malignant diseases. The treatment itself, however, leads to long-term depletion of the adaptive immune system, which is more pronounced in older patients, predominantly due to thymic atrophy. We and others have previously shown that withdrawal of sex steroids is able to regenerate the aged thymus and enhance recovery from autologous and allogeneic hematopoietic stem cell transplant. In this study we have examined the effects of sex steroid ablation (SSA) on the recovery of lymphopoiesis in the bone marrow (BM) and thymus following treatment with the chemotherapeutic agent cyclophosphamide (Cy) in middle-aged and old mice. Furthermore, we have also examined the impact of this regeneration on peripheral immunity. SSA enhanced the recovery of BM resident hematopoietic stem cells and lymphoid progenitors and promoted lymphopoiesis. Interestingly, Cy alone caused a profound increase in the recently described common lymphoid progenitor 2 (CLP-2) population in the BM. In the thymus, SSA caused a profound increase in cellularity as well as all intrathymic T-lineage progenitors including early T-lineage progenitors (ETPs) and non-canonical T cell progenitors such as the CLP-2. We also found that these transferred into numerical increases in the periphery with enhanced B and T cell numbers. Furthermore, these lymphocytes were found to have an enhanced functional capacity with no perturbation of the TCR repertoire. Taken together, these results provide the basis for the use of SSA in the clinic to enhance treatment outcomes from cytotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immune Regeneration Laboratory, Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton VIC 3800, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Yakoub-Agha I, Saule P, Magro L, Cracco P, Duhamel A, Coiteux V, Bruno B, Dufossé F, Jouet JP, Dessaint JP, Labalette M. Immune Reconstitution following Myeloablative Allogeneic Hematopoietic Stem Cell Transplantation: The Impact of Expanding CD28negative CD8+ T Cells on Relapse. Biol Blood Marrow Transplant 2009; 15:496-504. [DOI: 10.1016/j.bbmt.2008.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/27/2008] [Indexed: 12/28/2022]
|
39
|
Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Semin Immunopathol 2008; 30:457-77. [PMID: 18982327 DOI: 10.1007/s00281-008-0140-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/14/2008] [Indexed: 12/14/2022]
Abstract
Poor immune recovery is characteristic of bone marrow transplantation and leads to high levels of morbidity and mortality. The primary underlying cause is a compromised thymic function, resulting from age-induced atrophy and further compounded by the damaging effects of cytoablative conditioning regimes on thymic epithelial cells (TEC). Several strategies have been proposed to enhance T cell reconstitution. Some, such as the use of single biological agents, are currently being tested in clinical trials. However, a more rational approach to immune restoration will be to leverage the evolving repertoire of new technologies. Specifically, the combined targeting of TEC, thymocytes and peripheral T cells, together with the bone marrow niches, promises a more strategic clinical therapeutic platform.
Collapse
|
40
|
Westers TM, Houtenbos I, van de Loosdrecht AA, Ossenkoppele GJ. Principles of dendritic cell-based immunotherapy in myeloid leukemia. Immunobiology 2006; 211:663-76. [PMID: 16920505 DOI: 10.1016/j.imbio.2006.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Persistent presence of minimal residual disease in myeloid leukemia carries the risk of a relapse of the disease. In the setting of allogeneic transplants, leukemic cells have been proven to be susceptible to the action of immunocompetent T cells. Thus, an immunotherapeutic approach might hold promise in the attempt to eradicate or control residual leukemia cells. Dendritic cells (DCs) are very potent stimulators of immune responses and these cells have been widely used to target other types of malignancies. This review discusses the function and the applicability of leukemia-derived DCs for active specific immunotherapy in myeloid leukemia including possible pitfalls, and describes options to optimize DC-based vaccines.
Collapse
Affiliation(s)
- Theresia M Westers
- Department of Hematology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Loré K, Seggewiss R, Guenaga FJ, Pittaluga S, Donahue RE, Krouse A, Metzger ME, Koup RA, Reilly C, Douek DC, Dunbar CE. In vitro culture during retroviral transduction improves thymic repopulation and output after total body irradiation and autologous peripheral blood progenitor cell transplantation in rhesus macaques. Stem Cells 2006; 24:1539-48. [PMID: 16497945 PMCID: PMC2362389 DOI: 10.1634/stemcells.2005-0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunodeficiency after peripheral blood progenitor cell (PBPC) transplantation may be influenced by graft composition, underlying disease, and/or pre-treatment. These factors are difficult to study independently in humans. Ex vivo culture and genetic manipulation of PBPC grafts may also affect immune reconstitution, with relevance to gene therapy applications. We directly compared the effects of three clinically relevant autologous graft compositions on immune reconstitution after myeloblative total body irradiation in rhesus macaques, the first time these studies have been performed in a large animal model with direct clinical relevance. Animals received CD34(+) cell dose-matched grafts of either peripheral blood mononuclear cells, purified CD34(+) PBPCs, or purified CD34(+) PBPCs expanded in vitro and retrovirally transduced. We evaluated the reconstitution of T, B, natural killer, dendritic cells, and monocytes in blood and lymph nodes for up to 1 year post-transplantation. Animals receiving selected-transduced CD34(+) cells had the fastest recovery of T-cell numbers, along with the highest T-cell-receptor gene rearrangement excision circles levels, the fewest proliferating Ki-67(+) T-cells in the blood, and the best-preserved thymic architecture. Selected-transduced CD34(+) cells may therefore repopulate the thymus more efficiently and promote a higher output of naïve T-cells. These results have implications for the design of gene therapy trials, as well as for the use of expanded PBPCs for improved T-cell immune reconstitution after transplantation.
Collapse
|
42
|
Kim H, Sohn HJ, Kim SE, Kang HJ, Park S, Kim S, Kim WK, Lee JS, Suh C. Lymphocyte recovery as a positive predictor of prolonged survival after autologous peripheral blood stem cell transplantation in T-cell non-Hodgkin's lymphoma. Bone Marrow Transplant 2005; 34:43-9. [PMID: 15107814 DOI: 10.1038/sj.bmt.1704530] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We performed a retrospective study on recovery and survival of patients with T-cell NHL after autologous peripheral blood stem cell transplantation (APBSCT). Of a total of 39 patients with high-risk T-cell NHL, 33 were analyzed. Six patients who experienced early treatment mortality without full lymphocyte recovery were excluded. We chose absolute lymphocyte count (ALC) recovery as 1000 cells/microl as a cutoff value. ALC recovery day was defined as the first of 3 consecutive days with ALC above 1000 cells/microl. Univariate analysis revealed that age younger than 45 years, good international prognostic index, chemosensitive disease prior to APBSCT, and early ALC recovery (1000 cells/microl within 25 days of APBSCT) were predictors of prolonged survival. Multivariate analyses confirmed that chemosensitive disease prior to APBSCT and early ALC recovery were strongly associated with better overall survival (OS) (P=0.005 and 0.011, respectively) and progression-free survival (PFS) (P<0.001 and P=0.013, respectively). Our finding, that ALC recovery > or =1000 cells/microl is an independent predictor of OS and PFS in T-cell NHL after APBSCT, suggests that earlier immune recovery may contribute to longer survival.
Collapse
Affiliation(s)
- H Kim
- Division of Hematology-Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Fagnoni FF, Lozza L, Zibera C, Zambelli A, Gibelli N, Oliviero B, Ponchio L, Fregoni V, Pavesi L, Perotti C, Da Prada G, Robustelli della Cuna G. Cytotoxic chemotherapy preceding apheresis of peripheral blood progenitor cells can affect the early reconstitution phase of naive T cells after autologous transplantation. Bone Marrow Transplant 2003; 31:31-8. [PMID: 12621504 DOI: 10.1038/sj.bmt.1703782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient T cell immunodeficiency is a common complication following hematopoietic stem cell transplantation. In breast cancer patients transplanted with autologous peripheral blood progenitor cells (PBPC) harvested after cytotoxic treatment with either cyclophosphamide or epirubicin plus paclitaxel, we evaluated T cells infused in grafts and in peripheral blood during the early reconstitution phase. We found that PBPC grafts harvested after treatment with epirubicin plus paclitaxel contained substantially larger numbers of T cells with less altered composition than after cyclophosphamide. Three months after high-dose cytotoxic chemotherapy, the numbers and the kinetics of circulating naive T cells, but not of memory and CD28- T cells, correlated positively with the number of naive T cells infused PBPC grafts. Finally, retrospective analysis of two cohorts of patients transplanted in different clinical settings with PBPC grafts harvested following cyclophosphamide or epirubicin plus paclitaxel showed apparently different susceptibilities to develop endogenous varicella zoster virus reactivation in the first year after high-dose cytotoxic chemotherapy. On the whole, these data indicate that number and composition of T cells in PBPC grafts vary according to the former cytotoxic therapy, and suggest that autologous transfer of T cells may accelerate the early T cell reconstitution phase and possibly ameliorate immune competence in patients rendered lymphopenic by high-dose chemotherapy.
Collapse
Affiliation(s)
- F F Fagnoni
- Medical Oncology Division, Scientific Institute of Pavia, Fondazione Salvatore Maugeri-Clinica del Lavoro e della Riabilitazione, IRCCS, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|