1
|
de Souza Heidel BL, Benson J, O'Keane S, Dodge AG, Wackett LP, Aksan A. A Model for Mechanical Stress Limited Bacterial Growth and Resporulation in Confinement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41800-41809. [PMID: 39088721 DOI: 10.1021/acsami.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
In this study, we propose a self-limiting growth model forBacillus subtilisspores confined within porous polyacrylamide (PA) hydrogels. We observed thatB. subtilisspores germinate into vegetative cells within the hydrogel matrix, forming spherical colonies. These colonies expand until the mechanical stress they exert on their environment surpasses the yield stress of the hydrogel, leading to formation of a nonpermeable layer that halts nutrient diffusion and forces the bacteria to resporulate. These novel observations suggest a model to explain why bacterial growth in confined environments and material interfaces may be limited, providing insight for natural phenomena and biotechnological applications involving bacterial encapsulation.
Collapse
Affiliation(s)
- Beatriz L de Souza Heidel
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joey Benson
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sophie O'Keane
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony G Dodge
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Alptekin Aksan
- Bioencapsulation Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
2
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Nerber HN, Sorg JA. The small acid-soluble proteins of spore-forming organisms: similarities and differences in function. Anaerobe 2024; 87:102844. [PMID: 38582142 DOI: 10.1016/j.anaerobe.2024.102844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The small acid-soluble proteins are found in all endospore-forming organisms and are a major component of spores. Through their DNA binding capabilities, the SASPs shield the DNA from outside insults (e.g., UV and genotoxic chemicals). The absence of the major SASPs results in spores with reduced viability when exposed to UV light and, in at least one case, the inability to complete sporulation. While the SASPs have been characterized for decades, some evidence suggests that using newer technologies to revisit the roles of the SASPs could reveal novel functions in spore regulation.
Collapse
Affiliation(s)
- Hailee N Nerber
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Joseph A Sorg
- Department of Biology, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
4
|
Chen H, Wang X, Li C, Xu X, Wang G. Characterization of individual spores of two biological insecticides, Bacillus thuringiensis and Lysinibacillus sphaericus, in response to glutaraldehyde using single-cell optical approaches. Arch Microbiol 2024; 206:227. [PMID: 38642141 DOI: 10.1007/s00203-024-03941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.
Collapse
Affiliation(s)
- Huanjun Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaochun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Cuimei Li
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China
| | - Xiaoling Xu
- Agriculture and Food Engineering College, Baise University, Baise, Guangxi, 533000, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi, 530007, China.
| |
Collapse
|
5
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
6
|
Madhavan K, Rukayadi Y, Abdul-Mutalib NA. Controlling vegetative cells and spores growth of Bacillus spp. using ethanolic Ketapang ( Terminalia catappa L.) leaf extract. Heliyon 2023; 9:e18749. [PMID: 37600365 PMCID: PMC10432961 DOI: 10.1016/j.heliyon.2023.e18749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Terminalia catappa L. is a large, spreading type of tree which usually grows in tropical environment, especially at coastal area with sandy stones. The current study evaluated anti-Bacillus potential of the ethanolic ketapang (Terminalia catappa L.) leaf extract (EKLE) as antibacterial and sporicidal agent against vegetative cells and spores of Bacillus spp. The antibacterial activity of EKLE against Bacillus spp. (B. cereus ATCC33019, B. pumilus ATCC14884, B. subtilis ATCC6633 and B. megaterium ATCC14581) vegetative cells were determined by performing well diffusion assay (WDA), minimum inhibition concentration (MIC), minimum bacterial concentration (MBC) and time-kill curve analyses. The sporicidal activity was tested at different concentrations of EKLE. Then, the extract's stability in terms of antibacterial and sporicidal activities upon exposure to different temperatures and pHs were carried out. Results demonstrated inhibition zones of EKLE against Bacillus spp. was in the range of 9.25 ± 0.75 mm - 11.67 ± 0.47 mm. All vegetative cells of Bacillus spp. were inhibited with MIC values at 0.63-1.25 mg/mL and can be completely killed with MBC values of 0.63 - >5.00 mg/mL. Time-kill analysis showed all the Bacillus spp. tested can be completely killed at concentrations of 2.50-5.00 mg/mL from 1 to 4 h. EKLE concentration of 1% (w/v) completely killed all Bacillus spp. spores at different exposure time. The antibacterial and sporicidal activities of EKLE were not affected by exposure to different temperatures (4, 30, 50, 80 and 121 °C) and pHs (3, 7 and 10), revealing the stability of the extract against different conditions. In conclusion, Terminalia catappa L. leaf exhibits antibacterial and sporicidal activities against Bacillus spp., therefore, the extract can be developed as anti-Bacillus agent, paving the way for its utilization in food industry as a natural food preservative.
Collapse
Affiliation(s)
- Kierrthanah Madhavan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| | - Noor Azira Abdul-Mutalib
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia
| |
Collapse
|
7
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Caldwell M, Hughes M, Wei F, Ngo C, Pascua R, Pugazhendhi AS, Coathup MJ. Promising applications of D-amino acids in periprosthetic joint infection. Bone Res 2023; 11:14. [PMID: 36894568 PMCID: PMC9998894 DOI: 10.1038/s41413-023-00254-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.
Collapse
Affiliation(s)
- Matthew Caldwell
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Megan Hughes
- School of Biosciences, Cardiff University, CF10 3AT, Wales, UK
| | - Fei Wei
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Christopher Ngo
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Raven Pascua
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Melanie J Coathup
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
9
|
Patlán-Vázquez AG, Ayala-García VM, Vallin C, Cortés J, Vásquez-Morales SG, Robleto EA, Nudler E, Pedraza-Reyes M. Dynamics of Mismatch and Alternative Excision-Dependent Repair in Replicating Bacillus subtilis DNA Examined Under Conditions of Neutral Selection. Front Microbiol 2022; 13:866089. [PMID: 35847079 PMCID: PMC9280176 DOI: 10.3389/fmicb.2022.866089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous DNA deamination is a potential source of transition mutations. In Bacillus subtilis, EndoV, a component of the alternative excision repair pathway (AER), counteracts the mutagenicity of base deamination-induced mispairs. Here, we report that the mismatch repair (MMR) system, MutSL, prevents the harmful effects of HNO2, a deaminating agent of Cytosine (C), Adenine (A), and Guanine (G). Using Maximum Depth Sequencing (MDS), which measures mutagenesis under conditions of neutral selection, in B. subtilis strains proficient or deficient in MutSL and/or EndoV, revealed asymmetric and heterogeneous patterns of mutations in both DNA template strands. While the lagging template strand showed a higher frequency of C → T substitutions; G → A mutations, occurred more frequently in the leading template strand in different genetic backgrounds. In summary, our results unveiled a role for MutSL in preventing the deleterious effects of base deamination and uncovered differential patterns of base deamination processing by the AER and MMR systems that are influenced by the sequence context and the replicating DNA strand.
Collapse
Affiliation(s)
- Adriana G. Patlán-Vázquez
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | | | - Carmen Vallin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jonathan Cortés
- Biological Research Center, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Suria G. Vásquez-Morales
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Evgeny Nudler
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
10
|
Small Prokaryotic DNA-Binding Proteins Protect Genome Integrity throughout the Life Cycle. Int J Mol Sci 2022; 23:ijms23074008. [PMID: 35409369 PMCID: PMC8999374 DOI: 10.3390/ijms23074008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.
Collapse
|
11
|
Didouh N, Bendimered N, Postellec F, Deperieux E, Leguerinel I, Boudjemâa BM. Effect of Hydrophobic or Hydrophilic Characteristics of B. cereus Spores on Their Resistance to Detergents. J Food Prot 2022; 85:706-711. [PMID: 35113985 DOI: 10.4315/jfp-21-286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/28/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacillus cereus spores have the ability to adhere to solid surfaces, including stainless steel, a material widely used in food industries. Adhesion of spores allows recontamination during food processing, and cleaning and disinfection are largely used by industries to control them. Hence, this study aims to assess the detachment capacity (or removing activity) of detergents based on sodium hydroxide, nitric acid, phosphoric acid, and chlorine against two adhered B. cereus spores (one hydrophobic and other hydrophilic) to stainless steel surfaces. Microorganism adhesion on the surfaces reached 5.5 log CFU/cm2 for the two strains studied. Two protocols composed of combinations of chemical compounds, concentration, temperature, and contact time were tested. The inactivation kinetics shapes were convex and modeled by the Weibull model. The effects of temperature and biocide concentration were quantified using a Bigelow-like model. The temperature applied during the cleaning-in-place treatment is an important factor acting on the speed of inactivation or detachment of B. cereus spores. However, this efficiency depends on the hydrophobic characteristics of B. cereus spores. The concentration of detergent and acid also affects the inactivation rate, whereas the characteristic of hydrophobicity does not intervene for the chlorine alkaline treatments. HIGHLIGHTS
Collapse
Affiliation(s)
- N Didouh
- Université Djilali-Bounaama, 44000 Khemis-Miliana, Algeria.,Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - N Bendimered
- Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - F Postellec
- Adria Developpement, UMT14.01 SPORE-RISK, Zone Artisanale de Creach Gwen, 29196 Quimper, France
| | - E Deperieux
- Institute of Life, Earth and Environment, Université de Namur, 61 rue de Bruxelles, 5000 Namur, Belgium
| | - I Leguerinel
- Université de Brest, EA3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT14.01 SPORE-RISK, IBSAM, 6 rue de l'Université, 29000 Quimper, France
| | - B Moussa Boudjemâa
- Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| |
Collapse
|
12
|
Sporicidal mechanism of the combination of ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride as a disinfectant against the Bacillus subtilis spores. Braz J Microbiol 2022; 53:547-556. [PMID: 35143017 PMCID: PMC9151947 DOI: 10.1007/s42770-022-00695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that the combination disinfectant, Ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride (ODB), can effectively kill a variety of microorganisms, such as Escherichia coli, Staphylococcus aureus, and Candida albicans. To observe the sporicidal ability and mechanism of ODB for spores, Bacillus subtilis spores were used as the research object in this experiment. TEM images revealed that ODB destroyed the integrity of the coat, cortex, and inner membrane of the spores after 0.5-h treatment, and the nuclear material was also broken and exuded after 4-h treatment. The broken structure led to the release of dipicolinic acid (DPA) in large amount. The results show that B. subtilis spores can be effetely killed by ODB through destroying the structure of the spores.
Collapse
|
13
|
An Evaluation of Sporicidal Treatments against Blown Pack Spoilage Associated Clostridium estertheticum and Clostridium gasigenes Spores. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blown pack spoilage (BPS) occurs when meat is cross-contaminated with Clostridium estertheticum or Clostridium gasigenes spores, often from the meat processing environment. This study tested the efficacy of four sporicidal disinfectants commonly used in beef processing plants against C. estertheticum and C. gasigenes spores in a suspension test. D-values were obtained under model ‘clean’ (sterile distilled water, SDW) and ‘dirty’ (3 g/L bovine serum albumin, BSA) conditions. Mean concentration (log10 CFU/mL) were calculated from direct counts. The levels of dipicolinic acid (DPA), indicating damage to the core of these spores, was also monitored using a terbium (Tb)-DPA assay for treatment 1 (peracetic acid as the active ingredient) in SDW and BSA. In SDW sporicidal treatment 3 (containing peroxymonosulphate) was the most effective against C. estertheticum spores but under ‘dirty’ (BSA) conditions sporicidal treatments 1 and 2 were more effective. A similar pattern was obtained with C. gasigenes with treatment 3 being the most effective in SDW but treatment 2 (sodium hypochlorite as the active ingredient) being more effective in BSA. The lower DPA concentrations obtained in SDW versus BSA demonstrated the protective effect of organic matter. It was concluded that meat processors should use a 5% formulation containing sodium hypochlorite, sodium hydroxide and alkylamine oxide to eliminate BPS Clostridial spores in the abattoir.
Collapse
|
14
|
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures. Int J Mol Sci 2022; 23:ijms23010550. [PMID: 35008975 PMCID: PMC8745062 DOI: 10.3390/ijms23010550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.
Collapse
|
15
|
Kanaan J, Murray J, Higgins R, Nana M, DeMarco AM, Korza G, Setlow P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J Appl Microbiol 2021; 132:2157-2166. [PMID: 34724311 DOI: 10.1111/jam.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.
Collapse
Affiliation(s)
- Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jillian Murray
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ryan Higgins
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Mishil Nana
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Angela M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
16
|
Nerber HN, Sorg JA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog 2021; 17:e1009516. [PMID: 34496003 PMCID: PMC8452069 DOI: 10.1371/journal.ppat.1009516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/20/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a nosocomial pathogen which causes severe diarrhea and colonic inflammation. C. difficile causes disease in susceptible patients when endospores germinate into the toxin-producing vegetative form. The action of these toxins results in diarrhea and the spread of spores into the hospital and healthcare environments. Thus, the destruction of spores is imperative to prevent disease transmission between patients. However, spores are resilient and survive extreme temperatures, chemical exposure, and UV treatment. This makes their elimination from the environment difficult and perpetuates their spread between patients. In the model spore-forming organism, Bacillus subtilis, the small acid-soluble proteins (SASPs) contribute to these resistances. The SASPs are a family of small proteins found in all endospore-forming organisms, C. difficile included. Although these proteins have high sequence similarity between organisms, the role(s) of the proteins differ. Here, we investigated the role of the main α/β SASPs, SspA and SspB, and two annotated putative SASPs, CDR20291_1130 and CDR20291_3080, in protecting C. difficile spores from environmental insults. We found that SspA is necessary for conferring spore UV resistance, SspB minorly contributes, and the annotated putative SASPs do not contribute to UV resistance. In addition, the SASPs minorly contribute to the resistance of nitrous acid. Surprisingly, the combined deletion of sspA and sspB prevented spore formation. Overall, our data indicate that UV resistance of C. difficile spores is dependent on SspA and that SspA and SspB regulate/serve as a checkpoint for spore formation, a previously unreported function of SASPs.
Collapse
Affiliation(s)
- Hailee N. Nerber
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Long-Term Biocide Efficacy and Its Effect on a Souring Microbial Community. Appl Environ Microbiol 2021; 87:e0084221. [PMID: 34160245 PMCID: PMC8357289 DOI: 10.1128/aem.00842-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reservoir souring, which is the production of H2S mainly by sulfate-reducing microorganisms (SRM) in oil reservoirs, has been a long-standing issue for the oil industry. While biocides have been frequently applied to control biogenic souring, the effects of biocide treatment are usually temporary, and biocides eventually fail. The reasons for biocide failure and the long-term response of the microbial community remain poorly understood. In this study, one-time biocide treatments with glutaraldehyde (GA) and an aldehyde-releasing biocide (ARB) at low (100 ppm) and high (750 ppm) doses were individually applied to a complex SRM community, followed by 1 year of monitoring of the chemical responses and the microbial community succession. The chemical results showed that souring control failed after 7 days at a dose of 100 ppm regardless of the biocide type and lasting souring control for the entire 1-year period was achieved only with ARB at 750 ppm. Microbial community analyses suggested that the high-dose biocide treatments resulted in 1 order of magnitude lower average total microbial abundance and average SRM abundance, compared to the low-dose treatments. The recurrence of souring was associated with reduction of alpha diversity and with long-term microbial community structure changes; therefore, monitoring changes in microbial community metrics may provide early warnings of the failure of a biocide-based souring control program in the field. Furthermore, spore-forming sulfate reducers (Desulfotomaculum and Desulfurispora) were enriched and became dominant in both GA-treated groups, which could cause challenges for the design of long-lasting remedial souring control strategies. IMPORTANCE Reservoir souring is a problem for the oil and gas industry, because H2S corrodes the steel infrastructure, downgrades oil quality, and poses substantial risks to field personnel and the environment. Biocides have been widely applied to remedy souring, but the long-term performance of biocide treatments is hard to predict or to optimize due to limited understanding of the microbial ecology affected by biocide treatment. This study investigates the long-term biocide performance and associated changes in the abundance, diversity, and structure of the souring microbial community, thus advancing the knowledge toward a deeper understanding of the microbial ecology of biocide-treated systems and contributing to the improvement of current biocide-based souring control practices. The study showcases the potential application of incorporating microbial community analyses to forecast souring, and it highlights the long-term consequences of biocide treatment in the microbial communities, with relevance to both operators and regulators.
Collapse
|
18
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
19
|
McSharry S, Koolman L, Whyte P, Bolton D. Investigation of the Effectiveness of Disinfectants Used in Meat-Processing Facilities to Control Clostridium sporogenes and Clostridioides difficile Spores. Foods 2021; 10:foods10061436. [PMID: 34205779 PMCID: PMC8234884 DOI: 10.3390/foods10061436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
Spore-forming bacteria are a major concern for the food industry as they cause both spoilage and food safety issues. Moreover, as they are more resistant than vegetative cells, their removal from the food processing environment may be difficult to achieve. This study investigated the efficacy of the ten most commonly used disinfectant agents (assigned 1–10), used at the recommended concentrations in the meat industry, for their ability to eliminate Clostridium sporogenes and Clostridioides difficile spores. Test-tube based suspension assays suggested that disinfectants 2 (10% v/v preparation of a mixture of hydrogen peroxide (10–30%), acetic acid (1–10%) and peracetic acid (1–10%)), 7 (4% w/v preparation of a mixture of peroxymonosulphate (30–50%), sulphamic acid (1–10%) and troclosene sodium (1–10%)) and 10 (2% v/v preparation of a mixture of glutaraldehyde (10–30%), benzalkonium chloride (1–10%)) were the most effective formulations. D-values for these ranged from 2.1 to 8.4 min at 20 °C for the target spores. Based on these findings, it is recommended that these disinfectants are used to control Clostridium spores in the meat plant environment.
Collapse
Affiliation(s)
- Siobhán McSharry
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (S.M.); (L.K.)
- Correspondence: ; Tel.: +353-0-1-805-9539
| |
Collapse
|
20
|
Thakur SS, Bai A, Chan D, Lu J, Lu M, Su A, Perera J, Swift S, Svirskis D, Rupenthal ID. Ex vivo evaluation of the influence of pH on the ophthalmic safety, antibacterial efficacy and storage stability of povidone-iodine. Clin Exp Optom 2021; 104:162-166. [PMID: 32495387 DOI: 10.1111/cxo.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CLINICAL RELEVANCE The monitoring and controlling of pH is important when preparing solutions for ophthalmic administration. In the case of povidone-iodine, dilution in an appropriate buffer is needed to improve its ophthalmic safety. BACKGROUND Povidone-iodine is a broad-spectrum antiseptic agent that is commonly used in ophthalmic applications due to its cost-effectiveness and accessibility. However, native povidone-iodine has a pH of about 4.0 and is known to irritate the ocular surface. This study assessed whether adjusting povidone-iodine formulation pH would influence its ex vivo ophthalmic safety, alongside its impact on antibacterial efficacy and storage stability. METHODS One per cent w/v povidone-iodine was diluted in normal saline, or 0.1-mol/l citrate or phosphate buffers to yield solutions with a pH ranging from 4.0 to 7.0. Ocular irritancy was evaluated using the bovine cornea opacity and permeability assay. Antibacterial efficacy was assessed by evaluating povidone-iodine minimum inhibitory concentration and minimum bactericidal concentration at varied pH. Storage stability of the preparations was determined over 30-days at room temperature (20-25°C). RESULTS Combining povidone-iodine with phosphate buffer notably decreased ocular irritancy of the antiseptic. Surprisingly, combining povidone-iodine with citrate buffer potentiated irritant effects of the preparation. Antibacterial efficacy of povidone-iodine was reduced when formulation pH was increased from 4.0 to 7.0, although its general activity was retained. Finally, povidone-iodine remained stable in both normal saline and phosphate buffer over 30-days. CONCLUSION Ophthalmic application of povidone-iodine can be optimised by adjusting the pH of the formulation to 7.0 using phosphate buffer, reducing irritancy while maintaining adequate antibacterial efficacy and storage stability.
Collapse
Affiliation(s)
- Sachin S Thakur
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Arian Bai
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Doris Chan
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Jonathan Lu
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Marie Lu
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Aimee Su
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Janesha Perera
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Player JK, Despain JT, Robison RA. Correlations between available primary amines, endospore coat thickness, and alkaline glutaraldehyde sensitivity for spores of select Bacillus species. Microbiologyopen 2020; 9:e1117. [PMID: 32996289 PMCID: PMC7658453 DOI: 10.1002/mbo3.1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Alkaline glutaraldehyde (GTA) is a high‐level chemical disinfectant/sterilant and has a broad microbial kill spectrum. The precise antimicrobial mechanism of GTA remains debated. GTA kill times are extremely variable across different organisms, illustrating the need for a better understanding of GTA kill mechanisms related to different organisms. A commonly proposed GTA kill mechanism suggests that it works by cross‐linking accessible primary amines on important surface proteins. If true, the antimicrobial activity of GTA may directly correlate to the number of these available functional groups. Bacillus species form highly resistant bacterial endospores that are commonly used as one of the most stringent test organisms for disinfection and sterilization. In this study, we compared the log reduction times of alkaline GTA on spores from 4 Bacillus species to fluorescent profiles generated using Alexa Fluor™ amine‐reactive dyes. GTA kill times were also compared to mean spore coat thicknesses as measured with scanning electron microscopy (SEM). Fluorescence values generated from bound amine‐reactive dye showed a strong, positive correlation to GTA susceptibility, as measured by GTA 6‐log10 reduction times. Spore coat thickness also showed a strong, positive correlation to reduction time values. Results support the hypothesis that GTA kill times are directly related to the number of available primary amines on bacterial endospores. Results also indicated that the killing efficacy of GTA may be influenced by its ability to penetrate the spore coat to reach additional targets, suggesting that damaging important biomolecules beyond surface proteins may be involved in GTA killing mechanisms.
Collapse
Affiliation(s)
- Jacob Kent Player
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Justen Thalmus Despain
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
22
|
Camilleri E, Korza G, Huesca‐Espita L, Setlow B, Stamatis D, Setlow P. Mechanisms of killing of
Bacillus thuringiensis
Al Hakam spores in a blast environment with and without iodic acid. J Appl Microbiol 2020; 128:1378-1389. [DOI: 10.1111/jam.14573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- E. Camilleri
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - L.d.C. Huesca‐Espita
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- Departamento de Ingenieria Quimica Alimentos y Ambiental Universidad de las Americas Puebla Mexico
| | - B. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - D. Stamatis
- Indian Head EODTD Naval Surface Warfare Center Indian Head MD USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
23
|
Nakpan W, Yermakov M, Indugula R, Reponen T, Grinshpun SA. Inactivation of bacterial and fungal spores by UV irradiation and gaseous iodine treatment applied to air handling filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:59-65. [PMID: 30927728 DOI: 10.1016/j.scitotenv.2019.03.310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
Exposure to viable bacterial and fungal spores re-aerosolized from air handling filters may create a major health risk. Assessing and controlling this exposure have been of interest to the bio-defense and indoor air quality communities. Methods are being developed for inactivating stress-resistant viable microorganisms collected on ventilation filters. Here we investigated the inactivation of spores of Bacillus thuringiensis var. kurstaki (Btk), a recognized simulant for B. antracis, and Aspergillus fumigatus, a common opportunistic pathogen used as an indicator for indoor air quality. The viability change was measured on filters treated with ultraviolet (UV) irradiation and gaseous iodine. The spores were collected on high-efficiency particulate air (HEPA) and non-HEPA filters, both flattened for testing purposes to represent "surface" filters. A mixed cellulose ester (MCE) membrane filter was also tested as a reference. Additionally, a commercial HEPA unit with a deep-bed (non-flattened) filter was tested. Combined treatments of Btk spores with UV and iodine on MCE filter produced a synergistic inactivation effect. No similar synergy was observed for A. fumigatus. For spores collected on an MCE filter, the inactivation effect was about an order of magnitude greater for Btk compared to A. fumigatus. The filter type was found to be an important factor affecting the inactivation of Btk spores while it was not as influential for A. fumigatus. Overall, the combined effect of UV irradiation and gaseous iodine on viable bacterial and fungal spores collected on flat filters was found to be potent. The benefit of either simultaneous or sequential treatment was much lower for Btk spores embedded inside the deep-bed (non-flattened) HEPA filter, but for A. fumigatus the inactivation on flattened and non-flattened HEPA filters was comparable. For both species, applying UV first and gaseous iodine second produced significantly higher inactivation than when applying them simultaneously or in an opposite sequence.
Collapse
Affiliation(s)
- Worrawit Nakpan
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael Yermakov
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Reshmi Indugula
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tiina Reponen
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sergey A Grinshpun
- Center for Health-Related Aerosol Studies, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
24
|
Santhakumar K, Viswanath V. Novel Methods for Efficacy Testing of Disinfectants – Part II. TENSIDE SURFACT DET 2019. [DOI: 10.3139/113.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe control of infections and maintenance of hygienic conditions are of central importance and the insights gained through several investigations have practical significance today. In contrast, the maintenance of environment and surface disinfection is still controversial and demands novel disinfectants to meet the required criteria. The healthcare centers are fraught with various microorganisms and serve as a point source for multidrug resistance in patients which is more critical to treat. Therefore, it has begun a comprehensive plan in hospitals to focus on disinfection and maintenance of hygiene which is not always appreciated. The urgency to determine the effectiveness of disinfectants is often questioned. The review article shows how the existing problems could be solved by a systematic approach and reports on effective evaluation studies that meet the requirements.
Collapse
Affiliation(s)
- Kannappan Santhakumar
- 1School of Advanced Sciences, VIT University, Tamil Nadu, India
- 2Carbon dioxide Research and Green Technologies Center, VIT University, Tamil Nadu, India
| | | |
Collapse
|
25
|
Huang Y, Ye XP, Doona CJ, Feeherry FE, Radosevich M, Wang S. An investigation of inactivation mechanisms of Bacillus amyloliquefaciens spores in non-thermal plasma of ambient air. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:368-378. [PMID: 29888388 DOI: 10.1002/jsfa.9198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND To utilize the potential of non-thermal plasma technologies for food safety control and sanitation, the inactivation mechanisms of Bacillus amyloliquefaciens spores by non-thermal plasma of ambient air (NTP-AA) were investigated using scanning electron microscopy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy with chemometric analysis and proton nuclear magnetic resonance spectroscopy, aiming to probe both the morphological and biochemical changes occurring in spores during the kinetic inactivation process. RESULTS Kinetic analysis indicates that there is no intrinsic D-value (i.e. time required to inactivate 90% of the spores) in spore inactivation by NTP-AA because we observed non-linear (biphasic) inactivation kinetics and, in addition, the inactivation rate depended on the initial spore concentration and how the spores were exposed to the reactive species in the NTP-AA. The presence of suitable amount of water in the NTP-AA field accelerates spore inactivation. CONCLUSION Progressive erosion of spore surface by NTP-AA with ensuing or concomitant biochemical damage, which includes the alteration of structural proteins, internal lipids and the loss of dipicolinic acid content from the spore core, represent the main mechanisms of inactivation, and there is evidence that reactive NTP-AA species could penetrate the cortex and reach the core of spores to cause damage. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaohua Huang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Xiaofei P Ye
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | | | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN, USA
| | - Siqun Wang
- Center for Renewable Carbon, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
26
|
Le Toquin E, Faure S, Orange N, Gas F. New Biocide Foam Containing Hydrogen Peroxide for the Decontamination of Vertical Surface Contaminated With Bacillus thuringiensis Spores. Front Microbiol 2018; 9:2295. [PMID: 30319592 PMCID: PMC6171482 DOI: 10.3389/fmicb.2018.02295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
Despite scientific advances, bacterial spores remain a major preoccupation in many different fields, such as the hospital, food, and CBRN-E Defense sector. Although many disinfectant technologies exist, there is a lack for the decontamination of difficult to access areas, outdoor sites, or large interior volumes. This study evaluates the decontamination efficiency of an aqueous foam containing hydrogen peroxide, with the efficiency of disinfectant in the liquid form on vertical surfaces contaminated by Bacillus thurengiensis spores. The decontamination efficiency impact of the surfactant and stabilizer agents in the foam and liquid forms was evaluated. No interferences were observed with these two chemical additives. Our results indicate that the decontamination kinetics of both foam and liquid forms are similar. In addition, while the foam form was as efficient as the liquid solution at 4°C, it was even more so at 30°C. The foam decontamination reaction follows the Arrhenius law, which enables the decontamination kinetic to be predicted with the temperature. Moreover, the foam process used via spraying or filling is more attractive due to the generation of lower quantity of liquid effluents. Our findings highlight the greater suitability of foam to decontaminate difficult to access and high volume facilities compared to liquid solutions.
Collapse
Affiliation(s)
- Esther Le Toquin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France.,Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Sylvain Faure
- Laboratoire des Procédés Supercritiques et Décontamination, Service d'études des technologies pour l'assainissement démantèlement et l'étanchéité, Univ. Montpellier, DEN, CEA, Bagnols-sur-Cèze, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Fabienne Gas
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France
| |
Collapse
|
27
|
|
28
|
Malleck T, Daufouy G, André S, Broussolle V, Planchon S. Temperature impacts the sporulation capacities and spore resistance of Moorella thermoacetica. Food Microbiol 2018. [DOI: 10.1016/j.fm.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin Microbiol Rev 2017; 30:827-860. [PMID: 28592405 DOI: 10.1128/cmr.00112-16] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future.
Collapse
|
30
|
Effect of Humidity on Sporicidal Activity of Iodine Vapor on Bacillus thuringiensis. Curr Microbiol 2017; 75:237-246. [PMID: 29098371 DOI: 10.1007/s00284-017-1371-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
The emergence of Bacillus anthracis as a potential bioterrorism and biological warfare agent points to the need for safe, effective, and economical sporicides for infection prevention and control. This work examined the efficacy of iodine vapor decontamination technologies to inactivate a surrogate for B. anthracis, Bacillus thuringiensis spores on glass materials. 106-107 colony-forming units of spores inoculated onto circular glass cover slips were treated with different concentrations of iodine vapor under various temperature and relative humidity. Only minimal spore killing activity was observed at low humidity. Higher humidity levels, as well as pre-hydration or post-hydration of the spores, increased the rate of inactivation as long as the contact between spores and iodine was maintained in a hydrated environment. Significant sporicidal activity of 3-log and 6-log spore reduction has been observed with 2.1 mg L-1 iodine vapor concentration at 90% relative humidity and 22 °C, with 1 and 24 h of exposure, respectively. The results showed that the relative humidity of the environment is of major importance in regulating the rate at which the spores are inactivated by iodine. The results of this study may provide insight into the parameters of effective decontamination procedures for Bacillus spores using gaseous iodine.
Collapse
|
31
|
Oxley JC, Smith JL, Porter MM, Yekel MJ, Canaria JA. Potential Biocides: Iodine-Producing Pyrotechnics. PROPELLANTS EXPLOSIVES PYROTECHNICS 2017. [DOI: 10.1002/prep.201700037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jimmie C. Oxley
- Department of Chemistry; University of Rhode Island; 140 Flagg Road Kingston, RI USA 02881
| | - James L. Smith
- Department of Chemistry; University of Rhode Island; 140 Flagg Road Kingston, RI USA 02881
| | - Matthew M. Porter
- Department of Chemistry; University of Rhode Island; 140 Flagg Road Kingston, RI USA 02881
| | - Maxwell J. Yekel
- Department of Chemistry; University of Rhode Island; 140 Flagg Road Kingston, RI USA 02881
| | - Jeffrey A. Canaria
- Department of Chemistry; University of Rhode Island; 140 Flagg Road Kingston, RI USA 02881
| |
Collapse
|
32
|
Piktel E, Pogoda K, Savage PB, Bucki R. The search for new sporicidal agents for medical use: where are we? Future Microbiol 2017; 12:735-737. [PMID: 28593804 DOI: 10.2217/fmb-2017-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological & Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, PL31342 Kraków, Poland
| | - Paul B Savage
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Robert Bucki
- Department of Microbiological & Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
33
|
Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation. J Bacteriol 2016; 198:3345-3354. [PMID: 27698084 DOI: 10.1128/jb.00625-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of β-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σG-dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rifr mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. IMPORTANCE In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation.
Collapse
|
34
|
Li Q, Korza G, Setlow P. Killing the spores of
Bacillus
species by molecular iodine. J Appl Microbiol 2016; 122:54-64. [DOI: 10.1111/jam.13310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/12/2016] [Accepted: 09/24/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Q. Li
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
35
|
Donadio G, Lanzilli M, Sirec T, Ricca E, Isticato R. Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact 2016; 15:153. [PMID: 27609116 PMCID: PMC5016992 DOI: 10.1186/s12934-016-0551-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bacterial spores have been proposed as vehicles to display heterologous proteins for the development of mucosal vaccines, biocatalysts, bioremediation and diagnostic tools. Two approaches have been developed to display proteins on the spore surface: a recombinant approach, based on the construction of gene fusions between DNA molecules coding for a spore surface protein (carrier) and for the heterologous protein to be displayed (passenger); and a non-recombinant approach based on spore adsorption, a spontaneous interaction between negatively charged, hydrophobic spores and purified proteins. The molecular details of spore adsorption have not been fully clarified yet. RESULTS We used the monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp. and Bacillus subtilis spores of a wild type and an isogenic mutant strain lacking the CotH protein to clarify the adsorption process. Mutant spores, characterized by a strongly altered coat, were more efficient than wild type spores in adsorbing mRFP but the interaction was less stable and mRFP could be in part released by raising the pH of the spore suspension. A collection of isogenic strains carrying GFP fused to proteins restricted in different compartments of the B. subtilis spore was used to localize adsorbed mRFP molecules. In wild type spores mRFP infiltrated through crust and outer coat, localized in the inner coat and was not surface exposed. In mutant spores mRFP was present in all surface layers, inner, outer coat and crust and was exposed on the spore surface. CONCLUSIONS Our results indicate that different spores can be selected for different applications. Wild type spores are preferable when a very tight protein-spore interaction is needed, for example to develop reusable biocatalysts or bioremediation systems for field applications. cotH mutant spores are instead preferable when the heterologous protein has to be displayed on the spore surface or has to be released, as could be the case in mucosal delivery systems for antigens and drugs, respectively.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | | | - Teja Sirec
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL UK
| | - Ezio Ricca
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, via Cinthia-MSA, 80126 Naples, Italy
| |
Collapse
|
36
|
Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy. Appl Environ Microbiol 2016; 82:2988-2999. [PMID: 26969703 DOI: 10.1128/aem.00431-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rod-like structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures.
Collapse
|
37
|
Moghaddam Arjmand M, Rezaee A, Nasseri S, Eshraghi S. Effects of ethanol on the electrochemical removal of Bacillus subtilis spores from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2015; 13:78. [PMID: 26587238 PMCID: PMC4652357 DOI: 10.1186/s40201-015-0229-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/13/2015] [Indexed: 05/27/2023]
Abstract
This study aimed to characterize the effects of ethanol on the monopolar electrochemical process to remove Bacillus subtilis spores from drinking water. In particular, spores' destruction was tested by applying 20-100 mA current for 15-60 min to B. subtilis spores (10(2)-10(4) CFU/mL density), with stainless steel electrodes. The experimental results showed electrochemical removal of spores in the presence of 0.4 M ethanol at 15, 45, and 60 min and 5 mA/cm(2) current density. However, the use of ethanol or the electrochemical process alone did not eliminate B. subtilis spores at these time points. Overall, this study suggests that adding ethanol to the electrochemical process successfully removes B. subtilis spores from drinking water.
Collapse
Affiliation(s)
- Masuma Moghaddam Arjmand
- />Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- />Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Simin Nasseri
- />Department of Environmental Health Engineering, School of Public Health, and Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Said Eshraghi
- />Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Meaney CA, Cartman ST, McClure PJ, Minton NP. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid. Int J Food Microbiol 2015; 216:25-30. [PMID: 26386202 DOI: 10.1016/j.ijfoodmicro.2015.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/16/2015] [Accepted: 08/30/2015] [Indexed: 11/28/2022]
Abstract
Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P<0.01), a phenotype that was partially restored to wild-type in complementation studies. In contrast to nitrous acid, the spores of the CBO1789 and CBO1790 mutants showed no change in their resistance to formaldehyde and hydrogen peroxide (P>0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide.
Collapse
Affiliation(s)
- Carolyn A Meaney
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen T Cartman
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Nigel P Minton
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
39
|
Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.03.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Bruscolini F, Paolucci D, Rosini V, Sabatini L, Andreozzi E, Pianetti A. Evaluation of ultraviolet irradiation efficacy in an automated system for the aseptic compounding using challenge test. Int J Qual Health Care 2015; 27:412-7. [DOI: 10.1093/intqhc/mzv051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 12/29/2022] Open
|
41
|
March JK, Pratt MD, Lowe CW, Cohen MN, Satterfield BA, Schaalje B, O'Neill KL, Robison RA. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants. Microbiologyopen 2015; 4:764-73. [PMID: 26185111 PMCID: PMC4618609 DOI: 10.1002/mbo3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 01/11/2023] Open
Abstract
This study investigated (1) the susceptibility of Bacillus anthracis (Ames strain), Bacillus subtilis (ATCC 19659), and Clostridium sporogenes (ATCC 3584) spores to commercially available peracetic acid (PAA)- and glutaraldehyde (GA)-based disinfectants, (2) the effects that heat-shocking spores after treatment with these disinfectants has on spore recovery, and (3) the timing of heat-shocking after disinfectant treatment that promotes the optimal recovery of spores deposited on carriers. Suspension tests were used to obtain inactivation kinetics for the disinfectants against three spore types. The effects of heat-shocking spores after disinfectant treatment were also determined. Generalized linear mixed models were used to estimate 6-log reduction times for each spore type, disinfectant, and heat treatment combination. Reduction times were compared statistically using the delta method. Carrier tests were performed according to AOAC Official Method 966.04 and a modified version that employed immediate heat-shocking after disinfectant treatment. Carrier test results were analyzed using Fisher's exact test. PAA-based disinfectants had significantly shorter 6-log reduction times than the GA-based disinfectant. Heat-shocking B. anthracis spores after PAA treatment resulted in significantly shorter 6-log reduction times. Conversely, heat-shocking B. subtilis spores after PAA treatment resulted in significantly longer 6-log reduction times. Significant interactions were also observed between spore type, disinfectant, and heat treatment combinations. Immediately heat-shocking spore carriers after disinfectant treatment produced greater spore recovery. Sporicidal activities of disinfectants were not consistent across spore species. The effects of heat-shocking spores after disinfectant treatment were dependent on both disinfectant and spore species. Caution must be used when extrapolating sporicidal data of disinfectants from one spore species to another. Heat-shocking provides a more accurate picture of spore survival for only some disinfectant/spore combinations. Collaborative studies should be conducted to further examine a revision of AOAC Official Method 966.04 relative to heat-shocking.
Collapse
Affiliation(s)
- Jordon K March
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Michael D Pratt
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Chinn-Woan Lowe
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Marissa N Cohen
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Benjamin A Satterfield
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Bruce Schaalje
- Department of Statistics, 230 TMCB, Brigham Young University, Provo, Utah, 84602
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, 4007-B LSB, Brigham Young University, Provo, Utah, 84602
| |
Collapse
|
42
|
Barra-Carrasco J, Paredes-Sabja D. Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol 2014; 9:475-86. [PMID: 24810347 DOI: 10.2217/fmb.14.2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic spore former and is an important nosocomial and community-acquired pathogenic bacterium. C. difficile infections (CDI) are a leading cause of infections worldwide with elevated rates of morbidity. Despite the fact that two major virulence factors, the enterotoxin TcdA and the cytotoxin TcdB, are essential in the development of CDI, C. difficile spores are the main vehicle of infection, and persistence and transmission of CDI and are thought to play an essential role in episodes of CDI recurrence and horizontal transmission. Recent research has unmasked several properties of C. difficile's unique strategy to form highly transmissible spores and to persist in the colonic environment. Therefore, the aim of this article is to summarize recent advances in the biological properties of C. difficile spores, which might be clinically relevant to improve the management of CDI in hospital environments.
Collapse
Affiliation(s)
- Jonathan Barra-Carrasco
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile
| | | |
Collapse
|
43
|
Leggett MJ, Schwarz JS, Burke PA, Mcdonnell G, Denyer SP, Maillard JY. Resistance to and killing by the sporicidal microbicide peracetic acid. J Antimicrob Chemother 2014; 70:773-9. [DOI: 10.1093/jac/dku445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Dresely I, Daugschies A, Lendner M. Establishment of a germ carrier assay to assess disinfectant efficacy against oocysts of coccidian parasites. Parasitol Res 2014; 114:273-81. [PMID: 25339515 DOI: 10.1007/s00436-014-4189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
Parasites are a common threat to human and animal health. One option to combat parasites that produce infective environmental stages is to inactivate them by chemical disinfection. Standardised laboratory assays that enable proper evaluation of products suspected to be efficient are highly desirable to allow prudent selection and use of such potentially hazardous agents. Here, we present a newly developed in vitro germ carrier assay to evaluate inactivation of oocysts of the model organism Cryptosporidium parvum by chemical disinfectants. Stainless steel discs were used as carrier to mimic surface contamination by C. parvum oocysts. The germ carriers were incubated with approved chemical disinfectant for the specified time (2 h) and rinsed thereafter to remove the disinfectant and recover the exposed oocysts. Recovered oocysts were transferred to HCT-8 monolayers, and 48 h later, genomic DNA was extracted and quantified by real-time PCR targeting the hsp70 gene to estimate parasite reproduction. A panel of commercially available and approved disinfectants were examined and data compared with those of suspension assays and historical data obtained from efficacy assays based on infection of chicken with oocysts of Eimeria tenella. Altogether, data achieved by these divergent assays allowed similar conclusions although the sensitivity of the in vitro assay was higher. Consequently, a threshold of 99.5% inactivation is proposed to evaluate disinfectants in vitro using C. parvum as model organism as compared to the E. tenella animal infection assay (95%).
Collapse
Affiliation(s)
- Ira Dresely
- Institute of Parasitology, An den Tierkliniken 35, 04103, Leipzig, Germany
| | | | | |
Collapse
|
45
|
Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. NANOSCALE 2014; 6:1879-89. [PMID: 24362636 DOI: 10.1039/c3nr04941h] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To understand the interaction mechanism between graphene oxide (GO) and typical phytopathogens, a particular investigation was conducted about the antimicrobial activity of GO against two bacterial pathogens (P. syringae and X. campestris pv. undulosa) and two fungal pathogens (F. graminearum and F. oxysporum). The results showed that GO had a powerful effect on the reproduction of all four pathogens (killed nearly 90% of the bacteria and repressed 80% macroconidia germination along with partial cell swelling and lysis at 500 μg mL(-1)). A mutual mechanism is proposed in this work that GO intertwinds the bacteria and fungal spores with a wide range of aggregated graphene oxide sheets, resulting in the local perturbation of their cell membrane and inducing the decrease of the bacterial membrane potential and the leakage of electrolytes of fungal spores. It is likely that GO interacts with the pathogens by mechanically wrapping and locally damaging the cell membrane and finally causing cell lysis, which may be one of the major toxicity actions of GO against phytopathogens. The antibacterial mode proposed in this study suggests that the GO may possess antibacterial activity against more multi-resistant bacterial and fungal phytopathogens, and provides useful information about the application of GO in resisting crop diseases.
Collapse
Affiliation(s)
- Juanni Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Grover N, Dinu CZ, Kane RS, Dordick JS. Enzyme-based formulations for decontamination: current state and perspectives. Appl Microbiol Biotechnol 2013; 97:3293-300. [DOI: 10.1007/s00253-013-4797-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/28/2022]
|
48
|
Grover N, Douaisi MP, Borkar IV, Lee L, Dinu CZ, Kane RS, Dordick JS. Perhydrolase-nanotube paint composites with sporicidal and antiviral activity. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4573-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
March JK, Cohen MN, Lindsey JM, Millar DA, Lowe CW, Bunnell AJ, O'Neill KL, Schaalje GB, Robison RA. The differential susceptibility of spores from virulent and attenuated Bacillus anthracis strains to aldehyde- and hypochlorite-based disinfectants. Microbiologyopen 2012; 1:407-14. [PMID: 23233190 PMCID: PMC3535386 DOI: 10.1002/mbo3.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022] Open
Abstract
This study compared the sensitivity of spores from virulent and attenuated Bacillus anthracis strains in suspension to inactivation by various chemical disinfectants. Spore suspensions from two virulent strains (A0256 and A0372) and two attenuated strains (Sterne and A0141) of B. anthracis were tested against two aldehyde-based disinfectants and one hypochlorite-based disinfectant. A novel statistical model was used to estimate 4-log10 reduction times for each disinfectant/strain combination. Reduction times were compared statistically using approximate Z and χ2 tests. Although there was no consistent correlation between virulence and increased sporicidal resistance across all three disinfectants, spores from the two virulent and two attenuated strains did display significantly different susceptibilities to different disinfectants. Significant disinfectant–strain interactions were observed for two of the three disinfectants evaluated. The comparative results suggest that the use of surrogate organisms to model the inactivation kinetics of virulent B. anthracis spores may be misleading. The accuracy of such extrapolations is disinfectant dependent and must be used with caution.
Collapse
Affiliation(s)
- Jordon K March
- Department of Microbiology and Molecular Biology, 775 WIDB, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oulé MK, Quinn K, Dickman M, Bernier AM, Rondeau S, De Moissac D, Boisvert A, Diop L. Akwaton, polyhexamethylene-guanidine hydrochloride-based sporicidal disinfectant: a novel tool to fight bacterial spores and nosocomial infections. J Med Microbiol 2012; 61:1421-1427. [PMID: 22871428 DOI: 10.1099/jmm.0.047514-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial spores are of continuing interest to the food and medical industries. In efforts to eliminate bacterial spore contamination, a number of sporicidal agents have been developed. Most of these compounds must be used carefully in very specific circumstances as they are toxic to humans. The sporicidal activity of Akwaton, a polyhexamethylene-guanidine hydrochloride (PHMGH)-based disinfectant, was tested against Bacillus subtilis spores. PHMGH is a colourless, odourless, non-corrosive and non-irritating antimicrobial biocide of the guanidine family. Spores suspended in distilled water and spores placed on solid surfaces (stainless steel and glass) were used to determine the log(10) reduction after exposure to varying concentrations of Akwaton. The minimum sporostatic concentration, the minimum sporicidal concentration and the time required for sporicidal activity corresponded to 0.06% (w/v), 0.08 % (w/v) and 8.5 min, respectively. Disinfectant concentrations of 0.24 % (w/v) and 0.44 % (w/v) killed all spores suspended in distilled water within 3 min and 90 s, respectively. The sporicidal activity against suspended spores was linearly dependent with respect to the concentration of PHMGH and contact time (y(3 min) = 40x-1.6 and y(90 s) = 20x-0.8 thus y(3 min) = 2y(90 s)). Spores placed on surfaces were more resistant to the effect of the disinfectant and the positive linear correlation between the sporicidal activity and concentration was not observed. The concentration required to kill all spores placed on a surface (stainless steel or glass) corresponded to 0.52 % (w/v) for 90 s of contact and 0.36 % (w/v) for 3 min. This study demonstrated that PHMGH is an effective sporicidal disinfectant with great potential for use in hospitals, laboratories, food industries and households.
Collapse
Affiliation(s)
- Mathias K Oulé
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Kelsi Quinn
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Michael Dickman
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Anne-Marie Bernier
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Sylvie Rondeau
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Danielle De Moissac
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Aurèle Boisvert
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| | - Lamine Diop
- Department of Biological Science, Faculty of Science, Université de Saint-Boniface, 200 de la Cathédrale Avenue, Winnipeg, MB R2H 0H7, Canada
| |
Collapse
|