1
|
Goodman RL, He W, Lopez JA, Bedenbaugh MN, McCosh RB, Bowdridge EC, Coolen LM, Lehman MN, Hileman SM. Evidence That the LH Surge in Ewes Involves Both Neurokinin B-Dependent and -Independent Actions of Kisspeptin. Endocrinology 2019; 160:2990-3000. [PMID: 31599937 PMCID: PMC6857763 DOI: 10.1210/en.2019-00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Correspondence: Robert L. Goodman, PhD, Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506. E-mail:
| | - Wen He
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
2
|
Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: Comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res 2019; 45:2318-2329. [PMID: 31608564 DOI: 10.1111/jog.14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 02/01/2023]
Abstract
Ovulation is an essential phenomenon for reproduction in mammalian females along with follicular growth. It is well established that gonadal function is controlled by the neuroendocrine system called the hypothalamus-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, localized in the hypothalamus, had been considered to be the head in governing the HPG axis for a long time until the discovery of kisspeptin. In females, induction of ovulation and folliculogenesis has been linked to a surge mode and pulse mode of GnRH releases, respectively. The mechanisms of how the two modes of GnRH are differently regulated had long remained elusive. The discovery of kisspeptin neurons, distributed in two hypothalamic nuclei, such as the arcuate nucleus in the caudal hypothalamus and preoptic area or the anteroventral periventricular nucleus in the rostral hypothalamic regions, and analyses of the detailed functions of kisspeptin neurons have led marked progress on the understanding of different mechanisms regulating GnRH surges (ovulation) and GnRH pulses (folliculogenesis). The present review will focus on the role of kisspeptin neurons as the GnRH surge generator, including the sexual differentiation of the surge generation system and factors that regulate the surge generator. Comparative aspects between mammalian species are especially focused on.
Collapse
Affiliation(s)
- Fuko Matsuda
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Fumie Magata
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jing Chen
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marimo Sato
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Ciechanowska M, Łapot M, Mateusiak K, Paruszewska E, Malewski T, Przekop F. Biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in hypothalamic–pituitary unit of anoestrous and cyclic ewes. Can J Physiol Pharmacol 2017; 95:178-184. [DOI: 10.1139/cjpp-2016-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed to explain how the molecular processes governing the biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in the hypothalamic–pituitary unit are reflected by luteinizing hormone (LH) secretion in sheep during anoestrous period and during luteal and follicular phases of the oestrous cycle. Using an enzyme-linked immunosorbent assay (ELISA), we analyzed the levels of GnRH and GnRHR in preoptic area (POA), anterior (AH) and ventromedial hypothalamus (VM), stalk–median eminence (SME), and GnRHR in the anterior pituitary gland (AP). Radioimmunoassay has also been used to define changes in plasma LH concentrations. The study provides evidence that the levels of GnRH in the whole hypothalamus of anoestrous ewes were lower than that in sheep during the follicular phase of the oestrous cycle (POA: p < 0.001, AH: p < 0.001, VM: p < 0.01, SME: p < 0.001) and not always than in luteal phase animals (POA: p < 0.05, SME: p < 0.05). It has also been demonstrated that the GnRHR amount in the hypothalamus–anterior pituitary unit, as well as LH level, in the blood in anoestrous ewes were significantly lower than those detected in animals of both cyclic groups. Our data suggest that decrease in LH secretion during the long photoperiod in sheep may be due to low translational activity of genes encoding both GnRH and GnRHR.
Collapse
Affiliation(s)
- M.O. Ciechanowska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - M. Łapot
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - K. Mateusiak
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - E. Paruszewska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - T. Malewski
- The Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland
| | - F. Przekop
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Neuroendocrinology, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
4
|
Xu Q, Song Y, Liu R, Chen Y, Zhang Y, Li Y, Zhao W, Chang G, Chen G. The dopamine β-hydroxylase gene in Chinese goose (Anas cygnoides): cloning, characterization, and expression during the reproductive cycle. BMC Genet 2016; 17:48. [PMID: 26912132 PMCID: PMC4766643 DOI: 10.1186/s12863-016-0355-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/16/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dopamine β-hydroxylase (DBH) is a critical enzyme in the biosynthesis of catecholamines. This enzyme's role in neuroendocrine regulation is well known, but there are some indications that it may also modulate reproduction and endocrine in mammals and birds. We selected goose (Anas cygnoides) as an ideal model species for investigating the role of DBH in avian reproduction. RESULTS Full-length cDNA encoding DBH was cloned from Zhedong goose using reverse transcription PCR and rapid amplification of cDNA ends. The cDNA consisted of a 126-base pair (bp) 5'-untranslated region (UTR), a 379-bp 3'-UTR, and an 1896-bp open reading frame encoding a polypeptide of 631 amino acids. The deduced amino acid sequence of gDBH shared high homology with an analogue from other birds and contained three conserved domains from a mono-oxygenase family including a DOMON domain and two Cu2_mono-oxygen domains. Real-time quantitative PCR analysis showed that gDBH mRNA was expressed in both reproductive and endocrine tissues of Zhedong goose, specifically in the hypothalamus, pituitary, ovary, and oviduct. More DBH mRNA of reproductive and endocrine tissues was detected at ovulation than at oviposition in Zhedong goose. Evidence of opposite trend of gDBH expression was found between the hypothalamus-pituitary and oviduct during the ovulation phase and the broody phase. In addition, we assessed DBH mRNA expression during ovulation in two breeds of geese that differ in egg production. The reproductive and endocrine tissues of Yangzhou geese with higher egg production had more gDBH expression than Zhedong geese. Finally, the five non-synonymous SNP(c.1739 C > T, c.1760G > T, c.1765A > G, c.1792 T > C and c.1861G > C) were identified in the coding region of DBH gene between Zhedong goose and Yangzhou goose. CONCLUSIONS We conclude that goose DBH mRNA show obvious periodically variation in reproductive and endocrine tissues during the reproductive cycle in geese.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yadong Song
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Ran Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yang Li
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China.
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, PR China. .,School of Animal science and Technology, Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
5
|
Rose JL, Hamlin AS, Scott CJ. Sex differences in the expression of estrogen receptor alpha within noradrenergic neurons in the sheep brain stem. Domest Anim Endocrinol 2014; 49:6-13. [PMID: 25010022 DOI: 10.1016/j.domaniend.2014.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
Abstract
In female sheep, high levels of estrogen exert a positive feedback action on gonadotropin releasing hormone (GnRH) secretion to stimulate a surge in luteinizing hormone (LH) secretion. Part of this action appears to be via brain stem noradrenergic neurons. By contrast, estrogen action in male sheep has a negative feedback action to inhibit GnRH and LH secretion. To investigate whether part of this sex difference is due to differences in estrogen action in the brain stem, we tested the hypothesis that the distribution of estrogen receptor α (ERα) within noradrenergic neurons in the brain stem differs between rams and ewes. To determine the distribution of ERα, we used double-label fluorescence immunohistochemistry for dopamine β-Hydroxylase, as a marker for noradrenergic and adrenergic cells, and ERα. In the ventrolateral medulla (A1 region), most ERα-immunoreactive (-ir) cells were located in the caudal part of the nucleus. Overall, there were more ERα-ir cells in rams than ewes, but the proportion of double-labeled cells was did not differ between sexes. Much greater numbers of ERα-ir cells were found in the nucleus of the solitary tract (A2 region), but <10% were double labeled and there were no sex differences. The majority of ERα-labeled cells in this nucleus was located in the more rostral areas. ERα-labeled cells were found in several rostral brain stem regions but none of these were double labeled and so were not quantified. Because there was no sex difference in the number of ERα-ir cells in the brain stem that were noradrenergic, the sex difference in the action of estrogen on gonadotropin secretion in sheep is unlikely to involve actions on brain stem noradrenergic cells.
Collapse
Affiliation(s)
- J L Rose
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, North South Wales, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Australia
| | - A S Hamlin
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, North South Wales, Australia
| | - C J Scott
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, North South Wales, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Australia.
| |
Collapse
|
6
|
Clarke IJ, Caraty A. Kisspeptin and seasonality of reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:411-30. [PMID: 23550017 DOI: 10.1007/978-1-4614-6199-9_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wild and domesticated species display seasonality in reproductive function, controlled predominantly by photoperiod. Seasonal alterations in breeding status are caused by changes in the secretion of gonadotropin-releasing hormone (GnRH) that are mediated by upstream neuronal afferents that regulate the GnRH cells. In particular, kisspeptin appears to play a major role in seasonality of reproduction, transducing the feedback effect of gonadal steroids as well as having an independent (nonsteroid dependent) circannual rhythm. A substantial body of data on this issue has been obtained from studies in sheep and hamsters and this is reviewed here in detail. Kisspeptin function is upregulated during the breeding season in sheep, stimulating reproductive function, but contradictory data are found in Siberian and Syrian hamsters. The relative quiescence of kisspeptin cells in the nonbreeding season can be counteracted by administration of the peptide, leading to activation of reproductive function. Although there is a major role for melatonin in the transduction of photoperiod to the reproductive system, kisspeptin cells do not appear to express the melatonin receptor, so the means by which seasonality changes the level of kisspeptin activity remains unknown.
Collapse
Affiliation(s)
- Iain J Clarke
- Department of Physiology, Monash University, Australia.
| | | |
Collapse
|
7
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
8
|
Ghuman SPS, Morris R, Spiller DG, Smith RF, Dobson H. Integration Between Different Hypothalamic Nuclei Involved in Stress and GnRH Secretion in the Ewe. Reprod Domest Anim 2009; 45:1065-73. [DOI: 10.1111/j.1439-0531.2009.01496.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ghuman SPS, Jones DN, Prabhakar S, Smith RF, Dobson H. Noradrenergic Control of GnRH Release from the Ewe HypothalamusIn Vitro: Sensitivity to Oestradiol. Reprod Domest Anim 2008; 43:753-9. [DOI: 10.1111/j.1439-0531.2007.00997.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ciechanowska M, Lapot M, Malewski T, Mateusiak K, Misztal T, Przekop F. Expression of the GnRH and GnRH receptor (GnRH-R) genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland of anestrous and luteal phase ewes. Anim Reprod Sci 2007; 108:345-55. [PMID: 17945441 DOI: 10.1016/j.anireprosci.2007.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 09/07/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Data exists showing that seasonal changes in the innervations of GnRH cells in the hypothalamus and functions of some neural systems affecting GnRH neurons are associated with GnRH release in ewes. Consequently, we put the question as to how the expression of GnRH gene and GnRH-R gene in the hypothalamus and GnRH-R gene in the anterior pituitary gland is reflected with LH secretion in anestrous and luteal phase ewes. Analysis of GnRH gene expression by RT-PCR in anestrous ewes indicated comparable levels of GnRH mRNA in the preoptic area, anterior and ventromedial hypothalamus. GnRH-R mRNA at different concentrations was found throughout the preoptic area, anterior and ventromedial hypothalamus, stalk/median eminence and in the anterior pituitary gland. The highest GnRH-R mRNA levels were detected in the stalk/median eminence and in the anterior pituitary gland. During the luteal phase of the estrous cycle in ewes, the levels of GnRH mRNA and GnRH-R mRNA in all structures were significantly higher than in anestrous ewes. Also LH concentrations in blood plasma of luteal phase ewes were significantly higher than those of anestrous ewes. In conclusion, results from this study suggest that low expression of the GnRH and GnRH-R genes in the hypothalamus and of the GnRH-R gene in the anterior pituitary gland, amongst others, may be responsible for a decrease in LH secretion and the anovulatory state in ewes during the long photoperiod.
Collapse
Affiliation(s)
- Magdalena Ciechanowska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna n., Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Clarke IJ, Scott CJ, Pereira A, Pompolo S. The role of noradrenaline in the generation of the preovulatory LH surge in the ewe. Domest Anim Endocrinol 2006; 30:260-75. [PMID: 16139986 DOI: 10.1016/j.domaniend.2005.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/20/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an alpha(1)-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50microg) was injected (i.m.) and Doxazosin (100nmol/h) or vehicle was infused into the third ventricle 2-26h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-beta-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Vic. 3168, Australia.
| | | | | | | |
Collapse
|
12
|
Pompolo S, Ischenko O, Pereira A, Iqbal J, Clarke IJ. Evidence that projections from the bed nucleus of the stria terminalis and from the lateral and medial regions of the preoptic area provide input to gonadotropin releasing hormone (GNRH) neurons in the female sheep brain. Neuroscience 2005; 132:421-36. [PMID: 15802194 DOI: 10.1016/j.neuroscience.2004.12.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2004] [Indexed: 11/18/2022]
Abstract
The arcuate nucleus/ventromedial hypothalamic nucleus (ARC/VMH) region is thought to relay estrogen feedback signals to gonadotropin-releasing hormone (GnRH) cells in the sheep brain. This region sends major projections to the lateral preoptic area (lPOA), ventral bed nucleus of the stria terminals (vBnST) and the ventro-caudal division of the median preoptic nucleus (vcMePON) with little direct input to GnRH cell bodies, suggesting interneuronal relay to GnRH neurons. The brain stem also provides input to the POA. The present study aimed to identify possible relay circuits in the POA and BnST to GnRH neurons. Biotinylated dextran amine (BDA) was injected into lPOA (n=6), vBnST (n=2), vcMePON (n=3) and periventricular nucleus (PeriV; n=1) of ewes for anterograde tracing. GnRH immunoreactive (IR) perikarya appearing to receive input from BDA-containing varicosities were identified by fluorescence microscopy, with further analysis by confocal microscopy. When BDA was injected into rostral and caudal regions of lPOA (n=3), no tracer-filled varicose fibers were found in contact with GnRH-IR perikarya. Injections into the center of the lPOA (n=3) indicated direct projections to GnRH-IR cells. Injections into the vBnST, vcMePON and PeriV indicated that cells of these regions also provide input to GnRH cells. BDA-containing varicosities found in the MPOA were immunoreactive for NPY or were GABAergic or glutamatergic when the tracer was injected into vBnST and lPOA, but not when injections were placed in the vcMePON. With injection into the PeriV, tracer-filled varicosities in the MPOA were not immunoreactive for somatostatin or enkephalin. Injection of FluoroGold into ventral POA retrogradely labeled cells in the above mentioned areas, but few were also immunoreactive for estrogen receptor-alpha. Thus, cells of the vBnST, lPOA, vcMePON and PeriV project to GnRH neurons. These cells may provide an interneuronal route to GnRH neurons from the ARC/VMH, the brain stem and other regions of the brain.
Collapse
Affiliation(s)
- S Pompolo
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
13
|
Tomaszewska-Zaremba D, Przekop F. Effects of GABAB receptor modulation on gonadotropin-releasing hormone and beta-endorphin release, and on catecholaminergic activity in the ventromedial hypothalamus-infundibular nucleus region of anoestrous ewes. J Neuroendocrinol 2005; 17:49-56. [PMID: 15720475 DOI: 10.1111/j.1365-2826.2005.01276.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine the role of gamma-aminobutyric acid (GABA)B receptor mediating systems in the ventromedial hypothalamus-infundibular nucleus region (VMH/NI) of anoestrous ewes in controlling gonadotropin-releasing hormone (GnRH) release, the extracellular concentrations of GnRH, beta-endorphin, norepinephrine, dopamine, 4-hydroxy-3-methoxy-glycol and 3,4-dihydroxy-phenylacetic acid were quantified during infusion of baclofen or phaclofen (agonist and antagonist of GABAB receptors, respectively) in this structure. The stimulation of GABAB receptors activates GnRH/luteinising hormone (LH) release, attenuates noradrenergic and beta-endorphinergic tone but has no evident effect on the dopaminergic system. Blockade of GABAB receptors in this structure increases the extracellular beta-endorphin concentration but has no significant influence on GnRH release or catecholaminergic activity. It is suggested that activation of GnRH/LH release in the VMH/NI of anoestrous ewes may result from a decrease of norepinephrine output and hence its inhibitory effect on GnRH secretion. Activation of GABAB receptors, as well as their blockade, did not change dopaminergic system activity, indicating that GABAB does not affect GnRH release indirectly by a GABAB receptor mechanism acting on dopaminergic neurones in the VMH/NI. Increased activity of the beta-endorphinergic system during blockade of GABAB receptors does not change GnRH release, suggesting that beta-endorphin does not play a significant role in the control of GnRH secretion in anoestrous ewes.
Collapse
Affiliation(s)
- D Tomaszewska-Zaremba
- Polish Academy of Sciences, The Kielanowski Institute of Animal Physiology and Nutrition, Jabłonna, Poland.
| | | |
Collapse
|
14
|
Li AJ, Ritter S. Glucoprivation increases expression of neuropeptide Y mRNA in hindbrain neurons that innervate the hypothalamus. Eur J Neurosci 2004; 19:2147-54. [PMID: 15090041 DOI: 10.1111/j.1460-9568.2004.03287.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothalamus is jointly innervated by hindbrain and hypothalamic neuropeptide Y (NPY) cell bodies. While the specific roles of these distinct sources of innervation are not known, NPY neurotransmission within the hypothalamus appears to contribute to glucoregulatory feeding. Here we examine the involvement of hindbrain NPY neurons in glucoregulation using in situ hybridization to assess their responsiveness to glucoprivation. The hindbrain NPY innervation of the hypothalamus is derived from cell bodies that coexpress norepinephrine or epinephrine. Therefore, we quantified NPY mRNA hybridization signal in hindbrain catecholamine cell groups 90 min after subcutaneous administration of the glycolytic inhibitor 2-deoxy-d-glucose (2DG, 250 mg/kg) to male rats. Catecholamine cell groups A1, A1/C1 and C2 (that provide the major NPY innervation of the hypothalamus) showed a basal level of NPY mRNA hybridization signal that was dramatically increased by 2DG. In C1 and C3, where basal NPY mRNA expression was close to or below our detection threshold, the hybridization signal was also significantly increased by 2DG. In cell groups A2, A5, A6 and A7, neither basal nor 2DG-stimulated NPY mRNA expression was detected. Hypothalamic microinjection of the retrogradely transported catecholamine immunotoxin saporin conjugated to anti-dopamine-beta-hydroxylase destroyed hindbrain catecholamine/NPY neurons and abolished basal and 2DG-stimulated increases in NPY expression in hindbrain cell groups. The responsiveness of hindbrain NPY neurons to glucose deficit suggests that these neurons participate in glucoprivic feeding or other glucoregulatory responses.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| | | |
Collapse
|
15
|
Jansen HT, Cutter C, Hardy S, Lehman MN, Goodman RL. Seasonal plasticity within the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in identified GnRH inputs and glial association. Endocrinology 2003; 144:3663-76. [PMID: 12865349 DOI: 10.1210/en.2002-0188] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The annual reproductive cycle in sheep may reflect a functional remodeling within the GnRH system. Specifically, changes in total synaptic input and association with the polysialylated form of neural cell adhesion molecule have been observed. Whether seasonal changes in a specific subset(s) of GnRH inputs occur or whether glial cells specifically play a role in this remodeling is not clear. We therefore examined GnRH neurons of breeding season (BS) and nonbreeding season (anestrus) ewes and tested the hypotheses that specific (i.e. gamma-aminobutyric acid, catecholamine, neuropeptide Y, or beta-endorphin) inputs to GnRH neurons change seasonally, and concomitant with any changes in neural inputs is a change in glial apposition. Using triple-label immunofluorescent visualization of GnRH, glial acidic fibrillary protein and neuromodulator/neural terminal markers combined with confocal microscopy and optical sectioning techniques, we confirmed that total numbers of neural inputs to GnRH neurons vary with season and demonstrated that specific inputs contribute to these overall changes. Specifically, neuropeptide Y and gamma-aminobutyric acid inputs to GnRH neurons increased during BS and beta-endorphin inputs were greater during either anestrus (GnRH somas) or BS (GnRH dendrites). Associated with the changes in GnRH inputs were seasonal changes in glial apposition, glial acidic fibrillary protein density, and the thickness of glial fibrils. These findings are interpreted to suggest an increase in net stimulatory inputs to GnRH neurons during the BS contributes to the seasonal changes in GnRH neurosecretion and that this increased innervation is perhaps stabilized by glial processes.
Collapse
Affiliation(s)
- Heiko T Jansen
- Department of Veterinary and Comparative Anatomy, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-6520, USA.
| | | | | | | | | |
Collapse
|
16
|
Pompolo S, Pereira A, Kaneko T, Clarke IJ. Seasonal changes in the inputs to gonadotropin-releasing hormone neurones in the ewe brain: an assessment by conventional fluorescence and confocal microscopy. J Neuroendocrinol 2003; 15:538-45. [PMID: 12694380 DOI: 10.1046/j.1365-2826.2003.01030.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The seasonal pattern of breeding in sheep offers an opportunity to examine plasticity of neuronal inputs to gonadotropin-releasing hormone (GnRH) neurones. We used conventional fluorescence microscopy and confocal microscopy to compare the extent of input to GnRH neurones from various neuropeptide/neurotransmitter systems in ewes during the breeding and anestrous seasons. Using double-labelling immunohistochemistry, we counted close appositions between GnRH cells and varicosities that were immunoreactive for either glutamic acid decarboxylase (GAD; for gamma-amino butyric acid-GABA-neurones), dopamine beta hydroxylase (DBH; for noradrenergic neurones), vesicular glutamate transporter-1 (VGluT-1, for glutamatergic neurones), neuropeptide Y (NPY) and tyrosine hydroxylase (TH; for dopaminergic/noradrenergic neurones). The percentage of GnRH cells displaying close appositions to GABA-ergic varicosities was higher (P < 0.02) in anestrus than in the breeding season. The percentage of GnRH cells receiving input from varicosities that were positive for TH, DBH and VGluT-1 was similar in both seasons. Approximately 26-49% of GnRH neurones were seen to receive inputs from NPY, TH, GABAergic or noradrenergic neurones, while a larger number of GnRH cells (72-75%) received input from glutamatergic neurones. Conventional microscopy consistently overestimated the number of close contacts on GnRH neurones compared to confocal microscopy. For TH-immunoreactive varicosities in the preoptic area, only 16-35% were also immunoreactive for DBH, suggesting that the remainder are dopaminergic. Approximately half of the noradrenergic inputs in the preoptic area were also immunoreactive for NPY. In conclusion, we present numerical data on the consensus between light and confocal microscopy and the level of input of various neuronal systems to GnRH cells; the data indicate a seasonal change in the GABAergic input to GnRH neurones.
Collapse
Affiliation(s)
- S Pompolo
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
17
|
Scott CJ, Clarke IJ, Tilbrook AJ. Neuronal inputs from the hypothalamus and brain stem to the medial preoptic area of the ram: neurochemical correlates and comparison to the ewe. Biol Reprod 2003; 68:1119-33. [PMID: 12606458 DOI: 10.1095/biolreprod.102.010595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The retrograde tracer, FluoroGold, was used to trace the neuronal inputs from the septum, hypothalamus, and brain stem to the region of the GnRH neurons in the rostral preoptic area of the ram and to compare these imputs with those in the ewe. Sex differences were found in the number of retrogradely labeled cells in the dorsomedial and ventromedial nuclei. Retrogradely labeled cells were also observed in the lateral septum, preoptic area, organum vasculosum of the lamina terminalis, bed nucleus of the stria terminalis, stria terminalis, subfornical organ, periventricular nucleus, anterior hypothalamic area, lateral hypothalamus, arcuate nucleus, and posterior hypothalamus. These sex differences may partially explain sex differences in how GnRH secretion is regulated. Fluorescence immunohistochemistry was used to determine the neurochemical identity of some of these cells in the ram. Very few tyrosine hydroxylase-containing neurons in the A14 group (<1%), ACTH-containing neurons (<1%), and neuropeptide Y-containing neurons (1-5%) in the arcuate nucleus contained FluoroGold. The ventrolateral medulla and parabrachial nucleus contained the main populations of FluoroGold-containing neurons in the brain stem. Retrogradely labeled neurons were also observed in the nucleus of the solitary tract, dorsal raphe nucleus, and periaqueductal gray matter. Virtually all FluoroGold-containing cells in the ventrolateral medulla and about half of these cells in the nucleus of the solitary tract also stained for dopamine beta-hydroxylase. No other retrogradely labeled cells in the brain stem were noradrenergic. Although dopamine, beta-endorphin, and neuropeptide Y have been implicated in the regulation of GnRH secretion in males, it is unlikely that these neurotransmitters regulate GnRH secretion via direct inputs to GnRH neurons.
Collapse
|
18
|
Pau KY, Hess DL, Kohama S, Bao J, Pau CY, Spies HG. Oestrogen upregulates noradrenaline release in the mediobasal hypothalamus and tyrosine hydroxylase gene expression in the brainstem of ovariectomized rhesus macaques. J Neuroendocrinol 2000; 12:899-909. [PMID: 10971815 DOI: 10.1046/j.1365-2826.2000.00549.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noradrenaline plays a key role in the initiation of ovulation in nonprimate species. A similar noradrenaline role in the primate has not been established experimentally. We utilized the ovariectomized-oestrogen-supplemented (OVX + E) rhesus macaque to examine the effects of intravenous (i.v.) infusion of oestradiol-17beta (E2) on the activity of the brain noradrenaline system. Experiment 1 established the induction of a preovulatory surge-like release of luteinizing hormone in OVX + E monkeys by i.v. infusion of E2 (OVX + E + E2). In experiment 2, a marked increase in hypothalamic microdialysate noradrenaline concentrations occurred after identical E2 infusion into the OVX + E monkeys that were used in experiment 1. In experiment 3, tyrosine hydroxylase (TH) mRNA expression in the locus coeruleus of the brainstem increased at various times after E2 infusion as determined by semiquantitative in situ hybridization. The amount of TH mRNA in OVX + E + E2 animals was higher (P < 0.05) than that in either the OVX + E or OVX monkeys; no difference was found in the latter two groups. Moreover, selected locus coeruleus sections from E2-infused monkeys were examined for the localization of oestrogen receptors (ER) by in situ hybridization. Both ER-alpha and ER-beta mRNAs were expressed in the locus coeruleus, although the expression was greater for ER-alpha than for ER-beta. We conclude that i.v. infusion of E2, which induces a preovulatory surge-like release of LH, stimulates brain noradrenaline activity; this enhanced activity likely involves an ER-mediated process and is reflected by hypothalamic noradrenaline release and locus coeruleus TH mRNA expression. The results support the concept that noradrenaline can influence the E2-stimulated ovulation in nonhuman primates and that the brainstem is one of the components in this neuroendocrine process.
Collapse
Affiliation(s)
- K Y Pau
- Divisions of Reproductive Sciences and Neurosciences, Oregon Regional Primate Research Center, Oregon Health Sciences University, Portland 97006, USA
| | | | | | | | | | | |
Collapse
|
19
|
Scott CJ, Pereira AM, Rawson JA, Simmons DM, Rossmanith WG, Ing NH, Clarke IJ. The distribution of progesterone receptor immunoreactivity and mRNA in the preoptic area and hypothalamus of the ewe: upregulation of progesterone receptor mRNA in the mediobasal hypothalamus by oestrogen. J Neuroendocrinol 2000; 12:565-75. [PMID: 10844586 DOI: 10.1046/j.1365-2826.2000.00490.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distribution of progesterone receptors (PR) was mapped in the hypothalamus of the ewe using immunocytochemistry. These results were confirmed using in situ hybridization with a sheep-specific 35S-labelled riboprobe. In addition, the effect of oestrogen on the level of PR mRNA in the hypothalamus was examined in ovariectomized (OVX) ewes following treatment with an oestrogen implant or without treatment. PR immunoreactive (-ir) cells were readily detected in OVX animals. Labelled cells were observed in four main hypothalamic regions: the preoptic area (POA), including the organum vasculosum of the lamina terminalis, periventricular nucleus (PeVN), ventromedial nucleus (VMN) and the arcuate nucleus (ARC) (including the region ventral to the mamillary recess). In addition, lightly stained PR-ir cells were observed in the supraoptic nucleus and a few PR-ir cells were also found in the diagonal band of Broca. No PR-ir cells were found in the brainstem. PR mRNA-containing cells were found in the same hypothalamic regions as the PR-ir cells. Image analysis of emulsion-dipped slides following in situ hybridization indicated that oestrogen treatment increased (P<0.01) the mean number of silver grains/cell and the density of labelled cells in the VMN and ARC but had no effect on the level of PR mRNA expression in the POA or PeN. The distribution of PR-containing cells in the hypothalamus is similar to that described in other species and all cells were located in nuclei that contain large populations of oestrogen receptor-containing cells. These include regions implicated in the regulation of reproductive neuroendocrine function, and reproductive behaviour. Oestrogen and progesterone synergize to inhibit GnRH secretion and the present results suggest that these functions may involve cells of the VMN and ARC, with oestrogen acting to upregulate PR.
Collapse
Affiliation(s)
- C J Scott
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|