1
|
Ota N, Nishida T, Standley DM, Sherif AA, Iwano S, Nugraha DK, Ueno T, Horiguchi Y. Lonidamine, a Novel Modulator for the BvgAS System of Bordetella Species. Microbiol Immunol 2025; 69:133-147. [PMID: 39674913 PMCID: PMC11873758 DOI: 10.1111/1348-0421.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
The Gram-negative bacteria Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory diseases in various mammals. They share the BvgAS two-component system, which regulates the phenotypic conversion between the virulent Bvg+ and avirulent Bvg- phases. In the BvgAS system, the sensor kinase BvgS senses environmental cues and transduces a phosphorelay signal to the response regulator BvgA, which leads to the expression of Bvg+ phase-specific genes, including virulence factor genes. Bacteria grown at 37°C exhibit the Bvg+ phenotype. In contrast, at lower than 26°C or in the presence of modulators, such as MgSO4 and nicotinic acid, the BvgAS system is inactivated, leading bacteria to the avirulent Bvg- phase. Therefore, effective modulators are expected to provide a therapeutic measure for Bordetella infection; however, no such modulators are currently available, and the mechanism by which modulators inactivate the BvgAS system is poorly understood. In the present study, we identified lonidamine as a novel modulator after screening an FDA-approved drug library using bacterial reporter systems with the Bvg+-specific and Bvg--specific promoters. Lonidamine directly bound to the VFT2 domain of BvgS and inactivated the BvgAS system at concentrations as low as 50 nM, which was at least 2000- to 20,000-fold lower than the effective concentrations of known modulators. Lonidamine significantly reduced the adherence of B. pertussis to cultured cells but unexpectedly exacerbated bacterial colonization of the mouse nasal septum. These results provide insights into the structural requirements for BvgAS modulators and the role of Bvg phenotypes in the establishment of infection.
Collapse
Affiliation(s)
- Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- Immunology Frontier Research CenterOsaka UniversitySuitaJapan
- Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Satoshi Iwano
- Institute for Tenure Track PromotionUniversity of MiyazakiMiyazakiJapan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Toshiya Ueno
- Department of Molecular Bacteriology, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
- Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| |
Collapse
|
2
|
Carrica MDC, Gorgojo JP, Alvarez-Hayes J, Valdez HA, Lamberti YA, Rodriguez ME. BPP0974 is a Bordetella parapertussis adhesin expressed in the avirulent phase, implicated in biofilm formation and intracellular survival. Microb Pathog 2024; 193:106754. [PMID: 38897361 DOI: 10.1016/j.micpath.2024.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.
Collapse
Affiliation(s)
- Mariela Del Carmen Carrica
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez-Hayes
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Yanina Andrea Lamberti
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
3
|
Nash ZM, Inatsuka CS, Cotter PA, Johnson RM. Bordetella filamentous hemagglutinin and adenylate cyclase toxin interactions on the bacterial surface are consistent with FhaB-mediated delivery of ACT to phagocytic cells. mBio 2024; 15:e0063224. [PMID: 38534159 PMCID: PMC11077949 DOI: 10.1128/mbio.00632-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Bordetella species that cause respiratory infections in mammals include B. pertussis, which causes human whooping cough, and B. bronchiseptica, which infects nearly all mammals. Both bacterial species produce filamentous hemagglutinin (FhaB) and adenylate cyclase toxin (ACT), prominent surface-associated and secreted virulence factors that contribute to persistence in the lower respiratory tract by inhibiting clearance by phagocytic cells. FhaB and ACT proteins interact with themselves, each other, and host cells. Using immunoblot analyses, we showed that ACT binds to FhaB on the bacterial surface before it can be detected in culture supernatants. We determined that SphB1, a surface protease identified based on its requirement for FhaB cleavage, is also required for ACT cleavage, and we determined that the presence of ACT blocks SphB1-dependent and -independent cleavage of FhaB, but the presence of FhaB does not affect SphB1-dependent cleavage of ACT. The primary SphB1-dependent cleavage site on ACT is proximal to ACT's active site, in a region that is critical for ACT activity. We also determined that FhaB-bound ACT on the bacterial surface can intoxicate host cells producing CR3, the receptor for ACT. In addition to increasing our understanding of FhaB, ACT, and FhaB-ACT interactions on the Bordetella surface, our data are consistent with a model in which FhaB functions as a novel toxin delivery system by binding to ACT and allowing its release upon binding of ACT to its receptor, CR3, on phagocytic cells.IMPORTANCEBacteria need to control the variety, abundance, and conformation of proteins on their surface to survive. Members of the Gram-negative bacterial genus Bordetella include B. pertussis, which causes whooping cough in humans, and B. bronchiseptica, which causes respiratory infections in a broad range of mammals. These species produce two prominent virulence factors, the two-partner secretion (TPS) effector FhaB and adenylate cyclase toxin (ACT), that interact with themselves, each other, and host cells. Here, we determined that ACT binds FhaB on the bacterial surface before being detected in culture supernatants and that ACT bound to FhaB can be delivered to eukaryotic cells. Our data are consistent with a model in which FhaB delivers ACT specifically to phagocytic cells. This is the first report of a TPS system facilitating the delivery of a separate polypeptide toxin to target cells and expands our understanding of how TPS systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carol S. Inatsuka
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
5
|
Badhai J, Das SK. Genomic evidence and virulence properties decipher the extra-host origin of Bordetella bronchiseptica. J Appl Microbiol 2023; 134:lxad200. [PMID: 37660236 DOI: 10.1093/jambio/lxad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Until recently, members of the classical Bordetella species comprised only pathogenic bacteria that were thought to live exclusively in warm-blooded animals. The close phylogenetic relationship of Bordetella with Achromobacter and Alcaligenes, which include primarily environmental bacteria, suggests that the ancestral Bordetellae were probably free-living. Eventually, the Bordetella species evolved to infect and live within warm-blooded animals. The modern history of pathogens related to the genus Bordetella started towards the end of the 19th century when it was discovered in the infected respiratory epithelium of mammals, including humans. The first identified member was Bordetella pertussis, which causes whooping cough, a fatal disease in young children. In due course, B. bronchiseptica was recovered from the trachea and bronchi of dogs with distemper. Later, a second closely related human pathogen, B. parapertussis, was described as causing milder whooping cough. The classical Bordetellae are strictly host-associated pathogens transmitted via the host-to-host aerosol route. Recently, the B. bronchiseptica strain HT200 has been reported from a thermal spring exhibiting unique genomic features that were not previously observed in clinical strains. Therefore, it advocates that members of classical Bordetella species have evolved from environmental sources. This organism can be transmitted via environmental reservoirs as it can survive nutrient-limiting conditions and possesses a motile flagellum. This study aims to review the molecular basis of origin and virulence properties of obligate host-restricted and environmental strains of classical Bordetella.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| |
Collapse
|
6
|
Barr SA, Kennedy EN, McKay LS, Johnson RM, Ohr RJ, Cotter PA, Bourret RB. Phosphorylation chemistry of the Bordetella PlrSR TCS and its contribution to bacterial persistence in the lower respiratory tract. Mol Microbiol 2023; 119:174-190. [PMID: 36577696 PMCID: PMC10313215 DOI: 10.1111/mmi.15019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.
Collapse
Affiliation(s)
- Sarah A. Barr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily N. Kennedy
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liliana S. McKay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Richard M. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ryan J. Ohr
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert B. Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
8
|
Badhai J, Das SK. Genomic plasticity and antibody response of Bordetella bronchiseptica strain HT200, a natural variant from a thermal spring. FEMS Microbiol Lett 2021; 368:6226661. [PMID: 33856450 DOI: 10.1093/femsle/fnab035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Classical Bordetella species are primarily isolated from animals and humans causing asymptomatic infection to lethal pneumonia. However, isolation of these bacteria from any extra-host environmental niche has not been reported so far. Here, we have characterized the genomic plasticity and antibody response of Bordetella bronchiseptica strain HT200, isolated from a thermal spring. Genomic ANI value and SNPs-based phylogenetic tree suggest a divergent evolution of strain HT200 from a human-adapted lineage of B. bronchiseptica. Growth and survivability assay showed strain HT200 retained viability for more than 5 weeks in the filter-sterilized spring water. In addition, genes or loci encoding the Bordetella virulence factors such as DNT, ACT and LPS O-antigen were absent in strain HT200, while genes encoding other virulence factors were highly divergent. Phenotypically, strain HT200 was non-hemolytic and showed weak hemagglutination activity, but was able to colonize in the respiratory organs of mice. Further, both infection and vaccination with strain HT200 induced protective antibody response in mouse against challenge infection with virulent B. bronchiseptica strain RB50. In addition, genome of strain HT200 (DSM 26023) showed presence of accessory genes and operons encoding predicted metabolic functions pertinent to the ecological conditions of the thermal spring.
Collapse
Affiliation(s)
- Jhasketan Badhai
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| | - Subrata K Das
- Department of Biotechnology, Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India
| |
Collapse
|
9
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
10
|
Dewan KK, Skarlupka AL, Rivera I, Cuff LE, Gestal MC, Taylor-Mulneix DL, Wagner S, Ryman VE, Rodriguez C, Hamidou Soumana I, Levin BR, Harvill ET. Development of macrolide resistance in Bordetella bronchiseptica is associated with the loss of virulence. J Antimicrob Chemother 2019; 73:2797-2805. [PMID: 30107601 DOI: 10.1093/jac/dky264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/07/2018] [Indexed: 01/30/2023] Open
Abstract
Background Why resistance to specific antibiotics emerges and spreads rapidly in some bacteria confronting these drugs but not others remains a mystery. Resistance to erythromycin in the respiratory pathogens Staphylococcus aureus and Streptococcus pneumoniae emerged rapidly and increased problematically. However, resistance is uncommon amongst the classic Bordetella species despite infections being treated with this macrolide for decades. Objectives We examined whether the apparent progenitor of the classic Bordetella spp., Bordetella bronchiseptica, is able to rapidly generate de novo resistance to antibiotics and, if so, why such resistance might not persist and propagate. Methods Independent strains of B. bronchiseptica resistant to erythromycin were generated in vitro by successively passaging them in increasing subinhibitory concentrations of this macrolide. Resistant mutants obtained were evaluated for their capacity to infect mice, and for other virulence properties including adherence, cytotoxicity and induction of cytokines. Results B. bronchiseptica rapidly developed stable and persistent antibiotic resistance de novo. Unlike the previously reported trade-off in fitness, multiple independent resistant mutants were not defective in their rates of growth in vitro but were consistently defective in colonizing mice and lost a variety of virulence phenotypes. These changes rendered them avirulent but phenotypically similar to the previously described growth phase associated with the ability to survive in soil, water and/or other extra-mammalian environments. Conclusions These observations raise the possibility that antibiotic resistance in some organisms results in trade-offs that are not quantifiable in routine measures of general fitness such as growth in vitro, but are pronounced in various aspects of infection in the natural host.
Collapse
Affiliation(s)
- Kalyan K Dewan
- Department of Infectious Diseases, Coverdell Center for Biomedical and Health Sciences, 500 D. W. Brooks Drive, University of Georgia, Athens, GA, USA
| | - Amanda L Skarlupka
- Graduate Program in Microbiology, University of Georgia, Athens, GA, USA
| | - Israel Rivera
- Graduate Program in Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Laura E Cuff
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, USA
| | - Monica C Gestal
- Department of Infectious Diseases, Coverdell Center for Biomedical and Health Sciences, 500 D. W. Brooks Drive, University of Georgia, Athens, GA, USA
| | - Dawn L Taylor-Mulneix
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, USA
| | - Shannon Wagner
- Department of Infectious Diseases, Coverdell Center for Biomedical and Health Sciences, 500 D. W. Brooks Drive, University of Georgia, Athens, GA, USA
| | - Valerie E Ryman
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, USA
| | - Coralis Rodriguez
- Graduate Program in Microbiology, University of Georgia, Athens, GA, USA
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, Coverdell Center for Biomedical and Health Sciences, 500 D. W. Brooks Drive, University of Georgia, Athens, GA, USA
| | - Bruce R Levin
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | - Eric T Harvill
- Department of Infectious Diseases, Coverdell Center for Biomedical and Health Sciences, 500 D. W. Brooks Drive, University of Georgia, Athens, GA, USA.,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, USA
| |
Collapse
|
11
|
van Beek LF, de Gouw D, Eleveld MJ, Bootsma HJ, de Jonge MI, Mooi FR, Zomer A, Diavatopoulos DA. Adaptation of Bordetella pertussis to the Respiratory Tract. J Infect Dis 2019. [PMID: 29528444 DOI: 10.1093/infdis/jiy125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
There is a lack of insight into the basic mechanisms by which Bordetella pertussis adapts to the local host environment during infection. We analyzed B. pertussis gene expression in the upper and lower airways of mice and compared this to SO4-induced in vitro Bvg-regulated gene transcription. Approximately 30% of all genes were differentially expressed between in vitro and in vivo conditions. This included several novel potential vaccine antigens that were exclusively expressed in vivo. Significant differences in expression profile and metabolic pathways were identified between the upper versus the lower airways, suggesting distinct antigenic profiles. We found high-level expression of several Bvg-repressed genes during infection, and mouse vaccination experiments using purified protein fractions from both Bvg- and Bvg+ cultures demonstrated protection against intranasal B. pertussis challenge. This study provides novel insights into the in vivo adaptation of B. pertussis and may facilitate the improvement of pertussis vaccines.
Collapse
Affiliation(s)
- Lucille F van Beek
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daan de Gouw
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J Eleveld
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J Bootsma
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frits R Mooi
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven (RIVM), the Netherlands
| | - Aldert Zomer
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Bordetella bronchiseptica Diguanylate Cyclase BdcA Regulates Motility and Is Important for the Establishment of Respiratory Infection in Mice. J Bacteriol 2019; 201:JB.00011-19. [PMID: 31209073 DOI: 10.1128/jb.00011-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteria can be motile and planktonic or, alternatively, sessile and participating in the biofilm mode of growth. The transition between these lifestyles can be regulated by a second messenger, cyclic dimeric GMP (c-di-GMP). High intracellular c-di-GMP concentration correlates with biofilm formation and motility inhibition in most bacteria, including Bordetella bronchiseptica, which causes respiratory tract infections in mammals and forms biofilms in infected mice. We previously described the diguanylate cyclase BdcA as involved in c-di-GMP synthesis and motility regulation in B. bronchiseptica; here, we further describe the mechanism whereby BdcA is able to regulate motility and biofilm formation. Amino acid replacement of GGDEF with GGAAF in BdcA is consistent with the conclusion that diguanylate cyclase activity is necessary for biofilm formation and motility regulation, although we were unable to confirm the stability of the mutant protein. In the absence of the bdcA gene, B. bronchiseptica showed enhanced motility, strengthening the hypothesis that BdcA regulates motility in B. bronchiseptica We showed that c-di-GMP-mediated motility inhibition involved regulation of flagellin expression, as high c-di-GMP levels achieved by expressing BdcA significantly reduced the level of flagellin protein. We also demonstrated that protein BB2109 is necessary for BdcA activity, motility inhibition, and biofilm formation. Finally, absence of the bdcA gene affected bacterial infection, implicating BdcA-regulated functions as important for bacterium-host interactions. This work supports the role of c-di-GMP in biofilm formation and motility regulation in B. bronchiseptica, as well as its impact on pathogenesis.IMPORTANCE Pathogenesis of Bordetella spp., like that of a number of other pathogens, involves biofilm formation. Biofilms increase tolerance to biotic and abiotic factors and are proposed as reservoirs of microbes for transmission to other organs (trachea, lungs) or other hosts. Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is a second messenger that regulates transition between biofilm and planktonic lifestyles. In Bordetella bronchiseptica, high c-di-GMP levels inhibit motility and favor biofilm formation. In the present work, we characterized a B. bronchiseptica diguanylate cyclase, BdcA, which regulates motility and biofilm formation and affects the ability of B. bronchiseptica to colonize the murine respiratory tract. These results provide us with a better understanding of how B. bronchiseptica can infect a host.
Collapse
|
13
|
The BvgS PAS Domain, an Independent Sensory Perception Module in the Bordetella bronchiseptica BvgAS Phosphorelay. J Bacteriol 2019; 201:JB.00286-19. [PMID: 31235515 DOI: 10.1128/jb.00286-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
To detect and respond to the diverse environments they encounter, bacteria often use two-component regulatory systems (TCS) to coordinate essential cellular processes required for survival. In pathogenic Bordetella species, the BvgAS TCS regulates expression of hundreds of genes, including those encoding all known protein virulence factors, and its kinase activity is essential for respiratory infection. Maintenance of BvgS kinase activity in the lower respiratory tract (LRT) depends on the function of another TCS, PlrSR. While the periplasmic Venus flytrap domains of BvgS have been implicated in responding to so-called modulating signals in vitro (nicotinic acid and MgSO4), a role for the cytoplasmic Per-Arnt-Sim (PAS) domain in signal perception has not previously been demonstrated. By comparing B. bronchiseptica strains with mutations in the PAS domain-encoding region of bvgS with wild-type bacteria in vitro and in vivo, we found that although the PAS domain is not required to sense modulating signals in vitro, it is required for the inactivation of BvgS that occurs in the absence of PlrS in the LRTs of mice, suggesting that the BvgS PAS domain functions as an independent signal perception domain. Our data also indicate that the BvgS PAS domain is important for controlling absolute levels of BvgS kinase activity and the efficiency of the response to modulating signals in vitro Our results provide evidence that BvgS integrates sensory inputs from both the periplasm and the cytoplasm to control precise gene expression patterns under diverse environmental conditions.IMPORTANCE Despite high rates of vaccination, pertussis, a severe, highly contagious respiratory disease caused by the bacterium Bordetella pertussis, has reemerged as a significant health threat. In Bordetella pertussis and the closely related species Bordetella bronchiseptica, activity of the BvgAS two-component regulatory system is critical for colonization of the mammalian respiratory tract. We show here that the cytoplasmic PAS domain of BvgS can function as an independent signal perception domain that influences BvgS activity in response to environmental conditions. Our work is significant because it reveals a critical, yet previously unrecognized, role for the PAS domain in the BvgAS phosphorelay and provides a greater understanding of virulence regulation in Bordetella.
Collapse
|
14
|
Nishimura R, Abe A, Sakuma Y, Kuwae A. Bordetella bronchiseptica Bcr4 antagonizes the negative regulatory function of BspR via its role in type III secretion. Microbiol Immunol 2018; 62:743-754. [PMID: 30407657 DOI: 10.1111/1348-0421.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Bordetella species, including B. pertussis, have a type III secretion system that is highly conserved among gram-negative pathogenic bacteria. Genes encoding the component proteins of the type III secretion system are localized at the bsc locus in the Bordetella genome. Here, the function of a hypothetical protein Bcr4 encoded at the bsc locus in the B. bronchiseptica genome was investigated. A Bcr4-deficient mutant was created and the amounts of type III secreted proteins (e.g., BopB, BopN and Bsp22) in both the supernatant fraction and whole-cell lysates of the Bcr4-deficient mutant were determined. It was found that the amounts of these proteins were significantly lower than in the wild-type strain. The amounts of type III secreted proteins in the supernatant fraction and whole-cell lysates were much greater in a Bcr4-overproducing strain than in the wild-type strain. The type III secreted protein BspR reportedly negatively regulates the type III secretion system. Here, it was observed that a Bcr4 + BspR double-knockout mutant did not secrete type III secreted proteins, whereas the amounts of these proteins in whole-cell lysates of this mutant were nearly equal to those in whole-cell lysates of the BspR-deficient mutant. Bcr4 thus appears to play an essential role in the extracellular secretion of type III secreted proteins. Our data also suggest that Bcr4 antagonizes the negative regulatory function of BspR.
Collapse
Affiliation(s)
- Ryutaro Nishimura
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato, Tokyo 108-8641, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato, Tokyo 108-8641, Japan
| | - Yusuke Sakuma
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato, Tokyo 108-8641, Japan
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato, Tokyo 108-8641, Japan
| |
Collapse
|
15
|
Lesne E, Coutte L, Solans L, Slupek S, Debrie AS, Dhennin V, Froguel P, Hot D, Locht C, Antoine R, Jacob-Dubuisson F. Distinct virulence ranges for infection of mice by Bordetella pertussis revealed by engineering of the sensor-kinase BvgS. PLoS One 2018; 13:e0204861. [PMID: 30307950 PMCID: PMC6181320 DOI: 10.1371/journal.pone.0204861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
The whooping cough agent Bordetella pertussis coordinately regulates the expression of its virulence factors with the two-component system BvgAS. In laboratory conditions, specific chemical modulators are used to trigger phenotypic modulation of B. pertussis from its default virulent Bvg+ phase to avirulent Bvg- or intermediate Bvgi phases, in which no virulence factors or only a subset of them are produced, respectively. Whether phenotypic modulation occurs in the host remains unknown. In this work, recombinant B. pertussis strains harboring BvgS variants were tested in a mouse model of infection and analyzed using transcriptomic approaches. Recombinant BP-BvgΔ65, which is in the Bvgi phase by default and can be up-modulated to the Bvg+ phase in vitro, could colonize the mouse nose but was rapidly cleared from the lungs, while Bvg+-phase strains colonized both organs for up to four weeks. These results indicated that phenotypic modulation, which might have restored the full virulence capability of BP-BvgΔ65, does not occur in mice or is temporally or spatially restricted and has no effect in those conditions. Transcriptomic analyses of this and other recombinant Bvgi and Bvg+-phase strains revealed that two distinct ranges of virulence gene expression allow colonization of the mouse nose and lungs, respectively. We also showed that a recombinant strain expressing moderately lower levels of the virulence genes than its wild type parent was as efficient at colonizing both organs. Altogether, genetic modifications of BvgS generate a range of phenotypic phases, which are useful tools to decipher host-pathogen interactions.
Collapse
Affiliation(s)
- Elodie Lesne
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Loic Coutte
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Luis Solans
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stephanie Slupek
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Anne-Sophie Debrie
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Véronique Dhennin
- Univ. Lille, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Philippe Froguel
- Univ. Lille, Lille, France
- CNRS UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - David Hot
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Locht
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Rudy Antoine
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (RA); (FJD)
| | - Françoise Jacob-Dubuisson
- Univ. Lille, Lille, France
- CNRS UMR 8204, Lille, France
- Inserm U1019, Lille, France
- CHU Lille, Lille, France
- Institut Pasteur de Lille, Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (RA); (FJD)
| |
Collapse
|
16
|
Gestal MC, Rivera I, Howard LK, Dewan KK, Soumana IH, Dedloff M, Nicholson TL, Linz B, Harvill ET. Blood or Serum Exposure Induce Global Transcriptional Changes, Altered Antigenic Profile, and Increased Cytotoxicity by Classical Bordetellae. Front Microbiol 2018; 9:1969. [PMID: 30245672 PMCID: PMC6137168 DOI: 10.3389/fmicb.2018.01969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
The classical bordetellae sense and respond to a variety of environments outside and within their mammalian hosts. By causing inflammation and tissue damage, we reasoned that bordetellae are likely to encounter components of blood and/or serum during the course of a respiratory infection, and that detecting and responding to these would be advantageous. Therefore, we hypothesized that classical bordetellae have the ability to sense and respond to blood or serum. Blood or serum exposure resulted in substantial transcriptional changes in Bordetella bronchiseptica, including enhanced expression of many virulence-associated genes. Exposure to blood or serum additionally elicited production of multiple antigens not otherwise detectable, and led to increased bacterial cytotoxicity against macrophages. Transcriptional responses to blood/serum were observed in a Bvg- phase-locked mutant, indicating that the response is not solely dependent on a functional BvgAS system. Similar transcriptional responses to blood/serum were observed for the other classical bordetellae, Bordetella pertussis and Bordetella parapertussis. These data suggest the classical bordetellae respond to signals present in blood and serum by changing their behavior in ways that likely contribute to their remarkable success, via effects on pathogenesis, persistence and/or transmission between hosts.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Laura K Howard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kalyan K Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Margaret Dedloff
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | | | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Mendis N, McBride P, Saoud J, Mani T, Faucher SP. The LetA/S two-component system regulates transcriptomic changes that are essential for the culturability of Legionella pneumophila in water. Sci Rep 2018; 8:6764. [PMID: 29712912 PMCID: PMC5928044 DOI: 10.1038/s41598-018-24263-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
Surviving the nutrient-poor aquatic environment for extended periods of time is important for the transmission of various water-borne pathogens, including Legionella pneumophila (Lp). Previous work concluded that the stringent response and the sigma factor RpoS are essential for the survival of Lp in water. In the present study, we investigated the role of the LetA/S two-component signal transduction system in the successful survival of Lp in water. In addition to cell size reduction in the post-exponential phase, LetS also contributes to cell size reduction when Lp is exposed to water. Importantly, absence of the sensor kinase results in a significantly lower survival as measured by CFUs in water at various temperatures and an increased sensitivity to heat shock. According to the transcriptomic analysis, LetA/S orchestrates a general transcriptomic downshift of major metabolic pathways upon exposure to water leading to better culturability, and likely survival, suggesting a potential link with the stringent response. However, the expression of the LetA/S regulated small regulatory RNAs, RsmY and RsmZ, is not changed in a relAspoT mutant, which indicates that the stringent response and the LetA/S response are two distinct regulatory systems contributing to the survival of Lp in water.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Peter McBride
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Joseph Saoud
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thangadurai Mani
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
18
|
Brickman TJ, Armstrong SK. The Bordetella bronchiseptica nic locus encodes a nicotinic acid degradation pathway and the 6-hydroxynicotinate-responsive regulator BpsR. Mol Microbiol 2018; 108:397-409. [PMID: 29485696 DOI: 10.1111/mmi.13943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2018] [Indexed: 01/01/2023]
Abstract
The classical Bordetella species use amino acids as carbon sources and can catabolize organic acids and tricarboxylic acid cycle intermediates. They are also auxotrophic for nicotinamide adenine dinucleotide (NAD) pathway precursors such as nicotinic acid. Bordetellae have a putative nicotinate catabolism gene locus highly similar to that characterized in Pseudomonas putida KT2440. This study determined the distribution of the nic genes among Bordetella species and analyzed the regulation of this nicotinic acid degradation system. Transcription of the Bordetella bronchiseptica nicC gene was repressed by the NicR ortholog, BpsR, previously shown to regulate extracellular polysaccharide synthesis genes. nicC expression was derepressed by nicotinic acid or by the first product of the degradation pathway, 6-hydroxynicotinic acid, which was shown to be the inducer. Results using mutants with either a hyperactivated pathway or an inactivated pathway showed a marked effect on growth on nicotinic acid that indicated this degradation pathway influences NAD biosynthesis. Pathway dysregulation also affected Bordetella BvgAS-mediated virulence gene regulation, demonstrating that fluctuation of intracellular nicotinic acid pools impacts Bvg phase transition responses.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN 55455-1507, USA
| |
Collapse
|
19
|
Dorji D, Mooi F, Yantorno O, Deora R, Graham RM, Mukkur TK. Bordetella Pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med Microbiol Immunol 2017; 207:3-26. [PMID: 29164393 DOI: 10.1007/s00430-017-0524-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023]
Abstract
Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years. Possible reasons hypothesised for resurgence have ranged from incompliance with the recommended vaccination programmes with the currently used aP vaccine to infection with a resurged clinical isolates characterised by mutations in the virulence factors, resulting in antigenic divergence with vaccine strain, and increased production of pertussis toxin, resulting in dampening of immune responses. While use of these vaccines provide varying degrees of protection against whooping cough, protection against infection and transmission appears to be less effective, warranting continuation of efforts in the development of an improved pertussis vaccine formulations capable of achieving this objective. Major approaches currently under evaluation for the development of an improved pertussis vaccine include identification of novel biofilm-associated antigens for incorporation in current aP vaccine formulations, development of live attenuated vaccines and discovery of novel non-toxic adjuvants capable of inducing both antibody and CMI. In this review, the potential roles of different accredited virulence factors, including novel biofilm-associated antigens, of B. pertussis in the evolution, formulation and delivery of improved pertussis vaccines, with potential to block the transmission of whooping cough in the community, are discussed.
Collapse
Affiliation(s)
- Dorji Dorji
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
- Jigme Dorji Wangchuck National Referral Hospital, Khesar Gyalpo Medical University of Bhutan, Thimphu, Bhutan
| | - Frits Mooi
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Osvaldo Yantorno
- Laboratorio de Biofilms Microbianos, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Medical Center Blvd., Winston Salem, NC, 27157, USA
| | - Ross M Graham
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia
| | - Trilochan K Mukkur
- School of Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Australia.
| |
Collapse
|
20
|
Seydlova G, Beranova J, Bibova I, Dienstbier A, Drzmisek J, Masin J, Fiser R, Konopasek I, Vecerek B. The extent of the temperature-induced membrane remodeling in two closely related Bordetella species reflects their adaptation to diverse environmental niches. J Biol Chem 2017; 292:8048-8058. [PMID: 28348085 DOI: 10.1074/jbc.m117.781559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.
Collapse
Affiliation(s)
- Gabriela Seydlova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Jana Beranova
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ilona Bibova
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Ana Dienstbier
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jakub Drzmisek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| | - Jiri Masin
- Molecular Biology of Bacterial Pathogens, Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic
| | - Radovan Fiser
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Ivo Konopasek
- From the Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 5, 12843 Prague, Czech Republic
| | - Branislav Vecerek
- the Laboratories of Post-transcriptional Control of Gene Expression and
| |
Collapse
|
21
|
Bordetella PlrSR regulatory system controls BvgAS activity and virulence in the lower respiratory tract. Proc Natl Acad Sci U S A 2017; 114:E1519-E1527. [PMID: 28167784 DOI: 10.1073/pnas.1609565114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial pathogens coordinate virulence using two-component regulatory systems (TCS). The Bordetella virulence gene (BvgAS) phosphorelay-type TCS controls expression of all known protein virulence factor-encoding genes and is considered the "master virulence regulator" in Bordetella pertussis, the causal agent of pertussis, and related organisms, including the broad host range pathogen Bordetella bronchiseptica We recently discovered an additional sensor kinase, PlrS [for persistence in the lower respiratory tract (LRT) sensor], which is required for B. bronchiseptica persistence in the LRT. Here, we show that PlrS is required for BvgAS to become and remain fully active in mouse lungs but not the nasal cavity, demonstrating that PlrS coordinates virulence specifically in the LRT. PlrS is required for LRT persistence even when BvgAS is rendered constitutively active, suggesting the presence of BvgAS-independent, PlrS-dependent virulence factors that are critical for bacterial survival in the LRT. We show that PlrS is also required for persistence of the human pathogen B. pertussis in the murine LRT and we provide evidence that PlrS most likely functions via the putative cognate response regulator PlrR. These data support a model in which PlrS senses conditions present in the LRT and activates PlrR, which controls expression of genes required for the maintenance of BvgAS activity and for essential BvgAS-independent functions. In addition to providing a major advance in our understanding of virulence regulation in Bordetella, which has served as a paradigm for several decades, these results indicate the existence of previously unknown virulence factors that may serve as new vaccine components and therapeutic or diagnostic targets.
Collapse
|
22
|
Barbier M, Boehm DT, Sen-Kilic E, Bonnin C, Pinheiro T, Hoffman C, Gray M, Hewlett E, Damron FH. Modulation of Pertussis and Adenylate Cyclase Toxins by Sigma Factor RpoE in Bordetella pertussis. Infect Immun 2017; 85:e00565-16. [PMID: 27849178 PMCID: PMC5203664 DOI: 10.1128/iai.00565-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022] Open
Abstract
Bordetella pertussis is a human pathogen that can infect the respiratory tract and cause the disease known as whooping cough. B. pertussis uses pertussis toxin (PT) and adenylate cyclase toxin (ACT) to kill and modulate host cells to allow the pathogen to survive and persist. B. pertussis encodes many uncharacterized transcription factors, and very little is known about their functions. RpoE is a sigma factor which, in other bacteria, responds to oxidative, heat, and other environmental stresses. RseA is a negative regulator of RpoE that sequesters the sigma factor to regulate gene expression based on conditions. In B. pertussis, deletion of the rseA gene results in high transcriptional activity of RpoE and large amounts of secretion of ACT. By comparing parental B. pertussis to an rseA gene deletion mutant (PM18), we sought to characterize the roles of RpoE in virulence and determine the regulon of genes controlled by RpoE. Despite high expression of ACT, the rseA mutant strain did not infect the murine airway as efficiently as the parental strain and PM18 was killed more readily when inside phagocytes. RNA sequencing analysis was performed and 263 genes were differentially regulated by RpoE, and surprisingly, the rseA mutant strain where RpoE activity was elevated expressed very little pertussis toxin. Western blots and proteomic analysis corroborated the inverse relationship of PT to ACT expression in the high-RpoE-activity rseA deletion strain. Our data suggest that RpoE can modulate PT and ACT expression indirectly through unidentified mechanisms in response to conditions.
Collapse
Affiliation(s)
- Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Claire Bonnin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Theo Pinheiro
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Casey Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Mary Gray
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Erik Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
23
|
Brickman TJ, Suhadolc RJ, McKelvey PJ, Armstrong SK. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis. Mol Microbiol 2016; 103:423-438. [PMID: 27783449 DOI: 10.1111/mmi.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Ryan J Suhadolc
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Pamela J McKelvey
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| |
Collapse
|
24
|
Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, Hewlett E. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol 2016; 103:214-228. [PMID: 27731909 DOI: 10.1111/mmi.13551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Bordetella pertussis, the causative agent of whooping cough, secretes and releases adenylate cyclase toxin (ACT), which is a protein bacterial toxin that targets host cells and disarms immune defenses. ACT binds filamentous haemagglutinin (FHA), a surface-displayed adhesin, and until now, the consequences of this interaction were unknown. A B. bronchiseptica mutant lacking ACT produced more biofilm than the parental strain; leading Irie et al. to propose the ACT-FHA interaction could be responsible for biofilm inhibition. Here we characterize the physical interaction of ACT with FHA and provide evidence linking that interaction to inhibition of biofilm in vitro. Exogenous ACT inhibits biofilm formation in a concentration-dependent manner and the N-terminal catalytic domain of ACT (AC domain) is necessary and sufficient for this inhibitory effect. AC Domain interacts with the C-terminal segment of FHA with ∼650 nM affinity. ACT does not inhibit biofilm formation by Bordetella lacking the mature C-terminal domain (MCD), suggesting the direct interaction between AC domain and the MCD is required for the inhibitory effect. Additionally, AC domain disrupts preformed biofilm on abiotic surfaces. The demonstrated inhibition of biofilm formation by a host-directed protein bacterial toxin represents a novel regulatory mechanism and identifies an unprecedented role for ACT.
Collapse
Affiliation(s)
- Casandra Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Joshua Eby
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary Gray
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Melvin
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Peggy Cotter
- School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Erik Hewlett
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Nimkulrat S, Lee H, Doak TG, Ye Y. Genomic and Metagenomic Analysis of Diversity-Generating Retroelements Associated with Treponema denticola. Front Microbiol 2016; 7:852. [PMID: 27375574 PMCID: PMC4891356 DOI: 10.3389/fmicb.2016.00852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Diversity-generating retroelements (DGRs) are genetic cassettes that can produce massive protein sequence variation in prokaryotes. Presumably DGRs confer selective advantages to their hosts (bacteria or viruses) by generating variants of target genes—typically resulting in target proteins with altered ligand-binding specificity—through a specialized error-prone reverse transcription process. The only extensively studied DGR system is from the Bordetella phage BPP-1, although DGRs are predicted to exist in other species. Using bioinformatics analysis, we discovered that the DGR system associated with the Treponema denticola species (a human oral-associated periopathogen) is dynamic (with gains/losses of the system found in the isolates) and diverse (with multiple types found in isolated genomes and the human microbiota). The T. denticola DGR is found in only nine of the 17 sequenced T. denticola strains. Analysis of the DGR-associated template regions and reverse transcriptase gene sequences revealed two types of DGR systems in T. denticola: the ATCC35405-type shared by seven isolates including ATCC35405; and the SP32-type shared by two isolates (SP32 and SP33), suggesting multiple DGR acquisitions. We detected additional variants of the T. denticola DGR systems in the human microbiomes, and found that the SP32-type DGR is more abundant than the ATCC35405-type in the healthy human oral microbiome, although the latter is found in more sequenced isolates. This is the first comprehensive study to characterize the DGRs associated with T. denticola in individual genomes as well as human microbiomes, demonstrating the importance of utilizing both individual genomes and metagenomes for characterizing the elements, and for analyzing their diversity and distribution in human populations.
Collapse
Affiliation(s)
- Sutichot Nimkulrat
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh PA, USA
| | - Thomas G Doak
- Department of Biology, Indiana University, BloomingtonIN, USA; National Center for Genome Analysis Support, Indiana University, BloomingtonIN, USA
| | - Yuzhen Ye
- School of Informatics and Computing, Indiana University, Bloomington IN, USA
| |
Collapse
|
26
|
Nishikawa S, Shinzawa N, Nakamura K, Ishigaki K, Abe H, Horiguchi Y. Thebvg-repressed genebrtA, encoding biofilm-associated surface adhesin, is expressed during host infection byBordetella bronchiseptica. Microbiol Immunol 2016; 60:93-105. [DOI: 10.1111/1348-0421.12356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/24/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Sayaka Nishikawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Naoaki Shinzawa
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Keiji Nakamura
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Keisuke Ishigaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Hiroyuki Abe
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases; Osaka University; 3-1 Yamada-oka Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor. Proc Natl Acad Sci U S A 2016; 113:2341-8. [PMID: 26884180 DOI: 10.1073/pnas.1600320113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.
Collapse
|
28
|
Fingermann M, Hozbor D. Acid tolerance response of Bordetella bronchiseptica in avirulent phase. Microbiol Res 2015; 181:52-60. [DOI: 10.1016/j.micres.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023]
|
29
|
Trainor EA, Nicholson TL, Merkel TJ. Bordetella pertussis transmission. Pathog Dis 2015; 73:ftv068. [PMID: 26374235 DOI: 10.1093/femspd/ftv068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/14/2022] Open
Abstract
Bordetella pertussis and B. bronchiseptica are Gram-negative bacterial respiratory pathogens. Bordetella pertussis is the causative agent of whooping cough and is considered a human-adapted variant of B. bronchiseptica. Bordetella pertussis and B. bronchiseptica share mechanisms of pathogenesis and are genetically closely related. However, despite the close genetic relatedness, these Bordetella species differ in several classic fundamental aspects of bacterial pathogens such as host range, pathologies and persistence. The development of the baboon model for the study of B. pertussis transmission, along with the development of the swine and mouse model for the study of B. bronchiseptica, has enabled the investigation of different aspects of transmission including the route, attack rate, role of bacterial and host factors, and the impact of vaccination on transmission. This review will focus on B. pertussis transmission and how animal models of B. pertussis transmission and transmission models using the closely related B. bronchiseptica have increased our understanding of B. pertussis transmission.
Collapse
Affiliation(s)
- Elizabeth A Trainor
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Tracy L Nicholson
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Abe A, Nishimura R, Tanaka N, Kurushima J, Kuwae A. The Bordetella Secreted Regulator BspR Is Translocated into the Nucleus of Host Cells via Its N-Terminal Moiety: Evaluation of Bacterial Effector Translocation by the Escherichia coli Type III Secretion System. PLoS One 2015; 10:e0135140. [PMID: 26247360 PMCID: PMC4527748 DOI: 10.1371/journal.pone.0135140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/17/2015] [Indexed: 11/27/2022] Open
Abstract
Bordetella bronchiseptica is genetically related to B. pertussis and B. parapertussis, which cause respiratory tract infections in humans. These pathogens possess a large number of virulence factors, including the type III secretion system (T3SS), which is required for the delivery of effectors into the host cells. In a previous study, we identified a transcriptional regulator, BspR, that is involved in the regulation of the T3SS-related genes in response to iron-starved conditions. A unique feature of BspR is that this regulator is secreted into the extracellular milieu via the T3SS. To further characterize the role of BspR in extracellular localization, we constructed various truncated derivatives of BspR and investigated their translocation into the host cells using conventional translocation assays. In this study, the effector translocation was evaluated by the T3SS of enteropathogenic E. coli (EPEC), since the exogenous expression of BspR triggers severe repression of the Bordetella T3SS expression. The results of the translocation assays using the EPEC T3SS showed that the N-terminal 150 amino acid (aa) residues of BspR are sufficient for translocation into the host cells in a T3SS-dependent manner. In addition, exogenous expression of BspR in HeLa cells demonstrated that the N-terminal 100 aa residues are involved in the nuclear localization. In contrast, the N-terminal 54 aa residues are sufficient for the extracellular secretion into the bacterial culture supernatant via the EPEC T3SS. Thus, BspR is not only a transcriptional regulator in bacteria cytosol, but also functions as an effector that translocates into the nuclei of infected host cells.
Collapse
Affiliation(s)
- Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
- * E-mail:
| | - Ryutaro Nishimura
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naomichi Tanaka
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| |
Collapse
|
31
|
Goffin P, Slock T, Smessaert V, De Rop P, Dehottay P. A versatile, non genetically modified organism (GMO)-based strategy for controlling low-producer mutants in Bordetella pertussis cultures using antigenic modulation. Biotechnol J 2015; 10:1269-80. [PMID: 26014907 DOI: 10.1002/biot.201400539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/17/2015] [Accepted: 05/22/2015] [Indexed: 11/07/2022]
Abstract
The uncontrolled presence of non-producer mutants negatively affects bioprocesses. In Bordetella pertussis cultures, avirulent mutants emerge spontaneously and accumulate. We characterized the dynamics of accumulation using high-throughput growth assays and competition experiments between virulent and avirulent (bvg(-) ) isolates. A fitness advantage of bvg(-) cells was identified as the main driver for bvg(-) accumulation under conditions of high virulence factor production. Conversely, under conditions that reduce their expression (antigenic modulation), bvg(-) takeover could be avoided. A control strategy was derived, which consists in applying modulating conditions whenever virulence factor production is not required. It has a wide range of applications, from routine laboratory operations to vaccine manufacturing, where pertussis toxin yields were increased 1.4-fold by performing early pre-culture steps in modulating conditions. Because it only requires subtle modifications of the culture medium and does not involve genetic modifications, this strategy is applicable to any B. pertussis isolate, and should facilitate regulatory acceptance of process changes for vaccine production. Strategies based on the same concept, could be derived for other industrially relevant micro-organisms. This study illustrates how a sound scientific understanding of physiological principles can be turned into a practical application for the bioprocess industry, in alignment with Quality by Design principles.
Collapse
|
32
|
Dupré E, Lesne E, Guérin J, Lensink MF, Verger A, de Ruyck J, Brysbaert G, Vezin H, Locht C, Antoine R, Jacob-Dubuisson F. Signal Transduction by BvgS Sensor Kinase: BINDING OF MODULATOR NICOTINATE AFFECTS THE CONFORMATION AND DYNAMICS OF THE ENTIRE PERIPLASMIC MOIETY. J Biol Chem 2015. [PMID: 26203186 DOI: 10.1074/jbc.m115.655720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.
Collapse
Affiliation(s)
- Elian Dupré
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Elodie Lesne
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Jérémy Guérin
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Marc F Lensink
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Alexis Verger
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Jérôme de Ruyck
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Guillaume Brysbaert
- the Université Lille Nord de France, 59000 Lille, France, the Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, 59658 Villeneuve d'Ascq, France, and
| | - Hervé Vezin
- the Université Lille Nord de France, 59000 Lille, France, the Laboratoire de spectrochimie infrarouge et Raman (LASIR), CNRS, UMR 8516, 59658 Villeneuve d'Ascq, France
| | - Camille Locht
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France
| | - Rudy Antoine
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France,
| | - Françoise Jacob-Dubuisson
- From the Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 59019 Lille Cedex, France, the Université Lille Nord de France, 59000 Lille, France, the CNRS, Unité mixte de recherche (UMR) 8204, 59046 Lille, France, the INSERM, U1019, 59045 Lille, France,
| |
Collapse
|
33
|
Register KB, Ivanov YV, Harvill ET, Davison N, Foster G. Novel, host-restricted genotypes of Bordetella bronchiseptica associated with phocine respiratory tract isolates. MICROBIOLOGY (READING, ENGLAND) 2015; 161:580-92. [PMID: 25627438 PMCID: PMC4811649 DOI: 10.1099/mic.0.000035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/09/2015] [Indexed: 11/18/2022]
Abstract
During a succession of phocine morbillivirus outbreaks spanning the past 25 years, Bordetella bronchiseptica was identified as a frequent secondary invader and cause of death. The goal of this study was to evaluate genetic diversity and the molecular basis for host specificity among seal isolates from these outbreaks. MLST and PvuII ribotyping of 54 isolates from Scottish, English or Danish coasts of the Atlantic or North Sea revealed a single, host-restricted genotype. A single, novel genotype, unique from that of the Atlantic and North Sea isolates, was found in isolates from an outbreak in the Caspian Sea. Phylogenetic analysis based either on MLST sequence, ribotype patterns or genome-wide SNPs consistently placed both seal-specific genotypes within the same major clade but indicates a distinct evolutionary history for each. An additional isolate from the intestinal tract of a seal on the south-west coast of England has a genotype otherwise found in rabbit, guinea pig and pig isolates. To investigate the molecular basis for host specificity, DNA and predicted protein sequences of virulence genes that mediate host interactions were used in comparisons between a North Sea isolate, a Caspian Sea isolate and each of their closest relatives as inferred from genome-wide SNP analysis. Despite their phylogenetic divergence, fewer nucleotide and amino acid substitutions were found in comparisons of the two seal isolates than in comparisons with closely related strains. These data indicate isolates of B. bronchiseptica associated with respiratory disease in seals comprise unique, host-adapted and highly clonal populations.
Collapse
Affiliation(s)
- Karen B Register
- USDA, Agricultural Research Service, National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, 1920 Dayton Avenue, Ames, IA 50010, USA
| | - Yury V Ivanov
- The Pennsylvania State University, Department of Veterinary and Biomedical Sciences, W-213 Millennium Science Complex, University Park, PA 16802, USA
| | - Eric T Harvill
- The Pennsylvania State University, Department of Veterinary and Biomedical Sciences, W-213 Millennium Science Complex, University Park, PA 16802, USA
| | - Nick Davison
- Scottish Marine Animal Stranding Scheme SAC Consulting Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| | - Geoffrey Foster
- Scottish Marine Animal Stranding Scheme SAC Consulting Veterinary Services, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, UK
| |
Collapse
|
34
|
Dupré E, Herrou J, Lensink MF, Wintjens R, Vagin A, Lebedev A, Crosson S, Villeret V, Locht C, Antoine R, Jacob-Dubuisson F. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog 2015; 11:e1004700. [PMID: 25738876 PMCID: PMC4352136 DOI: 10.1371/journal.ppat.1004700] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elian Dupré
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Julien Herrou
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Marc F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - René Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexey Vagin
- Structural Biology Laboratory, University of York, York, England, United Kingdom
| | - Andrey Lebedev
- Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot, England, United Kingdom
| | - Sean Crosson
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - Camille Locht
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Rudy Antoine
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Françoise Jacob-Dubuisson
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| |
Collapse
|
35
|
Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium. Appl Environ Microbiol 2014; 80:2804-10. [PMID: 24584242 DOI: 10.1128/aem.03565-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.
Collapse
|
36
|
de Gouw D, Hermans PWM, Bootsma HJ, Zomer A, Heuvelman K, Diavatopoulos DA, Mooi FR. Differentially expressed genes in Bordetella pertussis strains belonging to a lineage which recently spread globally. PLoS One 2014; 9:e84523. [PMID: 24416242 PMCID: PMC3885589 DOI: 10.1371/journal.pone.0084523] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/14/2013] [Indexed: 01/20/2023] Open
Abstract
Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep. In order to identify B. pertussis genes associated with the selective sweep, we compared the expression of genes in ptxP1 and ptxP3 strains that are under control of the Bordetella master virulence regulatory locus (bvgASR). The BvgAS proteins comprise a two component sensory transduction system which is regulated by temperature, nicotinic acid and sulfate. By increasing the sulfate concentration, it is possible to change the phase of B. pertussis from virulent to avirulent. Until recently, the only distinctive phenotype of ptxP3 strains was a higher Ptx production. Here we identify additional phenotypic differences between ptxP1 and ptxP3 strains which may have contributed to its global spread by comparing global transcriptional responses under sulfate-modulating conditions. We show that ptxP3 strains are less sensitive to sulfate-mediated gene suppression, resulting in an increased production of the vaccine antigens pertactin (Prn) and Ptx and a number of other virulence genes, including a type III secretion toxin, Vag8, a protein involved in complement resistance, and lpxE involved in lipid A modification. Furthermore, enhanced expression of the vaccine antigens Ptx and Prn by ptxP3 strains was confirmed at the protein level. Identification of genes differentially expressed between ptxP1 and ptxP3 strains may elucidate how B. pertussis has adapted to vaccination and allow the improvement of pertussis vaccines by identifying novel vaccine candidates.
Collapse
Affiliation(s)
- Daan de Gouw
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Aldert Zomer
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kees Heuvelman
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Dimitri A. Diavatopoulos
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Frits R. Mooi
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Centre, Nijmegen, The Netherlands
- Netherlands Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
37
|
Mason E, Henderson MW, Scheller EV, Byrd MS, Cotter PA. Evidence for phenotypic bistability resulting from transcriptional interference of bvgAS in Bordetella bronchiseptica. Mol Microbiol 2013; 90:716-33. [PMID: 24007341 PMCID: PMC4216693 DOI: 10.1111/mmi.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.
Collapse
Affiliation(s)
- Eliza Mason
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Michael W. Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Erich V. Scheller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Matthew S. Byrd
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
38
|
Brady C, Ackerman P, Johnson M, McNamara J. Bordetella bronchiseptica in a pediatric Cystic Fibrosis center. J Cyst Fibros 2013; 13:43-8. [PMID: 24011471 DOI: 10.1016/j.jcf.2013.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bordetella bronchiseptica is a common pathogenic or colonizing organism of domestic mammals. In dogs, it causes an infectious tracheobronchitis known as Kennel Cough. Human infections are unusual and almost exclusively described in immunocompromised patients who have had contact with a known animal reservoir. It is rarely reported in Cystic Fibrosis (CF), possibly hampered by low recovery from culture and organism misidentification. We describe the incidence and characteristics of B. bronchiseptica in our CF population. METHODS A retrospective cohort study was conducted of our center's CF patient population. Patients were included if they had B. bronchiseptica isolated on one or more occasion. RESULTS Seven children with CF isolated B. bronchiseptica on 23 occasions, frequently associated with the symptoms of a pulmonary exacerbation. Four patients required hospitalization. CONCLUSION These results suggest that B. bronchiseptica may be more common than previously reported and may play a potential pathogenic role in CF.
Collapse
Affiliation(s)
- Cynthia Brady
- Children's Hospitals and Clinics of MN, Center for Cystic Fibrosis, 2525 Chicago Avenue South, Minneapolis, MN 55404, United States; Children's Respiratory and Critical Care Specialists, 2530 Chicago Avenue South, Minneapolis, MN 55404, United States.
| | - Patricia Ackerman
- Children's Hospitals and Clinics of MN, Center for Cystic Fibrosis, 2525 Chicago Avenue South, Minneapolis, MN 55404, United States
| | - Mahrya Johnson
- Children's Hospitals and Clinics of MN, Center for Cystic Fibrosis, 2525 Chicago Avenue South, Minneapolis, MN 55404, United States
| | - John McNamara
- Children's Hospitals and Clinics of MN, Center for Cystic Fibrosis, 2525 Chicago Avenue South, Minneapolis, MN 55404, United States; Children's Respiratory and Critical Care Specialists, 2530 Chicago Avenue South, Minneapolis, MN 55404, United States
| |
Collapse
|
39
|
Bordetella pertussis iron regulated proteins as potential vaccine components. Vaccine 2013; 31:3543-8. [DOI: 10.1016/j.vaccine.2013.05.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/27/2013] [Accepted: 05/17/2013] [Indexed: 11/23/2022]
|
40
|
Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica. Bioprocess Biosyst Eng 2013; 37:115-23. [PMID: 23743730 DOI: 10.1007/s00449-013-0977-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
The mammalian pathogen Bordetella bronchiseptica was grown under controlled batch conditions with glutamate as the primary carbon and nitrogen source. First, a Box-Behnken statistical design quantified the effect of Mg, sulfate, and nicotinate on the antigen filamentous hemagglutinin (FHA) formation. Using lactic acid as a secondary carbon source for pH control, Mg, and SO₄ each negatively affected antigen expression, while nicotinate positively affected antigen expression. Sulfate had a stronger negative effect than Mg with 10 mM eliminating FHA altogether; the highest FHA expression (about 1,000 ng/mL) occurred when either Mg concentration or SO₄ concentration, but not both, was about 0.1 mM. Using two Mg and SO₄ compositions modeled to yield the greatest antigen expression, three other organic acids were compared as the secondary carbon source: acetate, citrate, and succinate. Mixtures of acetate and glutamate resulted in the greatest organic acid consumption, OD, and FHA concentration (about 1,500 ng/mL), although significant acetate accumulated during these batch processes. The mechanism leading to elevated FHA expression when acetate is the secondary carbon source is unknown, particularly since these cultures were most prone to phase shift to Bvg(-) cultures.
Collapse
|
41
|
Boulanger A, Chen Q, Hinton DM, Stibitz S. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. Mol Microbiol 2013; 88:156-72. [PMID: 23489959 DOI: 10.1111/mmi.12177] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.
Collapse
Affiliation(s)
- Alice Boulanger
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
42
|
Sisti F, Ha DG, O'Toole GA, Hozbor D, Fernández J. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. MICROBIOLOGY-SGM 2013; 159:869-879. [PMID: 23475948 DOI: 10.1099/mic.0.064345-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The signalling molecule bis-(3'-5')-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica.
Collapse
Affiliation(s)
- Federico Sisti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Dae-Gon Ha
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Daniela Hozbor
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Fernández
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
43
|
An improved recombination-based in vivo expression technology-like reporter system reveals differential cyaA gene activation in Bordetella species. Infect Immun 2013; 81:1295-305. [PMID: 23381998 DOI: 10.1128/iai.01445-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica rely on the global two-component regulatory system BvgAS to control expression of distinct phenotypic phases. In the Bvg(-) phase, expression of vrg genes, including those required for motility in B. bronchiseptica, is activated and genes encoding virulence factors are not expressed. Conversely, in the Bvg(+) phase, genes encoding virulence factors are highly expressed while genes necessary for motility are repressed. Although several genetic analyses have demonstrated the importance of the Bvg(+) phase during respiratory infection, Bvg-regulated gene activation in B. bronchiseptica has not been investigated in vivo. To address this, we developed a plasmid, pGFLIP, that encodes a sensitive Flp recombinase-based fluorescent reporter system able to document gene activation both in vitro and in vivo. Using pGFLIP, we demonstrated that cyaA, considered to be a "late" Bvg(+) phase gene, is activated substantially earlier in B. bronchiseptica than B. pertussis following a switch from Bvg(-) to Bvg(+) phase conditions. We show that the altered activation of cyaA is not due to differences in the cyaA promoter or in the bvgAS alleles of B. bronchiseptica compared to B. pertussis, but appears to be species specific. Finally, we used pGFLIP to show that flaA remains repressed during infection, confirming that B. bronchiseptica does not modulate to the Bvg(-) phase in vivo.
Collapse
|
44
|
Nicotinic acid modulates Legionella pneumophila gene expression and induces virulence traits. Infect Immun 2013; 81:945-55. [PMID: 23319553 DOI: 10.1128/iai.00999-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to environmental fluctuations or stresses, bacteria can activate transcriptional and phenotypic programs to coordinate an adaptive response. The intracellular pathogen Legionella pneumophila converts from a noninfectious replicative form to an infectious transmissive form when the bacterium encounters alterations in either amino acid concentrations or fatty acid biosynthesis. Here, we report that L. pneumophila differentiation is also triggered by nicotinic acid, a precursor of the central metabolite NAD(+). In particular, when replicative L. pneumophila are treated with 5 mM nicotinic acid, the bacteria induce numerous transmissive-phase phenotypes, including motility, cytotoxicity toward macrophages, sodium sensitivity, and lysosome avoidance. Transcriptional profile analysis determined that nicotinic acid induces the expression of a panel of genes characteristic of transmissive-phase L. pneumophila. Moreover, an additional 213 genes specific to nicotinic acid treatment were altered. Although nearly 25% of these genes lack an assigned function, the gene most highly induced by nicotinic acid treatment encodes a putative major facilitator superfamily transporter, Lpg0273. Indeed, lpg0273 protects L. pneumophila from toxic concentrations of nicotinic acid as judged by analyzing the growth of the corresponding mutant. The broad utility of the nicotinic acid pathway to couple central metabolism and cell fate is underscored by this small metabolite's modulation of gene expression by diverse microbes, including Candida glabrata, Bordetella pertussis, Escherichia coli, and L. pneumophila.
Collapse
|
45
|
Nicholson TL, Conover MS, Deora R. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. PLoS One 2012; 7:e49166. [PMID: 23152870 PMCID: PMC3495763 DOI: 10.1371/journal.pone.0049166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022] Open
Abstract
We have used microarray analysis to study the transcriptome of the bacterial pathogen Bordetella bronchiseptica over the course of five time points representing distinct stages of biofilm development. The results suggest that B. bronchiseptica undergoes a coordinately regulated gene expression program similar to a bacterial developmental process. Expression and subsequent production of the genes encoding flagella, a classical Bvg− phase phenotype, occurs and is under tight regulatory control during B. bronchiseptica biofilm development. Using mutational analysis, we demonstrate that flagella production at the appropriate stage of biofilm development, i.e. production early subsequently followed by repression, is required for robust biofilm formation and maturation. We also demonstrate that flagella are necessary and enhance the initial cell-surface interactions, thereby providing mechanistic information on the initial stages of biofilm development for B. bronchiseptica. Biofilm formation by B. bronchiseptica involves the production of both Bvg-activated and Bvg-repressed factors followed by the repression of factors that inhibit formation of mature biofilms.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
- * E-mail: (RD); (TLN)
| | - Matt S. Conover
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Rajendar Deora
- Program in Molecular Genetics, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail: (RD); (TLN)
| |
Collapse
|
46
|
Kurushima J, Kuwae A, Abe A. Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol Immunol 2012; 56:356-62. [PMID: 22376189 DOI: 10.1111/j.1348-0421.2012.00442.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The type III secretion system (T3SS) plays a key role in the exertion of full virulence by Bordetella bronchiseptica. However, little is known about the environmental stimuli that induce expression of T3SS genes. Here, it is reported that iron starvation is a signal for T3SS gene expression in B. bronchiseptica. It was found that, when B. bronchiseptica is cultured under iron-depleted conditions, secretion of type III secreted proteins is greater than that in bacteria grown under iron-replete conditions. Furthermore, it was confirmed that induction of T3SS-dependent host cell cytotoxicity and hemolytic activity is greatly enhanced by infection with iron-depleted Bordetella. In contrast, production of filamentous hemagglutinin is reduced in iron-depleted Bordetella. Thus, B. bronchiseptica controls the expression of virulence genes in response to iron starvation.
Collapse
Affiliation(s)
- Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | |
Collapse
|
47
|
Brickman TJ, Armstrong SK. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species. Mol Microbiol 2012; 86:580-93. [PMID: 22924881 DOI: 10.1111/mmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/30/2022]
Abstract
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | |
Collapse
|
48
|
Kurushima J, Kuwae A, Abe A. The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS One 2012; 7:e38925. [PMID: 22701731 PMCID: PMC3372540 DOI: 10.1371/journal.pone.0038925] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/15/2012] [Indexed: 01/03/2023] Open
Abstract
Bordetella bronchiseptica is closely related with B. pertussis and B. parapertussis, the causative agents of whooping cough. These pathogenic species share a number of virulence genes, including the gene locus for the type III secretion system (T3SS) that delivers effector proteins. To identify unknown type III effectors in Bordetella, secreted proteins in the bacterial culture supernatants of wild-type B. bronchiseptica and an isogenic T3SS-deficient mutant were compared with iTRAQ-based, quantitative proteomic analysis method. BB1639, annotated as a hypothetical protein, was identified as a novel type III secreted protein and was designated BspR (Bordetellasecreted protein regulator). The virulence of a BspR mutant (ΔbspR) in B. bronchiseptica was significantly attenuated in a mouse infection model. BspR was also highly conserved in B. pertussis and B. parapertussis, suggesting that BspR is an essential virulence factor in these three Bordetella species. Interestingly, the BspR-deficient strain showed hyper-secretion of T3SS-related proteins. Furthermore, T3SS-dependent host cell cytotoxicity and hemolytic activity were also enhanced in the absence of BspR. By contrast, the expression of filamentous hemagglutinin, pertactin, and adenylate cyclase toxin was completely abolished in the BspR-deficient strain. Finally, we demonstrated that BspR is involved in the iron-responsive regulation of T3SS. Thus, Bordetella virulence factors are coordinately but inversely controlled by BspR, which functions as a regulator in response to iron starvation.
Collapse
Affiliation(s)
- Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Asaomi Kuwae
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akio Abe
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
49
|
Kurushima J, Kuwae A, Abe A. Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica. FEMS Microbiol Lett 2012; 331:144-51. [PMID: 22458424 DOI: 10.1111/j.1574-6968.2012.02561.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/09/2012] [Accepted: 03/26/2012] [Indexed: 12/22/2022] Open
Abstract
The type III secretion system (T3SS) is a sophisticated protein secretion machinery that delivers bacterial virulence proteins into host cells. A needle-tip protein, Bsp22 , is one of the secreted substrates of the T3SS and plays an essential role in the full function of the T3SS in Bordetella bronchiseptica. In this study, we found that BB1618 functions as a chaperone for Bsp22 . The deletion of BB1618 resulted in a dramatic impairment of Bsp22 secretion into the culture supernatants and Bsp22 stability in the bacterial cytosol. In contrast, the secretion of other type III secreted proteins was not affected by the BB1618 mutation. Furthermore, the BB1618 mutant strain could not induce cytotoxicity and displayed the same phenotypes as the Bsp22 mutant strain. An immunoprecipitation assay demonstrated that BB1618 interacts with Bsp22 , but not with BopB and BopD . Thus, we identified BB1618 as a specific type III chaperone for Bsp22 . Therefore, we propose that BB1618 be renamed Btc22 for the Bordetella type III chaperone for Bsp22 .
Collapse
Affiliation(s)
- Jun Kurushima
- Laboratory of Bacterial Infection, Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Armstrong SK, Brickman TJ, Suhadolc RJ. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones. Mol Microbiol 2012; 84:446-62. [PMID: 22458330 DOI: 10.1111/j.1365-2958.2012.08032.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B. bronchiseptica can use the catecholamine noradrenaline for growth on transferrin. In this study, B. bronchiseptica was shown to use catecholamines to obtain iron from both transferrin and lactoferrin in the absence of siderophore. In the presence of siderophore, noradrenaline augmented transferrin utilization by B. bronchiseptica, as well as siderophore function in vitro. Genetic analysis identified BfrA, BfrD and BfrE as TonB-dependent outer membrane catecholamine receptors. The BfeA enterobactin receptor was found to not be involved directly in catecholamine utilization; however, the BfrA, BfrD and BfrE catecholamine receptors could serve as receptors for enterobactin and its degradation product 2,3-dihydroxybenzoic acid. Thus, there is a functional link between enterobactin-dependent and catecholamine-dependent transferrin utilization. This investigation characterizes a new B. bronchiseptica mechanism for iron uptake from transferrin that uses host stress hormones that not only deliver iron directly to catecholamine receptors, but also potentiate siderophore activity by acting as iron shuttles.
Collapse
Affiliation(s)
- Sandra K Armstrong
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | | | |
Collapse
|