1
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2025; 45:191-213. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Cohen EJ, Drobnič T, Ribardo DA, Yoshioka A, Umrekar T, Guo X, Fernandez JJ, Brock EE, Wilson L, Nakane D, Hendrixson DR, Beeby M. Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination. Dev Cell 2024; 59:3306-3321.e5. [PMID: 39362219 PMCID: PMC11652260 DOI: 10.1016/j.devcel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments. We show that motor output is unaffected when we shrink or displace the basal disk, and suppressor mutations of debilitated motors occur in flagellar-filament or cell-surface glycosylation pathways, thus sidestepping the need for a flange to overcome the interactions between two flagellar filaments and between flagellar filaments and the cell body. Our results identify unanticipated co-dependencies in the evolution of flagellar motor structure and cell-surface properties in the Campylobacterota.
Collapse
Affiliation(s)
- Eli J Cohen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Tina Drobnič
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Deborah A Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aoba Yoshioka
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Trishant Umrekar
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xuefei Guo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jose-Jesus Fernandez
- Spanish National Research Council (CINN-CSIC), Health Research Institute of Asturias (ISPA), Av Hospital Universitario s/n, Oviedo 33011, Spain
| | - Emma E Brock
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Laurence Wilson
- Department of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - David R Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Wong DA, Shaver ZM, Cabezas MD, Daniel-Ivad M, Warfel KF, Prasanna DV, Sobol SE, Fernandez R, Nicol R, DeLisa MP, Balskus EP, Karim AS, Jewett MC. Development of cell-free platforms for discovering, characterizing, and engineering post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586624. [PMID: 39651187 PMCID: PMC11623507 DOI: 10.1101/2024.03.25.586624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTM installing proteins often suffer from low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free protein synthesis (CFPS) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and conjugate vaccines. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in conjugate vaccine production, enabling the identification of mutant OSTs and sites within a carrier protein that enable high efficiency production of conjugate vaccines. In total, we expect that our workflow will accelerate design-build-test cycles for engineering PTMs.
Collapse
|
4
|
Arbour CA, Vuksanovic N, Allen KN, Imperiali B. Dual Glycosyltransferases from Campylobacter concisus Diverge from the Canonical Campylobacter N-Linked Glycan Assembly Pathway. Biochemistry 2024; 63:2369-2379. [PMID: 39192839 DOI: 10.1021/acs.biochem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Species within the Campylobacter genus are recognized as emerging human pathogens. Common to all known members of the genus is the presence of an asparagine-linked glycosylation pathway encoded by the pgl operon. Campylobacter species are divided into two major groups, Group I and Group II. To date, most biochemical studies have focused on the Group I species including Campylobacter jejuni. We recently reported that the Group II Campylobacter concisus pathway deviates from that of Group I by the inclusion of a C-6″-oxidized GalNAc (GalNAcA) at the third position installed by PglJ. Herein, we investigate the diversification of the PglH enzymes that act subsequent to installation of GalNAcA. The majority of pgl operons from Group II species, including C. concisus, encode two GT-B fold glycosyltransferases (GTs), PglH1 and PglH2. As the functions of these GTs were not clear by simple comparison of their sequences to that of C. jejuni PglH, further analyses were required. We show that subsequent to the action of PglJ, PglH2 installs the next HexNAc followed by PglH1 adding a single sugar. These steps diverge from the C. jejuni pathway not only in the identity of the sugar donors (UDP-GlcNAc) but also in installing single sugars rather than acting processively. These biochemical studies were extended via bioinformatics to identify sequence signatures that provide predictive capabilities for unraveling the prokaryotic glycan landscape. Phylogenetic analysis showed early divergence between the C. jejuni PglH orthologs and C. concisus PglH1/PglH2 orthologs, leading to diversification of the final glycan.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nemanja Vuksanovic
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
McDonald JB, Wade B, Andrews DM, Van TTH, Moore RJ. Development of tools for the genetic manipulation of Campylobacter and their application to the N-glycosylation system of Campylobacter hepaticus, an emerging pathogen of poultry. mBio 2024; 15:e0110124. [PMID: 39072641 PMCID: PMC11389370 DOI: 10.1128/mbio.01101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
Various species of campylobacters cause significant disease problems in both humans and animals. The continuing development of tools and methods for genetic and molecular manipulation of campylobacters enables the detailed study of bacterial virulence and disease pathogenesis. Campylobacter hepaticus is an emerging pathogen that causes spotty liver disease (SLD) in poultry. SLD has a significant economic and animal welfare impact as the disease results in elevated mortalities and significant decreases in egg production. Although potential virulence genes of C. hepaticus have been identified, they have not been further studied and characterized, as appropriate genetic tools and methods to transform and perform mutagenesis studies in C. hepaticus have not been available. In this study, the genetic manipulation of C. hepaticus is reported, with the development of novel plasmid vectors, methods for transformation, site-specific mutagenesis, and mutant complementation. These tools were used to delete the pglB gene, an oligosaccharyltransferase, a central enzyme of the N-glycosylation pathway, by allelic exchange. In the mutant strain, N-glycosylation was completely abolished. The tools and methods developed in this study represent innovative approaches that can be applied to further explore important virulence factors of C. hepaticus and other closely related Campylobacter species. IMPORTANCE Spotty liver disease (SLD) of layer chickens, caused by infection with Campylobacter hepaticus, is a significant economic and animal welfare burden on an important food production industry. Currently, SLD is controlled using antibiotics; however, alternative intervention methods are needed due to increased concerns associated with environmental contamination with antibiotics, and the development of antimicrobial resistance in many bacterial pathogens of humans and animals. This study has developed methods that have enabled the genetic manipulation of C. hepaticus. To validate the methods, the pglB gene was inactivated by allelic exchange to produce a C. hepaticus strain that could no longer N-glycosylate proteins. Subsequently, the mutation was complemented by reintroduction of the gene in trans, on a plasmid vector, to demonstrate that the phenotypic changes noted were caused by the mutation of the targeted gene. The tools developed enable ongoing studies to understand other virulence mechanisms of this important emerging pathogen.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Ben Wade
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Páez-Watson T, Tomás-Martínez S, de Wit R, Keisham S, Tateno H, van Loosdrecht MCM, Lin Y. Sweet Secrets: Exploring Novel Glycans and Glycoconjugates in the Extracellular Polymeric Substances of " Candidatus Accumulibacter". ACS ES&T WATER 2024; 4:3391-3399. [PMID: 39144681 PMCID: PMC11320575 DOI: 10.1021/acsestwater.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Biological wastewater treatment relies on microorganisms that grow as flocs, biofilms, or granules for efficient separation of biomass from cleaned water. This biofilm structure emerges from the interactions between microbes that produce, and are embedded in, extracellular polymeric substances (EPS). The true composition and structure of the EPS responsible for dense biofilm formation are still obscure. We conducted a bottom-up approach utilizing advanced glycomic techniques to explore the glycan diversity in the EPS from a highly enriched "Candidatus Accumulibacter" granular sludge. Rare novel sugar monomers such as N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha) were identified to be present in the EPS of both enrichments. Further, a high diversity in the glycoprotein structures of said EPS was identified by means of lectin based microarrays. We explored the genetic potential of "Ca. Accumulibacter" high quality metagenome assembled genomes (MAGs) to showcase the shortcoming of top-down bioinformatics based approaches at predicting EPS composition and structure, especially when dealing with glycans and glycoconjugates. This work suggests that more bottom-up research is necessary to understand the composition and complex structure of EPS in biofilms since genome based inference cannot directly predict glycan structures and glycoconjugate diversity.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sergio Tomás-Martínez
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Roeland de Wit
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
7
|
Tkalec KI, Hayes AJ, Lim KS, Lewis JM, Davies MR, Scott NE. Glycan-Tailored Glycoproteomic Analysis Reveals Serine is the Sole Residue Subjected to O-Linked Glycosylation in Acinetobacter baumannii. J Proteome Res 2024; 23:2474-2494. [PMID: 38850255 DOI: 10.1021/acs.jproteome.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.
Collapse
Affiliation(s)
- Kristian I Tkalec
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Andrew J Hayes
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Kataleen S Lim
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Jessica M Lewis
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| |
Collapse
|
8
|
Pimentel-Vera LN, Rodríguez-López A, Espejo-Mojica AJ, Ramírez AM, Cardona C, Reyes LH, Tomatsu S, Jaroentomeechai T, DeLisa MP, Sánchez OF, Alméciga-Díaz CJ. Novel human recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in a glyco-engineered Escherichia coli strain. Heliyon 2024; 10:e32555. [PMID: 38952373 PMCID: PMC11215262 DOI: 10.1016/j.heliyon.2024.e32555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the gene encoding the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS), resulting in the accumulation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). Previously, it was reported the production of an active human recombinant GALNS (rGALNS) in E. coli BL21(DE3). However, this recombinant enzyme was not taken up by HEK293 cells or MPS IVA skin fibroblasts. Here, we leveraged a glyco-engineered E. coli strain to produce a recombinant human GALNS bearing the eukaryotic trimannosyl core N-glycan, Man3GlcNAc2 (rGALNSoptGly). The N-glycosylated GALNS was produced at 100 mL and 1.65 L scales, purified and characterized with respect to pH stability, enzyme kinetic parameters, cell uptake, and KS clearance. The results showed that the addition of trimannosyl core N-glycans enhanced both protein stability and substrate affinity. rGALNSoptGly was capture through a mannose receptor-mediated process. This enzyme was delivered to the lysosome, where it reduced KS storage in human MPS IVA fibroblasts. This study demonstrates the potential of a glyco-engineered E. coli for producing a fully functional GALNS enzyme. It may offer an economic approach for the biosynthesis of a therapeutic glycoprotein that could prove useful for MPS IVA treatment. This strategy could be extended to other lysosomal enzymes that rely on the presence of mannose N-glycans for cell uptake.
Collapse
Affiliation(s)
- Luisa N. Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Dogma Biotech, Bogotá, D.C., 110111, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Investigaciones Biomédicas y de Genética Humana Aplicada GIBGA, Facultad de Ciencias de la Salud, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, Bogotá, D.C., Colombia
| | - Luis H. Reyes
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, D.C., Colombia
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, 19144, USA
| | - Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Oscar F. Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, D.C., 110231, Colombia
| |
Collapse
|
9
|
Zhang Y, Sun P, Li T, Li J, Ye J, Li X, Wu J, Lu Y, Zhu L, Wang H, Pan C. Efficient Production of Self-Assembled Bioconjugate Nanovaccines against Klebsiella pneumoniae O2 Serotype in Engineered Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:728. [PMID: 38668222 PMCID: PMC11054253 DOI: 10.3390/nano14080728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Nanoparticles (NPs) have been surfacing as a pivotal platform for vaccine development. In our previous work, we developed a cholera toxin B subunit (CTB)-based self-assembled nanoparticle (CNP) and produced highly promising bioconjugate nanovaccines by loading bacterial polysaccharide (OPS) in vivo. In particular, the Klebsiella pneumoniae O2 serotype vaccine showcased a potent immune response and protection against infection. However, extremely low yields limited its further application. In this study, we prepared an efficient Klebsiella pneumoniae bioconjugate nanovaccine in Escherichia coli with a very high yield. By modifying the 33rd glycine (G) in the CNP to aspartate (D), we were able to observe a dramatically increased expression of glycoprotein. Subsequently, through a series of mutations, we determined that G33D was essential to increasing production. In addition, this increase only occurred in engineered E. coli but not in the natural host K. pneumoniae strain 355 (Kp355) expressing OPSKpO2. Next, T-cell epitopes were fused at the end of the CNP(G33D), and animal experiments showed that fusion of the M51 peptide induced high antibody titers, consistent with the levels of the original nanovaccine, CNP-OPSKpO2. Hence, we provide an effective approach for the high-yield production of K. pneumoniae bioconjugate nanovaccines and guidance for uncovering glycosylation mechanisms and refining glycosylation systems.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Juntao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Ying Lu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Hengliang Wang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
10
|
Li C, Li J, Sun P, Li T, Yan X, Ye J, Wu J, Zhu L, Wang H, Pan C. Production of Promising Heat-Labile Enterotoxin (LT) B Subunit-Based Self-Assembled Bioconjugate Nanovaccines against Infectious Diseases. Vaccines (Basel) 2024; 12:347. [PMID: 38675730 PMCID: PMC11054625 DOI: 10.3390/vaccines12040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticles (NPs) have been widely utilized in vaccine design. Although numerous NPs have been explored, NPs with adjuvant effects on their own have rarely been reported. We produce a promising self-assembled NP by integrating the pentameric Escherichia coli heat-labile enterotoxin B subunit (LTB) (studied as a vaccine adjuvant) with a trimer-forming peptide. This fusion protein can self-assemble into the NP during expression, and polysaccharide antigens (OPS) are then loaded in vivo using glycosylation. We initially produced two Salmonella paratyphi A conjugate nanovaccines using two LTB subfamilies (LTIB and LTIIbB). After confirming their biosafety in mice, the data showed that both nanovaccines (NP(LTIB)-OPSSPA and NP(LTIIbB)-OPSSPA) elicited strong polysaccharide-specific antibody responses, and NP(LTIB)-OPS resulted in better protection. Furthermore, polysaccharides derived from Shigella or Klebsiella pneumoniae were loaded onto NP(LTIB) and NP(LTIIbB). The animal experimental results indicated that LTIB, as a pentamer module, exhibited excellent protection against lethal infections. This effect was also consistent with that of the reported cholera toxin B subunit (CTB) modular NP in all three models. For the first time, we prepared a novel promising self-assembled NP based on LTIB. In summary, these results indicated that the LTB-based nanocarriers have the potential for broad applications, further expanding the library of self-assembled nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China; (C.L.); (J.L.); (P.S.); (T.L.); (X.Y.); (J.Y.); (L.Z.)
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China; (C.L.); (J.L.); (P.S.); (T.L.); (X.Y.); (J.Y.); (L.Z.)
| |
Collapse
|
11
|
Arbour CA, Vuksanovic N, Bernstein HM, Allen KN, Imperiali B. Characterization of PglJ, a Glycosyltransferase in the Campylobacter concisus N-Linked Protein Glycosylation Pathway that Expands Glycan Diversity. Biochemistry 2024; 63:141-151. [PMID: 38110367 PMCID: PMC10873021 DOI: 10.1021/acs.biochem.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The Campylobacter genus of Gram-negative bacteria is characterized by the expression of N-linked protein glycosylation (pgl) pathways. As Campylobacter concisus is an emerging human pathogen, a better understanding of the variation of the biosynthetic pathways across the genus is necessary to identify the relationships between protein glycosylation and disease. The pgl pathways of C. concisus strains have been reported to diverge from other Campylobacter in steps after the biosynthesis of N-acetylgalactosamine-α1,3-N,N'-diacetylbacillosamine-α-1-diphosphate undecaprenyl (GalNAc-diNAcBac-PP-Und), which is catalyzed by PglC and PglA, a phosphoglycosyltransferase (PGT) and a glycosyltransferase (GT), respectively. Here we characterize the PglJ GTs from two strains of C. concisus. Chemical synthesis was employed to access the stereochemically defined glycan donor substrates, uridine diphosphate N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) and uridine diphosphate N-acetyl-d-glucosaminuronic acid (UDP-GlcNAcA), to allow biochemical investigation of PglJ. Evidence for the PglJ substrate specificity structural determinants for the C6″ carboxylate-containing sugar was obtained through variant-based biochemical assays. Additionally, characterization of a UDP-sugar dehydrogenase encoded in the pgl operon, which is similar to the Pseudomonas aeruginosa WbpO responsible for the oxidization of a UDP-HexNAc to UDP-HexNAcA, supports the availability of a UDP-HexNAcA substrate for a GT that incorporates the modified sugar and provides evidence for the presence of a HexNAcA in the N-linked glycan. Utilizing sequence similarity network (SSN) analysis, we identified conserved sequence motifs among PglJ glycosyltransferases, shedding light on substrate preferences and offering predictive insights into enzyme functions across the Campylobacter genus. These studies now allow detailed characterization of the later steps in the pgl pathway in C. concisus strains and provide insights into enzyme substrate specificity determinants for glycan assembly enzymes.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Nemanja Vuksanovic
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Hannah M Bernstein
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Ave, Boston, Massachusetts 02215, United States
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Clarke EC. Considerations for Glycoprotein Production. Methods Mol Biol 2024; 2762:329-351. [PMID: 38315375 DOI: 10.1007/978-1-0716-3666-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
This chapter is intended to provide insights for researchers aiming to choose an appropriate expression system for the production of recombinant glycoproteins. Producing glycoproteins is complex, as glycosylation patterns are determined by the availability and abundance of specific enzymes rather than a direct genetic blueprint. Furthermore, the cell systems often employed for protein production are evolutionarily distinct, leading to significantly different glycosylation when utilized for glycoprotein production. The selection of an appropriate production system depends on the intended applications and desired characteristics of the protein. Whether the goal is to produce glycoproteins mimicking native conditions or to intentionally alter glycan structures for specific purposes, such as enhancing immunogenicity in vaccines, understanding glycosylation present in the different systems and in different growth conditions is essential. This chapter will cover Escherichia coli, baculovirus/insect cell systems, Pichia pastoris, as well as different mammalian cell culture systems including Chinese hamster ovary (CHO) cells, human endothelial kidney (HEK) cell lines, and baby hamster kidney (BHK) cells.
Collapse
Affiliation(s)
- Elizabeth C Clarke
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
13
|
Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y, Dorfmueller HC, Ferguson MAJ, Stanley-Wall NR, Imperiali B. Defining early steps in Bacillus subtilis biofilm biosynthesis. mBio 2023; 14:e0094823. [PMID: 37650625 PMCID: PMC10653937 DOI: 10.1128/mbio.00948-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here, we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide (EPS) synthesis pathway. Together, our studies and approaches provide the foundation for the sequential characterization of the steps in EPS biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenyl diphosphate-linked glycan substrates.
Collapse
Affiliation(s)
- Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yusra Al-Sammarraie
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Bozkurt EU, Çağıl İN, Şahin Kehribar E, Işılak ME, Şeker UÖŞ. Glycosylation Circuit Enables Improved Catalytic Properties for Recombinant Alkaline Phosphatase. ACS OMEGA 2023; 8:36218-36227. [PMID: 37810695 PMCID: PMC10552120 DOI: 10.1021/acsomega.3c04669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 10/10/2023]
Abstract
Protein glycosylation is one of the most crucial and common post-translational modifications. It plays a fate-determining role and can alter many properties of proteins. Here, we engineered a Campylobacter jejuni N-linked glycosylation machinery by overexpressing one of the core glycosylation-related enzymes, PgIB, to increase the glycosylation rate. It has been previously shown that by utilizing N-linked glycosylation, certain recombinant proteins have been furnished with improved features, such as stability and solubility. We utilized N-linked glycosylation using an engineered glycosylation pathway to glycosylate a model enzyme, the alkaline phosphatase (ALP) enzyme in Escherichia coli. We have investigated the effects of glycosylation on enzyme properties. Considering the glycosylation mechanism is highly dependent on accessibility of the glycosylation tag, ALP constructs carrying the glycosylation tag at different locations of the gene have been constructed, and glycosylation rates have been calculated. Our results showed that, upon glycosylation, ALP features in terms of thermostability, proteolytic stability, tolerance to suboptimal pH, and denaturing conditions are dramatically improved. The results indicated that the N-linked glycosylation mechanism can be employed for protein manipulation for industrial applications.
Collapse
Affiliation(s)
- Eray Ulaş Bozkurt
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - İrem Niran Çağıl
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ebru Şahin Kehribar
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Musa Efe Işılak
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
15
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
16
|
Wenzel L, Hoffmann M, Rapp E, Rexer TFT, Reichl U. Cell-free N-glycosylation of peptides using synthetic lipid-linked hybrid and complex N-glycans. Front Mol Biosci 2023; 10:1266431. [PMID: 37767159 PMCID: PMC10520871 DOI: 10.3389/fmolb.2023.1266431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate "empty," i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human β-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and β-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.
Collapse
Affiliation(s)
- Lisa Wenzel
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Marcus Hoffmann
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Erdmann Rapp
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| | - Thomas F. T. Rexer
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Department of Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Reid A, Erickson KM, Hazel JM, Lukose V, Troutman JM. Chemoenzymatic Preparation of a Campylobacter jejuni Lipid-Linked Heptasaccharide on an Azide-Linked Polyisoprenoid. ACS OMEGA 2023; 8:15790-15798. [PMID: 37151508 PMCID: PMC10157688 DOI: 10.1021/acsomega.3c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023]
Abstract
Complex poly- and oligosaccharides on the surface of bacteria provide a unique fingerprint to different strains of pathogenic and symbiotic microbes that could be exploited for therapeutics or sensors selective for specific glycans. To discover reagents that can selectively interact with specific bacterial glycans, a system for both the chemoenzymatic preparation and immobilization of these materials would be ideal. Bacterial glycans are typically synthesized in nature on the C55 polyisoprenoid bactoprenyl (or undecaprenyl) phosphate. However, this long-chain isoprenoid can be difficult to work with in vitro. Here, we describe the addition of a chemically functional benzylazide tag to polyisoprenoids. We have found that both the organic-soluble and water-soluble benzylazide isoprenoid can serve as a substrate for the well-characterized system responsible for Campylobacter jejuni N-linked heptasaccharide assembly. Using the organic-soluble analogue, we demonstrate the use of an N-acetyl-glucosamine epimerase that can be used to lower the cost of glycan assembly, and using the water-soluble analogue, we demonstrate the immobilization of the C. jejuni heptasaccharide on magnetic beads. These conjugated beads are then shown to interact with soybean agglutinin, a lectin known to interact with N-acetyl-galactosamine in the C. jejuni heptasaccharide. The methods provided could be used for a wide variety of applications including the discovery of new glycan-interacting partners.
Collapse
Affiliation(s)
- Amanda
J. Reid
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Katelyn M. Erickson
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Joseph M. Hazel
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
- Department
of Chemistry, The Ohio State University, 281 W Lane Avenue, Columbus, Ohio 43210, United States
| | - Vinita Lukose
- Departments
of Chemistry and Biology, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jerry M. Troutman
- Nanoscale
Science Program, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
- Department
of Chemistry, University of North Carolina
at Charlotte, 9201 University
City Blvd., Charlotte, North
Carolina 28223, United States
| |
Collapse
|
18
|
Beygmoradi A, Homaei A, Hemmati R, Fernandes P. Recombinant protein expression: Challenges in production and folding related matters. Int J Biol Macromol 2023; 233:123407. [PMID: 36708896 DOI: 10.1016/j.ijbiomac.2023.123407] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Protein folding is a biophysical process by which proteins reach a specific three-dimensional structure. The amino acid sequence of a polypeptide chain contains all the information needed to determine the final three-dimensional structure of a protein. When producing a recombinant protein, several problems can occur, including proteolysis, incorrect folding, formation of inclusion bodies, or protein aggregation, whereby the protein loses its natural structure. To overcome such limitations, several strategies have been developed to address each specific issue. Identification of proper protein refolding conditions can be challenging, and to tackle this high throughput screening for different recombinant protein folding conditions can prove a sound solution. Different approaches have emerged to tackle refolding issues. One particular approach to address folding issues involves molecular chaperones, highly conserved proteins that contribute to proper folding by shielding folding proteins from other proteins that could hinder the process. Proper protein folding is one of the main prerequisites for post-translational modifications. Incorrect folding, if not dealt with, can lead to a buildup of protein misfoldings that damage cells and cause widespread abnormalities. Said post-translational modifications, widespread in eukaryotes, are critical for protein structure, function and biological activity. Incorrect post-translational protein modifications may lead to individual consequences or aggregation of therapeutic proteins. In this review article, we have tried to examine some key aspects of recombinant protein expression. Accordingly, the relevance of these proteins is highlighted, major problems related to the production of recombinant protein and to refolding issues are pinpointed and suggested solutions are presented. An overview of post-translational modification, their biological significance and methods of identification are also provided. Overall, the work is expected to illustrate challenges in recombinant protein expression.
Collapse
Affiliation(s)
- Azadeh Beygmoradi
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Pedro Fernandes
- DREAMS and Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisboa, Portugal; iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
19
|
Arbour CA, Nagar R, Bernstein HM, Ghosh S, Al-Sammarraie Y, Dorfmueller HC, Ferguson MAJ, Stanley-Wall NR, Imperiali B. Defining Early Steps in B. subtilis Biofilm Biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529487. [PMID: 36865097 PMCID: PMC9980142 DOI: 10.1101/2023.02.22.529487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Bacillus subtilis extracellular biofilm matrix includes an exopolysaccharide that is critical for the architecture and function of the community. To date, our understanding of the biosynthetic machinery and the molecular composition of the exopolysaccharide of B. subtilis remains unclear and incomplete. This report presents synergistic biochemical and genetic studies built from a foundation of comparative sequence analyses targeted at elucidating the activities of the first two membrane-committed steps in the exopolysaccharide biosynthetic pathway. By taking this approach, we determined the nucleotide sugar donor and lipid-linked acceptor substrates for the first two enzymes in the B. subtilis biofilm exopolysaccharide biosynthetic pathway. EpsL catalyzes the first phosphoglycosyl transferase step using UDP-di- N -acetyl bacillosamine as phospho-sugar donor. EpsD is a GT-B fold glycosyl transferase that facilitates the second step in the pathway that utilizes the product of EpsL as an acceptor substrate and UDP- N -acetyl glucosamine as the sugar donor. Thus, the study defines the first two monosaccharides at the reducing end of the growing exopolysaccharide unit. In doing so we provide the first evidence of the presence of bacillosamine in an exopolysaccharide synthesized by a Gram-positive bacterium. IMPORTANCE Biofilms are the communal way of life that microbes adopt to increase survival. Key to our ability to systematically promote or ablate biofilm formation is a detailed understanding of the biofilm matrix macromolecules. Here we identify the first two essential steps in the Bacillus subtilis biofilm matrix exopolysaccharide synthesis pathway. Together our studies and approaches provide the foundation for the sequential characterization of the steps in exopolysaccharide biosynthesis, using prior steps to enable chemoenzymatic synthesis of the undecaprenol diphosphate-linked glycan substrates.
Collapse
Affiliation(s)
- Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Rupa Nagar
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Soumi Ghosh
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Yusra Al-Sammarraie
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| |
Collapse
|
20
|
Barrett K, Dube DH. Chemical tools to study bacterial glycans: a tale from discovery of glycoproteins to disruption of their function. Isr J Chem 2023; 63:e202200050. [PMID: 37324574 PMCID: PMC10266715 DOI: 10.1002/ijch.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/02/2024]
Abstract
Bacteria coat themselves with a dense array of cell envelope glycans that enhance bacterial fitness and promote survival. Despite the importance of bacterial glycans, their systematic study and perturbation remains challenging. Chemical tools have made important inroads toward understanding and altering bacterial glycans. This review describes how pioneering discoveries from Prof. Carolyn Bertozzi's laboratory inspired our laboratory to develop sugar probes to facilitate the study of bacterial glycans. As described below, we used metabolic glycan labelling to install bioorthogonal reporters into bacterial glycans, ultimately permitting the discovery of a protein glycosylation system, the identification of glycosylation genes, and the development of metabolic glycan inhibitors. Our results have provided an approach to screen bacterial glycans and gain insight into their function, even in the absence of detailed structural information.
Collapse
Affiliation(s)
- Katharine Barrett
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| | - Danielle H Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011 USA
| |
Collapse
|
21
|
Strachan CR, Yu XA, Neubauer V, Mueller AJ, Wagner M, Zebeli Q, Selberherr E, Polz MF. Differential carbon utilization enables co-existence of recently speciated Campylobacteraceae in the cow rumen epithelial microbiome. Nat Microbiol 2023; 8:309-320. [PMID: 36635570 PMCID: PMC9894753 DOI: 10.1038/s41564-022-01300-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
The activities of different microbes in the cow rumen have been shown to modulate the host's ability to utilize plant biomass, while the host-rumen interface has received little attention. As datasets collected worldwide have pointed to Campylobacteraceae as particularly abundant members of the rumen epithelial microbiome, we targeted this group in a subset of seven cows with meta- and isolate genome analysis. We show that the dominant Campylobacteraceae lineage has recently speciated into two populations that were structured by genome-wide selective sweeps followed by population-specific gene import and recombination. These processes led to differences in gene expression and enzyme domain composition that correspond to the ability to utilize acetate, the main carbon source for the host, at the cost of inhibition by propionate. This trade-off in competitive ability further manifests itself in differential dynamics of the two populations in vivo. By exploring population-level adaptations that otherwise remain cryptic in culture-independent analyses, our results highlight how recent evolutionary dynamics can shape key functional roles in the rumen microbiome.
Collapse
Affiliation(s)
- Cameron R Strachan
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Xiaoqian A Yu
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Viktoria Neubauer
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Martin Wagner
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Evelyne Selberherr
- Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Martin F Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Ouadhi S, López DMV, Mohideen FI, Kwan DH. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. Protein Eng Des Sel 2023; 36:gzac010. [PMID: 36444941 DOI: 10.1093/protein/gzac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).
Collapse
Affiliation(s)
- Sara Ouadhi
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Dulce María Valdez López
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - F Ifthiha Mohideen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
23
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
24
|
Glycosyltransferase-Related Protein GtrA Is Essential for Localization of Type IX Secretion System Cargo Protein Cellulase Cel9A and Affects Cellulose Degradation in Cytophaga hutchinsonii. Appl Environ Microbiol 2022; 88:e0107622. [PMID: 36197104 PMCID: PMC9599414 DOI: 10.1128/aem.01076-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Cytophaga hutchinsonii digests cellulose through a novel cellulose degradation mechanism. It possesses the lately characterized type IX secretion system (T9SS). We recently discovered that N-glycosylation of the C-terminal domain (CTD) of a hypothetical T9SS substrate protein in the periplasmic space of C. hutchinsonii affects protein secretion and localization. In this study, green fluorescent protein (GFP)-CTDCel9A recombinant protein was found with increased molecular weight in the periplasm of C. hutchinsonii. Site-directed mutagenesis studies on the CTD of cellulase Cel9A demonstrated that asparagine residue 900 in the D-X-N-X-S motif is important for the processing of the recombinant protein. We found that the glycosyltransferase-related protein GtrA (CHU_0012) located in the cytoplasm of C. hutchinsonii is essential for outer membrane localization of the recombinant protein. The deletion of gtrA decreased the abundance of the outer membrane proteins and affected cellulose degradation by C. hutchinsonii. This study provided a link between the glycosylation system and cellulose degradation in C. hutchinsonii. IMPORTANCE N-Glycosylation systems are generally limited to some pathogenic bacteria in prokaryotes. The disruption of the N-glycosylation pathway is related to adherence, invasion, colonization, and other phenotypic characteristics. We recently found that the cellulolytic bacterium Cytophaga hutchinsonii also has an N-glycosylation system. The cellulose degradation mechanism of C. hutchinsonii is novel and mysterious; cellulases and other proteins on the cell surface are involved in utilizing cellulose. In this study, we identified an asparagine residue in the C-terminal domain of cellulase Cel9A that is necessary for the processing of the T9SS cargo protein. Moreover, the glycosyltransferase-related protein GtrA is essential for the localization of the GFP-CTDCel9A recombinant protein. Deletion of gtrA affected cellulose degradation and the abundance of outer membrane proteins. This study enriched the understanding of the N-glycosylation system in C. hutchinsonii and provided a link between N-glycosylation and cellulose degradation, which also expanded the role of the N-glycosylation system in bacteria.
Collapse
|
25
|
Szymanski CM. Bacterial glycosylation, it’s complicated. Front Mol Biosci 2022; 9:1015771. [PMID: 36250013 PMCID: PMC9561416 DOI: 10.3389/fmolb.2022.1015771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Each microbe has the ability to produce a wide variety of sugar structures that includes some combination of glycolipids, glycoproteins, exopolysaccharides and oligosaccharides. For example, bacteria may synthesize lipooligosaccharides or lipopolysaccharides, teichoic and lipoteichoic acids, N- and O-linked glycoproteins, capsular polysaccharides, exopolysaccharides, poly-N-acetylglycosamine polymers, peptidoglycans, osmoregulated periplasmic glucans, trehalose or glycogen, just to name a few of the more broadly distributed carbohydrates that have been studied. The composition of many of these glycans are typically dissimilar from those described in eukaryotes, both in the seemingly endless repertoire of sugars that microbes are capable of synthesizing, and in the unique modifications that are attached to the carbohydrate residues. Furthermore, strain-to-strain differences in the carbohydrate building blocks used to create these glycoconjugates are the norm, and many strains possess additional mechanisms for turning on and off transferases that add specific monosaccharides and/or modifications, exponentially contributing to the structural heterogeneity observed by a single isolate, and preventing any structural generalization at the species level. In the past, a greater proportion of research effort was directed toward characterizing human pathogens rather than commensals or environmental isolates, and historically, the focus was on microbes that were simple to grow in large quantities and straightforward to genetically manipulate. These studies have revealed the complexity that exists among individual strains and have formed a foundation to better understand how other microbes, hosts and environments further transform the glycan composition of a single isolate. These studies also motivate researchers to further explore microbial glycan diversity, particularly as more sensitive analytical instruments and methods are developed to examine microbial populations in situ rather than in large scale from an enriched nutrient flask. This review emphasizes many of these points using the common foodborne pathogen Campylobacter jejuni as the model microbe.
Collapse
|
26
|
Smith AA, Corona-Torres R, Hewitt RE, Stevens MP, Grant AJ. Modification of avian pathogenic Escherichia coli χ7122 lipopolysaccharide increases accessibility to glycoconjugate antigens. Microb Cell Fact 2022; 21:181. [PMID: 36071433 PMCID: PMC9449299 DOI: 10.1186/s12934-022-01903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Worldwide, an estimated 70.7 billion broilers were produced in 2020. With the reduction in use of prophylactic antibiotics as a result of consumer pressure and regulatory oversight alternative approaches, such as vaccination, are required to control bacterial infections. A potential way to produce a multivalent vaccine is via the generation of a glycoconjugate vaccine which consists of an antigenic protein covalently linked to an immunogenic carbohydrate. Protein-glycan coupling technology (PGCT) is an approach to generate glycoconjugates using enzymes that can couple proteins and glycan when produced in bacterial cells. Previous studies have used PGCT to generate a live-attenuated avian pathogenic Escherichia coli (APEC) strain capable of N-glycosylation of target proteins using a chromosomally integrated Campylobacter jejuni pgl locus. However, this proved ineffective against C. jejuni challenge. Results In this study we demonstrate the lack of surface exposure of glycosylated protein in APEC strain χ7122 carrying the pgl locus. Furthermore, we hypothesise that this may be due to the complex cell-surface architecture of E. coli. To this end, we removed the lipopolysaccharide O-antigen of APEC χ7122 pgl+ via deletion of the wecA gene and demonstrate increased surface exposure of glycosylated antigens (NetB and FlpA) in this strain. We hypothesise that increasing the surface expression of the glycosylated protein would increase the chance of host immune cells being exposed to the glycoconjugate, and therefore the generation of an efficacious immune response would be more likely. Conclusions Our results demonstrate an increase in cell surface exposure and therefore accessibility of glycosylated antigens upon removal of lipopolysaccharide antigen from the APEC cell surface.
Collapse
Affiliation(s)
- Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Ricardo Corona-Torres
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| | | |
Collapse
|
27
|
Song W, Zhuang X, Tan Y, Qi Q, Lu X. The type IX secretion system: Insights into its function and connection to glycosylation in Cytophaga hutchinsonii. ENGINEERING MICROBIOLOGY 2022; 2:100038. [PMID: 39629027 PMCID: PMC11611037 DOI: 10.1016/j.engmic.2022.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/06/2024]
Abstract
The recently discovered type IX secretion system (T9SS) is limited to the Bacteroidetes phylum. Cytophaga hutchinsonii, a member of the Bacteroidetes phylum widely spread in soil, has complete orthologs of T9SS components and many T9SS substrates. C. hutchinsonii can efficiently degrade crystalline cellulose using a novel strategy, in which bacterial cells must be in direct contact with cellulose. It can rapidly glide over surfaces via unclear mechanisms. Studies have shown that T9SS plays an important role in cellulose degradation, gliding motility, and ion assimilation in C. hutchinsonii. As reported recently, T9SS substrates are N- or O-glycosylated at their C-terminal domains (CTDs), with N-glycosylation being related to the translocation and outer membrane anchoring of these proteins. These findings have deepened our understanding of T9SS in C. hutchinsonii. In this review, we focused on the research progress on diverse substrates and functions of T9SS in C. hutchinsonii and the glycosylation of its substrates. A model of T9SS functions and the glycosylation of its substrates was proposed.
Collapse
Affiliation(s)
- Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xueke Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yahong Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
28
|
Kay EJ, Mauri M, Willcocks SJ, Scott TA, Cuccui J, Wren BW. Engineering a suite of E. coli strains for enhanced expression of bacterial polysaccharides and glycoconjugate vaccines. Microb Cell Fact 2022; 21:66. [PMID: 35449016 PMCID: PMC9026721 DOI: 10.1186/s12934-022-01792-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Marta Mauri
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Sam J Willcocks
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Timothy A Scott
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
29
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
30
|
Terra VS, Mauri M, Sannasiddappa TH, Smith AA, Stevens MP, Grant AJ, Wren BW, Cuccui J. PglB function and glycosylation efficiency is temperature dependent when the pgl locus is integrated in the Escherichia coli chromosome. Microb Cell Fact 2022; 21:6. [PMID: 34986868 PMCID: PMC8728485 DOI: 10.1186/s12934-021-01728-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. Results We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. Conclusions We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01728-7.
Collapse
Affiliation(s)
- Vanessa S Terra
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK
| | - Marta Mauri
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK
| | - Thippeswamy H Sannasiddappa
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Mark P Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK.
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E7HT, UK.
| | | |
Collapse
|
31
|
Surface Glucan Structures in Aeromonas spp. Mar Drugs 2021; 19:md19110649. [PMID: 34822520 PMCID: PMC8625153 DOI: 10.3390/md19110649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023] Open
Abstract
Aeromonas spp. are generally found in aquatic environments, although they have also been isolated from both fresh and processed food. These Gram-negative, rod-shaped bacteria are mostly infective to poikilothermic animals, although they are also considered opportunistic pathogens of both aquatic and terrestrial homeotherms, and some species have been associated with gastrointestinal and extraintestinal septicemic infections in humans. Among the different pathogenic factors associated with virulence, several cell-surface glucans have been shown to contribute to colonization and survival of Aeromonas pathogenic strains, in different hosts. Lipopolysaccharide (LPS), capsule and α-glucan structures, for instance, have been shown to play important roles in bacterial–host interactions related to pathogenesis, such as adherence, biofilm formation, or immune evasion. In addition, glycosylation of both polar and lateral flagella has been shown to be mandatory for flagella production and motility in different Aeromonas strains, and has also been associated with increased bacterial adhesion, biofilm formation, and induction of the host proinflammatory response. The main aspects of these structures are covered in this review.
Collapse
|
32
|
Cain JA, Dale AL, Cordwell SJ. Exploiting pglB Oligosaccharyltransferase-Positive and -Negative Campylobacter jejuni and a Multiprotease Digestion Strategy to Identify Novel Sites Modified by N-Linked Protein Glycosylation. J Proteome Res 2021; 20:4995-5009. [PMID: 34677046 DOI: 10.1021/acs.jproteome.1c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a bacterial pathogen encoding a unique N-linked glycosylation (pgl) system that mediates attachment of a heptasaccharide to N-sequon-containing membrane proteins by the PglB oligosaccharyltransferase (OST). Many targets of PglB are known, yet only a fraction of sequons are experimentally confirmed, and site occupancy remains elusive. We exploited pglB-positive (wild-type; WT) and -negative (ΔpglB) proteomes to identify potential glycosites. The nonglycosylated forms of known glycopeptides were typically increased in protein normalized abundance in ΔpglB relative to WT and restored by pglB reintroduction (ΔpglB::pglB). Sequon-containing peptide abundances were thus consistent with significant site occupancy in the presence of the OST. Peptides with novel sequons were either unaltered (likely not glycosylated) or showed abundance consistent with known glycopeptides. Topology analysis revealed that unaltered sequons often displayed cytoplasmic localization, despite originating from membrane proteins. Novel glycosites were confirmed using parallel multiprotease digestion, LC-MS/MS, and FAIMS-MS to define the glycoproteomes of WT and ΔpglB::pglB C. jejuni. We identified 142 glycosites, of which 32 were novel, and 83% of sites predicted by proteomics were validated. There are now 166 experimentally verified C. jejuni glycosites and evidence for occupancy or nonoccupancy of 31 additional sites. This study serves as a model for the use of OST-negative cells and proteomics for highlighting novel glycosites and determining occupancy in a range of organisms.
Collapse
Affiliation(s)
- Joel A Cain
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Ashleigh L Dale
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
33
|
Lopes GV, Ramires T, Kleinubing NR, Scheik LK, Fiorentini ÂM, Padilha da Silva W. Virulence factors of foodborne pathogen Campylobacterjejuni. Microb Pathog 2021; 161:105265. [PMID: 34699927 DOI: 10.1016/j.micpath.2021.105265] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Campylobacter jejuni is a highly frequent cause of gastrointestinal foodborne disease in humans throughout the world. Disease outcomes vary from mild to severe diarrhea, and in rare cases the Guillain-Barré syndrome or reactive arthritis can develop as a post-infection complication. Transmission to humans usually occurs via the consumption of a range of foods, especially those associated with the consumption of raw or undercooked poultry meat, unpasteurized milk, and water-based environmental sources. When associated to food or water ingestion, the C. jejuni enters the human host intestine via the oral route and colonizes the distal ileum and colon. When it adheres and colonizes the intestinal cell surfaces, the C. jejuni is expected to express several putative virulence factors, which cause damage to the intestine either directly, by cell invasion and/or production of toxin(s), or indirectly, by triggering inflammatory responses. This review article highlights various C. jejuni characteristics - such as motility and chemotaxis - that contribute to the biological fitness of the pathogen, as well as factors involved in human host cell adhesion and invasion, and their potential role in the development of the disease. We have analyzed and critically discussed nearly 180 scientific articles covering the latest improvements in the field.
Collapse
Affiliation(s)
- Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Caixa Postal 354, 96160-000, Pelotas, RS, Brazil.
| |
Collapse
|
34
|
Pratama F, Linton D, Dixon N. Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria. Microb Cell Fact 2021; 20:198. [PMID: 34649588 PMCID: PMC8518210 DOI: 10.1186/s12934-021-01689-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01689-x.
Collapse
Affiliation(s)
- Fenryco Pratama
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.,Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dennis Linton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, M1 7DN, UK. .,Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
35
|
N-glycosylation of a cargo protein C-terminal domain recognized by the type IX secretion system in Cytophaga hutchinsonii affects protein secretion and localization. Appl Environ Microbiol 2021; 88:e0160621. [PMID: 34644163 DOI: 10.1128/aem.01606-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii is a Gram-negative bacterium belonging to the phylum Bacteroidetes. It digests crystalline cellulose with an unknown mechanism, and possesses a type IX secretion system (T9SS) that can recognize the C-terminal domain (CTD) of the cargo protein as a signal. In this study, the functions of CTD in the secretion and localization of T9SS substrates in C. hutchinsonii were studied by fusing the green fluorescent protein (GFP) with CTD from CHU_2708. CTD is necessary for the secretion of GFP by C. hutchinsonii T9SS. The GFP-CTDCHU_2708 fusion protein was found to be glycosylated in the periplasm with a molecular mass about 5 kDa higher than that predicted from its sequence. The glycosylated protein was sensitive to peptide-N-glycosidase F which can hydrolyze N-linked oligosaccharides. Analyses of mutants obtained by site-directed mutagenesis of asparagine residues in the N-X-S/T motif of CTDCHU_2708 suggest that N-glycosylation occurred on the CTD. CTD N-glycosylation is important for the secretion and localization of GFP-CTD recombinant proteins in C. hutchinsonii. Glycosyltransferase encoding gene chu_3842, a homologous gene of Campylobacter jejuni pglA, was found to participate in the N-glycosylation of C. hutchinsonii. Deletion of chu_3842 affected cell motility, cellulose degradation, and cell resistance to some chemicals. Our study provided the evidence that CTD as the signal of T9SS was N-glycosylated in the periplasm of C. hutchinsonii. IMPORTANCE The bacterial N-glycosylation system has previously only been found in several species of Proteobacteria and Campylobacterota, and the role of N-linked glycans in bacteria is still not fully understood. C. hutchinsonii has a unique cell-contact cellulose degradation mechanism, and many cell surface proteins including cellulases are secreted by the T9SS. Here, we found that C. hutchinsonii, a member of the phylum Bacteroidetes, has an N-glycosylation system. Glycosyltransferase CHU_3842 was found to participate in the N-glycosylation of C. hutchinsonii proteins, and had effects on cell resistance to some chemicals, cell motility, and cellulose degradation. Moreover, N-glycosylation occurs on the CTD translocation signal of T9SS. The glycosylation of CTD apears to play an important role in affecting T9SS substrates transportation and localization. This study enriched our understanding of the widespread existence and multiple biological roles of N-glycosylation in bacteria.
Collapse
|
36
|
Mauri M, Sannasiddappa TH, Vohra P, Corona-Torres R, Smith AA, Chintoan-Uta C, Bremner A, Terra VS, Abouelhadid S, Stevens MP, Grant AJ, Cuccui J, Wren BW. Multivalent poultry vaccine development using Protein Glycan Coupling Technology. Microb Cell Fact 2021; 20:193. [PMID: 34600535 PMCID: PMC8487346 DOI: 10.1186/s12934-021-01682-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. RESULTS We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. CONCLUSIONS We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost "live-attenuated multivalent vaccine factories" with the ability to express glycoconjugates in poultry.
Collapse
Affiliation(s)
- Marta Mauri
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Thippeswamy H Sannasiddappa
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Prerna Vohra
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Ricardo Corona-Torres
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Alexander A Smith
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK
| | - Cosmin Chintoan-Uta
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Abi Bremner
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Vanessa S Terra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sherif Abouelhadid
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK.
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, Cambridgeshire, UK.
| | - Jon Cuccui
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
37
|
Cain JA, Dale AL, Sumer-Bayraktar Z, Solis N, Cordwell SJ. Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol Omics 2021; 16:287-304. [PMID: 32347268 DOI: 10.1039/d0mo00032a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis in humans that is primarily associated with the consumption of inadequately prepared poultry products, since the organism is generally thought to be asymptomatic in avian species. Unlike many other microorganisms, C. jejuni is capable of performing extensive post-translational modification (PTM) of proteins by N- and O-linked glycosylation, both of which are required for optimal chicken colonization and human virulence. The biosynthesis and attachment of N-glycans to C. jejuni proteins is encoded by the pgl (protein glycosylation) locus, with the PglB oligosaccharyltransferase (OST) enabling en bloc transfer of a heptasaccharide N-glycan from a lipid carrier in the inner membrane to proteins exposed within the periplasm. Seventy-eight C. jejuni glycoproteins (represented by 134 sites of experimentally verified N-glycosylation) have now been identified, and include inner and outer membrane proteins, periplasmic proteins and lipoproteins, which are generally of poorly defined or unknown function. Despite our extensive knowledge of the targets of this apparently widespread process, we still do not fully understand the role N-glycosylation plays biologically, although several phenotypes, including wild-type stress resistance, biofilm formation, motility and chemotaxis have been related to a functional pgl system. Recent work has described enzymatic processes (nitrate reductase NapAB) and antibiotic efflux (CmeABC) as major targets requiring N-glycan attachment for optimal function, and experimental evidence also points to roles in cell binding via glycan-glycan interactions, protein complex formation and protein stability by conferring protection against host and bacterial proteolytic activity. Here we examine the biochemistry of the N-linked glycosylation system, define its currently known protein targets and discuss evidence for the structural and functional roles of this PTM in individual proteins and globally in C. jejuni pathogenesis.
Collapse
Affiliation(s)
- Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia.
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, 2006, Australia and Charles Perkins Centre, The University of Sydney, Level 4 East, The Hub Building (D17), 2006, Australia. and Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia and Sydney Mass Spectrometry, The University of Sydney, 2006, Australia
| |
Collapse
|
38
|
Sahin Kehribar E, Isilak ME, Bozkurt EU, Adamcik J, Mezzenga R, Seker UOS. Engineering of biofilms with a glycosylation circuit for biomaterial applications. Biomater Sci 2021; 9:3650-3661. [PMID: 33710212 DOI: 10.1039/d0bm02192j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins. Engineering protein-based biomaterials genetically enables desired functions and characteristics. Additionally, utilization of glycosylation for biomaterial engineering can expand possibilities by including saccharides to the inventory of building blocks. Here, de novo glycosylation of Bacillus subtilis amyloid-like biofilm protein TasA using a Campylobacter jejuni glycosylation circuit is proposed to be a novel biomaterial engineering method for increasing adhesiveness of TasA fibrils. A C. jejuni glycosylation motif is genetically incorporated to tasA gene and expressed in Escherichia coli containing the C. jejuni pgl protein glycosylation pathway. Glycosylated TasA fibrils indicate enhanced adsorption on the gold surface without disruption of fibril formation. Our findings suggest that N-linked glycosylation can be a promising tool for engineering protein-based biomaterials specifically regarding adhesion.
Collapse
Affiliation(s)
- Ebru Sahin Kehribar
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| | - Musa Efe Isilak
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| | - Eray Ulas Bozkurt
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| | - Jozef Adamcik
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland and Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, 8092 Zurich, Switzerland and Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Urartu Ozgur Safak Seker
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
39
|
Knoot CJ, Robinson LS, Harding CM. A minimal sequon sufficient for O-linked glycosylation by the versatile oligosaccharyltransferase PglS. Glycobiology 2021; 31:1192-1203. [PMID: 33997889 PMCID: PMC8457361 DOI: 10.1093/glycob/cwab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
Bioconjugate vaccines, consisting of polysaccharides attached to carrier proteins, are enzymatically generated using prokaryotic glycosylation systems in a process termed bioconjugation. Key to bioconjugation are a group of enzymes known as oligosaccharyltransferases (OTases) that transfer polysaccharides to engineered carrier proteins containing conserved amino acid sequences known as sequons. The most recently discovered OTase, PglS, has been shown to have the broadest substrate scope, transferring many different types of bacterial glycans including those with glucose at the reducing end. However, PglS is currently the least understood in terms of the sequon it recognizes. PglS is a pilin-specific O-linking OTase that naturally glycosylates a single protein, ComP. In addition to ComP, we previously demonstrated that an engineered carrier protein containing a large fragment of ComP is also glycosylated by PglS. Here we sought to identify the minimal ComP sequon sufficient for PglS glycosylation. We tested >100 different ComP fragments individually fused to Pseudomonas aeruginosa exotoxin A (EPA), leading to the identification of an 11-amino acid sequence sufficient for robust glycosylation by PglS. We also demonstrate that the placement of the ComP sequon on the carrier protein is critical for stability and subsequent glycosylation. Moreover, we identify novel sites on the surface of EPA that are amenable to ComP sequon insertion and find that Cross-Reactive Material 197 fused to a ComP fragment is also glycosylated. These results represent a significant expansion of the glycoengineering toolbox as well as our understanding of bacterial O-linking sequons.
Collapse
|
40
|
Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines. Proc Natl Acad Sci U S A 2021; 118:2013350118. [PMID: 33380455 PMCID: PMC7812815 DOI: 10.1073/pnas.2013350118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pneumococcal infection-caused diseases are responsible for substantial morbidity and mortality worldwide. Traditional pneumococcal vaccines are developed based on purified capsular polysaccharides (CPS) or CPS conjugated to a protein carrier. Production processes of the traditional vaccines are laborious, and thereby increase the vaccine cost and limit their use in developing nations. A cost-effective pneumococcal vaccine using the recombinant attenuated Salmonella vaccine (RASV) was developed in this study. We cloned and expressed genes for seven serotypes of CPSs in the RASV strain. The RASV-delivered CPSs induced robust humoral and cell-mediated responses and mediated efficient protection of mice against pneumococcal infection. Our work provides an innovative strategy for mass producing low-cost bioconjugated polysaccharide vaccines for needle-free mucosal delivery against pneumococcal infections. Streptococcus pneumoniae capsular polysaccharides (CPSs) are major determinants of bacterial pathogenicity. CPSs of different serotypes form the main components of the pneumococcal vaccines Pneumovax, Prevnar7, and Prevnar13, which substantially reduced the S. pneumoniae disease burden in developed countries. However, the laborious production processes of traditional polysaccharide-based vaccines have raised the cost of the vaccines and limited their impact in developing countries. The aim of this study is to develop a kind of low-cost live vaccine based on using the recombinant attenuated Salmonella vaccine (RASV) system to protect against pneumococcal infections. We cloned genes for seven different serotypes of CPSs to be expressed by the RASV strain. Oral immunization of mice with the RASV-CPS strains elicited robust Th1 biased adaptive immune responses. All the CPS-specific antisera mediated opsonophagocytic killing of the corresponding serotype of S. pneumoniae in vitro. The RASV-CPS2 and RASV-CPS3 strains provided efficient protection of mice against challenge infections with either S. pneumoniae strain D39 or WU2. Synthesis and delivery of S. pneumoniae CPSs using the RASV strains provide an innovative strategy for low-cost pneumococcal vaccine development, production, and use.
Collapse
|
41
|
Elmi A, Nasher F, Dorrell N, Wren B, Gundogdu O. Revisiting Campylobacter jejuni Virulence and Fitness Factors: Role in Sensing, Adapting, and Competing. Front Cell Infect Microbiol 2021; 10:607704. [PMID: 33614526 PMCID: PMC7887314 DOI: 10.3389/fcimb.2020.607704] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world wide and represents a major public health concern. Over the past two decades, significant progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP), and the cellular biology of C. jejuni have improved our basic understanding of this important pathogen. We review key advances in our understanding of the multitude of emerging virulence factors that influence the outcome of C. jejuni–mediated infections. We highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense, adapt and survive in multiple hosts. Finally, we propose cohesive research directions to obtain a comprehensive understanding of C. jejuni virulence mechanisms.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fauzy Nasher
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
42
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
43
|
Thomas C, Nothaft H, Yadav R, Fodor C, Alemka A, Oni O, Bell M, Rada B, Szymanski CM. Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS One 2020; 15:e0244031. [PMID: 33378351 PMCID: PMC7773321 DOI: 10.1371/journal.pone.0244031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ecotin, first described in Escherichia coli, is a potent
inhibitor of a broad range of serine proteases including those typically
released by the innate immune system such as neutrophil elastase (NE). Here we
describe the identification of ecotin orthologs in various
Campylobacter species, including Campylobacter
rectus and Campylobacter showae residing in the
oral cavity and implicated in the development and progression of periodontal
disease in humans. To investigate the function of these ecotins in
vitro, the orthologs from C.
rectus and C. showae were
recombinantly expressed and purified from E.
coli. Using CmeA degradation/protection assays,
fluorescence resonance energy transfer and NE activity assays, we found that
ecotins from C. rectus and C.
showae inhibit NE, factor Xa and trypsin, but not the
Campylobacter jejuni serine protease HtrA or its ortholog
in E. coli, DegP. To further evaluate ecotin
function in vivo, an E. coli
ecotin-deficient mutant was complemented with the C.
rectus and C. showae
homologs. Using a neutrophil killing assay, we demonstrate that the low survival
rate of the E. coli ecotin-deficient mutant
can be rescued upon expression of ecotins from C.
rectus and C. showae. In
addition, the C. rectus and
C. showae ecotins partially compensate for
loss of N-glycosylation and increased protease susceptibility in the related
pathogen, Campylobacter jejuni, thus implicating a similar role
for these proteins in the native host to cope with the protease-rich environment
of the oral cavity.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Ruchi Yadav
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Abofu Alemka
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Oluwadamilola Oni
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Michael Bell
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christine M. Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
- * E-mail:
| |
Collapse
|
44
|
Yakovlieva L, Wood TM, Kemmink J, Kotsogianni I, Koller F, Lassak J, Martin NI, Walvoort MTC. A β-hairpin epitope as novel structural requirement for protein arginine rhamnosylation. Chem Sci 2020; 12:1560-1567. [PMID: 34163919 PMCID: PMC8179230 DOI: 10.1039/d0sc05823h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For canonical asparagine glycosylation, the primary amino acid sequence that directs glycosylation at specific asparagine residues is well-established. Here we reveal that a recently discovered bacterial enzyme EarP, that transfers rhamnose to a specific arginine residue in its acceptor protein EF-P, specifically recognizes a β-hairpin loop. Notably, while the in vitro rhamnosyltransferase activity of EarP is abolished when presented with linear substrate peptide sequences derived from EF-P, the enzyme readily glycosylates the same sequence in a cyclized β-hairpin mimic. Additional studies with other substrate-mimicking cyclic peptides revealed that EarP activity is sensitive to the method used to induce cyclization and in some cases is tolerant to amino acid sequence variation. Using detailed NMR approaches, we established that the active peptide substrates all share some degree of β-hairpin formation, and therefore conclude that the β-hairpin epitope is the major determinant of arginine-rhamnosylation by EarP. Our findings add a novel recognition motif to the existing knowledge on substrate specificity of protein glycosylation, and are expected to guide future identifications of rhamnosylation sites in other protein substrates.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Thomas M Wood
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands .,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University Utrecht The Netherlands
| | - Johan Kemmink
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands
| | - Franziska Koller
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München Planegg/Martinsried Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München Planegg/Martinsried Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University Leiden The Netherlands
| | - Marthe T C Walvoort
- Chemical Biology Group, Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| |
Collapse
|
45
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
46
|
Chan JM, Gori A, Nobbs AH, Heyderman RS. Streptococcal Serine-Rich Repeat Proteins in Colonization and Disease. Front Microbiol 2020; 11:593356. [PMID: 33193266 PMCID: PMC7661464 DOI: 10.3389/fmicb.2020.593356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 01/10/2023] Open
Abstract
Glycosylation of proteins, previously thought to be absent in prokaryotes, is increasingly recognized as important for both bacterial colonization and pathogenesis. For mucosal pathobionts, glycoproteins that function as cell wall-associated adhesins facilitate interactions with mucosal surfaces, permitting persistent adherence, invasion of deeper tissues and transition to disease. This is exemplified by Streptococcus pneumoniae and Streptococcus agalactiae, which can switch from being relatively harmless members of the mucosal tract microbiota to bona fide pathogens that cause life-threatening diseases. As part of their armamentarium of virulence factors, streptococci encode a family of large, glycosylated serine-rich repeat proteins (SRRPs) that facilitate binding to various tissue types and extracellular matrix proteins. This minireview focuses on the roles of S. pneumoniae and S. agalactiae SRRPs in persistent colonization and the transition to disease. The potential of utilizing SRRPs as vaccine targets will also be discussed.
Collapse
Affiliation(s)
- Jia Mun Chan
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Andrea Gori
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Robert S. Heyderman
- NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
47
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
48
|
Dubb RK, Nothaft H, Beadle B, Richards MR, Szymanski CM. N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology 2020; 30:105-119. [PMID: 31588498 DOI: 10.1093/glycob/cwz082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a prevalent gastrointestinal pathogen associated with increasing rates of antimicrobial resistance development. It was also the first bacterium demonstrated to possess a general N-linked protein glycosylation pathway capable of modifying > 80 different proteins, including the primary Campylobacter multidrug efflux pump, CmeABC. Here we demonstrate that N-glycosylation is necessary for the function of the efflux pump and may, in part, explain the evolutionary pressure to maintain this protein modification system. Mutants of cmeA in two common wildtype (WT) strains are highly susceptible to erythromycin (EM), ciprofloxacin and bile salts when compared to the isogenic parental strains. Complementation of the cmeA mutants with the native cmeA allele restores the WT phenotype, whereas expression of a cmeA allele with point mutations in both N-glycosylation sites is comparable to the cmeA mutants. Moreover, loss of CmeA glycosylation leads to reduced chicken colonization levels similar to the cmeA knock-out strain, while complementation fully restores colonization. Reconstitution of C. jejuni CmeABC into Escherichia coli together with the C. jejuni N-glycosylation pathway increases the EM minimum inhibitory concentration and decreases ethidium bromide accumulation when compared to cells lacking the pathway. Molecular dynamics simulations reveal that the protein structures of the glycosylated and non-glycosylated CmeA models do not vary from one another, and in vitro studies show no change in CmeA multimerization or peptidoglycan association. Therefore, we conclude that N-glycosylation has a broader influence on CmeABC function most likely playing a role in complex stability.
Collapse
Affiliation(s)
- Rajinder K Dubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bernadette Beadle
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michele R Richards
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
49
|
Hassan SU, Donia A, Sial U, Zhang X, Bokhari H. Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens. Pathogens 2020; 9:pathogens9090694. [PMID: 32847039 PMCID: PMC7558909 DOI: 10.3390/pathogens9090694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Infectious diseases alone are estimated to result in approximately 40% of the 50 million total annual deaths globally. The importance of basic research in the control of emerging and re-emerging diseases cannot be overemphasized. However, new nanotechnology-based methodologies exploiting unique surface-located glycoproteins or their patterns can be exploited to detect pathogens at the point of use or on-site with high specificity and sensitivity. These technologies will, therefore, affect our ability in the future to more accurately assess risk. The critical challenge is making these new methodologies cost-effective, as well as simple to use, for the diagnostics industry and public healthcare providers. Miniaturization of biochemical assays in lab-on-a-chip devices has emerged as a promising tool. Miniaturization has the potential to shape modern biotechnology and how point-of-care testing of infectious diseases will be performed by developing smart microdevices that require minute amounts of sample and reagents and are cost-effective, robust, and sensitive and specific. The current review provides a short overview of some of the futuristic approaches using simple molecular interactions between glycoproteins and glycoprotein-binding molecules for the efficient and rapid detection of various pathogens at the point of use, advancing the emerging field of glyconanodiagnostics.
Collapse
Affiliation(s)
- Sammer-ul Hassan
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Correspondence: (S.H); (H.B.)
| | - Ahmed Donia
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Usman Sial
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
| | - Xunli Zhang
- Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK;
| | - Habib Bokhari
- Biosciences Department, Faculty of Science, Comsats University Islamabad, Islamabad 45550, Pakistan; (A.D.); (U.S.)
- Correspondence: (S.H); (H.B.)
| |
Collapse
|
50
|
Jaroentomeechai T, Taw MN, Li M, Aquino A, Agashe N, Chung S, Jewett MC, DeLisa MP. Cell-Free Synthetic Glycobiology: Designing and Engineering Glycomolecules Outside of Living Cells. Front Chem 2020; 8:645. [PMID: 32850660 PMCID: PMC7403607 DOI: 10.3389/fchem.2020.00645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycans and glycosylated biomolecules are directly involved in almost every biological process as well as the etiology of most major diseases. Hence, glycoscience knowledge is essential to efforts aimed at addressing fundamental challenges in understanding and improving human health, protecting the environment and enhancing energy security, and developing renewable and sustainable resources that can serve as the source of next-generation materials. While much progress has been made, there remains an urgent need for new tools that can overexpress structurally uniform glycans and glycoconjugates in the quantities needed for characterization and that can be used to mechanistically dissect the enzymatic reactions and multi-enzyme assembly lines that promote their construction. To address this technology gap, cell-free synthetic glycobiology has emerged as a simplified and highly modular framework to investigate, prototype, and engineer pathways for glycan biosynthesis and biomolecule glycosylation outside the confines of living cells. From nucleotide sugars to complex glycoproteins, we summarize here recent efforts that harness the power of cell-free approaches to design, build, test, and utilize glyco-enzyme reaction networks that produce desired glycomolecules in a predictable and controllable manner. We also highlight novel cell-free methods for shedding light on poorly understood aspects of diverse glycosylation processes and engineering these processes toward desired outcomes. Taken together, cell-free synthetic glycobiology represents a promising set of tools and techniques for accelerating basic glycoscience research (e.g., deciphering the "glycan code") and its application (e.g., biomanufacturing high-value glycomolecules on demand).
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - May N. Taw
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mingji Li
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Alicia Aquino
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Ninad Agashe
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Sean Chung
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Center for Synthetic Biology, Northwestern University, Evanston, IL, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States
| | - Matthew P. DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|