1
|
Fayed B, Ashford DA, Hashem AM, Amin MA, El Gazayerly ON, Gregory MA, Smith MCM. Multiplexed integrating plasmids for engineering of the erythromycin gene cluster for expression in Streptomyces spp. and combinatorial biosynthesis. Appl Environ Microbiol 2015; 81:8402-13. [PMID: 26431970 PMCID: PMC4644662 DOI: 10.1128/aem.02403-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/25/2015] [Indexed: 01/11/2023] Open
Abstract
Bacteria in the genus Streptomyces and its close relatives are prolific producers of secondary metabolites with antibiotic activity. Genome sequencing of these bacteria has revealed a rich source of potentially new antibiotic pathways, whose products have never been observed. Moreover, these new pathways can provide novel genes that could be used in combinatorial biosynthesis approaches to generate unnatural analogues of existing antibiotics. We explore here the use of multiple orthologous integrating plasmid systems, based on the int/attP loci from phages TG1, SV1, and ϕBT1, to express the polyketide synthase (PKS) for erythromycin in a heterologous Streptomyces host. Streptomyces strains containing the three polyketide synthase genes eryAI, eryAII, and eryAIII expressed from three different integrated plasmids produced the aglycone intermediate, 6-deoxyerythronolide B (6-dEB). A further pair of integrating plasmids, both derived from the ϕC31 int/attP locus, were constructed carrying a gene cassette for glycosylation of the aglycone intermediates, with or without the tailoring gene, eryF, required for the synthesis of erythronolide B (EB). Liquid chromatography-mass spectrometry of the metabolites indicated the production of angolosaminyl-6-dEB and angolosaminyl-EB. The advantages of using multiplexed integrating plasmids for engineering expression and for combinatorial biosynthesis were demonstrated.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Biology, University of York, York, United Kingdom Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| | - David A Ashford
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Amal M Hashem
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omaima N El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Matthew A Gregory
- Isomerase Therapeutics, Science Village, Chesterford Research Park, Cambridge, United Kingdom
| | | |
Collapse
|
2
|
Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY. Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 2014; 33:15-26. [PMID: 25497361 DOI: 10.1016/j.tibtech.2014.10.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022]
Abstract
Actinomycetes are excellent sources for novel bioactive compounds, which serve as potential drug candidates for antibiotics development. While industrial efforts to find and develop novel antimicrobials have been severely reduced during the past two decades, the increasing threat of multidrug-resistant pathogens and the development of new technologies to find and produce such compounds have again attracted interest in this field. Based on improvements in whole-genome sequencing, novel methods have been developed to identify the secondary metabolite biosynthetic gene clusters by genome mining, to clone them, and to express them in heterologous hosts in much higher throughput than before. These technologies now enable metabolic engineering approaches to optimize production yields and to directly manipulate the pathways to generate modified products.
Collapse
Affiliation(s)
- Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Pep Charusanti
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ewa Maria Musiol-Kroll
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark
| | - Hyun Uk Kim
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, BioInformatics Research Center, and BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
3
|
Luo Q, Hiessl S, Poehlein A, Daniel R, Steinbüchel A. Insights into the microbial degradation of rubber and gutta-percha by analysis of the complete genome of Nocardia nova SH22a. Appl Environ Microbiol 2014; 80:3895-907. [PMID: 24747905 PMCID: PMC4054215 DOI: 10.1128/aem.00473-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of Nocardia nova SH22a was determined in light of the remarkable ability of rubber and gutta-percha (GP) degradation of this strain. The genome consists of a circular chromosome of 8,348,532 bp with a G+C content of 67.77% and 7,583 predicted protein-encoding genes. Functions were assigned to 72.45% of the coding sequences. Among them, a large number of genes probably involved in the metabolism of xenobiotics and hardly degradable compounds, as well as genes that participate in the synthesis of polyketide- and/or nonribosomal peptide-type secondary metabolites, were detected. Based on in silico analyses and experimental studies, such as transposon mutagenesis and directed gene deletion studies, the pathways of rubber and GP degradation were proposed and the relationship between both pathways was unraveled. The genes involved include, inter alia, genes participating in cell envelope synthesis (long-chain-fatty-acid-AMP ligase and arabinofuranosyltransferase), β-oxidation (α-methylacyl-coenzyme A [α-methylacyl-CoA] racemase), propionate catabolism (acyl-CoA carboxylase), gluconeogenesis (phosphoenolpyruvate carboxykinase), and transmembrane substrate uptake (Mce [mammalian cell entry] transporter). This study not only improves our insights into the mechanism of microbial degradation of rubber and GP but also expands our knowledge of the genus Nocardia regarding metabolic diversity.
Collapse
Affiliation(s)
- Quan Luo
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany King Abdulaziz University, Faculty of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Cummings M, Breitling R, Takano E. Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 2014; 351:116-25. [PMID: 24372666 PMCID: PMC4237116 DOI: 10.1111/1574-6968.12365] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Abstract
Nature is providing a bountiful pool of valuable secondary metabolites, many of which possess therapeutic properties. However, the discovery of new bioactive secondary metabolites is slowing down, at a time when the rise of multidrug-resistant pathogens and the realization of acute and long-term side effects of widely used drugs lead to an urgent need for new therapeutic agents. Approaches such as synthetic biology are promising to deliver a much-needed boost to secondary metabolite drug development through plug-and-play optimized hosts and refactoring novel or cryptic bacterial gene clusters. Here, we discuss this prospect focusing on one comprehensively studied class of clinically relevant bioactive molecules, the polyketides. Extensive efforts towards optimization and derivatization of compounds via combinatorial biosynthesis and classical engineering have elucidated the modularity, flexibility and promiscuity of polyketide biosynthetic enzymes. Hence, a synthetic biology approach can build upon a solid basis of guidelines and principles, while providing a new perspective towards the discovery and generation of novel and new-to-nature compounds. We discuss the lessons learned from the classical engineering of polyketide synthases and indicate their importance when attempting to engineer biosynthetic pathways using synthetic biology approaches for the introduction of novelty and overexpression of products in a controllable manner.
Collapse
Affiliation(s)
- Matthew Cummings
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| | - Rainer Breitling
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| | - Eriko Takano
- Faculty of Life Sciences, Manchester Institute of Biotechnology, The University of ManchesterManchester, UK
| |
Collapse
|
5
|
Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol 2009; 85:1227-39. [PMID: 19902203 DOI: 10.1007/s00253-009-2326-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Polyketides comprise one of the major families of natural products. They are found in a wide variety of bacteria, fungi, and plants and include a large number of medically important compounds. Polyketides are biosynthesized by polyketide synthases (PKSs). One of the major groups of polyketides are the macrolides, the activities of which are derived from the presence of a macrolactone ring to which one or more 6-deoxysugars are attached. The core macrocyclic ring is biosynthesized from acyl-CoA precursors by PKS. Genetic manipulation of PKS-encoding genes can result in predictable changes in the structure of the macrolactone component, many of which are not easily achieved through standard chemical derivatization or total synthesis. Furthermore, many of the changes, including post-PKS modifications such as glycosylation and oxidation, can be combined for further structural diversification. This review highlights the current state of novel macrolide production with a focus on the genetic engineering of PKS and post-PKS tailoring genes. Such engineering of the metabolic pathways for macrolide biosynthesis provides attractive alternatives for the production of diverse non-natural compounds. Other issues of importance, including the engineering of precursor pathways and heterologous expression of macrolide biosynthetic genes, are also considered.
Collapse
|
6
|
Abstract
Many bioactive compounds contain as part of their molecules one or more deoxysugar units. Their presence in the final compound is generally necessary for biological activity. These sugars derive from common monosaccharides, like d-glucose, which have lost one or more hydroxyl groups (monodeoxysugars, dideoxysugars, trideoxysugars) during their biosynthesis. These deoxysugars are transferred to the final molecule by the action of a glycosyltransferase. Here, we first summarize the different biosynthetic steps required for the generation of the different families of deoxysugars, including those containing extra methyl or amino groups, or tailoring modifications of the glycosylated compounds. We then give examples of several strategies for modification of the glycosylation pattern of a given bioactive compound: inactivation of genes involved in the biosynthesis of deoxysugars; heterologous expression of genes for the biosynthesis or transfer of a specific deoxysugar; and combinatorial biosynthesis (including the use of gene cassette plasmids). Finally, we report techniques for the isolation and detection of the new glycosylated derivatives generated using these strategies.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
7
|
Gaisser S, Carletti I, Schell U, Graupner PR, Sparks TC, Martin CJ, Wilkinson B. Glycosylation engineering of spinosyn analogues containing an L-olivose moiety. Org Biomol Chem 2009; 7:1705-8. [PMID: 19343260 DOI: 10.1039/b900233b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biosynthetic genes encoding proteins involved in the first steps of deoxyhexose biosynthesis from D-glucose-1-phosphate were expressed in Saccharopolyspora erythraea. The resulting mutant was able to accumulate and utilise TDP-L-olivose. Co-expression of the spinosyn glycosyl transferase SpnP in the resulting mutant endowed upon it the ability to biotransform exogenously added spinosyn aglycones to yield novel spinosyn analogues.
Collapse
Affiliation(s)
- Sabine Gaisser
- Biotica Technology Ltd, Chesterford Research Park, Cambridge, UK CB10 1XL
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhao P, Ueda JY, Kozone I, Chijiwa S, Takagi M, Kudo F, Nishiyama M, Shin-ya K, Kuzuyama T. New glycosylated derivatives of versipelostatin, the GRP78/Bip molecular chaperone down-regulator, from Streptomyces versipellis 4083-SVS6. Org Biomol Chem 2009; 7:1454-60. [PMID: 19300832 DOI: 10.1039/b817312e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four novel glycosylated derivatives of versipelostatin (1), versipelostatins B-E (2-5), were isolated from the culture broth of Streptomyces versipellis 4083-SVS6. The inhibitory activities of the isolated compounds against the expression of molecular chaperone GRP78 induced by 2-deoxyglucose were evaluated. Of the five versipelostatin family members, 1 and 4 were the more potent with IC(50) values of 3.5 and 4.3 microM. These results suggest that the alpha-L-oleandropyranosyl (1-->4)-beta-D-digitoxopyranosyl residue in the sugar moiety may play an important role in down-regulating GRP78 expression induced by 2-deoxyglucose.
Collapse
Affiliation(s)
- Ping Zhao
- Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Basnet DB, Park JW, Yoon YJ. Combinatorial biosynthesis of 5-O-desosaminyl erythronolide A as a potent precursor of ketolide antibiotics. J Biotechnol 2008; 135:92-6. [DOI: 10.1016/j.jbiotec.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/14/2008] [Accepted: 03/11/2008] [Indexed: 11/28/2022]
|
11
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
12
|
Schell U, Haydock SF, Kaja AL, Carletti I, Lill RE, Read E, Sheehan LS, Low L, Fernandez MJ, Grolle F, McArthur HAI, Sheridan RM, Leadlay PF, Wilkinson B, Gaisser S. Engineered biosynthesis of hybrid macrolide polyketides containing d-angolosamine and d-mycaminose moieties. Org Biomol Chem 2008; 6:3315-27. [DOI: 10.1039/b807914e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microb Cell Fact 2007; 6:37. [PMID: 18039355 PMCID: PMC2206050 DOI: 10.1186/1475-2859-6-37] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/26/2007] [Indexed: 12/21/2022] Open
Abstract
Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A); a growth slowdown until 52 h (Phase B); and another rapid growth phase from 56 h to 72 h (Phase C) before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides) that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional organization of the chromosomes of micro-organisms producing natural products.
Collapse
|
14
|
Jung WS, Han AR, Hong JSJ, Park SR, Choi CY, Park JW, Yoon YJ. Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an engineered strain of Streptomyces venezuelae. Appl Microbiol Biotechnol 2007; 76:1373-81. [PMID: 17665193 DOI: 10.1007/s00253-007-1101-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
To develop a system for combinatorial biosynthesis of glycosylated macrolides, Streptomyces venezuelae was genetically manipulated to be deficient in the production of its macrolide antibiotics by deletion of the entire biosynthetic gene cluster encoding the pikromycin polyketide synthases and desosamine biosynthetic enzymes. Two engineered deoxysugar biosynthetic pathways for the biosynthesis of thymidine diphosphate (TDP)-D-quinovose or TDP-D-olivose in conjunction with the glycosyltransferase-auxiliary protein pair DesVII/DesVIII derived from S. venezuelae were expressed in the mutant strain. Feeding the representative 12-, 14-, and 16-membered ring macrolactones including 10-deoxymethynolide, narbonolide, and tylactone, respectively, to each mutant strain capable of producing TDP-D-quinovose or TDP-D-olivose resulted in the successful production of the corresponding quinovose- and olivose-glycosylated macrolides. In mutant strains where the DesVII/DesVIII glycosyltransferase-auxiliary protein pair was replaced by TylMII/TylMIII derived from Streptomyces fradiae, quinovosyl and olivosyl tylactone were produced; however, neither glycosylated 10-deoxymethynolide nor narbonolide were generated, suggesting that the glycosyltransferase TylMII has more stringent substrate specificity toward its aglycones than DesVII. These results demonstrate successful generation of structurally diverse hybrid macrolides using a S. venezuelae in vivo system and provide further insight into the substrate flexibility of glycosyltransferases.
Collapse
Affiliation(s)
- Won Seok Jung
- Interdisciplinary Program of Biochemical Engineering and Biotechnology, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-742, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Borisova SA, Zhang C, Takahashi H, Zhang H, Wong AW, Thorson JS, Liu HW. Substrate specificity of the macrolide-glycosylating enzyme pair DesVII/DesVIII: opportunities, limitations, and mechanistic hypotheses. Angew Chem Int Ed Engl 2007; 45:2748-53. [PMID: 16538696 DOI: 10.1002/anie.200503195] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Svetlana A Borisova
- Division of Medicinal Chemistry, College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Thibodeaux CJ, Melançon CE, Liu HW. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007; 446:1008-16. [PMID: 17460661 DOI: 10.1038/nature05814] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The enzymes involved in the biosynthesis of carbohydrates and the attachment of sugar units to biological acceptor molecules catalyse an array of chemical transformations and coupling reactions. In prokaryotes, both common sugar precursors and their enzymatically modified derivatives often become substituents of biologically active natural products through the action of glycosyltransferases. Recently, researchers have begun to harness the power of these biological catalysts to alter the sugar structures and glycosylation patterns of natural products both in vivo and in vitro. Biochemical and structural studies of sugar biosynthetic enzymes and glycosyltransferases, coupled with advances in bioengineering methodology, have ushered in a new era of drug development.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- Institute for Cellular and Molecular Biology, 1 University Station A4810, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
17
|
Salas JA, Méndez C. Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 2007; 15:219-32. [PMID: 17412593 DOI: 10.1016/j.tim.2007.03.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/22/2007] [Indexed: 11/24/2022]
Abstract
Bioactive natural products are frequently glycosylated with saccharide chains of different length, in which the sugars contribute to specific interactions with the biological target. Combinatorial biosynthesis approaches are being used in antibiotic-producing actinomycetes to generate derivatives with novel sugars in their architecture. Recent advances in this area indicate that glycosyltransferases involved in the biosynthesis of natural products have substrate flexibility regarding the sugar donor but also, less frequently, with respect to the aglycon acceptor. Therefore, the possibility exists of altering the glycosylation pattern of natural products, thus enabling an increase in the structural diversity of natural products.
Collapse
Affiliation(s)
- José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain.
| | | |
Collapse
|
18
|
Borisova SA, Zhang C, Takahashi H, Zhang H, Wong AW, Thorson JS, Liu HW. Substrate Specificity of the Macrolide-Glycosylating Enzyme Pair DesVII/DesVIII: Opportunities, Limitations, and Mechanistic Hypotheses. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Oliveira PH, Batagov A, Ward J, Baganz F, Krabben P. Identification of erythrobactin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea. Lett Appl Microbiol 2006; 42:375-80. [PMID: 16599991 DOI: 10.1111/j.1472-765x.2006.01849.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the production of siderophores by Saccharopolyspora erythraea SGT2 and how this production is affected by the inoculum. METHODS AND RESULTS When grown in a low-iron, chemically defined medium (CDM), the soil dwelling actinomycete S. erythraea secretes a substance that is reactive in the nonspecific chrome azurol S (CAS) assay. Importantly, the production of CAS-reactive substance is highly reduced upon the addition of 0.925 micromol l(-1) iron to the cultures and has a peak of production in the late-log to early stationary growth phase. In addition, the culture supernatants tested were negative in the Arnow and Rioux assays but positive in the Csáky procedure. Interestingly, we also found evidence that the production of this CAS-reactive substance in CDM was highly reduced, when inoculated with cells that had been previously grown to late-stationary phase. Conversely, inocula derived from late-log to early stationary cultures presented high levels of CAS activity. CONCLUSIONS These results indicate that S. erythraea produces a hydroxamate-type siderophore that we have generically designated as erythrobactin. Additionally, the inocula growth stage plays a key role in siderophore production in S. erythraea. SIGNIFICANCE AND IMPACT OF THE STUDY It is the first evidence for siderophore synthesis in S. erythraea and one of the first examples of non-polyketide secondary metabolite production by this organism.
Collapse
Affiliation(s)
- P H Oliveira
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | | | | | | | | |
Collapse
|
20
|
Jung WS, Lee SK, Hong JSJ, Park SR, Jeong SJ, Han AR, Sohng JK, Kim BG, Choi CY, Sherman DH, Yoon YJ. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl Microbiol Biotechnol 2006; 72:763-9. [PMID: 16493552 DOI: 10.1007/s00253-006-0318-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Tylosin polyketide synthase (Tyl PKS) was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin PKS gene cluster using two compatible low-copy plasmids, each under the control of a pikAI promoter. The mutant strain produced 0.5 mg/l of the 16-membered ring macrolactone, tylactone, after a 4-day culture, which is a considerably reduced culture period to reach the maximum production level compared to other Streptomyces hosts. To improve the production level of tylactone, several precursors for ethylmalonyl-CoA were fed to the growing medium, leading to a 2.8-fold improvement (1.4 mg/ml); however, switching the pikAI promoter to an actI promoter had no observable effect. In addition, a small amount of desosamine-glycosylated tylactone was detected from the extract of the mutant strain, revealing that the native glycosyltransferase DesVII displayed relaxed substrate specificity in accepting the 16-membered ring macrolactone to produce the glycosylated tylactone. These results demonstrate a successful attempt for a heterologous expression of Tyl PKS in S. venezuelae and introduce S. venezuelae as a rapid heterologous expression system for the production of secondary metabolites.
Collapse
Affiliation(s)
- Won Seok Jung
- Interdisciplinary Program of Biochemical Engineering and Biotechnology, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hill AM. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. Nat Prod Rep 2005; 23:256-320. [PMID: 16572230 DOI: 10.1039/b301028g] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review covers the biosynthesis of aliphatic and aromatic polyketides as well as mixed polyketide/NRPS metabolites, and discusses the molecular genetics and enzymology of the proteins responsible for their formation.
Collapse
|
22
|
Yang M, Proctor MR, Bolam DN, Errey JC, Field RA, Gilbert HJ, Davis BG. Probing the breadth of macrolide glycosyltransferases: in vitro remodeling of a polyketide antibiotic creates active bacterial uptake and enhances potency. J Am Chem Soc 2005; 127:9336-7. [PMID: 15984838 DOI: 10.1021/ja051482n] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycan portion of macrolide antibiotics modulates their efficacy. High-level expression of three macrolide GTs and kinetic analysis has revealed a highly selective synthetic "tool kit" with such plasticity that 12 glycan-modified macrolide antibiotics have been readily created. One of these (1-Gal) is enhanced over its parent oleandomycin (1) by "glycotargeting", allowing higher uptake through active internalization by virtue of the attachment of a glycan (Gal) not normally found on 1. Subsequent release of the targeting glycan by endogenous galactosidase activity releases 1.
Collapse
Affiliation(s)
- Min Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The bacterial multienzyme polyketide synthases (PKSs) produce a diverse array of products that have been developed into medicines, including antibiotics and anticancer agents. The modular genetic architecture of these PKSs suggests that it might be possible to engineer the enzymes to produce novel drug candidates, a strategy known as 'combinatorial biosynthesis'. So far, directed engineering of modular PKSs has resulted in the production of more than 200 new polyketides, but key challenges remain before the potential of combinatorial biosynthesis can be fully realized.
Collapse
Affiliation(s)
- Kira J Weissman
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
24
|
Salas JA, Méndez C. Biosynthesis Pathways for Deoxysugars in Antibiotic-Producing Actinomycetes: Isolation, Characterization and Generation of Novel Glycosylated Derivatives. J Mol Microbiol Biotechnol 2005; 9:77-85. [PMID: 16319497 DOI: 10.1159/000088838] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many bioactive natural products synthesized by actinomycetes are glycosylated compounds in which the appended sugars contribute to specific interactions with their biological target. Most of these sugars are 6-deoxyhexoses, of which more than 70 different forms have been identified, and an increasing number of gene clusters involved in 6-deoxyhexoses biosynthesis are being characterized from antibiotic-producing actinomycetes. Novel glycosylated compounds have been generated by modifying natural deoxysugar biosynthesis pathways in the producer organisms, and/or the simultaneous expression in these strains of selected deoxysugar biosynthesis genes from other strains. Non-producing strains endowed with the capacity to synthesize novel deoxysugars through the expression of engineered deoxysugar biosynthesis clusters can also be used as alternative hosts. Transfer of these deoxysugars to a multiplicity of aglycones relies upon the existence of glycosyltransferases with an inherent degree of 'relaxed substrate specificity'. In this review, we analyze how the knowledge coming out from isolation and characterization of deoxysugar biosynthesis pathways from actinomycetes is being used to produce novel glycosylated derivatives of natural products.
Collapse
Affiliation(s)
- José A Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain.
| | | |
Collapse
|
25
|
Elling L, Rupprath C, Günther N, Römer U, Verseck S, Weingarten P, Dräger G, Kirschning A, Piepersberg W. An enzyme module system for the synthesis of dTDP-activated deoxysugars from dTMP and sucrose. Chembiochem 2005; 6:1423-30. [PMID: 15977277 DOI: 10.1002/cbic.200500037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A flexible enzyme module system is presented that allows preparative access to important dTDP-activated deoxyhexoses from dTMP and sucrose. The strategic combination of the recombinant enzymes dTMP-kinase and sucrose synthase (SuSy), and the enzymes RmlB (4,6-dehydratase), RmlC (3,5-epimerase) and RmlD (4-ketoreductase) from the biosynthetic pathway of dTDP-beta-L-rhamnose was optimized. The SuSy module (dTMP-kinase, SuSy, +/-RmlB) yielded the precursor dTDP-alpha-D-glucose (2) or the biosynthetic intermediate dTDP-6-deoxy-4-keto-alpha-D-glucose (3) on a 0.2-0.6 g scale with overall yields of 62 % and 72 %, respectively. A two-step strategy in which the SuSy module was followed by the deoxysugar module (RmlC and RmlD) resulted in the synthesis of dTDP-beta-L-rhamnose (4; 24.1 micromol, overall yield: 35.9 %). Substitution of RmlC by DnmU from the dTDP-beta-L-daunosamine pathway of Streptomyces peucetius in this module demonstrated that DnmU acts in vitro as a 3,5-epimerase with 3 as substrate to yield 4 (32.2 mumol, overall yield: 44.7 %). Chemical reduction of 3 with NaBH4 gave a mixture of the C-4 epimers dTDP-alpha-D-quinovose (6) and dTDP-alpha-D-fucose (7) in a ratio of 2:1. In summary, the modular character of the presented enzyme system provides valuable compounds for the biochemical characterization of deoxysugar pathways playing a major role in microbial producers of antibiotic and antitumour agents.
Collapse
Affiliation(s)
- Lothar Elling
- Department of Biotechnology/Biomaterial Sciences and Helmholtz Institute for Biomedical Engineering, RWTH Aachen, Worringerweg 1, 52056 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Melançon CE, Takahashi H, Liu HW. Characterization of tylM3/tylM2 and mydC/mycB pairs required for efficient glycosyltransfer in macrolide antibiotic biosynthesis. J Am Chem Soc 2005; 126:16726-7. [PMID: 15612702 DOI: 10.1021/ja043900e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heterologous expression of tylM3 and mydC, two homologous genes of previously unknown function, along with genes encoding their respective partner glycosyltransferases, tylM2 and mycB, and the necessary sugar biosynthesis genes significantly enhances the glycosyltransferase activity in the engineered Streptomyces venezuelae host in which the native glycosyltransferase, desVII, has been inactivated. Both glycosyltransferases accept the endogenous 12-membered macrolide, 10-deoxymethynolide, or the exogenously fed 16-membered macrolide, tylactone. Five new compounds were generated using this expression system. This work suggests that the 13 other known TylM3/MydC/DesVIII homologues found in macrolide and anthracycline antibiotic clusters likely function as glycosyltransferase auxiliary proteins as well. These findings will greatly assist endeavors to generate new natural products in these pathways in a combinatorial fashion.
Collapse
Affiliation(s)
- Charles E Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, TX 78712, USA
| | | | | |
Collapse
|
27
|
Pelzer S, Wohlert SE, Vente A. Tool-box: tailoring enzymes for bio-combinatorial lead development and as markers for genome-based natural product lead discovery. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:233-59. [PMID: 15645724 DOI: 10.1007/3-540-27055-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- S Pelzer
- Microbiology/Biotechnology, Eberhard-Karls-Universität Tübingen, Germany.
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Robert McDaniel
- Kosan Biosciences, 3832 Bay Center Place, Hayward, California 94545, USA.
| | | | | |
Collapse
|
29
|
Lombó F, Gibson M, Greenwell L, Braña AF, Rohr J, Salas JA, Méndez C. Engineering Biosynthetic Pathways for Deoxysugars: Branched-Chain Sugar Pathways and Derivatives from the Antitumor Tetracenomycin. ACTA ACUST UNITED AC 2004; 11:1709-18. [PMID: 15610855 DOI: 10.1016/j.chembiol.2004.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
Sugar biosynthesis cassette genes have been used to construct plasmids directing the biosynthesis of branched-chain deoxysugars: pFL942 (NDP-L-mycarose), pFL947 (NDP-4-deacetyl-L-chromose B), and pFL946/pFL954 (NDP-2,3,4-tridemethyl-L-nogalose). Expression of pFL942 and pFL947 in S. lividans 16F4, which harbors genes for elloramycinone biosynthesis and the flexible ElmGT glycosyltransferase of the elloramycin biosynthetic pathway, led to the formation of two compounds: 8-alpha-L-mycarosyl-elloramycinone and 8-demethyl-8-(4-deacetyl)-alpha-L-chromosyl-tetracenomycin C, respectively. Expression of pFL946 or pFL954 failed to produce detectable amounts of a novel glycosylated tetracenomycin derivative. Formation of these two compounds represents examples of the sugar cosubstrate flexibility of the ElmGT glycosyltransferase. The use of these cassette plasmids also provided insights into the substrate flexibility of deoxysugar biosynthesis enzymes as the C-methyltransferases EryBIII and MtmC, the epimerases OleL and EryBVII, and the 4-ketoreductases EryBIV and OleU.
Collapse
Affiliation(s)
- Felipe Lombó
- Departamento de Biología Funcional and Instituto Universitario de Oncología, del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Graziani EI, Overk CR, Carter GT. Purification, structure determination, and antimicrobial activity of neutramycins B-G. JOURNAL OF NATURAL PRODUCTS 2003; 66:1149-1153. [PMID: 14510587 DOI: 10.1021/np0301691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Neutramycins B-G were purified from a historical sample of neutramycin in our antibiotic collection. The structures of the compounds were solved by 2D NMR spectroscopic analysis. Four of the compounds (2-5) are probable biosynthetic intermediates or shunt metabolites of neutramycin biosynthesis, while two (6, 7) are likely to be degradation products. Only one intermediate (5) showed weak Gram-positive activity.
Collapse
Affiliation(s)
- Edmund I Graziani
- Department of Chemical and Screening Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, New York 10965, USA.
| | | | | |
Collapse
|
31
|
Walsh C, Freel Meyers CL, Losey HC. Antibiotic glycosyltransferases: antibiotic maturation and prospects for reprogramming. J Med Chem 2003; 46:3425-36. [PMID: 12877577 DOI: 10.1021/jm030257i] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
32
|
Petkovic H, Hunter IS, Raspor P. Engineering of polyketide synthases: how close are we to the reality? Acta Microbiol Immunol Hung 2003; 49:493-500. [PMID: 12512258 DOI: 10.1556/amicr.49.2002.4.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- H Petkovic
- Biotica Technology Limited, 181A Huntingdon Road, Cambridge, UK
| | | | | |
Collapse
|
33
|
Losey HC, Jiang J, Biggins JB, Oberthür M, Ye XY, Dong SD, Kahne D, Thorson JS, Walsh CT. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. CHEMISTRY & BIOLOGY 2002; 9:1305-14. [PMID: 12498883 DOI: 10.1016/s1074-5521(02)00270-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analogs of the glycopeptide antibiotics vancomycin and teicoplanin with alterations in one or both sugar moieties of the disaccharide have been prepared by tandem action of the vancomycin pathway glycosyltransferases GtfE and GtfD. All four regioisomers (2-, 3-, 4-, 6-) of TDP-deoxyglucoses and UDP/TDP-aminoglucoses were prepared, predominantly by action of D-glucopyranosyl-1-phosphate thymidylyltransferase, E(p). GtfE transferred the deoxyglucoses or aminoglucoses onto the 4-OH of 4-hydroxyphenylglycine of both the vancomycin and teicoplanin aglycone scaffolds. Kinetic analysis indicated the 2-, 3-, 4-, and 6-amino-glucoses were transferred by GtfE with only a 4- to 30-fold drop in k(cat) and no effect on K(m) compared to the native substrate, UDP/TDP-glucose, suggesting preparative utility. The next enzyme, GtfD, could utilize the variant glucosyl-peptides as substrates for transfer of L-4-epi-vancosamine. The aminosugar moieties in these variant glycopeptides introduce sites for acylation or reductive alkylation.
Collapse
Affiliation(s)
- Heather C Losey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reeves AR, Weber G, Cernota WH, Weber JM. Analysis of an 8.1-kb DNA fragment contiguous with the erythromycin gene cluster of Saccharopolyspora erythraea in the eryCI-flanking region. Antimicrob Agents Chemother 2002; 46:3892-9. [PMID: 12435693 PMCID: PMC132777 DOI: 10.1128/aac.46.12.3892-3899.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An 8.1-kb region of the Saccharopolyspora erythraea genome, significant for its contiguity to the known genes of the erythromycin biosynthetic gene cluster, was mutationally analyzed and its DNA sequence was determined. The region lies immediately adjacent to eryCI. The newly characterized region is notable for a large, 3.0-kb segment, predicted not to be translated, followed by four probable genes: an acetyltransferase gene, a protease inhibitor gene, a methyltransferase gene, and a transposase gene. Because the probable functions of the genes in this region are not required for erythromycin biosynthesis or resistance and because a deletion of a 6.0-kb portion of this region had no effect on erythromycin biosynthesis, this region marks the outside boundary of the erythromycin gene cluster. Therefore, eryCI represents the end of the cluster. These results complete the analysis of the erythromycin gene cluster and eliminate the possibility that additional sought-after pathway-specific structural or regulatory genes might be found within or adjacent to the cluster.
Collapse
|
35
|
Abstract
Carbohydrates are highly abundant biomolecules found extensively in nature. Besides playing important roles in energy storage and supply, they often serve as essential biosynthetic precursors or structural elements needed to sustain all forms of life. A number of unusual sugars that have certain hydroxyl groups replaced by a hydrogen, an amino group, or an alkyl side chain play crucial roles in determining the biological activity of the parent natural products in bacterial lipopolysaccharides or secondary metabolite antibiotics. Recent investigation of the biosynthesis of these monosaccharides has led to the identification of the gene clusters whose protein products facilitate the unusual sugar formation from the ubiquitous NDP-glucose precursors. This review summarizes the mechanistic studies of a few enzymes crucial to the biosynthesis of C-2, C-3, C-4, and C-6 deoxysugars, the characterization and mutagenesis of nucleotidyl transferases that can recognize and couple structural analogs of their natural substrates and the identification of glycosyltransferases with promiscuous substrate specificity. Information gleaned from these studies has allowed pathway engineering, resulting in the creation of new macrolides with unnatural deoxysugar moieties for biological activity screening. This represents a significant progress toward our goal of searching for more potent agents against infectious diseases and malignant tumors.
Collapse
Affiliation(s)
- Xuemei M He
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
36
|
Thomas I, Martin CJ, Wilkinson CJ, Staunton J, Leadlay PF. Skipping in a hybrid polyketide synthase. Evidence for ACP-to-ACP chain transfer. CHEMISTRY & BIOLOGY 2002; 9:781-7. [PMID: 12144921 DOI: 10.1016/s1074-5521(02)00164-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetraketide synthase containing a loading module (LM), the extension modules erythromycin module 1, rapamycin module 2, and erythromycin module 2 (LM-Ery1-Rap2-Ery2-TE), when expressed in Saccharopolyspora erythraea strain JC2, produced as previously reported a mixture of tetraketide lactones (minor products) and triketide lactones (major products). Several alternative plausible mechanisms by which this "skipping" phenomenon might occur may be proposed. Site-directed mutagenesis of the ketosynthase (KS) and acylcarrier protein (ACP) domains in the interpolated module has shown that skipping within the hybrid PKS involves passage of the growing polyketide through the interpolated module, by direct ACP-to-ACP transfer of the polyketide chain.
Collapse
Affiliation(s)
- Iain Thomas
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Butler AR, Bate N, Kiehl DE, Kirst HA, Cundliffe E. Genetic engineering of aminodeoxyhexose biosynthesis in Streptomyces fradiae. Nat Biotechnol 2002; 20:713-6. [PMID: 12089557 DOI: 10.1038/nbt0702-713] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antibacterial properties of macrolide antibiotics (such as erythromycin, tylosin, and narbomycin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as narbomycin) have only single sugar substituents. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the narbomycin producer Streptomyces narbonensis. This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.
Collapse
Affiliation(s)
- Andrew R Butler
- Biochemistry Department, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | |
Collapse
|
38
|
Rodríguez L, Aguirrezabalaga I, Allende N, Braña AF, Méndez C, Salas JA. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. CHEMISTRY & BIOLOGY 2002; 9:721-9. [PMID: 12079784 DOI: 10.1016/s1074-5521(02)00154-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A plasmid (pLN2) was generated in which genes involved in the biosynthesis of L-oleandrose in the oleandomycin producer Streptomyces antibioticus ATCC11891 were cloned. pLN2 was used to direct the biosynthesis of different deoxysugars by exchanging and/or adding genes from other antibiotic biosynthetic clusters. Transfer of the synthesized deoxysugars to the tetracenomycin C aglycon, 8-demethyl-tetracenomycin C, through the use of the "sugar flexible" glycosyltransferase ElmGT, validated the system. Several pLN2 derivatives were constructed by replacement of the oleU 4-ketoreductase gene by different 4-ketoreductase genes. Some of them, such as EryBIV and UrdR, reduced the keto group of the 4-keto intermediates, generating L-olivosyl and D-olivosyl derivatives, respectively. The system was also used to generate an L-rhamnosyl derivative (through a two-gene deletion) and an L-rhodinosyl derivative (through a combination of a gene replacement and a gene addition).
Collapse
Affiliation(s)
- Leticia Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Trefzer A, Blanco G, Remsing L, Künzel E, Rix U, Lipata F, Braña AF, Méndez C, Rohr J, Bechthold A, Salas JA. Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes from three different biosynthetic pathways. J Am Chem Soc 2002; 124:6056-62. [PMID: 12022840 DOI: 10.1021/ja017385l] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterologous expression of the urdGT2 gene from the urdamycin producer Streptomyces fradiae Tü2717, which encodes a C-glycosyltransferase, into mutants of the mithramycin producer Streptomyces argillaceus, in which either one or all glycosyltransferases were inactivated, yielded four novel C-glycosylated premithramycin-type molecules. Structure elucidation revealed these to be 9-C-olivosylpremithramycinone, 9-C-mycarosylpremithramycinone, and their respective 4-O-demethyl analogues. In another experiment, both the urdGT2 gene from S. fradiae and the lanGT1 gene from S. cyanogenus, were coexpressed into a S. argillaceus mutant lacking the MtmGIV glycosyltransferase. This experiment, in which genes from three different organisms were combined, resulted in the production of 9-C-(olivo-1-4-olivosyl)premithramycinone. These results prove the unique substrate flexibility of the C-glycosyltransferase UrdGT2, which tolerates not only a variety of sugar-donor substrates, but also various acceptor substrates. The five new hybrid products also represent the first compounds, in which sugars were attached to a position that is normally unglycosylated. The successful combination of two glycosyltransferases in the latter experiment proves that the design of saccharide side chains by combinatorial biosynthetic methods is possible.
Collapse
Affiliation(s)
- Axel Trefzer
- Albert-Ludwigs-Universität Freiburg im Breisgau, Pharmazeutische Biologie, Stefan-Meier Strasse 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gaisser S, Lill R, Staunton J, Méndez C, Salas J, Leadlay PF. Parallel pathways for oxidation of 14-membered polyketide macrolactones in Saccharopolyspora erythraea. Mol Microbiol 2002; 44:771-81. [PMID: 11994157 DOI: 10.1046/j.1365-2958.2002.02910.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The glycosyltransferases OleG1 and OleG2 and the cytochrome P450 oxidase OleP from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus have been expressed, either separately or from artificial gene cassettes, in strains of Saccharopolyspora erythraea blocked in erythromycin biosynthesis, to investigate their potential for the production of diverse novel macrolides from erythronolide precursors. OleP was found to oxidize 6-deoxyerythronolide B, but not erythronolide B. However, OleP did oxidize derivatives of erythronolide B in which a neutral sugar is attached at C-3. The oxidized products 3-O-mycarosyl-8a-hydroxyerythronolide B, 3-O-mycarosyl-8,8a-epoxyerythronolide B, 6-deoxy-8-hydroxyerythronolide B and the olefin 6-deoxy-8,8a-dehydroerythronolide B were all isolated and their structures determined. When oleP and the mycarosyltransferase eryBV were co-expressed in a gene cassette, 3-O-mycarosyl-6-deoxy-8,8a-dihydroxyerythronolide B was directly obtained. When oleG2 was co-expressed in a gene cassette together with oleP, 6-deoxyerythronolide B was converted into a mixture of 3-O-rhamnosyl-6-deoxy-8,8a-dehydroerythronolide B and 3-O-rhamnosyl-6-deoxy-8,8a-dihydroxyerythronolide B, confirming previous reports that OleG2 can transfer rhamnose, and confirming that oxidation by OleP and attachment of the neutral sugar to the aglycone can occur in either order. Similarly, four different 3-O-mycarosylerythronolides were found to be substrates for the desosaminyltransferase OleG1. These results provide additional insight into the nature of the intermediates in OleP-mediated oxidation, and suggest that oleandomycin biosynthesis might follow parallel pathways in which epoxidation either precedes or follows attachment of the neutral sugar.
Collapse
|
41
|
Wang L, White RL, Vining LC. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1091-1103. [PMID: 11932454 DOI: 10.1099/00221287-148-4-1091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eight additional genes, jadX, O, P, Q, S, T, U and V, in the jad cluster of Streptomyces venezuelae ISP5230, were located immediately downstream of jadN by chromosome walking. Sequence analyses and comparisons implicated them in biosynthesis of the 2,6-dideoxysugar in jadomycin B. The genes were cloned in Escherichia coli, inactivated by inserting an apramycin resistance cassette with a promoter driving transcription of downstream genes, and transferred into Streptomyces venezuelae by intergeneric conjugation. Analysis by HPLC and NMR of intermediates accumulated by cultures of the insertionally inactivated Streptomyces venezuelae mutants indicated that jadO, P, Q, S, T, U and V mediate formation of the dideoxysugar moiety of jadomycin B and its attachment to the aglycone. Based on these results and sequence similarities to genes described in other species producing deoxysugar derivatives, a biosynthetic pathway is proposed in which the jadQ product (glucose-1-phosphate nucleotidyltransferase) activates glucose to its nucleotide diphosphate (NDP) derivative, and the jadT product (a 4,6-dehydratase) converts this to NDP-4-keto-6-deoxy-D-glucose. An NDP-hexose 2,3-dehydratase and an oxidoreductase, encoded by jadO and jadP, respectively, catalyse ensuing reactions that produce an NDP-2,6-dideoxy-D-threo-4-hexulose. The product of jadU (NDP-4-keto-2,6-dideoxy-5-epimerase) converts this intermediate to its L-erythro form and the jadV product (NDP-4-keto-2,6-dideoxyhexose 4-ketoreductase) reduces the keto group of the NDP-4-hexulose to give an activated form of the L-digitoxose moiety in jadomycin B. Finally, a glycosyltransferase encoded by jadS transfers the activated sugar to jadomycin aglycone. The function of jadX is unclear; the gene is not essential for jadomycin B biosynthesis, but its presence ensures complete conversion of the aglycone to the glycoside. The deduced amino acid sequence of a 612 bp ORF (jadR*) downstream of the dideoxysugar biosynthesis genes resembles many TetR-family transcriptional regulator sequences.
Collapse
Affiliation(s)
- Liru Wang
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| | - Robert L White
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J32
| | - Leo C Vining
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4J11
| |
Collapse
|
42
|
Weitnauer G, Gaisser S, Kellenberger L, Leadlay PF, Bechthold A. Analysis of a C-methyltransferase gene (aviG1) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tü57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1. MICROBIOLOGY (READING, ENGLAND) 2002; 148:373-379. [PMID: 11832501 DOI: 10.1099/00221287-148-2-373] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomyces viridochromogenes Tü57 is the principal producer of avilamycin A. aviG1, a putative methyltransferase gene, was detected in the avilamycin biosynthetic gene cluster. To determine the function of aviG1, a targeted gene inactivation experiment was performed. The resulting chromosomal mutant, carrying an in-frame deletion in aviG1, was deficient in avilamycin production. aviG1 was used to complement an eryBIII mutant of the erythromycin A producer Saccharopolyspora erythraea [Gaisser, S., Bohm, G. A., Doumith, M., Raynal, M. C., Dhillon, N., Cortes, J. & Leadlay, P. F. (1998). Mol Gen Genet 258, 78-88]. The presence of erythromycin A in the culture supernatant of the complemented mutant indicated that L-mycarose biosynthesis could be restored and that AviG1 could take over the function of the C-methyltransferase EryBIII.
Collapse
Affiliation(s)
- G Weitnauer
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Biologie, Stefan-Meier Str. 19, 79104 Freiburg, Germany1
| | - S Gaisser
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK2
| | - L Kellenberger
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK2
| | - P F Leadlay
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK2
| | - A Bechthold
- Albert-Ludwigs-Universität Freiburg, Institut für Pharmazeutische Biologie, Stefan-Meier Str. 19, 79104 Freiburg, Germany1
| |
Collapse
|
43
|
Abstract
Many bioactive natural products are glycosylated compounds in which the sugars are important or essential for biological activity. The isolation of several sugar biosynthesis gene clusters and glycosyltransferases from different antibiotic-producing organisms, and the increasing knowledge about these biosynthetic pathways opens up the possibility of generating novel bioactive compounds through combinatorial biosynthesis in the near future. Recent advances in this area indicate that antibiotic glycosyltransferases show some substrate flexibility that might allow us to alter the types of sugar transferred to the different aglycons or, less frequently, to change the position of its attachment.
Collapse
Affiliation(s)
- C Méndez
- Dept Biologia Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
44
|
Gaisser S, Lill R, Wirtz G, Grolle F, Staunton J, Leadlay PF. New erythromycin derivatives from Saccharopolyspora erythraea using sugar O-methyltransferases from the spinosyn biosynthetic gene cluster. Mol Microbiol 2001; 41:1223-31. [PMID: 11555300 DOI: 10.1046/j.1365-2958.2001.02594.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a previously developed expression system based on the erythromycin-producing strain of Saccharopolyspora erythraea, O-methyltransferases from the spinosyn biosynthetic gene cluster of Saccharopolyspora spinosa have been shown to modify a rhamnosyl sugar attached to a 14-membered polyketide macrolactone. The spnI, spnK and spnH methyltransferase genes were expressed individually in the S. erythraea mutant SGT2, which is blocked both in endogenous macrolide biosynthesis and in ery glycosyltransferases eryBV and eryCIII. Exogenous 3-O-rhamnosyl-erythronolide B was efficiently converted into 3-O-(2'-O-methylrhamnosyl)-erythronolide B by the S. erythraea SGT2 (spnI) strain only. When 3-O-(2'-O-methylrhamnosyl)-erythronolide B was, in turn, fed to a culture of S. erythraea SGT2 (spnK), 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was identified in the culture supernatant, whereas S. erythraea SGT2 (spnH) was without effect. These results confirm the identity of the 2'- and 3'-O-methyltransferases, and the specific sequence in which they act, and they demonstrate that these methyltransferases may be used to methylate rhamnose units in other polyketide natural products with the same specificity as in the spinosyn pathway. In contrast, 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was found not to be a substrate for the 4'-O-methyltransferase SpnH. Although rhamnosylerythromycins did not serve directly as substrates for the spinosyn methyltransferases, methylrhamnosyl-erythromycins were obtained by subsequent conversion of the corresponding methylrhamnosyl-erythronolide precursors using the S. erythraea strain SGT2 housing EryCIII, the desosaminyltransferase of the erythromycin pathway. 3-O-(2'-O-methylrhamnosyl)-erythromycin D was tested and found to be significantly active against a strain of erythromycin-sensitive Bacillus subtilis.
Collapse
Affiliation(s)
- S Gaisser
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
45
|
Mendes MV, Recio E, Fouces R, Luiten R, Martín JF, Aparicio JF. Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. CHEMISTRY & BIOLOGY 2001; 8:635-44. [PMID: 11451665 DOI: 10.1016/s1074-5521(01)00033-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The post-polyketide synthase biosynthetic tailoring of polyene macrolides usually involves oxidations catalysed by cytochrome P450 monooxygenases (P450s). Although members from this class of enzymes are common in macrolide biosynthetic gene clusters, their specificities vary considerably toward the substrates utilised and the positions of the hydroxyl functions introduced. In addition, some of them may yield epoxide groups. Therefore, the identification of novel macrolide monooxygenases with activities toward alternative substrates, particularly epoxidases, is a fundamental aspect of the growing field of combinatorial biosynthesis. The specific alteration of these activities should constitute a further source of novel analogues. We investigated this possibility by directed inactivation of one of the P450s belonging to the biosynthetic gene cluster of an archetype polyene, pimaricin. RESULTS A recombinant mutant of the pimaricin-producing actinomycete Streptomyces natalensis produced a novel pimaricin derivative, 4,5-deepoxypimaricin, as a major product. This biologically active product resulted from the phage-mediated targeted disruption of the gene pimD, which encodes the cytochrome P450 epoxidase that converts deepoxypimaricin into pimaricin. The 4,5-deepoxypimaricin has been identified by mass spectrometry and nuclear magnetic resonance following high-performance liquid chromatography purification. CONCLUSIONS We have demonstrated that PimD is the epoxidase responsible for the conversion of 4,5-deepoxypimaricin to pimaricin in S. natalensis. The metabolite accumulated by the recombinant mutant, in which the epoxidase has been knocked out, constitutes the first designer polyene obtained by targeted manipulation of a polyene biosynthetic gene cluster. This novel epoxidase could prove to be valuable for the introduction of epoxy substituents into designer macrolides.
Collapse
Affiliation(s)
- M V Mendes
- Institute of Biotechnology INBIOTEC, Parque Científico de León, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Tang L, McDaniel R. Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. CHEMISTRY & BIOLOGY 2001; 8:547-55. [PMID: 11410374 DOI: 10.1016/s1074-5521(01)00032-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Combinatorial biosynthesis techniques using polyketide synthases (PKSs) in heterologous host organisms have enabled the production of macrolide aglycone libraries in which many positions of the macrolactone ring have been manipulated. However, the deoxysugar moieties of macrolides, absent in previous libraries, play a critical role in contributing to the antimicrobial properties exhibited by compounds such as erythromycin. Since the glycosidic components of polyketides dramatically alter their molecular binding properties, it would be useful to develop general expression hosts and vectors for synthesis and attachment of deoxysugars to expand the nature and size of such polyketide libraries. RESULTS A set of nine deoxysugar biosynthetic and auxiliary genes from the picromycin/methymycin (pik) cluster was integrated in the chromosome of Streptomyces lividans to create a host which synthesizes TDP-D-desosamine. The pik desosaminyl transferase was also included so that when the strain was transformed with a previously constructed library of expression plasmids encoding genetically modified PKSs that produce different macrolactones, the resulting strains produced desosaminylated derivatives. Although conversion of the macrolactones was generally low, bioassays revealed that, unlike their aglycone precursors, these novel macrolides possessed antibiotic activity. CONCLUSIONS Based on the structural differences among the compounds that were glycosylated it appears that the desosaminyl transferase from the pik gene cluster is quite tolerant of changes in the macrolactone substrate. Since others have demonstrated tolerance towards modifications in the sugar substituent, one can imagine employing this approach to alter both polyketide and deoxysugar pathways to produce 'unnatural' natural product libraries.
Collapse
Affiliation(s)
- L Tang
- KOSAN Biosciences, Inc., 3832 Bay Center Place, 94545, Hayward, CA, USA
| | | |
Collapse
|
47
|
Rowe CJ, Böhm IU, Thomas IP, Wilkinson B, Rudd BA, Foster G, Blackaby AP, Sidebottom PJ, Roddis Y, Buss AD, Staunton J, Leadlay PF. Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase. ACTA ACUST UNITED AC 2001; 8:475-85. [PMID: 11358694 DOI: 10.1016/s1074-5521(01)00024-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Modular polyketide synthases catalyse the biosynthesis of medically useful natural products by stepwise chain assembly, with each module of enzyme activities catalysing a separate cycle of polyketide chain extension. Domain swapping between polyketide synthases leads to hybrid multienzymes that yield novel polyketides in a more or less predictable way. No experiments have so far been reported which attempt to enlarge a polyketide synthase by interpolating additional modules. RESULTS We describe here the construction of tetraketide synthases in which an entire extension module from the rapamycin-producing polyketide synthase is covalently spliced between the first two extension modules of the erythromycin-producing polyketide synthase (DEBS). The extended polyketide synthases thus formed are found to catalyse the synthesis of specific tetraketide products containing an appropriate extra ketide unit. Co-expression in Saccharopolyspora erythraea of the extended DEBS multienzyme with multienzymes DEBS 2 and DEBS 3 leads to the formation, as expected, of novel octaketide macrolactones. In each case the predicted products are accompanied by significant amounts of unextended products, corresponding to those of the unaltered DEBS PKS. We refer to this newly observed phenomenon as 'skipping'. CONCLUSIONS The strategy exemplified here shows far-reaching possibilities for combinatorial engineering of polyketide natural products, as well as revealing the ability of modular polyketide synthases to 'skip' extension modules. The results also provide additional insight into the three-dimensional arrangement of modules within these giant synthases.
Collapse
Affiliation(s)
- C J Rowe
- Cambridge Centre for Molecular Recognition and Department of Biochemistry, University of Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Polyketide natural products show great promise as medicinal agents. Typically the products of microbial secondary biosynthesis, polyketides are synthesized by an evolutionarily related but architecturally diverse family of multifunctional enzymes called polyketide synthases. A principal limitation for fundamental biochemical studies of these modular megasynthases, as well as for their applications in biotechnology, is the challenge associated with manipulating the natural microorganism that produces a polyketide of interest. To ameliorate this limitation, over the past decade several genetically amenable microbes have been developed as heterologous hosts for polyketide biosynthesis. Here we review the state of the art as well as the difficulties associated with heterologous polyketide production. In particular, we focus on two model hosts, Streptomyces coelicolor and Escherichia coli. Future directions for this relatively new but growing technological opportunity are also discussed.
Collapse
Affiliation(s)
- B A Pfeifer
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA
| | | |
Collapse
|
49
|
Blanco G, Patallo EP, Braña AF, Trefzer A, Bechthold A, Rohr J, Méndez C, Salas JA. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. CHEMISTRY & BIOLOGY 2001; 8:253-63. [PMID: 11306350 DOI: 10.1016/s1074-5521(01)00010-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elloramycin is an anthracycline-like antitumor drug related to tetracenomycin C which is produced by Streptomyces olivaceus Tü2353. Structurally is a tetracyclic aromatic polyketide derived from the condensation of 10 acetate units. Its chromophoric aglycon is glycosylated with a permethylated L-rhamnose moiety at the C-8 hydroxy group. Only limited information is available about the genes involved in the biosynthesis of elloramycin. From a library of chromosomal DNA from S. olivaceus, a cosmid (16F4) was isolated that contains part of the elloramycin gene cluster and when expressed in Streptomyces lividans resulted in the production of a non-glycosylated intermediate in elloramycin biosynthesis, 8-demethyl-tetracenomycin C (8-DMTC). RESULTS The expression of cosmid 16F4 in several producers of glycosylated antibiotics has been shown to produce tetracenomycin derivatives containing different 6-deoxysugars. Different experimental approaches showed that the glycosyltransferase gene involved in these glycosylation events was located in 16F4. Using degenerated oligoprimers derived from conserved amino acid sequences in glycosyltransferases, the gene encoding this sugar flexible glycosyltransferase (elmGT) has been identified. After expression of elmGT in Streptomyces albus under the control of the erythromycin resistance promoter, ermEp, it was shown that elmG can transfer different monosaccharides (both L- and D-sugars) and a disaccharide to 8-DMTC. Formation of a diolivosyl derivative in the mithramycin producer Streptomyces argillaceus was found to require the cooperative action of two mithramycin glycosyltransferases (MtmGI and MtmGII) responsible for the formation of the diolivosyl disaccharide, which is then transferred by ElmGT to 8-DMTC. CONCLUSIONS The ElmGT glycosyltransferase from S. olivaceus Tü2353 can transfer different sugars into the aglycon 8-DMTC. In addition to its natural sugar substrate L-rhamnose, ElmGT can transfer several L- and D-sugars and also a diolivosyl disaccharide into the aglycon 8-DMTC. ElmGT is an example of sugar flexible glycosyltransferase and can represent an important tool for combinatorial biosynthesis.
Collapse
Affiliation(s)
- G Blanco
- Departamento of Biología, Functional e Instituto Universitario del Principado de Asturias, Universidad de Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Metabolic engineering of natural products is a science that has been built on the goals of traditional strain improvement with the availability of modern molecular biological technologies. In the past 15 years, the state of the art in metabolic engineering of natural products has advanced from the first proof-of-principle experiment based on minimal known genetics to a commonplace event using highly specific and sophisticated gene manipulation methods. With the availability of genes, host organisms, vector systems, and standard molecular biological tools, it is expected that metabolic engineering will be translated into industrial reality.
Collapse
Affiliation(s)
- W R Strohl
- Natural Products Drug Discovery-Microbiology, Merck Research Labs, Rahway, New Jersey 07065, USA.
| |
Collapse
|