1
|
Wickramasinghe HC, Lincoln JN, D'Armond AE, Noble SA, Shen L, Macnaughtan MA. Insights into the association of the Chlamydia trachomatis type III secretion chaperone complex, Scc4:Scc1, from sequential expression in Escherichia coli. Protein Expr Purif 2024; 222:106532. [PMID: 38857716 DOI: 10.1016/j.pep.2024.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Chlamydia trachomatis (CT) is the bacterial pathogen responsible for causing the most common sexually transmitted disease in the United States. This obligate, intracellular Gram-negative bacterium has a type III secretion system (T3SS) to invade host cells. CopN is an important effector, plug protein that mediates early interactions between the host and Chlamydia. CopN is chaperoned by a heterodimer, T3SS chaperone complex containing Scc4 and Scc1. Scc4 is a unique, bifunctional protein that, in addition to its T3SS chaperone activity, acts as an RNA polymerase (RNAP) binding protein. We hypothesized that the two functions occur at different points in CT's developmental cycle with Scc4 acting alone in the early-to-mid stages and the Scc4:Scc1 complex chaperoning CopN in the mid-to-late stages. To study the Scc4:Scc1 complex by NMR, we previously explored various methods of associating Scc4 and Scc1 in vitro to produce the complex with chain-selective isotopic labeling. Though co-expressed Scc4 and Scc1 form a stable complex, the in vitro association studies suggest that partial protein denaturation and/or components in E. coli lysate are necessary to form the stable complex. In this study Scc4 and Scc1 were sequentially expressed in E. coli under the control of different promoters, allowing separate isotopic labeling of each chain and complex formation in vivo. Sequential expression resulted in no or unstable complex formation depending on the culture medium used. These results, taken together with previous in vitro association studies, suggest that Scc4 and Scc1 assemble co-translationally to form the stable Scc4:Scc1 complex in E. coli.
Collapse
Affiliation(s)
| | - Juliette N Lincoln
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Anne E D'Armond
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Sadie A Noble
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, United States
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States; Department of Chemistry and Biochemistry, John Carroll University, University Heights, OH, 44118, United States.
| |
Collapse
|
2
|
Pereira IS, da Cunha M, Leal IP, Luís MP, Gonçalves P, Gonçalves C, Mota LJ. Identification of homologs of the Chlamydia trachomatis effector CteG reveals a family of Chlamydiaceae type III secreted proteins that can be delivered into host cells. Med Microbiol Immunol 2024; 213:15. [PMID: 39008129 PMCID: PMC11249467 DOI: 10.1007/s00430-024-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024]
Abstract
Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.
Collapse
Affiliation(s)
- Inês Serrano Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria da Cunha
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Pacheco Leal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria Pequito Luís
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Paula Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Carla Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
3
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Navarrete KM, Bumba L, Prudnikova T, Malcova I, Allsop TR, Sebo P, Kamanova J. BopN is a Gatekeeper of the Bordetella Type III Secretion System. Microbiol Spectr 2023; 11:e0411222. [PMID: 37036369 PMCID: PMC10269732 DOI: 10.1128/spectrum.04112-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
The classical Bordetella species infect the respiratory tract of mammals. While B. bronchiseptica causes rather chronic respiratory infections in a variety of mammals, the human-adapted species B. pertussis and B. parapertussisHU cause an acute respiratory disease known as whooping cough or pertussis. The virulence factors include a type III secretion system (T3SS) that translocates effectors BteA and BopN into host cells. However, the regulatory mechanisms underlying the secretion and translocation activity of T3SS in bordetellae are largely unknown. We have solved the crystal structure of BopN of B. pertussis and show that it is similar to the structures of gatekeepers that control access to the T3SS channel from the bacterial cytoplasm. We further found that BopN accumulates at the cell periphery at physiological concentrations of calcium ions (2 mM) that inhibit the secretion of BteA and BopN. Deletion of the bopN gene in B. bronchiseptica increased secretion of the BteA effector into calcium-rich medium but had no effect on secretion of the T3SS translocon components BopD and BopB. Moreover, the ΔbopN mutant secreted approximately 10-fold higher amounts of BteA into the medium of infected cells than the wild-type bacteria, but it translocated lower amounts of BteA into the host cell cytoplasm. These data demonstrate that BopN is a Bordetella T3SS gatekeeper required for regulated and targeted translocation of the BteA effector through the T3SS injectisome into host cells. IMPORTANCE The T3SS is utilized by many Gram-negative bacteria to deliver effector proteins from bacterial cytosol directly into infected host cell cytoplasm in a regulated and targeted manner. Pathogenic bordetellae use the T3SS to inject the BteA and BopN proteins into infected cells and upregulate the production of the anti-inflammatory cytokine interleukin-10 (IL-10) to evade host immunity. Previous studies proposed that BopN acted as an effector in host cells. In this study, we report that BopN is a T3SS gatekeeper that regulates the secretion and translocation activity of Bordetella T3SS.
Collapse
Affiliation(s)
- Kevin Munoz Navarrete
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Diversity of σ 66-Specific Promoters Contributes to Regulation of Developmental Gene Expression in Chlamydia trachomatis. J Bacteriol 2023; 205:e0031022. [PMID: 36598485 PMCID: PMC9879106 DOI: 10.1128/jb.00310-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Promoter recognition by the RNA polymerase (RNAP) holoenzyme is a key step in gene regulation. In Chlamydia trachomatis, a medically important obligate intracellular bacterium, σ66 allows the RNAP to initiate promoter-specific transcription throughout the chlamydial developmental cycle. Here, we investigated the intrinsic properties of σ66-specific promoters with emphasis on their role in the developmental gene expression of C. trachomatis. First, we examined whether promoters that contain a 5'-T(-15)G(-14)-3' (TG) motif upstream from the -10 element appear more often than others in genes that are preferentially expressed during the early, middle, or late stages of the C. trachomatis developmental cycle. We then determined the critical genetic elements that are required for transcription initiation in vitro. We also assessed the activity of promoters in the presence of Scc4, which can directly interact with σ66RNAP. Finally, we evaluated the promoter-specific dynamics during C. trachomatis infection using a reporter assay. These results reveal that the TG motif is an important determinant in certain early or late promoters. The TG promoters that have the -35 element are recognized by σ66RNAP and Scc4 differently from those lacking the -35 element. Based on these properties, the σ66-specific promoters can fall into three classes. Architectural diversity, behavioral plasticity, and the specific interplays between promoters and the σ66RNAP likely contribute to developmental gene transcription in C. trachomatis. IMPORTANCE Meticulous promoter elucidation is required to understand the foundations of transcription initiation. However, knowledge of promoter-specific transcription remains limited in C. trachomatis. This work underscores the structural and functional plasticity of σ66-specific promoters that are regulated by σ66RNAP, as well as their importance in the developmental gene regulation of C. trachomatis.
Collapse
|
7
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Designing a Multi-Epitope Vaccine against Chlamydia trachomatis by Employing Integrated Core Proteomics, Immuno-Informatics and In Silico Approaches. BIOLOGY 2021; 10:biology10100997. [PMID: 34681096 PMCID: PMC8533590 DOI: 10.3390/biology10100997] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]
Abstract
Chlamydia trachomatis, a Gram-negative bacterium that infects the rectum, urethra, congenital sites, and columnar epithelium of the cervix. It is a major cause of preventable blindness, ectopic pregnancy, and bacterial sexually transmitted infections worldwide. There is currently no licensed multi-epitope vaccination available for this pathogen. This study used core proteomics, immuno-informatics, and subtractive proteomics approaches to identify the best antigenic candidates for the development of a multi-epitope-based vaccine (MEBV). These approaches resulted in six vaccine candidates: Type III secretion system translocon subunit CopD2, SctW family type III secretion system gatekeeper subunit CopN, SycD/LcrH family type III secretion system chaperone Scc2, CT847 family type III secretion system effector, hypothetical protein CTDEC_0668, and CHLPN 76kDa-like protein. A variety of immuno-informatics tools were used to predict B and T cell epitopes from vaccine candidate proteins. An in silico vaccine was developed using carefully selected epitopes (11 CTL, 2 HTL & 10 LBL) and then docked with the MHC molecules (MHC I & MHC II) and human TLR4. The vaccine was coupled with Cholera toxin subunit B (CTB) adjuvant to boost the immune response. Molecular dynamics (MD) simulations, molecular docking, and MMGBSA analysis were carried out to analyze the molecular interactions and binding affinity of MEBV with TLR4 and MHC molecules. To achieve the highest level of vaccine protein expression, the MEBV was cloned and reverse-translated in Escherichia coli. The highest level of expression was achieved, and a CAI score of 0.97 was reported. Further experimental validation of the MEBV is required to prove its efficacy. The vaccine developed will be useful in preventing infections caused by C. trachomatis.
Collapse
|
9
|
Ukwaththage TO, Keane SM, Shen L, Macnaughtan MA. Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the Chlamydia trachomatis Bi-Functional Protein, Scc4. Biomolecules 2020; 10:biom10111480. [PMID: 33114427 PMCID: PMC7692554 DOI: 10.3390/biom10111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022] Open
Abstract
Scc4 is an unusual bi-functional protein from Chlamydia trachomatis (CT) that functions as a type III secretion system (T3SS) chaperone and an RNA polymerase (RNAP)-binding protein. Both functions require interactions with protein partners during specific stages of the CT developmental cycle. As a T3SS chaperone, Scc4 binds Scc1 during the late stage of development to form a heterodimer complex, which chaperones the essential virulence effector, CopN. During the early-middle stage of development, Scc4 regulates T3SS gene expression by binding the σ66-containing RNAP holoenzyme. In order to study the structure and association mechanism of the Scc4:Scc1 T3SS chaperone complex using nuclear magnetic resonance (NMR) spectroscopy, we developed an approach to selectively label each chain of the Scc4:Scc1 complex with the 15N-isotope. The approach allowed one protein to be visible in the NMR spectrum at a time, which greatly reduced resonance overlap and permitted comparison of the backbone structures of free and bound Scc4. 1H,15N-heteronuclear single quantum coherence spectra of the 15N-Scc4:Scc1 and Scc4:15N-Scc1 complexes showed a total structural rearrangement of Scc4 upon binding Scc1 and a dynamic region isolated to Scc1, respectively. Development of the chain-selective labeling approach revealed that the association of Scc4 and Scc1 requires partial denaturation of Scc1 to form the high affinity complex, while low affinity interactions occurred between the isolated proteins under non-denaturing conditions. These results provide new models for Scc4′s functional switching mechanism and Scc4:Scc1 association in CT.
Collapse
Affiliation(s)
- Thilini O. Ukwaththage
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
| | - Samantha M. Keane
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Megan A. Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (T.O.U.); (S.M.K.)
- Correspondence: ; Tel.:+1-225-578-7975
| |
Collapse
|
10
|
Kebbi-Beghdadi C, Pilloux L, Martin V, Greub G. Eukaryotic Cell Permeabilisation to Identify New Putative Chlamydial Type III Secretion System Effectors Secreted within Host Cell Cytoplasm. Microorganisms 2020; 8:microorganisms8030361. [PMID: 32138376 PMCID: PMC7143554 DOI: 10.3390/microorganisms8030361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Chlamydia trachomatis and Waddlia chondrophila are strict intracellular bacteria belonging to the Chlamydiales order. C. trachomatis is the most frequent bacterial cause of genital and ocular infections whereas W. chondrophila is an opportunistic pathogen associated with adverse pregnancy outcomes and respiratory infections. Being strictly intracellular, these bacteria are engaged in a complex interplay with their hosts to modulate their environment and create optimal conditions for completing their life cycle. For this purpose, they possess several secretion pathways and, in particular, a Type III Secretion System (T3SS) devoted to the delivery of effector proteins in the host cell cytosol. Identifying these effectors is a crucial step in understanding the molecular basis of bacterial pathogenesis. Following incubation of infected cells with perfringolysin O, a pore-forming toxin that binds cholesterol present in plasma membranes, we analysed by mass spectrometry the protein content of the host cell cytoplasm. We identified 13 putative effectors secreted by C. trachomatis and 19 secreted by W. chondrophila. Using Y. enterocolitica as a heterologous expression and secretion system, we confirmed that four of these identified proteins are secreted by the T3SS. Two W. chondrophila T3SS effectors (hypothetical proteins Wcw_0499 and Wcw_1706) were further characterised and demonstrated to be early/mid-cycle effectors. In addition, Wcw_1706 is associated with a tetratricopeptide domain-containing protein homologous to C. trachomatis class II chaperone. Furthermore, we identified a novel C. trachomatis effector, CT460 that localises in the eukaryotic nucleus when ectopically expressed in 293 T cells.
Collapse
Affiliation(s)
| | | | | | - Gilbert Greub
- Correspondence: ; Tel.: +41-21-314-4979; Fax: +41-21-314-4060
| |
Collapse
|
11
|
Caven L, Carabeo RA. Pathogenic Puppetry: Manipulation of the Host Actin Cytoskeleton by Chlamydia trachomatis. Int J Mol Sci 2019; 21:ijms21010090. [PMID: 31877733 PMCID: PMC6981773 DOI: 10.3390/ijms21010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is crucially important to maintenance of the cellular structure, cell motility, and endocytosis. Accordingly, bacterial pathogens often co-opt the actin-restructuring machinery of host cells to access or create a favorable environment for their own replication. The obligate intracellular organism Chlamydia trachomatis and related species exemplify this dynamic: by inducing actin polymerization at the site of pathogen-host attachment, Chlamydiae induce their own uptake by the typically non-phagocytic epithelium they infect. The interaction of chlamydial adhesins with host surface receptors has been implicated in this effect, as has the activity of the chlamydial effector TarP (translocated actin recruitment protein). Following invasion, C. trachomatis dynamically assembles and maintains an actin-rich cage around the pathogen’s membrane-bound replicative niche, known as the chlamydial inclusion. Through further induction of actin polymerization and modulation of the actin-crosslinking protein myosin II, C. trachomatis promotes egress from the host via extrusion of the inclusion. In this review, we present the experimental findings that can inform our understanding of actin-dependent chlamydial pathogenesis, discuss lingering questions, and identify potential avenues of future study.
Collapse
Affiliation(s)
- Liam Caven
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Correspondence: ; Tel.: +1-402-836-9778
| |
Collapse
|
12
|
Ukwaththage TO, Goodwin OY, Songok AC, Tafaro AM, Shen L, Macnaughtan MA. Purification of Tag-Free Chlamydia trachomatis Scc4 for Structural Studies Using Sarkosyl-Assisted on-Column Complex Dissociation. Biochemistry 2019; 58:4284-4292. [PMID: 31545893 DOI: 10.1021/acs.biochem.9b00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes the most common sexually transmitted bacterial disease in the world. The bacterium has a unique biphasic developmental cycle with a type III secretion system (T3SS) to invade host cells. Scc4 is a class I T3SS chaperone forming a heterodimer complex with Scc1 to chaperone the essential virulence effector, CopN. Scc4 also functions as an RNA polymerase binding protein to regulate σ66-dependent transcription. Aggregation and low solubility of 6X-histidine-tagged Scc4 and the insolubility of 6X-histidine and FLAG-tagged Scc1 expressed in Escherichia coli have hindered the high-resolution nuclear magnetic resonance (NMR) structure determination of these proteins and motivated the development of an on-column complex dissociation method to produce tag-free Scc4 and soluble FLAG-tagged Scc1. By utilizing a 6X-histidine-tag on one protein, the coexpressed Scc4-Scc1 complex was captured on nickel-charged immobilized metal affinity chromatography resin, and the nondenaturing detergent, sodium N-lauroylsarcosine (sarkosyl), was used to dissociate and elute the non-6X-histidine-tagged protein. Tag-free Scc4 was produced in a higher yield and had better NMR spectral characteristics compared to 6X-histidine-tagged Scc4, and soluble FLAG-tagged Scc1 was purified for the first time in a high yield. The backbone structure of Scc4 after exposure to sarkosyl was validated using NMR spectroscopy, demonstrating the usefulness of the method to produce proteins for structural and functional studies. The sarkosyl-assisted on-column complex dissociation method is generally applicable to protein complexes with high affinity and is particularly useful when affinity tags alter the protein's biophysical properties or when coexpression is necessary for solubility.
Collapse
Affiliation(s)
- Thilini O Ukwaththage
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Octavia Y Goodwin
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Abigael C Songok
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Alexa M Tafaro
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology , Louisiana State University Health Sciences Center , New Orleans , Louisiana 70112 , United States
| | - Megan A Macnaughtan
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
13
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
14
|
Pais SV, Key CE, Borges V, Pereira IS, Gomes JP, Fisher DJ, Mota LJ. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Sci Rep 2019; 9:6133. [PMID: 30992493 PMCID: PMC6468002 DOI: 10.1038/s41598-019-42647-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis is a bacterial pathogen causing ocular and genital infections in humans. C. trachomatis multiplies exclusively inside host cells within a characteristic vacuole, from where it manipulates host cells by injecting them with type III secretion effector proteins. Here, we identified CteG as the first C. trachomatiseffector associated with the Golgi. For this, C. trachomatis strains expressing candidate effectors fused to a double hemagglutinin (2HA) tag were constructed. Then, among these strains, immunofluorescence microscopy revealed that CteG-2HA was delivered into the cytoplasm of infected cells. Between 16–20 h post-infection, CteG-2HA mostly associated with the Golgi; however, CteG-2HA also appeared at the host cell plasma membrane, and at 30 or 40 h post-infection this was its predominant localization. This change in the main localization of CteG-2HA was independent of intact microfilaments or microtubules. Ectopic expression of different regions of CteG (656 amino acid residues) in uninfected cells revealed that its first 100 residues contain a Golgi targeting region. Although a C. trachomatis cteG mutant did not display a defect in intracellular multiplication, CteG induced a vacuolar protein sorting defect when expressed in Saccharomyces cerevisiae. This suggested that CteG might function by subverting host cell vesicular transport.
Collapse
Affiliation(s)
- Sara V Pais
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Charlotte E Key
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Inês S Pereira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, USA
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
15
|
Eder T, Kobus S, Stallmann S, Stepanow S, Köhrer K, Hegemann JH, Rattei T. Genome sequencing of Chlamydia trachomatis serovars E and F reveals substantial genetic variation. Pathog Dis 2018; 75:4657175. [PMID: 29186396 PMCID: PMC5827700 DOI: 10.1093/femspd/ftx120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/23/2017] [Indexed: 02/06/2023] Open
Abstract
Chlamydia trachomatis (Ctr) is a bacterial pathogen that causes ocular, urogenital and lymph system infections in humans. It is highly abundant and among its serovars, E, F and D are most prevalent in sexually transmitted disease. However, the number of publicly available genome sequences of the serovars E and F, and thereby our knowledge about the molecular architecture of these serovars, is low. Here we sequenced the genomes of six E and F clinical isolates and one E lab strain, in order to study the genetic variance in these serovars. As observed before, the genomic variation inside the Ctr genomes is very low and the phylogenetic placement in comparison to publicly available genomes is as expected by ompA gene serotyping. However, we observed a large InDel carrying four to five open reading frames in one clinical E sample and in the E lab strain. We have also observed substantial variation on nucleotide and amino acid levels, especially in membrane proteins and secreted proteins. Furthermore, these two groups of proteins are also target for recombination events. One clinical F isolate was genetically heterogeneous and revealed the highest differences on nucleotide level in the pmpE gene.
Collapse
Affiliation(s)
- Thomas Eder
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13A, 1090 Vienna, Austria.,CUBE Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Stefanie Kobus
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Sonja Stallmann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stefanie Stepanow
- Biological-Medical Research Center, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Karl Köhrer
- Biological-Medical Research Center, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute of Functional Microbial Genomics, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Thomas Rattei
- CUBE Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
16
|
Portaliou AG, Tsolis KC, Loos MS, Balabanidou V, Rayo J, Tsirigotaki A, Crepin VF, Frankel G, Kalodimos CG, Karamanou S, Economou A. Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J 2017; 36:3517-3531. [PMID: 29109154 PMCID: PMC5709732 DOI: 10.15252/embj.201797515] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Type III secretion (T3S), a protein export pathway common to Gram-negative pathogens, comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. Exported substrates are chaperone-delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first "translocators", then "effectors". We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane-associated pseudo-effector SepL and its chaperone SepD. This renders SepL a high-affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD-coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.
Collapse
Affiliation(s)
- Athina G Portaliou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Maria S Loos
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vassileia Balabanidou
- Institute of Molecular Biology and Biotechnology, FORTH (Foundation of Research and Technology), University of Crete, Heraklion, Greece
| | - Josep Rayo
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Alexandra Tsirigotaki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Valerie F Crepin
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | | | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
da Cunha M, Pais SV, Bugalhão JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PLoS One 2017. [PMID: 28622339 PMCID: PMC5473537 DOI: 10.1371/journal.pone.0178856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chlamydia trachomatis is a human bacterial pathogen causing ocular and genital infections. It multiplies exclusively within an intracellular membrane-bound vacuole, the inclusion, and uses a type III secretion system to manipulate host cells by injecting them with bacterially-encoded effector proteins. In this work, we characterized the expression and subcellular localization in infected host cells of the C. trachomatis CT142, CT143, and CT144 proteins, which we previously showed to be type III secretion substrates. Transcriptional analyses in C. trachomatis confirmed the prediction that ct142, ct143 and ct144 are organized in an operon and revealed that their expression is likely driven by the main σ factor, σ66. In host cells infected by C. trachomatis, production of CT142 and CT143 could be detected by immunoblotting from 20–26 h post-infection. Immunofluorescence microscopy of infected cells revealed that from 20 h post-infection CT143 appeared mostly as globular structures outside of the bacterial cells but within the lumen of the inclusion. Furthermore, immunofluorescence microscopy of cells infected by C. trachomatis strains carrying plasmids producing CT142, CT143, or CT144 under the control of the ct142 promoter and with a C-terminal double hemagglutinin (2HA) epitope tag revealed that CT142-2HA, CT143-2HA or CT144-2HA showed an identical localization to chromosomally-encoded CT143. Moreover, CT142-2HA or CT144-2HA and CT143 produced by the same bacteria co-localized in the lumen of the inclusion. Overall, these data suggest that the CT142, CT143, and CT144 type III secretion substrates are secreted into the lumen of the inclusion where they might form a protein complex.
Collapse
Affiliation(s)
- Maria da Cunha
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara V. Pais
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joana N. Bugalhão
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
18
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
19
|
Ferrell JC, Fields KA. A working model for the type III secretion mechanism in Chlamydia. Microbes Infect 2015; 18:84-92. [PMID: 26515030 DOI: 10.1016/j.micinf.2015.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023]
Abstract
It has been appreciated for almost 20 years that members of the Chlamydiales possess a virulence-associated type III secretion mechanism. Given the obligate intracellular nature of these bacteria, defining exactly how type III secretion functions to promote pathogenesis has been challenging. We present a working model herein that is based on current evidence.
Collapse
Affiliation(s)
- Joshua C Ferrell
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Kenneth A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
20
|
Shen L, Macnaughtan MA, Frohlich KM, Cong Y, Goodwin OY, Chou CW, LeCour L, Krup K, Luo M, Worthylake DK. Multipart Chaperone-Effector Recognition in the Type III Secretion System of Chlamydia trachomatis. J Biol Chem 2015; 290:28141-28155. [PMID: 26438824 DOI: 10.1074/jbc.m115.670232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/06/2022] Open
Abstract
Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.
Collapse
Affiliation(s)
- Li Shen
- Department of Microbiology, Immunology, and Parasitology.
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Range, Louisiana 70803
| | | | - Yanguang Cong
- Department of Microbiology, Immunology, and Parasitology
| | - Octavia Y Goodwin
- Department of Chemistry, Louisiana State University, Baton Range, Louisiana 70803
| | - Chau-Wen Chou
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Louis LeCour
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Kristen Krup
- Department of Microbiology, Immunology, and Parasitology
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology
| | - David K Worthylake
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
21
|
Burkinshaw BJ, Souza SA, Strynadka NCJ. Structural analysis of SepL, an enteropathogenic Escherichia coli type III secretion-system gatekeeper protein. Acta Crystallogr F Struct Biol Commun 2015; 71:1300-8. [PMID: 26457522 PMCID: PMC4601595 DOI: 10.1107/s2053230x15016064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
During infection, enteropathogenic Escherichia coli assembles a complex multi-protein type III secretion system that traverses the bacterial membranes and targets the host cell membrane to directly deliver virulence or effector proteins to the host cytoplasm. As this secretion system is composed of more than 20 proteins, many of which form oligomeric associations, its assembly must be tightly regulated. A protein called the gatekeeper, or SepL, ensures that the secretion of the translocon component, which inserts into the host membrane, occurs before the secretion of effectors. The crystal structure of the gatekeeper SepL was determined and compared with the structures of SepL homologues from other bacterial pathogens in order to identify SepL residues that may be critical for its role in type III secretion-system assembly.
Collapse
Affiliation(s)
- Brianne J. Burkinshaw
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sergio A. Souza
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis. Infect Immun 2015; 83:4710-8. [PMID: 26416906 DOI: 10.1128/iai.01075-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a membrane-bound vacuole termed the inclusion. Early in the infection cycle, the pathogen extensively modifies the inclusion membrane through incorporation of numerous type III secreted effector proteins, called inclusion membrane proteins (Incs). These proteins are characterized by a bilobed hydrophobic domain of 40 amino acids. The presence of this domain has been used to predict up to 59 putative Incs for C. trachomatis; however, localization to the inclusion membrane with specific antibodies has been demonstrated for only about half of them. Here, we employed recently developed genetic tools to verify the localization of predicted Incs that had not been previously localized to the inclusion membrane. Expression of epitope-tagged putative Incs identified 10 that were previously unverified as inclusion membrane localized and thus authentic Incs. One novel Inc and 3 previously described Incs were localized to inclusion membrane microdomains, as evidenced by colocalization with phosphorylated Src (p-Src). Several predicted Incs did not localize to the inclusion membrane but instead remained associated with the bacteria. Using Yersinia as a surrogate host, we demonstrated that many of these are not secreted via type III secretion, further suggesting they may not be true Incs. Collectively, our results highlight the utility of genetic tools for demonstrating secretion from chlamydia. Further mechanistic studies aimed at elucidating effector function will advance our understanding of how the pathogen maintains its unique intracellular niche and mediates interactions with the host.
Collapse
|
23
|
Mueller KE, Fields KA. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One 2015; 10:e0135295. [PMID: 26258949 PMCID: PMC4530969 DOI: 10.1371/journal.pone.0135295] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023] Open
Abstract
Chlamydia spp. utilize multiple secretion systems, including the type III secretion system (T3SS), to deploy host-interactive effector proteins into infected host cells. Elucidation of secreted proteins has traditionally required ectopic expression in a surrogate T3SS followed by immunolocalization of endogenous candidate effectors to confirm secretion by chlamydiae. The ability to transform Chlamydia and achieve stable expression of recombinant gene products has enabled a more direct assessment of secretion. We adapted TEM-1 β-lactamase as a reporter system for assessment of chlamydial protein secretion. We provide evidence that this system facilitates visualization of secretion in the context of infection. Specifically, our findings provide definitive evidence that C. trachomatis CT695 is secreted during infection. Follow-up indirect immunofluorescence studies confirmed CT695 secretion and indicate that this effector can be secreted at multiple points during the chlamydial developmental cycle. Our results indicate that the BlaM-fusion reporter assay will allow efficacious identification of novel secreted proteins. Moreover, this approach can easily be adapted to enable more sophisticated studies of the secretion process in Chlamydia.
Collapse
Affiliation(s)
- Konrad E. Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States of America
| | - Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States of America
| |
Collapse
|
24
|
Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors. PLoS One 2015. [PMID: 26207372 PMCID: PMC4514472 DOI: 10.1371/journal.pone.0133420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum) propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC), and the functionality of the cytotoxin (CT166) through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations) and rapidly increasing in frequency (~23% mutants per 10 passages). RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1). This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to restrict culture propagation to minimal passages and check the status of the CT135 genotype in order to avoid the selection of CT135-negative mutants, likely originating less virulent strains.
Collapse
|
25
|
Mojica SA, Hovis KM, Frieman MB, Tran B, Hsia RC, Ravel J, Jenkins-Houk C, Wilson KL, Bavoil PM. SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors. Mol Biol Cell 2015; 26:1918-34. [PMID: 25788290 PMCID: PMC4436835 DOI: 10.1091/mbc.e14-11-1530] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci-infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP-transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear "lamina" structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.
Collapse
Affiliation(s)
- Sergio A Mojica
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Kelley M Hovis
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Bao Tran
- Mass Spectrometry Center, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ru-ching Hsia
- Core Imaging Facility and Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD 20201
| | - Clifton Jenkins-Houk
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Patrik M Bavoil
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201
| |
Collapse
|
26
|
Chen Y, Wu B, Liu L, You X, Chen L, Wu Y, Zhang Q. Recombinant Cpn 0810 stimulates proinflammatory cytokine expression and apoptosis in human monocytes. Exp Ther Med 2015; 9:459-463. [PMID: 25574216 PMCID: PMC4280927 DOI: 10.3892/etm.2014.2111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/18/2014] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to express the recombinant Chlamydophila pneumoniae (C. pneumoniae) protein, Cpn 0810, in Escherichia coli (E. coli) BL21, and investigate the effects of Cpn 0810 on inflammatory and apoptotic processes in human monocytic (THP-1) cells. An ELISA was performed to detect the levels of the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, Hoechst 33258 staining and annexin V binding analyses were performed to measure the rates of apoptosis. Purified glutathione S-transferase (GST)-Cpn 0810 recombinant proteins were obtained from the E. coli BL21 cells carrying the pGEX6p-2/Cpn 0810 plasmid, and were shown to stimulate the expression of TNF-α and IL-6 in the THP-1 cells in a dose- and time-dependent manner. TNF-α and IL-6 levels peaked at 24 h after GST-Cpn 0810 stimulation. Furthermore, GST-Cpn 0810 significantly promoted the apoptosis of THP-1 cells. In conclusion, recombinant GST-Cpn 0810 was shown to stimulate the expression of TNF-α and IL-6, inhibit proliferation and induce apoptosis in THP-1 cells. Therefore, Cpn 0810 may interact with host cells following C. pneumoniae infection, functioning as an important pathogenic factor.
Collapse
Affiliation(s)
- Yuyu Chen
- Department of Inspection, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Baiping Wu
- Department of Inspection, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liangzhuan Liu
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lili Chen
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Department of Pathogenic Biology, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qiugui Zhang
- Department of Inspection, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
27
|
Ishida K, Matsuo J, Yamamoto Y, Yamaguchi H. Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth. BMC Microbiol 2014; 14:330. [PMID: 25528659 PMCID: PMC4302594 DOI: 10.1186/s12866-014-0330-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Pathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells. Results We first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST–CpCopN: Chlamydia pneumoniae TW183, GST–CtCopN: Chlamydia trachomatis D/UW-3/CX) as “bait” and soluble lysates obtained from human immortal epithelial HEp-2 cells as “prey”, followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST–CpCopN, but not GST–CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A. Conclusions We discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.
Collapse
Affiliation(s)
- Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan. .,Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan.
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Yoshimasa Yamamoto
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Osaka, Japan. .,Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, 537-0025, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
28
|
Archuleta TL, Spiller BW. A gatekeeper chaperone complex directs translocator secretion during type three secretion. PLoS Pathog 2014; 10:e1004498. [PMID: 25375170 PMCID: PMC4222845 DOI: 10.1371/journal.ppat.1004498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ∼20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors. Type Three Secretion Systems (T3SS) are essential virulence factors found in many pathogenic Gram-negative bacteria. These machines aid infection by delivering bacterial proteins into host cells where these proteins modulate host processes and help establish a niche for the bacteria. Protein delivery occurs in a highly regulated manner in which proteins involved in early steps in infection, or necessary to build the secretion conduit, are typically secreted before other substrates, a phenomenon termed secretion hierarchy. This study presents the structure of a molecular complex that physically links one class of early substrates, components of the secretion pore termed translocators, to a gatekeeper protein, a protein that has been implicated in the secretion hierarchy. Disruption of this interaction in Shigella disrupts the secretion of translocators, while supporting increased secretion of effectors, resulting in phenotypes indistinguishable from a gatekeeper deletion, and leading to the conclusion that a gatekeeper-chaperone-translocator complex is a critical component of the T3SS.
Collapse
Affiliation(s)
- Tara L. Archuleta
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Benjamin W. Spiller
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nawrotek A, Guimarães BG, Velours C, Subtil A, Knossow M, Gigant B. Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. J Biol Chem 2014; 289:25199-210. [PMID: 25056950 DOI: 10.1074/jbc.m114.568436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although the actin network is commonly hijacked by pathogens, there are few reports of parasites targeting microtubules. The proposed member of the LcrE protein family from some Chlamydia species (e.g. pCopN from C. pneumoniae) binds tubulin and inhibits microtubule assembly in vitro. From the pCopN structure and its similarity with that of MxiC from Shigella, we definitively confirm CopN as the Chlamydia homolog of the LcrE family of bacterial proteins involved in the regulation of type III secretion. We have also investigated the molecular basis for the pCopN effect on microtubules. We show that pCopN delays microtubule nucleation and acts as a pure tubulin-sequestering protein at steady state. It targets the β subunit interface involved in the tubulin longitudinal self-association in a way that inhibits nucleotide exchange. pCopN contains three repetitions of a helical motif flanked by disordered N- and C-terminal extensions. We have identified the pCopN minimal tubulin-binding region within the second and third repeats. Together with the intriguing observation that C. trachomatis CopN does not bind tubulin, our data support the notion that, in addition to the shared function of type III secretion regulation, these proteins have evolved different functions in the host cytosol. Our results provide a mechanistic framework for understanding the C. pneumoniae CopN-specific inhibition of microtubule assembly.
Collapse
Affiliation(s)
- Agata Nawrotek
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Beatriz G Guimarães
- the Synchrotron SOLEIL, L'Orme de Merisiers, St Aubin, 91192 Gif sur Yvette, France, and
| | - Christophe Velours
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Agathe Subtil
- the Institut Pasteur, Unité de Biologie des Interactions Cellulaires, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Marcel Knossow
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France
| | - Benoît Gigant
- From the Laboratoire d'Enzymologie et Biochimie Structurales (LEBS), Centre de Recherche de Gif, CNRS, 91198 Gif sur Yvette, France,
| |
Collapse
|
30
|
da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Maurício R, Borrego MJ, Gomes JP, Mota LJ. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 2014; 14:40. [PMID: 24533538 PMCID: PMC3931295 DOI: 10.1186/1471-2180-14-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates. Results We first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells. Conclusions Using Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luís Jaime Mota
- Infection Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
31
|
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a vacuole termed the inclusion. Many of the interactions of chlamydiae with the host cell are dependent upon bacterial protein synthesis and presumably exposure of these proteins to the cytosol. Because of the dearth of genetic tools for chlamydiae, previous studies examining secreted proteins required the use of heterologous bacterial systems. Recent advances in genetic manipulation of chlamydia now allow for transformation of the bacteria with plasmids. We describe here a shuttle vector system, pBOMB4, that permits expression of recombinant proteins under constitutive or conditional promoter control. We show that the inclusion membrane protein IncD is secreted in a type III-dependent manner from Yersinia pseudotuberculosis and also secreted from C. trachomatis in infected cells where it localizes appropriately to the inclusion membrane. IncD truncated of the first 30 amino acids containing the secretion signal is no longer secreted and is retained by the bacteria. Cytosolic exposure of secreted proteins can be confirmed by using CyaA, GSK, or microinjection assays. A protein predicted to be retained within the bacteria, NrdB is indeed localized to the chlamydia. In addition, we have shown that the chlamydial effector protein, CPAF, which is secreted into the host cell cytosol by a Sec-dependent pathway, also accesses the cytosol when expressed from this system. These assays should prove useful to assess the secretion of other chlamydial proteins that are potentially exposed to the cytosol of the host cell.
Collapse
|
32
|
A Conrad T, Yang Z, Ojcius D, Zhong G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect 2013; 15:1026-32. [PMID: 24141088 DOI: 10.1016/j.micinf.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
CPAF is a conserved and secreted protease from obligate intracellular bacteria of the order Chlamydiales. Recently, it was demonstrated that most of its host targets are an artifact of inaccurate methods. This review aims to summarize key features of CPAF and propose new approaches for evaluating its role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Turner A Conrad
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Members of the order Chlamydiales comprise a group of exquisitely evolved parasites of eukaryotic hosts that extends from single-celled amoeba to mammals. The most notable are human pathogens and include the agent of oculogenital disease Chlamydia trachomatis, the respiratory pathogen C. pneumoniae, and the zoonotic agent C. psittaci. All of these species are obligate intracellular bacteria that develop within parasitophorous vesicles termed inclusions. This demanding lifestyle necessitates orchestrated entry into nonphagocytic cells, creation of a privileged intracellular niche, and subversion of potent host defenses. All chlamydial genomes contain the coding capacity for a nonflagellar type III secretion system, and this mechanism has arisen as an essential contributor to chlamydial virulence. The emergence of tractable approaches to the genetic manipulation of chlamydiae raises the possibility of explosive progress in understanding this important contributor to chlamydial pathogenesis. This minireview considers challenges and recent advances that have revealed how chlamydiae have maintained conserved aspects of T3S while exploiting diversification to yield a system that exerts a fundamental role in the unique biology of Chlamydia species.
Collapse
|
34
|
Croxatto A, Murset V, Chassot B, Greub G. Early expression of the type III secretion system of Parachlamydia acanthamoebae during a replicative cycle within its natural host cell Acanthamoeba castellanii. Pathog Dis 2013; 69:159-75. [PMID: 23861207 DOI: 10.1111/2049-632x.12065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 12/26/2022] Open
Abstract
The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growth.
Collapse
Affiliation(s)
- Antony Croxatto
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
35
|
Hovis KM, Mojica S, McDermott JE, Pedersen L, Simhi C, Rank RG, Myers GSA, Ravel J, Hsia RC, Bavoil PM. Genus-optimized strategy for the identification of chlamydial type III secretion substrates. Pathog Dis 2013; 69:213-22. [PMID: 23873765 DOI: 10.1111/2049-632x.12070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022] Open
Abstract
Among chlamydial virulence factors are the type III secretion (T3S) system and its effectors. T3S effectors target host proteins to benefit the infecting chlamydiae. The assortment of effectors, each with a unique function, varies between species. This variation likely contributes to differences in host specificity and disease severity. A dozen effectors of Chlamydia trachomatis have been identified; however, estimates suggest that more exist. A T3S prediction algorithm, SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), along with a Yersinia surrogate secretion system helped to identify a new T3S substrate, CT082, which rather than functioning as an effector associates with the chlamydial envelope after secretion. SIEVE was modified to improve/expand effector predictions to include all sequenced genomes. Additional adjustments were made to the existing surrogate system whereby the N terminus of putative effectors was fused to a known effector lacking its own N terminus and was tested for secretion. Expansion of effector predictions by cSIEVE and modification of the surrogate system have also assisted in identifying a new T3S substrate from C. psittaci. The expanded predictions along with modifications to improve the surrogate secretion system have enhanced our ability to identify novel species-specific effectors, which upon characterization should provide insight into the unique pathogenic properties of each species.
Collapse
Affiliation(s)
- Kelley M Hovis
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis. PLoS One 2013; 8:e56292. [PMID: 23431368 PMCID: PMC3576375 DOI: 10.1371/journal.pone.0056292] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/07/2013] [Indexed: 12/17/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen of humans that uses a type III secretion (T3S) system to manipulate host cells through the delivery of effector proteins into their cytosol and membranes. The function of T3S systems depends on small bacterial cytosolic chaperone-like proteins, which bind T3S substrates and ensure their appropriate secretion. To find novel T3S chaperone-substrate complexes of C. trachomatis we first searched its genome for genes encoding proteins with features of T3S chaperones. We then systematically tested for interactions between candidate chaperones and chlamydial T3S substrates by bacterial two-hybrid. This revealed interactions between Slc1 (a known T3S chaperone) or CT584 and several T3S substrates. Co-immunoprecipation after protein expression in Yersinia enterocolitica and protein overlay binding assays indicated that Slc1 interacted with the N-terminal region of the known T3S substrates Tarp (a previously described substrate of Slc1), CT694, and CT695, and that CT584 interacted with a central region of CT082, which we identified as a C. trachomatis T3S substrate using Y. enterocolitica as a heterologous system. Further T3S assays in Yersinia indicated that Slc1 or CT584 increased the amount of secreted Tarp, CT694, and CT695, or CT082, respectively. Expression of CT584 increased the intra-bacterial stability of CT082, while Slc1 did not affect the stability of its substrates. Overall, this indicated that in C. trachomatis Slc1 is a chaperone of multiple T3S substrates and that CT584 is a chaperone of the newly identified T3S substrate CT082.
Collapse
|
37
|
Kim JS, Jang JI, Eom JS, Oh CH, Kim HG, Kim BH, Bang IS, Bang SH, Park YK. Molecular characterization of the InvE regulator in the secretion of type III secretion translocases in Salmonella enterica serovar Typhimurium. MICROBIOLOGY-SGM 2013; 159:446-461. [PMID: 23288540 DOI: 10.1099/mic.0.061689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The type III secretion systems (T3SSs) are exploited by many Gram-negative pathogenic bacteria to deliver a set of effector proteins into the host cytosol during cell entry. The T3SS of Salmonella enterica serovar Typhimurium is composed of more than 20 proteins that constitute the membrane-associated base, the needle and the tip complex at the distal end of the T3SS needle. Membrane docking and piercing between the T3SS and host cells is followed by the secretion of effector proteins. Therefore, a secretion hierarchy among the substrates of the T3SS is required. The secretion of the pore-forming translocase proteins SipB, SipC and SipD is controlled by the T3SS regulator protein, InvE. During an attempt to identify the regions of InvE that are involved in T3SS regulation, it was observed that the secretion of SipB, SipC and SipD was inhibited when the C-terminal 52 amino acids were removed from InvE. In addition, InvE derivatives lacking the N-terminal 30 and 100 residues were unable to secrete translocases into the culture medium. Interestingly, in the absence of the N-terminal 180 residues of InvE, SipD is unstable, resulting in the hypersecretion of SipB. We also found that both the type III secretion signals of SipB and SptP were functionally interchangeable with the first 30 amino acids of InvE, which could allow the secretion of a reporter protein. These results indicate that InvE may have two functional domains responsible for regulating the secretion of translocases: an N-terminal secretion signal and a C-terminal regulatory domain.
Collapse
Affiliation(s)
- Jin Seok Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jung Im Jang
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jeong Seon Eom
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Chang Heon Oh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hyeon Guk Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Bae Hoon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Iel Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwang ju 501-759, Republic of Korea
| | - Seong Ho Bang
- Department of Biological Science, Hanseo University, Chungcheongnam-do 356-706, Republic of Korea
| | - Yong Keun Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
38
|
Exploration of chlamydial type III secretion system reconstitution in Escherichia coli. PLoS One 2012; 7:e50833. [PMID: 23239989 PMCID: PMC3519817 DOI: 10.1371/journal.pone.0050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/25/2012] [Indexed: 11/23/2022] Open
Abstract
Background Type III secretion system is a virulent factor for many pathogens, and is thought to play multiple roles in the development cycle and pathogenesis of chlamydia, an important human pathogen. However, due to the obligate intracellular parasitical nature of chlamydiae and a lack of convenient genetic methodology for the organisms, very limited approaches are available to study the chlamydial type III secretion system. In this study, we explored the reconstitution of a chlamydial type III secretion in Escherichia coli. Results We successfully cloned all 6 genomic DNA clusters of the chlamydial type III secretion system into three bacterial plasmids. 5 of the 6 clusters were found to direct mRNA synthesis from their own promoters in Escherichia coli transformed with the three plasmids. Cluster 5 failed to express mRNA using its own promoters. However, fusion of cluster 5 to cluster 6 resulted in the expression of cluster 5 mRNA. Although only two of the type III secretion system proteins were detected transformed E. coli due to limited antibody availability, type III secretion system-like structures were detected in ultrathin sections in a small proportion of transformed E. coli. Conclusions We have successfully generated E. coli expressing all genes of the chlamydial type III secretion system. This serves as a foundation for optimal expression and assembly of the recombinant chlamydial type III secretion system, which may be extremely useful for the characterization of the chlamydial type III secretion system and for studying its role in chlamydial pathogenicity.
Collapse
|
39
|
Polymorphisms in inc proteins and differential expression of inc genes among Chlamydia trachomatis strains correlate with invasiveness and tropism of lymphogranuloma venereum isolates. J Bacteriol 2012; 194:6574-85. [PMID: 23042990 DOI: 10.1128/jb.01428-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chlamydia trachomatis is a human bacterial pathogen that multiplies only within an intracellular membrane-bound vacuole, the inclusion. C. trachomatis includes ocular and urogenital strains, usually causing infections restricted to epithelial cells of the conjunctiva and genital mucosa, respectively, and lymphogranuloma venereum (LGV) strains, which can infect macrophages and spread into lymph nodes. However, C. trachomatis genomes display >98% identity at the DNA level. In this work, we studied whether C. trachomatis Inc proteins, which have a bilobed hydrophobic domain that may mediate their insertion in the inclusion membrane, could be a factor determining these different types of infection and tropisms. Analyses of polymorphisms and phylogeny of 48 Inc proteins from 51 strains encompassing the three disease groups showed significant amino acid differences that were mainly due to variations between Inc proteins from LGV and ocular or urogenital isolates. Studies of the evolutionary dynamics of inc genes suggested that 10 of them are likely under positive selection and indicated that most nonsilent mutations are LGV specific. Additionally, real-time quantitative PCR analyses in prototype and clinical strains covering the three disease groups identified three inc genes with LGV-specific expression. We determined the transcriptional start sites of these genes and found LGV-specific nucleotides within their promoters. Thus, subtle variations in the amino acids of a subset of Inc proteins and in the expression of inc genes may contribute to the unique tropism and invasiveness of C. trachomatis LGV strains.
Collapse
|
40
|
PLAKHOVA KI, KOZHUSHNAYA OS, RAHMATULINA MR, FRIGO NV. Genetic variations of C. trachomatis and search of virulence factors. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Represents results of research, dedicated to the search of genetically determined factors of С. trachomatis virulence. Data of papers, studying features of С. trachomatis genetic variations was highlighted.
Collapse
|
41
|
Lu C, Holland MJ, Gong S, Peng B, Bailey RL, Mabey DW, Wu Y, Zhong G. Genome-wide identification of Chlamydia trachomatis antigens associated with trachomatous trichiasis. Invest Ophthalmol Vis Sci 2012; 53:2551-9. [PMID: 22427578 DOI: 10.1167/iovs.11-9212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Chlamydia trachomatis is the leading infectious cause of blindness. The goal of the current study was to search for biomarkers associated with C. trachomatis-induced ocular pathologies. METHODS We used a whole genome scale proteome array to systematically profile antigen specificities of antibody responses to C. trachomatis infection in individuals from trachoma-endemic communities with or without end-stage trachoma (trichiasis) in The Gambia. RESULTS When 61 trichiasis patients were compared with their control counterparts for overall antibody reactivity with organisms of different chlamydial species, no statistically significant difference was found. Both groups developed significantly higher titers of antibodies against C. trachomatis ocular serovars A and B than ocular serovar C, genital serovar D, or Chlamydia psittaci, whereas the titers of anti-Chlamydia pneumoniae antibodies were the highest. When antisera from 33 trichiasis and 26 control patients (with relatively high titers of antibodies to C. trachomatis ocular serovars) were reacted with 908 C. trachomatis proteins, 447 antigens were recognized by at least 1 of the 59 antisera, and 10 antigens by 50% or more antisera, the latter being designated as immunodominant antigens. More importantly, four antigens were preferentially recognized by the trichiasis group, with antigens CT414, CT667, and CT706 collectively reacting with 30% of trichiasis antisera but none from the normal group, and antigen CT695 reacting with 61% of trichiasis but only 31% of normal antisera. On the other hand, eight antigens were preferentially recognized by the control group, with antigens CT019, CT117, CT301, CT553, CT556, CT571, and CT709 together reacting with 46% of normal antisera and none from the trichiasis group, whereas antigen CT442 reacted with 35% of normal and 19% of trichiasis antisera respectively. CONCLUSIONS The current study, by mapping immunodominant C. trachomatis antigens and identifying antigens associated with both ocular pathology and protection, has provided important information for further understanding chlamydial pathogenesis and the development of subunit vaccines.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Flotillin-1 (Reggie-2) contributes to Chlamydia pneumoniae growth and is associated with bacterial inclusion. Infect Immun 2012; 80:1072-8. [PMID: 22215737 DOI: 10.1128/iai.05528-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chlamydiae are obligate intracellular pathogens replicating only inside the eukaryotic host. Here, we studied the effect of human flotillin-1 protein on Chlamydia pneumoniae growth in human line (HL) and A549 epithelial cell lines. RNA interference was applied to disrupt flotillin-1-mediated endocytosis. Host-associated bacteria were detected by quantitative PCR, and C. pneumoniae growth was evaluated by inclusion counts. C. pneumoniae attachment to host cells was unaffected, but bacterial intracellular growth was attenuated in the flotillin-1-silenced cells. By using confocal microscopy, we detected flotillin-1 colocalized with the inclusion membrane protein A (IncA) in the C. pneumoniae inclusion membranes. In addition, flotillin-1 was associated with IncA in detergent-resistant membrane microdomains (DRMs) in biochemical fractioning. These results suggest that flotillin-1 localizes to the C. pneumoniae inclusion membrane and plays an important role for intracellular growth of C. pneumoniae.
Collapse
|
43
|
Cardenal-Muñoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One 2011; 6:e26930. [PMID: 22046414 PMCID: PMC3203157 DOI: 10.1371/journal.pone.0026930] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
44
|
Disulfide bonding within components of the Chlamydia type III secretion apparatus correlates with development. J Bacteriol 2011; 193:6950-9. [PMID: 22001510 DOI: 10.1128/jb.05163-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia spp. exhibit a unique biphasic developmental cycle whereby infectious elementary bodies (EBs) invade host epithelial cells and differentiate into noninfectious, metabolically active reticulate bodies (RBs). EBs posses a unique outer envelope where rigidity is achieved by disulfide bonding among cysteine-rich envelope-associated proteins. Conversely, these disulfide bonds become reduced in RBs to accommodate vegetative growth, thereby linking the redox status of cysteine-rich envelope proteins with progression of the developmental cycle. We investigated the potential role of disulfide bonding within the chlamydial type III secretion system (T3SS), since activity of this system is also closely linked to development. We focused on structural components of the T3S apparatus that contain an unusually high number of cysteine residues compared to orthologs in other secretion systems. Nonreducing SDS-PAGE revealed that EB-localized apparatus proteins such as CdsF, CdsD, and CdsC form higher-order complexes mediated by disulfide bonding. The most dramatic alterations were detected for the needle protein CdsF. Significantly, disulfide bonding patterns shifted during differentiation of developmental forms and were completely reduced in RBs. Furthermore, at later time points during infection following RB to EB conversion, we found that CdsF is reoxidized into higher-order complexes. Overall, we conclude that the redox status of specific T3SS apparatus proteins is intimately linked to the developmental cycle and constitutes a newly appreciated aspect of functionally significant alterations within proteins of the chlamydial envelope.
Collapse
|
45
|
Archuleta TL, Du Y, English CA, Lory S, Lesser C, Ohi MD, Ohi R, Spiller BW. The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J Biol Chem 2011; 286:33992-8. [PMID: 21841198 DOI: 10.1074/jbc.m111.258426] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.
Collapse
Affiliation(s)
- Tara L Archuleta
- Division of Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang J, Frohlich KM, Buckner L, Quayle AJ, Luo M, Feng X, Beatty W, Hua Z, Rao X, Lewis ME, Sorrells K, Santiago K, Zhong G, Shen L. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells. MICROBIOLOGY-SGM 2011; 157:2759-2771. [PMID: 21737500 DOI: 10.1099/mic.0.044917-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Lyndsey Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alison J Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Miao Luo
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiaogeng Feng
- Department of Molecular Biology and Biochemistry, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Ziyu Hua
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xiancai Rao
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Maria E Lewis
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kelly Sorrells
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kerri Santiago
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Biochemical and localization analyses of putative type III secretion translocator proteins CopB and CopB2 of Chlamydia trachomatis reveal significant distinctions. Infect Immun 2011; 79:3036-45. [PMID: 21606186 DOI: 10.1128/iai.00159-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chlamydia spp. are among the many pathogenic Gram-negative bacteria that employ a type III secretion system (T3SS) to overcome host defenses and exploit available resources. Significant progress has been made in elucidating contributions of T3S to the pathogenesis of these medically important, obligate intracellular parasites, yet important questions remain. Chief among these is how secreted effector proteins traverse eukaryotic membranes to gain access to the host cytosol. Due to a complex developmental cycle, it is possible that chlamydiae utilize a different complement of proteins to accomplish translocation at different stages of development. We investigated this possibility by extending the characterization of C. trachomatis CopB and CopB2. CopB is detected early during infection but is depleted and not detected again until about 20 h postinfection. In contrast, CopB2 was detectible throughout development. CopB is associated with the inclusion membrane. Biochemical and ectopic expression analyses were consistent with peripheral association of CopB2 with inclusion membranes. This interaction correlated with development and required both chlamydial de novo protein synthesis and T3SS activity. Collectively, our data indicate that it is unlikely that CopB serves as the sole chlamydial translocation pore and that CopB2 is capable of association with the inclusion membrane.
Collapse
|
48
|
Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J Bacteriol 2011; 193:3490-6. [PMID: 21571996 DOI: 10.1128/jb.00203-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Chlamydia pneumoniae CopN protein is a member of the YopN/TyeA/InvE/MxiC family of secreted proteins that function to regulate the secretion of type III secretion system (T3SS) translocator and effector proteins. In this study, the Scc1 (CP0432) and Scc4 (CP0033) proteins of C. pneumoniae AR-39 were demonstrated to function together as a type III secretion chaperone that binds to an N-terminal region of CopN. The Scc1/Scc4 chaperone promoted the efficient secretion of CopN via a heterologous T3SS, whereas, the Scc3 chaperone, which binds to a C-terminal region of CopN, reduced CopN secretion.
Collapse
|
49
|
Zhong G. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2011; 2:14. [PMID: 21687409 PMCID: PMC3109274 DOI: 10.3389/fmicb.2011.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 12/23/2022] Open
Abstract
The human pathogen Chlamydia trachomatis secretes numerous effectors into host cells in order to successfully establish and complete the intracellular growth cycle. Three C. trachomatis proteases [chlamydial proteasome/protease-like activity factor (CPAF), tail-specific protease (Tsp), and chlamydial high temperature requirement protein A (cHtrA)] have been localized in the cytosol of the infected cells either by direct immunofluorescence visualization or functional implication. Both CPAF and Tsp have been found to play important roles in C. trachomatis interactions with host cells although the cellular targets of cHtrA have not been identified. All three proteases contain a putative N-terminal signal sequence, suggesting that they may be secreted via a sec-dependent pathway. However, these proteases are also found in chlamydial organism-free vesicles in the lumen of the chlamydial inclusions before they are secreted into host cell cytosol, suggesting that these proteases may first be translocated into the periplasmic region via a sec-dependent pathway and then exported outside of the organisms via an outer membrane vesicles (OMVs) budding mechanism. The vesiculized proteases in the inclusion lumen can finally enter host cell cytosol via vesicle fusing with or passing through the inclusion membrane. Continuing identification and characterization of the C. trachomatis-secreted proteins (CtSPs) will not only promote our understanding of C. trachomatis pathogenic mechanisms but also allow us to gain novel insights into the OMV pathway, a well-known mechanism used by bacteria to export virulence factors although its mechanism remains elusive.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
50
|
Identification of a family of effectors secreted by the type III secretion system that are conserved in pathogenic Chlamydiae. Infect Immun 2010; 79:571-80. [PMID: 21078856 DOI: 10.1128/iai.00825-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm. Here we describe a family of type III secreted effectors that are present in all pathogenic chlamydiae and absent in the environment-related species. It is defined by a common domain of unknown function, DUF582, that is present in four or five proteins in each Chlamydiaceae species. We show that the amino-terminal extremity of DUF582 proteins functions as a TTS signal. DUF582 proteins from C. trachomatis CT620, CT621, and CT711 are expressed at the middle and late phases of the infectious cycle. Immunolocalization further revealed that CT620 and CT621 are secreted into the host cell cytoplasm, as well as within the lumen of the inclusion, where they do not associate with bacterial markers. Finally, we show that DUF582 proteins are present in nuclei of infected cells, suggesting that members of the DUF582 family of effector proteins may target nuclear cell functions. The expansion of this family of proteins in pathogenic chlamydiae and their conservation among the different species suggest that they play important roles in the infectious cycle.
Collapse
|