1
|
Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15517-15530. [PMID: 36468541 DOI: 10.1021/acs.jafc.2c05102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar content is an important factor determining the flavor in apple fruit. Sugar unloading is a prerequisite step for sugar accumulation. However, little is known about sugar unloading mechanisms in apple. Transcriptomic sequencing of two apple varieties, "Envy" and "Pacific Rose," with significantly different sugar content was performed. MdSWEET12a from the SWEET transporter family was differentially expressed. Further study of the MdSWEET12a showed that this plasma membrane-localized transporter protein-encoding gene was mainly expressed in sieve element-companion cells (SE-CC) in the fruit, which was positively correlated with the sucrose accumulation during the development of "Envy" apple. Consistently manipulating the gene expression through either transient overexpression or silencing significantly increased or decreased the sugar content in apple fruit, respectively. Complementary growth experiments in mutant yeast cells indicated that MdSWEET12a transported sucrose. Heterologous expression of MdSWEET12a in tomato increased the expression of genes related to sugar metabolism and transport, leading to increased sugar content. These findings underpin the involvement of MdSWEET12a in sugar unloading in apple fruit.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Bing-Hua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A&F University, Fuzhou 350002, China
| | - Yang-Yang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Abstract
Yeast species in the Wickerhamiella and Starmerella genera (W/S clade) thrive in the sugar-rich floral niche. We have previously shown that species belonging to this clade harbor an unparalleled number of genes of bacterial origin, among which is the SUC2 gene, encoding a sucrose-hydrolyzing enzyme. In this study, we used complementary in silico and experimental approaches to examine sucrose utilization in a broader cohort of species representing extant diversity in the W/S clade. Distinct strategies and modes of sucrose assimilation were unveiled, involving either extracellular sucrose hydrolysis through secreted bacterial Suc2 or intracellular assimilation using broad-substrate-range α-glucoside/H+ symporters and α-glucosidases. The intracellular pathway is encoded in two types of gene clusters reminiscent of the MAL clusters in Saccharomyces cerevisiae, where they are involved in maltose utilization. The genes composing each of the two types of MAL clusters found in the W/S clade have disparate evolutionary histories, suggesting that they formed de novo. Both transporters and glucosidases were shown to be functional and additionally involved in the metabolization of other disaccharides, such as maltose and melezitose. In one Wickerhamiella species lacking the α-glucoside transporter, maltose assimilation is accomplished extracellularly, an attribute which has been rarely observed in fungi. Sucrose assimilation in Wickerhamiella generally escaped both glucose repression and the need for an activator and is thus essentially constitutive, which is consistent with the abundance of both glucose and sucrose in the floral niche. The notable plasticity associated with disaccharide utilization in the W/S clade is discussed in the context of ecological implications and energy metabolism. IMPORTANCE Microbes usually have flexible metabolic capabilities and are able to use different compounds to meet their needs. The yeasts belonging to the Wickerhamiella and Starmerella genera (forming the so-called W/S clade) are usually found in flowers or insects that visit flowers and are known for having acquired many genes from bacteria by a process called horizontal gene transfer. One such gene, dubbed SUC2, is used to assimilate sucrose, which is one of the most abundant sugars in floral nectar. Here, we show that different lineages within the W/S clade used different solutions for sucrose utilization that dispensed SUC2 and differed in their energy requirements, in their capacity to scavenge small amounts of sucrose from the environment, and in the potential for sharing this resource with other microbial species. We posit that this plasticity is possibly dictated by adaptation to the specific requirements of each species.
Collapse
|
3
|
Muñoz-Miranda LA, Pereira-Santana A, Gómez-Angulo JH, Gschaedler-Mathis AC, Amaya-Delgado L, Figueroa-Yáñez LJ, Arrizon J. Identification of genes related to hydrolysis and assimilation of Agave fructans in Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 by de
novo transcriptome analysis. FEMS Yeast Res 2022; 22. [DOI: 10.1093/femsyr/foac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Abstract
Fructans are the main sugar in agave pine used by yeasts during mezcal fermentation processes, from which Candida apicola NRRL Y-50540 and Torulaspora delbrueckii NRRL Y-50541 were isolated. De novo transcriptome analysis was carried out to identify genes involved in the hydrolysis and assimilation of Agave fructans (AF). We identified a transcript annotated as SUC2, which is related to β-fructofuranosidase activity, and several differential expressed genes involved in the transcriptional regulation of SUC2 such as: MIG1, MTH1, SNF1, SNF5, REG1, SSN6, SIP1, SIP2, SIP5, GPR1, RAS2, and PKA. Some of these genes were specifically expressed in some of the yeasts according to their fructans assimilation metabolism. Different hexose transporters that could be related to the assimilation of fructose and glucose were found in both the transcriptomes. Our findings provide a better understanding of AF assimilation in these yeasts and provide resources for further metabolic engineering and biotechnology applications.
Collapse
Affiliation(s)
- Luis A Muñoz-Miranda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Alejandro Pereira-Santana
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, 03940, México
| | - Jorge H Gómez-Angulo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
- Centro Universitario de Ciencias Exactas e Ingenierías (UDG), Departamento de Ingeniería Química, Guadalajara, Jalisco, 44430, México
| | - Anne Christine Gschaedler-Mathis
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Lorena Amaya-Delgado
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Luis J Figueroa-Yáñez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| | - Javier Arrizon
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. División de Biotecnología Industrial, Zapopan, Jalisco, 45019, México
| |
Collapse
|
4
|
Acharya BR, Sandhu D, Dueñas C, Ferreira JFS, Grover KK. Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar ( Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030291. [PMID: 35161272 PMCID: PMC8838131 DOI: 10.3390/plants11030291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water.
Collapse
Affiliation(s)
- Biswa R. Acharya
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Devinder Sandhu
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
- Correspondence: (D.S.); (K.K.G.)
| | - Christian Dueñas
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Jorge F. S. Ferreira
- U.S. Salinity Lab (USDA-ARS), 450 W Big Springs Road, Riverside, CA 92507, USA; (B.R.A.); (J.F.S.F.)
| | - Kulbhushan K. Grover
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: (D.S.); (K.K.G.)
| |
Collapse
|
5
|
Orłowska M, Muszewska A. In Silico Predictions of Ecological Plasticity Mediated by Protein Family Expansions in Early-Diverging Fungi. J Fungi (Basel) 2022; 8:67. [PMID: 35050007 PMCID: PMC8778642 DOI: 10.3390/jof8010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Early-diverging fungi (EDF) are ubiquitous and versatile. Their diversity is reflected in their genome sizes and complexity. For instance, multiple protein families have been reported to expand or disappear either in particular genomes or even whole lineages. The most commonly mentioned are CAZymes (carbohydrate-active enzymes), peptidases and transporters that serve multiple biological roles connected to, e.g., metabolism and nutrients intake. In order to study the link between ecology and its genomic underpinnings in a more comprehensive manner, we carried out a systematic in silico survey of protein family expansions and losses among EDF with diverse lifestyles. We found that 86 protein families are represented differently according to EDF ecological features (assessed by median count differences). Among these there are 19 families of proteases, 43 CAZymes and 24 transporters. Some of these protein families have been recognized before as serine and metallopeptidases, cellulases and other nutrition-related enzymes. Other clearly pronounced differences refer to cell wall remodelling and glycosylation. We hypothesize that these protein families altogether define the preliminary fungal adaptasome. However, our findings need experimental validation. Many of the protein families have never been characterized in fungi and are discussed in the light of fungal ecology for the first time.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
6
|
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110851. [PMID: 33775358 DOI: 10.1016/j.plantsci.2021.110851] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The grain-filling process is crucial for cereal crop yields, but how the caryopsis of such plants is supplied with sugars, which are produced by photosynthesis in leaves and then transported long distance, is largely unknown. In rice (Oryza sativa), various SWEET family sucrose transporters are thought to have important roles in grain filling. Here, we report that OsSWEET14 plays a crucial part in this process in rice. ossweet14 knockout mutants did not show any detectable phenotypic differences from the wild type, whereas ossweet14;ossweet11 double-knockout mutants had much more severe phenotypes than ossweet11 single-knockout mutants, including strongly reduced grain weight and yield, reduced grain-filling rate, and increased starch accumulation in the pericarp. Both OsSWEET14 and OsSWEET11 exhibited distinct spatiotemporal expression patterns between the early stage of caryopsis development and the rapid grain-filling stage. During the rapid grain-filling stage, OsSWEET14 and OsSWEET11 localized to four key sites: vascular parenchyma cells, the nucellar projection, the nucellar epidermis, and cross cells. These results demonstrate that OsSWEET14 plays an important role in grain filling, and they suggest that four major apoplasmic pathways supply sucrose to the endosperm during the rapid grain-filling stage via the sucrose effluxers SWEET14 and SWEET11.
Collapse
Affiliation(s)
- Honghong Fei
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
7
|
Wang X, Fang J, Liu P, Liu J, Fang W, Fang Z, Xiao Y. Mucoromycotina Fungi Possess the Ability to Utilize Plant Sucrose as a Carbon Source: Evidence From Gongronella sp. w5. Front Microbiol 2021; 11:591697. [PMID: 33584561 PMCID: PMC7874188 DOI: 10.3389/fmicb.2020.591697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022] Open
Abstract
Mucoromycotina is one of the earliest fungi to establish a mutualistic relationship with plants in the ancient land. However, the detailed information on their carbon supply from the host plants is largely unknown. In this research, a free-living Mucoromycotina called Gongronella sp. w5 (w5) was employed to explore its effect on Medicago truncatula growth and carbon source utilization from its host plant during the interaction process. W5 promoted M. truncatula growth and caused the sucrose accumulation in M. truncatula root tissue at 16 days post-inoculation (dpi). The transportation of photosynthetic product sucrose to the rhizosphere by M. truncatula root cells seemed accelerated by upregulating the SWEET gene. A predicted cytoplasmic invertase (GspInv) gene and a sucrose transporter (GspSUT1) homology gene in the w5 genome upregulated significantly at the transcriptional level during w5–M. truncatula interaction at 16 dpi, indicating the possibility of utilizing plant sucrose directly by w5 as the carbon source. Further investigation showed that the purified GspInv displayed an optimal pH of 5.0 and a specific activity of 3380 ± 26 U/mg toward sucrose. The heterologous expression of GspInv and GspSUT1 in Saccharomyces cerevisiae confirmed the function of GspInv as invertase and GspSUT1 as sugar transporter with high affinity to sucrose in vivo. Phylogenetic tree analysis showed that the ability of Mucoromycotina to utilize sucrose from its host plant underwent a process of “loss and gain.” These results demonstrated the capacity of Mucoromycotina to interact with extant land higher plants and may employ a novel strategy of directly up-taking and assimilating sucrose from the host plant during the interaction.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Junnan Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Pu Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
8
|
Cheng Y, Lin Y, Cao H, Li Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020; 8:E449. [PMID: 32209982 PMCID: PMC7143998 DOI: 10.3390/microorganisms8030449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant-pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit-pathogen interactions remaining relatively unexplored compared with well-studied leaf-pathogen interactions, progress has occurred in the citrus fruit-Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Collapse
Affiliation(s)
- Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yunlong Lin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
Visnapuu T, Meldre A, Põšnograjeva K, Viigand K, Ernits K, Alamäe T. Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. Int J Mol Sci 2019; 21:E297. [PMID: 31906253 PMCID: PMC6981392 DOI: 10.3390/ijms21010297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (Ki = 0.8 µM) and Tris (Ki = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product-glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.V.); (A.M.); (K.P.); (K.V.); (K.E.)
| |
Collapse
|
10
|
Long X, Li H, Yang J, Xin L, Fang Y, He B, Huang D, Tang C. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. BMC PLANT BIOLOGY 2019; 19:591. [PMID: 31881921 PMCID: PMC6935173 DOI: 10.1186/s12870-019-2209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sucrose (Suc), as the precursor molecule for rubber biosynthesis in Hevea brasiliensis, is transported via phloem-mediated long-distance transport from leaves to laticifers in trunk bark, where latex (cytoplasm of laticifers) is tapped for rubber. In our previous report, six Suc transporter (SUT) genes have been cloned in Hevea tree, among which HbSUT3 is verified to play an active role in Suc loading to the laticifers. In this study, another latex-abundant SUT isoform, HbSUT5, with expressions only inferior to HbSUT3 was characterized especially for its roles in latex production. RESULTS Both phylogenetic analysis and subcellular localization identify HbSUT5 as a tonoplast-localized SUT protein under the SUT4-clade (=type III). Suc uptake assay in baker's yeast reveals HbSUT5 to be a typical Suc-H+ symporter, but its high affinity for Suc (Km = 2.03 mM at pH 5.5) and the similar efficiency in transporting both Suc and maltose making it a peculiar SUT under the SUT4-clade. At the transcript level, HbSUT5 is abundantly and preferentially expressed in Hevea barks. The transcripts of HbSUT5 are conspicuously decreased both in Hevea latex and bark by two yield-stimulating treatments of tapping and ethephon, the patterns of which are contrary to HbSUT3. Under the ethephon treatment, the Suc level in latex cytosol decreases significantly, but that in latex lutoids (polydispersed vacuoles) changes little, suggesting a role of the decreased HbSUT5 expression in Suc compartmentalization in the lutoids and thus enhancing the Suc sink strength in laticifers. CONCLUSIONS Our findings provide insights into the roles of a vacuolar sucrose transporter, HbSUT5, in Suc exchange between lutoids and cytosol in rubber-producing laticifers.
Collapse
Affiliation(s)
- Xiangyu Long
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Heping Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou, 363005, Fujian, China
| | - Jianghua Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Lusheng Xin
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Yongjun Fang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Bin He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Debao Huang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
| | - Chaorong Tang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
- College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
11
|
Costa JH, Bazioli JM, de Moraes Pontes JG, Fill TP. Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biol 2019; 123:584-593. [DOI: 10.1016/j.funbio.2019.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 12/23/2022]
|
12
|
Privatization of public goods can cause population decline. Nat Ecol Evol 2019; 3:1206-1216. [PMID: 31332334 DOI: 10.1038/s41559-019-0944-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/12/2019] [Indexed: 01/05/2023]
Abstract
Microbes commonly deploy a risky strategy to acquire nutrients from their environment, involving the production of costly public goods that can be exploited by neighbouring individuals. Why engage in such a strategy when an exploitation-free alternative is readily available whereby public goods are kept private? We address this by examining metabolism of Saccharomyces cerevisiae in its native form and by creating a new three-strain synthetic community deploying different strategies of sucrose metabolism. Public-metabolizers digest resources externally, private-metabolizers internalize resources before digestion, and cheats avoid the metabolic costs of digestion but exploit external products generated by competitors. A combination of mathematical modelling and ecological experiments reveal that private-metabolizers invade and take over an otherwise stable community of public-metabolizers and cheats. However, owing to the reduced growth rate of private-metabolizers and population bottlenecks that are frequently associated with microbial communities, privatizing public goods can become unsustainable, leading to population decline.
Collapse
|
13
|
Viigand K, Põšnograjeva K, Visnapuu T, Alamäe T. Genome Mining of Non-Conventional Yeasts: Search and Analysis of MAL Clusters and Proteins. Genes (Basel) 2018; 9:E354. [PMID: 30013016 PMCID: PMC6070925 DOI: 10.3390/genes9070354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic clustering of functionally related genes is rare in yeasts and other eukaryotes with only few examples available. Here, we summarize our data on a nontelomeric MAL cluster of a non-conventional methylotrophic yeast Ogataea (Hansenula) polymorpha containing genes for α-glucosidase MAL1, α-glucoside permease MAL2 and two hypothetical transcriptional activators. Using genome mining, we detected MAL clusters of varied number, position and composition in many other maltose-assimilating non-conventional yeasts from different phylogenetic groups. The highest number of MAL clusters was detected in Lipomyces starkeyi while no MAL clusters were found in Schizosaccharomyces pombe and Blastobotrys adeninivorans. Phylograms of α-glucosidases and α-glucoside transporters of yeasts agreed with phylogenesis of the respective yeast species. Substrate specificity of unstudied α-glucosidases was predicted from protein sequence analysis. Specific activities of Scheffersomycesstipitis α-glucosidases MAL7, MAL8, and MAL9 heterologously expressed in Escherichia coli confirmed the correctness of the prediction-these proteins were verified promiscuous maltase-isomaltases. α-Glucosidases of earlier diverged yeasts L. starkeyi, B. adeninivorans and S. pombe showed sequence relatedness with α-glucosidases of filamentous fungi and bacilli.
Collapse
Affiliation(s)
- Katrin Viigand
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Kristina Põšnograjeva
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
14
|
Kumar R, Mukherjee S, Ayele BT. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnol Adv 2018; 36:954-967. [PMID: 29499342 DOI: 10.1016/j.biotechadv.2018.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/27/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
15
|
Involvement of Penicillium digitatum PdSUT1 in fungicide sensitivity and virulence during citrus fruit infection. Microbiol Res 2017; 203:57-67. [DOI: 10.1016/j.micres.2017.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
|
16
|
Comparative transcriptome analysis between an evolved abscisic acid-overproducing mutant Botrytis cinerea TBC-A and its ancestral strain Botrytis cinerea TBC-6. Sci Rep 2016; 6:37487. [PMID: 27892476 PMCID: PMC5124961 DOI: 10.1038/srep37487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Abscisic acid (ABA) is a classical phytohormone which plays an important role in plant stress resistance. Moreover, ABA is also found to regulate the activation of innate immune cells and glucose homeostasis in mammals. Therefore, this ‘stress hormone’ is of great importance to theoretical research and agricultural and medical applications. Botrytis cinerea is a well-known phytopathogenic ascomycete that synthesizes ABA via a pathway substantially different from higher plants. Identification of the functional genes involved in ABA biosynthesis in B. cinerea would be of special interest. We developed an ABA-overproducing mutant strain, B. cinerea TBC-A, previously and obtained a 41.5-Mb genome sequence of B. cinerea TBC-A. In this study, the transcriptomes of B. cinerea TBC-A and its ancestral strain TBC-6 were sequenced under identical fermentation conditions. A stringent comparative transcriptome analysis was performed to identify differentially expressed genes participating in the metabolic pathways related to ABA biosynthesis in B. cinerea. This study provides the first global view of the transcriptional changes underlying the very different ABA productivity of the B. cinerea strains and will expand our knowledge of the molecular basis for ABA biosynthesis in B. cinerea.
Collapse
|
17
|
Wang Z, Shen Y. Antifungal compound honokiol triggers oxidative stress responsive signalling pathway and modulates central carbon metabolism. Mycology 2016; 7:124-133. [PMID: 30123624 PMCID: PMC6059109 DOI: 10.1080/21501203.2016.1221862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
The fast growing evidences have shown that the plant-derived compound honokiol is a promising candidate for treating multiple human diseases, such as inflammation and cancer. However, the mode-of-action (MoA) of honokiol remains largely unclear. Here, we studied the antifungal activity of honokiol in fission yeast model, with the goal of understanding the honokiol's mechanism of action from the molecular level. We found that honokiol can inhibit the yeast growth at a dose-dependent way. Microarray analysis showed that honokiol has wide impacts on the fission yeast transcription levels (in total, 512 genes are up-regulated, and 42 genes are down-regulated). Gene set enrichment analysis indicated that over 45% up-regulated genes belong to the core environmental stress responses category. Moreover, network analysis suggested that there are extensive gene-gene interactions amongst the co-expression gene lists, which can assemble several biofunctionally important modules. It is noteworthy that several key components of central carbon metabolism, such as glucose transporters and metabolic enzymes of glycolysis, are involved in honokiol's MoA. The complexity of the honokiol's MoA displayed in previous studies and this work demonstrates that multiple omics approaches and bioinformatics tools should be applied together to achieve the complete scenario of honokiol's antifungal function.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Kato H, Kira S, Kawamukai M. The transcription factors Atf1 and Pcr1 are essential for transcriptional induction of the extracellular maltase Agl1 in fission yeast. PLoS One 2013; 8:e80572. [PMID: 24224056 PMCID: PMC3818258 DOI: 10.1371/journal.pone.0080572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into glucose, thereby utilizing maltose as a carbon source. Whether other maltases contribute to efficient utilization of maltose and how Agl1 expression is regulated in response to switching of carbon sources are unknown. In this study, we show that three other possible maltases and the maltose transporter Sut1 are not required for efficient utilization of maltose. Transcription of agl1 was induced when the carbon source was changed from glucose to maltose. This was dependent on Atf1 and Pcr1, which are highly conserved transcription factors that regulate stress-responsive genes in various stress conditions. Atf1 and Pcr1 generally bind the TGACGT motif as a heterodimer. The agl1 gene lacks the exact motif, but has many degenerate TGACGT motifs in its promoter and coding region. When the carbon source was switched from glucose to maltose, Atf1 and Pcr1 associated with the promoters and coding regions of agl1, fbp1, and gpx1, indicating that the Atf1-Pcr1 heteromer binds a variety of regions in its target genes to induce their transcription. In addition, the association of Mediator with these genes was dependent on Atf1 and Pcr1. These data indicate that Atf1 and Pcr1 induce the transcription of agl1, which allows efficient utilization of extracellular maltose.
Collapse
Affiliation(s)
- Hiroaki Kato
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Shintaro Kira
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
- * E-mail:
| |
Collapse
|
19
|
Reinders A, Sun Y, Karvonen KL, Ward JM. Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling. J Biol Chem 2012; 287:30296-304. [PMID: 22807445 DOI: 10.1074/jbc.m112.372888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant sucrose transporters (SUTs) are H(+)-coupled uptake transporters. Type I and II (SUTs) are phylogenetically related but have different substrate specificities. Type I SUTs transport sucrose, maltose, and a wide range of natural and synthetic α- and β-glucosides. Type II SUTs are more selective for sucrose and maltose. Here, we investigated the structural basis for this difference in substrate specificity. We used a novel gene shuffling method called synthetic template shuffling to introduce 62 differentially conserved amino acid residues from type I SUTs into OsSUT1, a type II SUT from rice. The OsSUT1 variants were tested for their ability to transport the fluorescent coumarin β-glucoside esculin when expressed in yeast. Fluorescent yeast cells were selected using fluorescence-activated cell sorting (FACS). Substitution of five amino acids present in type I SUTs in OsSUT1 was found to be sufficient to confer esculin uptake activity. The changes clustered in two areas of the OsSUT1 protein: in the first loop and the top of TMS2 (T80L and A86K) and in TMS5 (S220A, S221A, and T224Y). The substrate specificity of this OsSUT1 variant was almost identical to that of type I SUTs. Corresponding changes in the sugarcane type II transporter ShSUT1 also changed substrate specificity, indicating that these residues contribute to substrate specificity in type II SUTs in general.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108-1095, USA
| | | | | | | |
Collapse
|
20
|
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. TRENDS IN PLANT SCIENCE 2012; 17:413-22. [PMID: 22513109 DOI: 10.1016/j.tplants.2012.03.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 05/18/2023]
Abstract
Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant-fungal interaction functioning. Altogether these data highlight the need for a better comprehension of the mechanisms underlying sugar exchanges between fungi and their host plants.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Sun Y, Lin Z, Reinders A, Ward JM. Functionally Important Amino Acids in Rice Sucrose Transporter OsSUT1. Biochemistry 2012; 51:3284-91. [DOI: 10.1021/bi201934h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ye Sun
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| | - Zi Lin
- Department
of Electrical and
Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Anke Reinders
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| | - John M. Ward
- Department of Plant Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota
55108, United States
| |
Collapse
|
22
|
Gora PJ, Reinders A, Ward JM. A novel fluorescent assay for sucrose transporters. PLANT METHODS 2012; 8:13. [PMID: 22475854 PMCID: PMC3337809 DOI: 10.1186/1746-4811-8-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/04/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND We have developed a novel assay based on the ability of type I sucrose uptake transporters (SUTs) to transport the fluorescent coumarin β-glucoside, esculin. Budding yeast (Saccharomyces cerevisiae) is routinely used for the heterologous expression of SUTs and does not take up esculin. RESULTS When type I sucrose transporters StSUT1 from potato or AtSUC2 from Arabidopsis were expressed in yeast, the cells were able to take up esculin and became brightly fluorescent. We tested a variety of incubation times, esculin concentrations, and buffer pH values and found that for these transporters, a 1 hr incubation at 0.1 to 1 mM esculin at pH 4.0 produced fluorescent cells that were easily distinguished from vector controls. Esculin uptake was assayed by several methods including fluorescence microscopy, spectrofluorometry and fluorescence-activiated cell sorting (FACS). Expression of the type II sucrose transporter OsSUT1 from rice did not result in increased esculin uptake under any conditions tested. Results were reproduced successfully in two distinct yeast strains, SEY6210 (an invertase mutant) and BY4742. CONCLUSIONS The esculin uptake assay is rapid and sensitive and should be generally useful for preliminary tests of sucrose transporter function by heterologous expression in yeast. This assay is also suitable for selection of yeast showing esculin uptake activity using FACS.
Collapse
Affiliation(s)
- Peter J Gora
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| | - Anke Reinders
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| | - John M Ward
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Ave., St. Paul, MN 55108-1095, USA
| |
Collapse
|
23
|
REINDERS ANKE, WARD JOHNM. Investigating polymorphisms in membrane-associated transporter protein SLC45A2, using sucrose transporters as a model. Mol Med Rep 2012; 12:1393-8. [DOI: 10.3892/mmr.2015.3462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
|
24
|
Lalonde S, Frommer WB. SUT Sucrose and MST Monosaccharide Transporter Inventory of the Selaginella Genome. FRONTIERS IN PLANT SCIENCE 2012; 3:24. [PMID: 22645575 PMCID: PMC3355790 DOI: 10.3389/fpls.2012.00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/20/2012] [Indexed: 05/05/2023]
Abstract
Most metazoa use hexose transporters to acquire hexoses from their diet and as a transport form for distributing carbon and energy within their bodies; insects use trehalose, and plants use sucrose as their major form for translocation. Plant genomes contain at least three families of mono- and disaccharide transporters: monosaccharide/polyol transporters that are evolutionary closely related to the yeast and human glucose transporters, sucrose transporters of the SUT family, which similar to the hexose transporters belong to the major facilitator superfamily, but share only minimal amino acid sequence homology with the hexose transporters, and the family of SWEET sugar transporters conserved between animals and plants. Recently, the genome sequence of the spikemoss Selaginella has been determined. In order to study the evolution of sugar transport in plants, we carefully annotated of the complement of sugar transporters in Selaginella. We review the current knowledge regarding sugar transport in spikemoss and provide phylogenetic analyses of the complement of MST and SUT homologs in Selaginella (and Physcomitrella).
Collapse
Affiliation(s)
- Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- *Correspondence: Wolf B. Frommer, Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. e-mail:
| |
Collapse
|
25
|
Reinders A, Sivitz AB, Ward JM. Evolution of plant sucrose uptake transporters. FRONTIERS IN PLANT SCIENCE 2012; 3:22. [PMID: 22639641 PMCID: PMC3355574 DOI: 10.3389/fpls.2012.00022] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
| | - Alicia B. Sivitz
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | - John M. Ward
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, USA
- *Correspondence: John M. Ward, Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA. e-mail:
| |
Collapse
|
26
|
Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. PLANT PHYSIOLOGY 2011; 157:109-19. [PMID: 21771914 PMCID: PMC3165862 DOI: 10.1104/pp.111.176982] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 07/18/2011] [Indexed: 05/18/2023]
Abstract
Physiological functions of sucrose (Suc) transporters (SUTs) localized to the tonoplast in higher plants are poorly understood. We here report the isolation and characterization of a mutation in the rice (Oryza sativa) OsSUT2 gene. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::β-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H(+)-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole. The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls. These results suggest that OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.
Collapse
|
27
|
Meyer H, Vitavska O, Wieczorek H. Identification of an animal sucrose transporter. J Cell Sci 2011; 124:1984-91. [PMID: 21586609 DOI: 10.1242/jcs.082024] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
According to a classic tenet, sugar transport across animal membranes is restricted to monosaccharides. Here, we present the first report of an animal sucrose transporter, SCRT, which we detected in Drosophila melanogaster at each developmental stage. We localized the protein in apical membranes of the late embryonic hindgut as well as in vesicular membranes of ovarian follicle cells. The fact that knockdown of SCRT expression results in significantly increased lethality demonstrates an essential function for the protein. Experiments with Saccharomyces cerevisiae as a heterologous expression system revealed that sucrose is a transported substrate. Because the knockout of SLC45A2, a highly similar protein belonging to the mammalian solute carrier family 45 (SLC45) causes oculocutaneous albinism and because the vesicular structures in which SCRT is located appear to contain melanin, we propose that these organelles are melanosome-like structures and that the transporter is necessary for balancing the osmotic equilibrium during the polymerization process of melanin by the import of a compatible osmolyte. In the hindgut epithelial cells, sucrose might also serve as a compatible osmolyte, but we cannot exclude the possibility that transport of this disaccharide also serves nutritional adequacy.
Collapse
Affiliation(s)
- Heiko Meyer
- Department of Biology and Chemistry, University of Osnabrück, 49069 Osnabrück, Germany
| | | | | |
Collapse
|
28
|
Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. MOLECULAR PLANT 2011; 4:377-94. [PMID: 21502663 DOI: 10.1093/mp/ssr014] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sucrose is the principal product of photosynthesis used for the distribution of assimilated carbon in plants. Transport mechanisms and efficiency influence photosynthetic productivity by relieving product inhibition and contribute to plant vigor by controlling source/sink relationships and biomass partitioning. Sucrose is synthesized in the cytoplasm and may move cell to cell through plasmodesmata or may cross membranes to be compartmentalized or exported to the apoplasm for uptake into adjacent cells. As a relatively large polar compound, sucrose requires proteins to facilitate efficient membrane transport. Transport across the tonoplast by facilitated diffusion, antiport with protons, and symport with protons have been proposed; for transport across plasma membranes, symport with protons and a mechanism resembling facilitated diffusion are evident. Despite decades of research, only symport with protons is well established at the molecular level. This review aims to integrate recent and older studies on sucrose flux across membranes with principles of whole-plant carbon partitioning.
Collapse
Affiliation(s)
- Brian G Ayre
- University of North Texas, Department of Biological Sciences, Denton, Texas, USA.
| |
Collapse
|
29
|
Vargas WA, Crutcher FK, Kenerley CM. Functional characterization of a plant-like sucrose transporter from the beneficial fungus Trichoderma virens. Regulation of the symbiotic association with plants by sucrose metabolism inside the fungal cells. THE NEW PHYTOLOGIST 2011; 189:777-789. [PMID: 21070245 DOI: 10.1111/j.1469-8137.2010.03517.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• Sucrose exuded by plants into the rhizosphere is a crucial component for the symbiotic association between the beneficial fungus Trichoderma and plant roots. In this article we sought to identify and characterize the molecular basis of sucrose uptake into the fungal cells. • Several bioinformatics tools enabled us to identify a plant-like sucrose transporter in the genome of Trichoderma virens Gv29-8 (TvSut). Gene expression profiles in the fungal cells were analyzed by Northern blotting and quantitative real-time PCR (qRT-PCR). Biochemical and physiological studies were conducted on Gv29-8 and fungal strains impaired in the expression of TvSut. • TvSut exhibits biochemical properties similar to those described for sucrose symporters from plants. The null expression of tvsut caused a detrimental effect on fungal growth when sucrose was the sole source of carbon in the medium, and also affected the expression of genes involved in the symbiotic association. • Similar to plants, T. virens contains a highly specific sucrose/H(+) symporter that is induced in the early stages of root colonization. Our results suggest an active sucrose transference from the plant to the fungal cells during the beneficial associations. In addition, our expression experiments suggest the existence of a sucrose-dependent network in the fungal cells that regulates the symbiotic association.
Collapse
Affiliation(s)
- Walter A Vargas
- Department of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843, USA
- Present address: Centro Hispanoluso de Investigaciones Agrárias (CIALE), Departamento de Microbiologia y Genética, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Frankie K Crutcher
- Department of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843, USA
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
|
31
|
Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). PLANT, CELL & ENVIRONMENT 2010; 33:1708-20. [PMID: 20492551 DOI: 10.1111/j.1365-3040.2010.02175.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Efficient sucrose loading in rubber-producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a K(m) value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H(+) symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber-containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue-specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield-stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.
Collapse
Affiliation(s)
- Chaorong Tang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, College of Agronomy, Hainan University, Danzhou, Hainan 571737, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 2010; 8:e1000303. [PMID: 20161717 PMCID: PMC2817709 DOI: 10.1371/journal.pbio.1000303] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 12/23/2009] [Indexed: 01/09/2023] Open
Abstract
Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1) from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.
Collapse
Affiliation(s)
- Ramon Wahl
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
33
|
Sun Y, Reinders A, LaFleur KR, Mori T, Ward JM. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. PLANT & CELL PHYSIOLOGY 2010; 51:114-22. [PMID: 19965875 PMCID: PMC2807175 DOI: 10.1093/pcp/pcp172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Expression in Xenopus oocytes and electrophysiology was used to test for transport activity of the five sucrose transporter (SUT) homologs from rice. Expression of OsSUT1 and OsSUT5 resulted in sucrose-dependent currents that were analyzed by two-electrode voltage clamping. We examined the transport kinetics, substrate specificity and pH dependence of sucrose transport and K(0.5) for sucrose. OsSUT1 showed similar features to those of other type II SUTs from monocots examined previously, with a K(0.5) value of 7.50 mM at pH 5.6. In contrast, OsSUT5 had a higher substrate affinity (K(0.5) = 2.32 mM at pH 5.6), less substrate specificity and less pH dependence compared with all type II SUTs tested to date. Regulation of the rice SUTs, as well as ZmSUT1 from maize and HvSUT1 from barley, by reduced (GSH) and oxidized (GSSG) forms of glutathione was tested. GSSG and GSH were found to have no significant effect on the activity of sucrose transporters when expressed in Xenopus oocytes. In conclusion, differences in transport activity between OsSUT1 and OsSUT5 indicate that type II SUTs have a range of transport activities that are tuned to their function in the plant.
Collapse
Affiliation(s)
| | | | | | | | - John M. Ward
- *Corresponding author: E-mail, ; Fax, +1-612-625-1738
| |
Collapse
|
34
|
Barnett JA. A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 2008; 25:689-731. [PMID: 18951365 DOI: 10.1002/yea.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- James A Barnett
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
35
|
Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. PLANT MOLECULAR BIOLOGY 2008; 68:289-99. [PMID: 18618272 DOI: 10.1007/s11103-008-9370-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Abstract
Sucrose transporters in the SUT family are important for phloem loading and sucrose uptake into sink tissues. The recent localization of type III SUTs AtSUT4 and HvSUT2 to the vacuole membrane suggests that SUTs also function in vacuolar sucrose transport. The transport mechanism of type III SUTs has not been analyzed in detail. LjSUT4, a type III sucrose transporter homolog from Lotus japonicus, is expressed in nodules and its transport activity has not been previously investigated. In this report, LjSUT4 was expressed in Xenopus oocytes and its transport activity assayed by two-electrode voltage clamping. LjSUT4 transported a range of glucosides including sucrose, salicin, helicin, maltose, sucralose and both alpha- and beta-linked synthetic phenyl glucosides. In contrast to other sucrose transporters, LjSUT4 did not transport the plant glucosides arbutin, fraxin and esculin. LjSUT4 showed a low affinity for sucrose (K(0.5)=16 mM at pH 5.3). In addition to inward currents induced by sucrose, other evidence also indicated that LjSUT4 is a proton-coupled symporter: (14)C-sucrose uptake into LjSUT4-expressing oocytes was inhibited by CCCP and sucrose induced membrane depolarization in LjSUT4-expressing oocytes. A GFP-fusion of LjSUT4 localized to the vacuole membrane in Arabidopsis thaliana and in the roots and nodules of Medicago truncatula. Based on these results we propose that LjSUT4 functions in the proton-coupled uptake of sucrose and possibly other glucosides into the cytoplasm from the vacuole.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota Twin Cities, 1445 Gortner Ave. 250 Biological Sciences Center, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
36
|
Nagata T, Iizumi S, Satoh K, Kikuchi S. Comparative molecular biological analysis of membrane transport genes in organisms. PLANT MOLECULAR BIOLOGY 2008; 66:565-85. [PMID: 18293089 PMCID: PMC2268718 DOI: 10.1007/s11103-007-9287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 05/04/2023]
Abstract
Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H(+) as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na(+) ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H(+) ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport.
Collapse
Affiliation(s)
- Toshifumi Nagata
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shigemi Iizumi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Kouji Satoh
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| | - Shoshi Kikuchi
- Plant Genome Research Unit, Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences (NIAS), Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
37
|
Viigand K, Alamäe T. Further study of theHansenula polymorpha MALlocus: characterization of the α-glucoside permease encoded by theHpMAL2gene. FEMS Yeast Res 2007; 7:1134-44. [PMID: 17559409 DOI: 10.1111/j.1567-1364.2007.00257.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The HpMAL2 gene of the MAL gene cluster of Hansenula polymorpha codes for a permease similar to yeast maltose and alpha-glucoside transporters. Genomic disruption of HpMAL2 resulted in an inability of cells to grow on maltose, sucrose, trehalose, maltotriose and turanose, as well as a lack of p-nitrophenyl-alpha-D-glucopyranoside (PNPG) transport. PNPG uptake was competitively inhibited by all these substrates, with Ki values between 0.23 and 1.47 mM. Transport by HpMal2p was sensitive to pH and a protonophore carbonyl cyanide-m-chlorophenylhydrazone (CCCP), revealing its energization by the proton gradient over the cell membrane. Although HpMAL2 was responsible for trehalose uptake, its expression was not induced during trehalose growth. A maltase disruption mutant did not grow on maltotriose and turanose, whereas it showed normal growth on trehalose, demonstrating the dispensability of maltase for intracellular hydrolysis of trehalose. In a Genolevures clone pBB0AA011B12, the promoter region and the N-terminal fragment of the putative transactivator of MAL genes is located adjacent to HpMAL2. A reporter gene assay showed that expression from that promoter was induced by maltose and sucrose, repressed by glucose, and derepressed during glycerol and trehalose growth. Therefore, we presume that the gene encodes a functional regulator.
Collapse
Affiliation(s)
- Katrin Viigand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
38
|
Jansen MLA, Krook DJJ, De Graaf K, van Dijken JP, Pronk JT, de Winde JH. Physiological characterization and fed-batch production of an extracellular maltase of Schizosaccharomyces pombe CBS 356. FEMS Yeast Res 2006; 6:888-901. [PMID: 16911511 DOI: 10.1111/j.1567-1364.2006.00091.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe CBS 356 exhibits extracellular maltase activity. This activity may be of commercial interest as it exhibited a low pH optimum (3.5) and a high affinity for maltose (Km of 7.0+/-1.8 mM). N-terminal sequencing of the protein indicates that it is the product of the AGL1 gene. Regulation of this gene occurs via a derepression/repression mechanism. In sugar- or nitrogen-limited chemostat cultures, the specific rate of enzyme production (q(p)) was independent of the nature of the carbon source (i.e. glucose or maltose), but synthesis was partially repressed by high sugar concentrations. Furthermore, q(p) increased linearly with specific growth rate (mu) between 0.04 and 0.10 h(-1). The enzyme is easily mass-produced in aerobic glucose-limited fed-batch cultures, in which the specific growth rate is controlled to prevent alcoholic fermentation. In fed-batch cultures in which biomass concentrations of 83 g L(-1) were attained, the enzyme concentration reached 58,000 Units per liter culture supernatant. Extracellular maltase may be used as a dough additive in order to prevent mechanisms such as maltose-induced glucose efflux and maltose-hypersensitivity that occur in maltose-consuming Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mickel L A Jansen
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Reinders A, Sivitz AB, Hsi A, Grof CPL, Perroux JM, Ward JM. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. PLANT, CELL & ENVIRONMENT 2006; 29:1871-80. [PMID: 16930313 DOI: 10.1111/j.1365-3040.2006.01563.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K(0.5) = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1',6'-trichloro-4,1',6'-trideoxy-galacto-sucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K(i)) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota Twin Cities, 1445 Gortner Avenue, 250 Biological Sciences Center, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
40
|
Sivitz AB, Reinders A, Ward JM. Analysis of the Transport Activity of Barley Sucrose Transporter HvSUT1. ACTA ACUST UNITED AC 2005; 46:1666-73. [PMID: 16091371 DOI: 10.1093/pcp/pci182] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Localization studies indicate that barley (Hordeum vulgare) sucrose transporter HvSUT1 functions in sucrose uptake into seeds during grain filling. To further understand the physiological function of HvSUT1, we have expressed the HvSUT1 cDNA in Xenopus laevis oocytes and analyzed the transport activity by two-electrode voltage clamping. Consistent with a H(+)-coupled transport mechanism, sucrose induced large inward currents in HvSUT1-expressing oocytes with a K (0.5) of 3.8 mM at pH 5.0 and a membrane potential of -157 mV. Of 21 other sugars tested, four glucosides were also transported by HvSUT1. These glucosides were maltose, salicin (2-(hydroxymethyl) phenyl beta-D-glucoside), alpha-phenylglucoside and alpha-paranitrophenylglucoside. Kinetic analysis of transport of these substrates by HvSUT1 was performed and K (0.5) values were measured. The apparent affinity for all substrates was dependent on membrane potential and pH with lower K (0.5) values at lower external pH and more negative membrane potentials. HvSUT1 was more selective for alpha-glucosides over beta-glucosides than the Arabidopsis sucrose transporter AtSUC2. Several substrates transported by AtSUC2 (beta-phenylglucoside, beta-paranitrophenylglucoside, alpha-methylglucoside, turanose, and arbutin (hydroquinone beta-D-glucoside)) showed low or undetectable transport by HvSUT1. Of these, beta-paranitrophenylglucoside inhibited sucrose transport by HvSUT1 indicating that it interacts with the transporter while arbutin and alpha-methyl glucoside did not inhibit. The results demonstrate significant differences in substrate specificity between HvSUT1 and AtSUC2.
Collapse
Affiliation(s)
- Alicia B Sivitz
- Department of Plant Biology, University of Minnesota Twin Cities, Biological Sciences Center, St. Paul, 55108, USA
| | | | | |
Collapse
|
41
|
Geertsma ER, Duurkens RH, Poolman B. Functional interactions between the subunits of the lactose transporter from Streptococcus thermophilus. J Mol Biol 2005; 350:102-11. [PMID: 15919090 DOI: 10.1016/j.jmb.2005.04.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 11/16/2022]
Abstract
Although the quaternary state has been assessed in detail for only a few members of the major facilitator superfamily (MFS), it is clear that multiple oligomeric states are represented within the MFS. One of its members, the lactose transporter LacS from Streptococcus thermophilus assumes a dimeric structure in the membrane and in vitro analysis showed functional interactions between both subunits when proton motive force ((Delta)p)-driven transport was assayed. To study the interactions in further detail, a covalent dimer was constructed consisting of in tandem fused LacS subunits. These covalent dimers, composed of active and completely inactive subunits, were expressed in Escherichia coli, and initial rates of (Delta)p-driven lactose uptake and lactose counterflow were determined. We now show that also in vivo, both subunits interact functionally; that is, partial complementation of the inactive subunit was observed for both transport modes. Thus, both subunits interact functionally in (Delta)p-driven uptake and in counterflow transport. In addition, analysis of in tandem fused LacS subunits containing one regulatory LacS-IIA domain showed that regulation is primarily an intramolecular event.
Collapse
Affiliation(s)
- Eric R Geertsma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | |
Collapse
|
42
|
Batista AS, Miletti LC, Stambuk BU. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J Mol Microbiol Biotechnol 2005; 8:26-33. [PMID: 15741738 DOI: 10.1159/000082078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.
Collapse
Affiliation(s)
- Anderson S Batista
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | |
Collapse
|
43
|
Chang AB, Lin R, Keith Studley W, Tran CV, Saier MH. Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 2004; 21:171-81. [PMID: 15204625 DOI: 10.1080/09687680410001720830] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protein phylogeny, based on primary amino acid sequence relatedness, reflects the evolutionary process and therefore provides a guide to structure, mechanism and function. Any two proteins that are related by common descent are expected to exhibit similar structures and functions to a degree proportional to the degree of their sequence similarity; but two independently evolving proteins should not. This principle provides the impetus to define protein phylogenetic relationships and interrelate families when possible. In this mini-review, we summarize the computational approaches and criteria we use to establish common evolutionary origin. We apply these tools to define distant superfamily relationships between several previously recognized transport protein families. In some cases, available structural and functional data are evaluated in order to substantiate our claim that molecular phylogeny provides a reliable guide to protein structure and function.
Collapse
Affiliation(s)
- Abraham B Chang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
44
|
Lalonde S, Wipf D, Frommer WB. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. ANNUAL REVIEW OF PLANT BIOLOGY 2004; 55:341-72. [PMID: 15377224 DOI: 10.1146/annurev.arplant.55.031903.141758] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sugars and amino acids are generated in plants by assimilation from inorganic forms. Assimilated forms cross multiple membranes on their way from production sites to storage or use locations. Specific transport systems are responsible for vacuolar uptake and release, for efflux from the cells, and for uptake into the vasculature. Detailed phylogenetic analyses suggest that only proton-coupled cotransporters involved in phloem loading have been identified to date, whereas systems for vacuolar transport and efflux still await identification. Novel imaging approaches may provide the means to characterize the cellular events and elucidate whole plant control of assimilate partitioning and allocation.
Collapse
|
45
|
Isolation of Viable Peronospora Viciae Hyphae from Infected Pisum Sativum Leaves and Accumulation of Nutrients in vitro. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/978-1-4020-2658-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|