1
|
Vanderkelen L, Van Herreweghe JM, Michiels CW. Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel. Molecules 2023; 28:7071. [PMID: 37894549 PMCID: PMC10609593 DOI: 10.3390/molecules28207071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lysozymes are universal components of the innate immune system of animals that kill bacteria by hydrolyzing their main cell wall polymer, peptidoglycan. Three main families of lysozyme have been identified, designated as chicken (c)-, goose (g)- and invertebrate (i)-type. In response, bacteria have evolved specific protein inhibitors against each of the three lysozyme families. In this study, we developed a serial array of three affinity matrices functionalized with a c-, g-, and i-type inhibitors for lysozyme typing, i.e., to detect and differentiate lysozymes in fluids or extracts from animals. The tool was validated on the blue mussel (Mytilus edulis), whose genome carries multiple putative i-, g-, and c-type lysozyme genes. Hemolymph plasma of the animals was found to contain both i- and g-type, but not c-type lysozyme. Furthermore, hemolymph survival of Aeromonas hydrophila and E. coli strains lacking or overproducing the i- type or g-type lysozyme inhibitor, respectively, was analyzed to study the role of the two lysozymes in innate immunity. The results demonstrated an active role for the g-type lysozyme in the innate immunity of the blue mussel, but failed to show a contribution by the i-type lysozyme. Lysozyme profiling using inhibitor-based affinity chromatography will be a useful novel tool for studying animal innate immunity.
Collapse
Affiliation(s)
| | | | - Chris W. Michiels
- Leuven Food Science and Nutrition Research Centre (LFoRCe), Lab Food Microbiology, Department Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium; (L.V.); (J.M.V.H.)
| |
Collapse
|
2
|
Petano-Duque JM, Rueda-García V, Rondón-Barragán IS. Virulence genes identification in Salmonella enterica isolates from humans, crocodiles, and poultry farms from two regions in Colombia. Vet World 2023; 16:2096-2103. [PMID: 38023281 PMCID: PMC10668553 DOI: 10.14202/vetworld.2023.2096-2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim Salmonella spp. is frequently found in the digestive tract of birds and reptiles and transmitted to humans through food. Salmonellosis is a public health problem because of pathogenicity variability in strains for virulence factors. This study aimed to identify the virulence genes in Salmonella isolates from humans, crocodiles, broiler cloacas, and broiler carcasses from two departments of Colombia. Materials and Methods This study was conducted on 31 Salmonella enterica strains from humans with gastroenteritis (seven), crocodiles (seven), broiler cloacas (six), and broiler carcasses (12) from Tolima and Santander departments of Colombia, belonging to 21 serotypes. All samples were tested for Salmonella spp. using culture method on selective and non-selective mediums. Extraction of genomic DNA was performed from fresh colonies, DNA quality was verified by spectrophotometry and confirmed by amplification of InvA gene using conventional polymerase chain reaction (PCR). bapA, fimA, icmF, IroB, marT, mgtC, nlpI, oafA, pagN, siiD, spvC, spvR, spvB, Stn, and vexA genes were amplified by PCR. Results The most prevalent gene was bapA (100%), followed by marT (96.77%), mgtC (93.55%), and fimA (83.87%). Likewise, IroB (70.97%), Stn (67.74%), spvR (61.29%), pagN (54.84%), icmF (54.8%), and SiiD (45.16%) were positive for more than 50% of the strains. Furthermore, none of the isolates tested positive for the vexA gene. Salmonella isolates presented 26 virulence profiles. Conclusion This study reported 14 virulence genes in Salmonella spp. isolates from humans with gastroenteritis, crocodiles, and broiler cloacas and carcasses. The distribution of virulence genes differed among sources. This study could help in decision-making by health and sanitary authorities.
Collapse
Affiliation(s)
- Julieth Michel Petano-Duque
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Valentina Rueda-García
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Santa Helena Highs, Ibagué, Tolima, Colombia
| |
Collapse
|
3
|
Vij S, Thakur R, Rishi P. Reverse engineering approach: a step towards a new era of vaccinology with special reference to Salmonella. Expert Rev Vaccines 2022; 21:1763-1785. [PMID: 36408592 DOI: 10.1080/14760584.2022.2148661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Salmonella is responsible for causing enteric fever, septicemia, and gastroenteritis in humans. Due to high disease burden and emergence of multi- and extensively drug-resistant Salmonella strains, it is becoming difficult to treat the infection with existing battery of antibiotics as we are not able to discover newer antibiotics at the same pace at which the pathogens are acquiring resistance. Though vaccines against Salmonella are available commercially, they have limited efficacy. Advancements in genome sequencing technologies and immunoinformatics approaches have solved the problem significantly by giving rise to a new era of vaccine designing, i.e. 'Reverse engineering.' Reverse engineering/vaccinology has expedited the vaccine identification process. Using this approach, multiple potential proteins/epitopes can be identified and constructed as a single entity to tackle enteric fever. AREAS COVERED This review provides details of reverse engineering approach and discusses various protein and epitope-based vaccine candidates identified using this approach against typhoidal Salmonella. EXPERT OPINION Reverse engineering approach holds great promise for developing strategies to tackle the pathogen(s) by overcoming the limitations posed by existing vaccines. Progressive advancements in the arena of reverse vaccinology, structural biology, and systems biology combined with an improved understanding of host-pathogen interactions are essential components to design new-generation vaccines.
Collapse
Affiliation(s)
- Shania Vij
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Reena Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Xie Z, Zhang Y, Huang X. Evidence and speculation: the response of Salmonella confronted by autophagy in macrophages. Future Microbiol 2020; 15:1277-1286. [PMID: 33026883 DOI: 10.2217/fmb-2020-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from self-limited gastroenteritis to typhoid fever. Macrophages are immune cells that engulf and restrict Salmonella. These cells will carry Salmonella into the circulatory system and provoke a systemic infection. Therefore, the interaction between macrophages and intracellular Salmonella is vital for its pathogenicity. As one of the immune responses of macrophages, autophagy, along with the fusion of autophagosomes with lysosomes, occupies an important position in eliminating Salmonella. However, Salmonella that can overcome cellular defensive responses and infect neighboring cells must derive strategies to escape autophagy. This review introduces novel findings on Salmonella and macrophage autophagy as a mechanism against infection and explores the strategies used by Salmonella to escape autophagy.
Collapse
Affiliation(s)
- Zhongyi Xie
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China.,International Genome Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ying Zhang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| | - Xinxiang Huang
- Department of Biochemistry & Molecular Biology, Jiangsu University School of Medicine, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Murret-Labarthe C, Kerhoas M, Dufresne K, Daigle F. New Roles for Two-Component System Response Regulators of Salmonella enterica Serovar Typhi during Host Cell Interactions. Microorganisms 2020; 8:microorganisms8050722. [PMID: 32413972 PMCID: PMC7285189 DOI: 10.3390/microorganisms8050722] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
In order to survive external stresses, bacteria need to adapt quickly to changes in their environment. One adaptive mechanism is to coordinate and alter their gene expression by using two-component systems (TCS). TCS are composed of a sensor kinase that activates a transcriptional response regulator by phosphorylation. TCS are involved in motility, virulence, nutrient acquisition, and envelope stress in many bacteria. The pathogenic bacteria Salmonella enterica serovar Typhi (S. Typhi) possess 30 TCSs, is specific to humans, and causes typhoid fever. Here, we have individually deleted each of the 30 response regulators. We have determined their role during interaction with host cells (epithelial cells and macrophages). Deletion of most of the systems (24 out of 30) resulted in a significant change during infection. We have identified 32 new phenotypes associated with TCS of S. Typhi. Some previously known phenotypes associated with TCSs in Salmonella were also confirmed. We have also uncovered phenotypic divergence between Salmonella serovars, as distinct phenotypes between S. Typhi and S. Typhimurium were identified for cpxR. This finding highlights the importance of specifically studying S. Typhi to understand its pathogenesis mechanisms and to develop strategies to potentially reduce typhoid infections.
Collapse
|
6
|
Petersen E, Miller SI. The cellular microbiology of Salmonellae interactions with macrophages. Cell Microbiol 2019; 21:e13116. [PMID: 31509644 DOI: 10.1111/cmi.13116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/27/2022]
Abstract
Salmonellae are important enteric pathogens that cause gastroenteritis and systemic illnesses. Macrophages are important components of both the innate and acquired immune system, acting as phagocytes with significant antimicrobial killing activities that present antigen to the adaptive immune system. Macrophages can also be cultured from a variety of sites as primary cells, and the study of the survival and interactions of Salmonellae with these cells is a very early model of infection and cellular microbiology. This review traces the history of discoveries made using Salmonellae infection of macrophages and addresses the possibility of future research in this area, in particular with regards to understanding the complexity of individual bacteria and macrophage cell variability and how such heterogeneity may alter the outcome of infection.
Collapse
Affiliation(s)
- Erik Petersen
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Ragland SA, Humbert MV, Christodoulides M, Criss AK. Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathog 2018; 14:e1007080. [PMID: 29975775 PMCID: PMC6033460 DOI: 10.1371/journal.ppat.1007080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae (Gc) infects mucosal sites rich in antimicrobial proteins, including the bacterial cell wall-degrading enzyme lysozyme. Certain Gram-negative bacteria produce protein inhibitors that bind to and inhibit lysozyme. Here, we identify Ng_1063 as a new inhibitor of lysozyme in Gc, and we define its functions in light of a second, recently identified lysozyme inhibitor, Ng_1981. In silico analyses indicated that Ng_1063 bears sequence and structural homology to MliC-type inhibitors of lysozyme. Recombinant Ng_1063 inhibited lysozyme-mediated killing of a susceptible mutant of Gc and the lysozyme-sensitive bacterium Micrococcus luteus. This inhibitory activity was dependent on serine 83 and lysine 103 of Ng_1063, which are predicted to interact with lysozyme’s active site residues. Lysozyme co-immunoprecipitated with Ng_1063 and Ng_1981 from intact Gc. Ng_1063 and Ng_1981 protein levels were also increased in Gc exposed to lysozyme. Gc lacking both ng1063 and ng1981 was significantly more sensitive to killing by lysozyme than wild-type or single mutant bacteria. When exposed to human tears or saliva, in which lysozyme is abundant, survival of Δ1981Δ1063 Gc was significantly reduced compared to wild-type, and survival was restored upon addition of recombinant Ng_1981. Δ1981Δ1063 mutant Gc survival was additionally reduced in the presence of human neutrophils, which produce lysozyme. We found that while Ng_1063 was exposed on the surface of Gc, Ng_1981 was both in an intracellular pool and extracellularly released from the bacteria, suggesting that Gc employs these two proteins at multiple spatial barriers to fully neutralize lysozyme activity. Together, these findings identify Ng_1063 and Ng_1981 as critical components for Gc defense against lysozyme. These proteins may be attractive targets for antimicrobial therapy aimed to render Gc susceptible to host defenses and/or for vaccine development, both of which are urgently needed against drug-resistant gonorrhea. The mucosal pathogen Neisseria gonorrhoeae has acquired resistance to almost all recommended antibiotics, and no gonorrhea vaccine currently exists. Attractive targets for therapeutic discovery include bacterial factors that, when inactivated, enhance bacterial susceptibility to host-derived antimicrobial components. The bacterial cell wall-degrading enzyme lysozyme is abundant in mucosal secretions and innate immune cells. To resist killing by lysozyme, some bacteria produce proteins that bind to and directly inhibit the activity of lysozyme. Here, we demonstrate lysozyme inhibitory activity in the N. gonorrhoeae protein Ng_1063. We found that both Ng_1063 and a second, recently described lysozyme inhibitor, Ng_1981, contribute to full resistance of N. gonorrhoeae to lysozyme, including resistance to lysozyme-rich mucosal secretions and human neutrophils. Although Ng_1063 and Ng_1981 are both inhibitors of lysozyme, they are distinct in their sequences, biological activities, and cellular localizations. Because both Ng_1063 and Ng_1981 are extracellular, we propose they can be targeted for vaccines and drugs that sensitize Gc to human antimicrobial defenses.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marίa V. Humbert
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Comparative study of Salmonella enterica serovar Enteritidis genes expressed within avian and murine macrophages via selective capture of transcribed sequences (SCOTS). Appl Microbiol Biotechnol 2018; 102:6567-6579. [PMID: 29799087 DOI: 10.1007/s00253-018-9067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (SE) is a communicable zoonotic bacterium. Macrophages are essential for Salmonella survival, transmission, and infection. In this study, selective capture of transcribed sequences (SCOTS) was used to screen genes preferentially expressed by SE during contact with macrophages from different hosts. We found 57 predicted genes and 52 genes expressed by SE during interaction with avian HD-11 and murine RAW264.7 cells, respectively. These expressed genes were involved in virulence, metabolism, stress response, transport, regulation, and other functions. Although genes related to survival or metabolic pathways were needed during SE infection, different gene expression profiles of SE occurred in the two macrophage cell lines. qRT-PCR results confirmed that most screened genes were upregulated during infection in contrast to the observation during in vitro cultivation, with different expression levels in infected avian macrophages at 2-h and 7-h post-infection. In addition, in vitro and in vivo competition assays confirmed that SEN3610 (a putative deoR family regulator) and rfaQ (related to LPS synthesis) were closely related to SE virulence in both mice and chickens. Three putative transcriptional regulators, SEN2967, SEN4299, and rtcR, were related to SE colonization in mice, while the ycaM mutation caused decreased infection and survival of SE in HD-11 cells without influencing virulence in mice or chicken. Genes showing differential expression between SE-infected avian and murine macrophages indicate specific pathogen adaptation to enable infection of various hosts.
Collapse
|
9
|
William M, Leroux LP, Chaparro V, Lorent J, Graber TE, M'Boutchou MN, Charpentier T, Fabié A, Dozois CM, Stäger S, van Kempen LC, Alain T, Larsson O, Jaramillo M. eIF4E-Binding Proteins 1 and 2 Limit Macrophage Anti-Inflammatory Responses through Translational Repression of IL-10 and Cyclooxygenase-2. THE JOURNAL OF IMMUNOLOGY 2018; 200:4102-4116. [PMID: 29712774 DOI: 10.4049/jimmunol.1701670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
Macrophages represent one of the first lines of defense during infections and are essential for resolution of inflammation following pathogen clearance. Rapid activation or suppression of protein synthesis via changes in translational efficiency allows cells of the immune system, including macrophages, to quickly respond to external triggers or cues without de novo mRNA synthesis. The translational repressors eIF4E-binding proteins 4E-BP1 and 4E-BP2 (4E-BP1/2) are central regulators of proinflammatory cytokine synthesis during viral and parasitic infections. However, it remains to be established whether 4E-BP1/2 play a role in translational control of anti-inflammatory responses. By comparing translational efficiencies of immune-related transcripts in macrophages from wild-type and 4E-BP1/2 double-knockout mice, we found that translation of mRNAs encoding two major regulators of inflammation, IL-10 and PG-endoperoxide synthase 2/cyclooxygenase-2, is controlled by 4E-BP1/2. Genetic deletion of 4E-BP1/2 in macrophages increased endogenous IL-10 and PGE2 protein synthesis in response to TLR4 stimulation and reduced their bactericidal capacity. The molecular mechanism involves enhanced anti-inflammatory gene expression (sIl1ra, Nfil3, Arg1, Serpinb2) owing to upregulation of IL-10-STAT3 and PGE2-C/EBPβ signaling. These data provide evidence that 4E-BP1/2 limit anti-inflammatory responses in macrophages and suggest that dysregulated activity of 4E-BP1/2 might be involved in reprogramming of the translational and downstream transcriptional landscape of macrophages during pathological conditions, such as infections and cancer.
Collapse
Affiliation(s)
- Mirtha William
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Marie-Noël M'Boutchou
- Department of Pathology, McGill University, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; and.,Department of Pathology and Medical Biology, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tania Charpentier
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Aymeric Fabié
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Charles M Dozois
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Léon C van Kempen
- Department of Pathology, McGill University, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; and.,Department of Pathology and Medical Biology, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
10
|
Dufresne K, Saulnier-Bellemare J, Daigle F. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi. Front Cell Infect Microbiol 2018; 8:26. [PMID: 29473020 PMCID: PMC5809473 DOI: 10.3389/fcimb.2018.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/19/2018] [Indexed: 01/11/2023] Open
Abstract
The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S. Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae (stg, sth, bcf, fim, saf, sef, sta, stb, stc, std, ste, and tcf). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S. Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S. Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S. Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S. Typhi pathogenesis.
Collapse
Affiliation(s)
- Karine Dufresne
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Julie Saulnier-Bellemare
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
11
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Leclerc JM, Dozois CM, Daigle F. Salmonella enterica serovar Typhi siderophore production is elevated and Fur inactivation causes cell filamentation and attenuation in macrophages. FEMS Microbiol Lett 2017; 364:3958796. [PMID: 28859315 DOI: 10.1093/femsle/fnx147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars Typhi and Typhimurium are two closely related bacteria causing different types of infection in humans. Iron acquisition is considered essential for virulence. Siderophores are important iron chelators and production of enterobactin and salmochelins by these serovars was quantified. Overall, Salmonella Typhi produced higher levels of siderophores than Salmonella Typhimurium. The role of the global regulator Fur, involved in iron homeostasis, present and conserved in both these serovars, was then investigated. Deletion of the fur gene led to distinct phenotypes in these serovars. Defective growth in iron-rich and iron-limiting conditions and formation of filamentous cells was only observed in the S. Typhi fur mutant. Furthermore, Fur was required for optimal motility in both serovars, but motility was more reduced for the fur mutant of S. Typhi compared to S. Typhimurium. During interaction with human-cultured macrophages, Fur was more important for S. Typhi, as the fur mutant had severe defects in uptake and survival. Globally, these results demonstrate that Fur differentially affects the physiology and the virulence phenotypes of the two strains and is more critical for S. Typhi growth, morphology, motility and interaction with host cells than it is for S. Typhimurium.
Collapse
Affiliation(s)
- Jean-Mathieu Leclerc
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| | - Charles M Dozois
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, C.P. 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
13
|
Lin G, Chen W, Su Y, Qin Y, Huang L, Yan Q. Ribose operon repressor (RbsR) contributes to the adhesion of Aeromonas hydrophila to Anguilla japonica mucus. Microbiologyopen 2017; 6. [PMID: 28127946 PMCID: PMC5552941 DOI: 10.1002/mbo3.451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
The characterization of adhesion between pathogenic bacteria and the host is critical. Pathogenic Aeromonas hydrophila was shown to adhere in vitro to the mucus of Anguilla japonica. To further investigate the adhesion mechanisms of A. hydrophila, a mini-Tn10 transposon mutagenesis system was used to generate an insertion mutant library by cell conjugation. Seven mutants that were impaired in adhesion to mucus were selected out of 332 individual colonies, and mutant M196 was the most severely impaired strain. National Center for Biotechnology Information (NCBI) blast analysis showed that mutant M196 was inserted by mini-Tn10 with an ORF of approximately 1,005 bp (GenBank accession numbers KP280172). This ORF is predicted to encode a protein consist of 334 amino acid, which displays the highest identity (98%) with the RbsR of A. hydrophila ATCC 7966. Random inactivation of rbsR gene affected the pleiotropic phenotypes of A. hydrophila. The adhesion ability and the survival level of the rbsR gene mutant (M196) were attenuated compared with the wild-type and rbsR complementary type. The findings of this study indicated that RbsR plays roles in the bacterial adhesion and intracellular survival of A. hydrophila.
Collapse
Affiliation(s)
- Guifang Lin
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Wenbo Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
14
|
Leclerc JM, Quevillon EL, Houde Y, Paranjape K, Dozois CM, Daigle F. Regulation and production of Tcf, a cable-like fimbriae from Salmonella enterica serovar Typhi. MICROBIOLOGY-SGM 2016; 162:777-788. [PMID: 26944792 DOI: 10.1099/mic.0.000270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
tcf (Typhi colonization factor) is one of the 12 putative chaperone/usher fimbrial clusters present in the Salmonella enterica serovar Typhi genome. We investigated the production, expression and regulation of tcf as well as its role during interaction with human cells. The tcf gene cluster was cloned and induced in Escherichia coli and S. Typhi, and the production of intertwined fibres similar to the Cbl (cable) pili of Burkholderia cepacia was observed on the bacterial surface by electron microscopy. In S. Typhi, tcf was expressed more after growth in M63 minimal medium than in standard Luria-Bertani medium. Analysis of the promoter region identified putative binding sites for the global regulators RcsB, ArgR and Fur. The expression of tcf was measured in isogenic strains lacking these global regulators. Under the conditions tested, the results showed that tcf expression was higher in the fur mutant and was regulated by iron concentration. Fur may regulate these fimbriae indirectly via the small RNAs RyhB1 and RyhB2. An isogenic mutant harbouring a deletion of the tcf cluster did not demonstrate any defect in adhesion or invasion of human epithelial cells, or in phagocytosis or survival in macrophages, when compared to the WT serovar Typhi strain. However, the tcf cluster contributed to adherence to human epithelial cells when introduced into E. coli. Thus, tcf genes encode functional fimbriae that can act as an adhesin and may contribute to colonization during typhoid fever.
Collapse
Affiliation(s)
- Jean-Mathieu Leclerc
- Department of Microbiology, Infectiology and Immunology, Université de Montréal,CP 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7,Canada
| | - Eve-Lyne Quevillon
- Department of Microbiology, Infectiology and Immunology, Université de Montréal,CP 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7,Canada
| | - Yoan Houde
- Department of Microbiology, Infectiology and Immunology, Université de Montréal,CP 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7,Canada
| | - Kiran Paranjape
- Department of Microbiology, Infectiology and Immunology, Université de Montréal,CP 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7,Canada
| | - Charles M Dozois
- INRS-Institut Armand-Frappier,531 boulevard des Prairies, Laval, Québec H7V 1B7,Canada
| | - France Daigle
- Department of Microbiology, Infectiology and Immunology, Université de Montréal,CP 6128 Succursale Centre-Ville, Montreal, Quebec H3C 3J7,Canada
| |
Collapse
|
15
|
Sethi D, Mahajan S, Singh C, Lama A, Hade MD, Gupta P, Dikshit KL. Lipoprotein LprI of Mycobacterium tuberculosis Acts as a Lysozyme Inhibitor. J Biol Chem 2015; 291:2938-53. [PMID: 26589796 DOI: 10.1074/jbc.m115.662593] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis executes numerous defense strategies for the successful establishment of infection under a diverse array of challenges inside the host. One such strategy that has been delineated in this study is the abrogation of lytic activity of lysozyme by a novel glycosylated and surface-localized lipoprotein, LprI, which is exclusively present in M. tuberculosis complex. The lprI gene co-transcribes with the glbN gene (encoding hemoglobin (HbN)) and both are synchronously up-regulated in M. tuberculosis during macrophage infection. Recombinant LprI, expressed in Escherichia coli, exhibited strong binding (Kd ≤ 2 nm) with lysozyme and abrogated its lytic activity completely, thereby conferring protection to fluorescein-labeled Micrococcus lysodeikticus from lysozyme-mediated hydrolysis. Expression of the lprI gene in Mycobacterium smegmatis (8-10-fold) protected its growth from lysozyme inhibition in vitro and enhanced its phagocytosis and survival during intracellular infection of peritoneal and monocyte-derived macrophages, known to secrete lysozyme, and in the presence of exogenously added lysozyme in secondary cell lines where lysozyme levels are low. In contrast, the presence of HbN enhanced phagocytosis and intracellular survival of M. smegmatis only in the absence of lysozyme but not under lysozyme stress. Interestingly, co-expression of the glbN-lprI gene pair elevated the invasion and survival of M. smegmatis 2-3-fold in secondary cell lines in the presence of lysozyme in comparison with isogenic cells expressing these genes individually. Thus, specific advantage against macrophage-generated lysozyme, conferred by the combination of LprI-HbN during invasion of M. tuberculosis, may have vital implications on the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Deepti Sethi
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Sahil Mahajan
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Chaahat Singh
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Amrita Lama
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mangesh Dattu Hade
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Pawan Gupta
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Kanak L Dikshit
- From the Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
16
|
Abstract
Human salmonellosis is generally associated with Salmonella enterica from subspecies enterica (subspecies I). Acute infections can present in one of four ways: enteric fever, gastroenteritis, bacteremia, or extraintestinal focal infection. As with other infectious diseases, the course and outcome of the infection depend on a variety of factors, including the infecting organism, the inoculating dose, and the immune status and genetic background of the host. For serovarsTyphi and Paratyphi A there is a clear association between the genetic background of the serovar and systemic infection in humans. For serovars Paratyphi B and Paratyphi C, a good clinical description of the host and detailed population genetics of the pathogen are necessary before more detailed genetic studies of novel virulence factors,or host factors,can be initiated. For the nontyphoidalserovars (NTS) the situation is less clear. Serovars Typhimurium and Enteritidis are the most common within the food chain, and so the large number of invasive infections associated with these serovars is most likely due to exposure rather than to increased virulence of the pathogen. In Africa, however, a closely related group of strains of serovar Typhimurium, associated with HIV infection, may have become host adapted tohumans, suggesting that not all isolates called "Typhimurium" should be considered as a single group. Here we review current knowledge of the salmonellae for which invasive disease in humans is an important aspect of their population biology.
Collapse
|
17
|
Li MF, Wang C, Sun L. Edwardsiella tarda MliC, a lysozyme inhibitor that participates in pathogenesis in a manner that parallels Ivy. Infect Immun 2015; 83:583-90. [PMID: 25404031 PMCID: PMC4294240 DOI: 10.1128/iai.02473-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/13/2014] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda, a bacterial pathogen to farmed fish as well as humans, possesses the genes of two lysozyme inhibitors, ivy and mliC (ivy(Et) and mliC(Et)). We recently studied IvyEt and found it to be implicated in E. tarda virulence. In the present study, we characterized MliC(Et) in comparison with Ivy(Et) in a turbot model. MliC(Et) contains the FWSKG motif and two cysteines (C33 and C98) that are highly conserved in subgroup 1 MliCs but are of unknown functional importance. To examine the essentialness of these conserved structural features, recombinant MliC(Et) (rMliC) and its mutants bearing C33S and W79A (of the FWSKG motif) substitutions were prepared. Subsequent analysis showed that rMliC (i) inhibited lysozyme-induced lysis of a Gram-positive bacterium, (ii) reduced serum-facilitated lysozyme killing of E. tarda, and (iii) when introduced into turbot, promoted bacterial dissemination in fish tissues. The C33S mutation had no influence on the activity of rMliC, while the W79A mutation slightly but significantly enhanced the activity of rMliC. Knockout strains of either mliC(Et) or ivy(Et) were severely attenuated for the ability of tissue invasion, host lethality, serum survival, and intracellular replication. The lost virulence of the mliC transformant (TXΔmliC) was restored by complementation with an introduced mliC(Et) gene. Compared to the Δivy(Et) or ΔmliC(Et) single-knockout strains, the ΔmliC(Et) Δivy(Et) double-knockout strain was significantly impaired in most of the virulence features. Together, these results provide the first evidence that the conserved cysteine is functionally dispensable to a subgroup 1 MliC and that as a virulence factor, MliC(Et) most likely works in a concerted and parallel manner with Ivy.
Collapse
Affiliation(s)
- Mo-Fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China University of Chinese Academy of Sciences, Beijing, China
| | - Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Ortega AD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 2014; 4:162. [PMID: 25429360 PMCID: PMC4228915 DOI: 10.3389/fcimb.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - Juan J Quereda
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain ; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC) Madrid, Spain
| | | |
Collapse
|
19
|
Wang Y, Yi L, Wang S, Lu C, Ding C. Selective capture of transcribed sequences in the functional gene analysis of microbial pathogens. Appl Microbiol Biotechnol 2014; 98:9983-92. [PMID: 25381492 DOI: 10.1007/s00253-014-6190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 01/26/2023]
Abstract
Selective capture of transcribed sequences (SCOTS) is an effective method to identify bacterial genes differentially expressed during different biological processes, including pathogenic interactions with a host species. The method can be used to elucidate molecular mechanisms driving and maintaining such interactions. The method is a powerful genetic tool that overcomes limitations found in other methods, by working with small amounts of mRNA and allowing for the separation of bacterial cDNA from host cDNA. It has been increasingly used in the discovery of genes involved in the bacterium-host interaction. In this review, we briefly introduce the SCOTS method, outline the technical advances offered in the method, and focus on the method's applications in several microbial pathogens.
Collapse
Affiliation(s)
- Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China,
| | | | | | | | | |
Collapse
|
20
|
Dougan G, Baker S. Salmonella entericaSerovar Typhi and the Pathogenesis of Typhoid Fever. Annu Rev Microbiol 2014; 68:317-36. [DOI: 10.1146/annurev-micro-091313-103739] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom;
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University, Clinical Research Unit, Ho Chi Minh City, Vietnam;
- Centre for Tropical Medicine, Oxford University, Oxford OX3 7FZ, United Kingdom
- The London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
21
|
Guo CM, Chen RR, Kalhoro DH, Wang ZF, Liu GJ, Lu CP, Liu YJ. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages. PLoS One 2014; 9:e87980. [PMID: 24498419 PMCID: PMC3912197 DOI: 10.1371/journal.pone.0087980] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.
Collapse
Affiliation(s)
- Chang-Ming Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Rong-Rong Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Zhao-Fei Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guang-Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Ping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yong-Jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
22
|
Leclerc JM, Dozois CM, Daigle F. Role of the Salmonella enterica serovar Typhi Fur regulator and small RNAs RfrA and RfrB in iron homeostasis and interaction with host cells. Microbiology (Reading) 2013; 159:591-602. [DOI: 10.1099/mic.0.064329-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jean-Mathieu Leclerc
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Charles M. Dozois
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
23
|
Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, Sirard JC, Fritz J, Lemaître N, Akinbi H, Boneca IG, Sebbane F. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J Infect Dis 2013; 207:1535-43. [PMID: 23402825 DOI: 10.1093/infdis/jit057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.
Collapse
Affiliation(s)
- Anne Derbise
- Equipe Peste et Yersinia pestis, INSERM U1019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Cheng Y, Xiong Y, Ye C, Zheng H, Sun H, Zhao H, Ren Z, Xu J. Enterohemorrhagic Escherichia coli specific enterohemolysin induced IL-1β in human macrophages and EHEC-induced IL-1β required activation of NLRP3 inflammasome. PLoS One 2012; 7:e50288. [PMID: 23209696 PMCID: PMC3507778 DOI: 10.1371/journal.pone.0050288] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/22/2012] [Indexed: 01/23/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major foodborne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome. The role of EHEC O157:H7-enterohemolysin (Ehx) in the pathogenesis of infections remains poorly defined. In this study, we used gene deletion and complement methods to confirm its putative functions. Results demonstrated that, in THP-1 cells, EHEC O157:H7-Ehx is associated with greater production of extracellular interleukin (IL)-1β than other cytokines. The data also showed that EHEC O157:H7-Ehx contributed to cytotoxicity in THP-1 cells, causing the release of lactate dehydrogenase (LDH). Although we observed a positive correlation between IL-1β production and cytotoxicity in THP-1 cells infected with different EHEC O157:H7 strains, our immunoblot results showed that the majority of IL-1β in the supernatant was mature IL-1β and not the pro-IL-1β that can be released after cell death. However, EHEC O157:H7-Ehx had no detectable effect on biologically inactive pro-IL-1β at the mRNA or protein synthesis levels. Neither did it affect the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, or NOD-like receptor family pyrin domain containing 3 (NLRP3). RNA interference experiments showed that EHEC O157:H7-induced IL-1β production required the involvement of ASC, caspase-1, and NLRP3 expression in THP-1 cells. Our results demonstrate that Ehx plays a crucial role in EHEC O157:H7-induced IL-1β production and its cytotoxicity to THP-1 cells. NLRP3 inflammasome activation is also involved in EHEC O157:H7-stimulated IL-1β release.
Collapse
Affiliation(s)
- Xiaoai Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yuli Cheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Yanwen Xiong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Changyun Ye
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Hui Sun
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Hongqing Zhao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
| | - Zhihong Ren
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
- * E-mail: (ZR); (JX)
| | - Jianguo Xu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Changping, Beijing, China
- * E-mail: (ZR); (JX)
| |
Collapse
|
25
|
Callewaert L, Van Herreweghe JM, Vanderkelen L, Leysen S, Voet A, Michiels CW. Guards of the great wall: bacterial lysozyme inhibitors. Trends Microbiol 2012; 20:501-10. [DOI: 10.1016/j.tim.2012.06.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
26
|
Guo D, Lu Y, Zhang A, Liu J, Yuan D, Jiang Q, Lin H, Si C, Qu L. Identification of genes transcribed by Pasteurella multocida in rabbit livers through the selective capture of transcribed sequences. FEMS Microbiol Lett 2012; 331:105-12. [DOI: 10.1111/j.1574-6968.2012.02559.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/20/2012] [Accepted: 03/22/2012] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | | | | | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | - Dongwei Yuan
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | - Huan Lin
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | - Changde Si
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences (CAAS); Harbin; China
| |
Collapse
|
27
|
Tolman JS, Valvano MA. Global changes in gene expression by the opportunistic pathogen Burkholderia cenocepacia in response to internalization by murine macrophages. BMC Genomics 2012; 13:63. [PMID: 22321740 PMCID: PMC3296584 DOI: 10.1186/1471-2164-13-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/09/2012] [Indexed: 12/18/2022] Open
Abstract
Background Burkholderia cenocepacia is an opportunistic pathogen causing life-threatening infections in patients with cystic fibrosis. The bacterium survives within macrophages by interfering with endocytic trafficking and delaying the maturation of the B. cenocepacia-containing phagosome. We hypothesize that B. cenocepacia undergoes changes in gene expression after internalization by macrophages, inducing genes involved in intracellular survival and host adaptation. Results We examined gene expression by intracellular B. cenocepacia using selective capture of transcribed sequences (SCOTS) combined with microarray analysis. We identified 767 genes with significantly different levels of expression by intracellular bacteria, of which 330 showed increased expression and 437 showed decreased expression. Affected genes represented all aspects of cellular life including information storage and processing, cellular processes and signaling, and metabolism. In general, intracellular gene expression demonstrated a pattern of environmental sensing, bacterial response, and metabolic adaptation to the phagosomal environment. Deletion of various SCOTS-identified genes affected bacterial entry into macrophages and intracellular replication. We also show that intracellular B. cenocepacia is cytotoxic towards the macrophage host, and capable of spread to neighboring cells, a role dependent on SCOTS-identified genes. In particular, genes involved in bacterial motility, cobalamin biosynthesis, the type VI secretion system, and membrane modification contributed greatly to macrophage entry and subsequent intracellular behavior of B. cenocepacia. Conclusions B. cenocepacia enters macrophages, adapts to the phagosomal environment, replicates within a modified phagosome, and exhibits cytotoxicity towards the host cells. The analysis of the transcriptomic response of intracellular B. cenocepacia reveals that metabolic adaptation to a new niche plays a major role in the survival of B. cenocepacia in macrophages. This adaptive response does not require the expression of any specific virulence-associated factor, which is consistent with the opportunistic nature of this microorganism. Further investigation into the remaining SCOTS-identified genes will provide a more complete picture of the adaptive response of B. cenocepacia to the host cell environment.
Collapse
Affiliation(s)
- Jennifer S Tolman
- Infectious Diseases Research Group, Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
28
|
An R, Grewal PS. Comparative study of differential gene expression in closely related bacterial species by comparative hybridization. Methods Mol Biol 2012; 815:103-119. [PMID: 22130987 DOI: 10.1007/978-1-61779-424-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability to profile bacterial gene expression has markedly advanced the capacity to understand the molecular mechanisms of pathogenesis, epidemiology, and therapeutics. This advance has been coupled with the development of techniques that enable investigators to identify bacterial specifically expressed genes and promise to open new avenues of functional genomics by allowing researchers to focus on the identified differentially expressed genes. During the past two decades, a number of approaches have been developed to investigate bacterial genes differentially expressed in response to the changing environment, particularly during interaction with their hosts. The most commonly used techniques include in vivo expression technology, signature-tagged mutagenesis, differential fluorescence induction, and cDNA microarrays, which fall into two broad classes: mutagenesis-based technologies and hybridization-based technologies. Selective capture of transcribed sequences, a recently emerging method, is a hybridization-based technique. This technique is powerful in analyzing differential gene expression of the bacteria, with the superb ability to investigate the bacterial species with unknown genomic information. Herein, we describe the application of this technique in a comparative study of the gene expression between two closely related bacteria induced or repressed under a variety of conditions.
Collapse
Affiliation(s)
- Ruisheng An
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA.
| | | |
Collapse
|
29
|
Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, Arifuzzaman M, Khanam F, Bukka A, Kalsy A, Porwollik S, Leung DT, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis 2011; 5:e1419. [PMID: 22180799 PMCID: PMC3236720 DOI: 10.1371/journal.pntd.0001419] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. Methodology/Principal Findings We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. Conclusions/Significance We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection. Salmonella enterica serotype Typhi is the cause of typhoid fever and infects over 21 million cases and causes 200,000 deaths each year. S. Typhi only infects humans and this has greatly limited studies of S. Typhi pathogenesis. To study bacterial gene expression in human hosts, we used Selective Capture of Transcribed Sequences (SCOTS) and array hybridization to identify S. Typhi mRNAs expressed in the blood of 5 patients with S. Typhi infection. In total, we detected the expression of 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; of these, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures. Our results provide insight into S. Typhi pathogenesis, identifying both previously described and novel interactions occurring between host and microbe during the natural course of human infection. Further study of these genes, especially those of unknown function, may further our understanding of S. Typhi pathogenesis and aid in vaccine, diagnostic, and/or drug target development.
Collapse
Affiliation(s)
- Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Nusrat Sharmeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Sean M. Rollins
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Md. Saruar Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mohammad Arifuzzaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Archana Bukka
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steffen Porwollik
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. Abdullah Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth L. Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alejandro Cravioto
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Tanya Logvinenko
- Division of Biostatistics, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael McClelland
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - James E. Graham
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Yang HJ, Lee JS, Cha JY, Baik HS. Negative regulation of pathogenesis in Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease. Mol Cells 2011; 32:317-23. [PMID: 21904881 PMCID: PMC3887642 DOI: 10.1007/s10059-011-1017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas syringae pv. tabaci causes wildfire disease in tobacco plants. The hrp pathogenicity island (hrp PAI) of P. syringae pv. tabaci encodes a type III secretion system (TTSS) and its regulatory system, which are required for pathogenesis in plants. Three important regulatory proteins-HrpR, HrpS, and HrpL-have been identified to activate hrp PAI gene expression. The bacterial Lon protease regulates the expression of various genes. To investigate the regulatory mechanism of the Lon protease in P. syringae pv. tabaci 11528, we cloned the lon gene, and then a Δlon mutant was generated by allelic exchange. lon mutants showed increased UV sensitivity, which is a typical feature of such mutants. The Δlon mutant produced higher levels of tabtoxin than the wild-type. The lacZ gene was fused with hrpA promoter and activity of β-galactosidase was measured in hrp-repressing and hrp-inducing media. The Lon protease functioned as a negative regulator of hrp PAI under hrp-repressing conditions. We found that strains with lon disruption elicited the host defense system more rapidly and strongly than the wild-type strain, suggesting that the Lon protease is essential for systemic pathogenesis.
Collapse
Affiliation(s)
- Hyun Ju Yang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
- Present address: Alcoholic Beverage Research Institute, Daesun Distilling Co. Ltd., Busan 619-951, Korea
| | - Jun Seung Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
- These authors contributed equally to this study
| | - Ji Young Cha
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | - Hyung Suk Baik
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| |
Collapse
|
31
|
Faucher SP, Mueller CA, Shuman HA. Legionella Pneumophila Transcriptome during Intracellular Multiplication in Human Macrophages. Front Microbiol 2011; 2:60. [PMID: 21747786 PMCID: PMC3128937 DOI: 10.3389/fmicb.2011.00060] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/18/2011] [Indexed: 01/08/2023] Open
Abstract
Legionella pneumophila is the causative agent of Legionnaires' disease, an acute pulmonary infection. L. pneumophila is able to infect and multiply in both phagocytic protozoa, such as Acanthamoeba castellanii, and mammalian professional phagocytes. The best-known L. pneumophila virulence determinant is the Icm/Dot type IVB secretion system, which is used to translocate more than 150 effector proteins into host cells. While the transcriptional response of Legionella to the intracellular environment of A. castellanii has been investigated, much less is known about the Legionella transcriptional response inside human macrophages. In this study, the transcriptome of L. pneumophila was monitored during exponential and post-exponential phase in rich AYE broth as well as during infection of human cultured macrophages. This was accomplished with microarrays and an RNA amplification procedure called selective capture of transcribed sequences to detect small amounts of mRNA from low numbers of intracellular bacteria. Among the genes induced intracellularly are those involved in amino acid biosynthetic pathways leading to l-arginine, l-histidine, and l-proline as well as many transport systems involved in amino acid and iron uptake. Genes involved in catabolism of glycerol are also induced during intracellular growth, suggesting that glycerol could be used as a carbon source. The genes encoding the Icm/Dot system are not differentially expressed inside cells compared to control bacteria grown in rich broth, but the genes encoding several translocated effectors are strongly induced. Moreover, we used the transcriptome data to predict previously unrecognized Icm/Dot effector genes based on their expression pattern and confirmed translocation for three candidates. This study provides a comprehensive view of how L. pneumophila responds to the human macrophage intracellular environment.
Collapse
Affiliation(s)
- Sébastien P Faucher
- Department of Microbiology and Immunology, Columbia University Medical Center New York, NY, USA
| | | | | |
Collapse
|
32
|
Vanderkelen L, Van Herreweghe JM, Vanoirbeek KGA, Baggerman G, Myrnes B, Declerck PJ, Nilsen IW, Michiels CW, Callewaert L. Identification of a bacterial inhibitor against g-type lysozyme. Cell Mol Life Sci 2011; 68:1053-64. [PMID: 20734102 PMCID: PMC11115080 DOI: 10.1007/s00018-010-0507-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/12/2010] [Accepted: 08/10/2010] [Indexed: 01/17/2023]
Abstract
Lysozymes are antibacterial effectors of the innate immune system in animals that hydrolyze peptidoglycan. Bacteria have evolved protective mechanisms that contribute to lysozyme tolerance such as the production of lysozyme inhibitors, but only inhibitors of chicken (c-) and invertebrate (i-) type lysozyme have been identified. We here report the discovery of a novel Escherichia coli inhibitor specific for goose (g-) type lysozymes, which we designate PliG (periplasmic lysozyme inhibitor of g-type lysozyme). Although it does not inhibit c- or i-type lysozymes, PliG shares a structural sequence motif with the previously described PliI and MliC/PliC lysozyme inhibitor families, suggesting a common ancestry and mode of action. Deletion of pliG increased the sensitivity of E. coli to g-type lysozyme. The existence of inhibitors against all major types of animal lysozyme and their contribution to lysozyme tolerance suggest that lysozyme inhibitors may play a role in bacterial interactions with animal hosts.
Collapse
Affiliation(s)
- L. Vanderkelen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - J. M. Van Herreweghe
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - K. G. A. Vanoirbeek
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - G. Baggerman
- Prometa, Interfaculty Centre for Proteomics and Metabolomics, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - B. Myrnes
- Fish Health and Marine Bioprospecting, Nofima Marin, P.O. Box 6122, 9291 Tromsø, Norway
| | - P. J. Declerck
- Laboratory for Pharmaceutical Biology, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - I. W. Nilsen
- Fish Health and Marine Bioprospecting, Nofima Marin, P.O. Box 6122, 9291 Tromsø, Norway
| | - C. W. Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - L. Callewaert
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| |
Collapse
|
33
|
Voet A, Callewaert L, Ulens T, Vanderkelen L, Vanherreweghe JM, Michiels CW, De Maeyer M. Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochem Biophys Res Commun 2011; 405:527-32. [PMID: 21256115 DOI: 10.1016/j.bbrc.2011.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 11/28/2022]
Abstract
The production of lysozyme inhibitors, competitively binding to the lysozyme active site, is a bacterial strategy to prevent the lytic activity of host lysozymes. Therefore, suppression of the lysozyme-inhibitor interaction is an interesting new approach for drug development since restoration of the bacterial lysozyme sensitivity will support bacterial clearance from the infected sites. Using molecular modelling techniques the interaction of the Salmonella PliC inhibitor with c-type lysozyme was studied and a protein-protein interaction based pharmacophore model was created. This model was used as a query to identify molecules, with potential affinity for the target, and subsequently, these molecules were filtered using molecular docking. The retained molecules were validated as suppressors of lysozyme inhibitory proteins using in vitro experiments revealing four active molecules.
Collapse
Affiliation(s)
- Arnout Voet
- Laboratory for Biomolecular Modelling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
34
|
Leysen S, Van Herreweghe JM, Callewaert L, Heirbaut M, Buntinx P, Michiels CW, Strelkov SV. Molecular basis of bacterial defense against host lysozymes: X-ray structures of periplasmic lysozyme inhibitors PliI and PliC. J Mol Biol 2010; 405:1233-45. [PMID: 21146533 DOI: 10.1016/j.jmb.2010.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/25/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Lysozymes play a key role in the innate immune system of vertebrates and invertebrates by hydrolyzing peptidoglycan, a vital component of the bacterial cell wall. Gram-negative bacteria produce various types of lysozyme inhibitors that allow them to survive the bactericidal action of lysozyme when their outer membrane is permeabilized. So far, three lysozyme inhibitor families have been described: the Ivy (inhibitor of vertebrate lysozyme) family, the MliC/PliC (membrane-associated/periplasmic lysozyme inhibitor of C-type lysozyme) family, and the PliI (periplasmic lysozyme inhibitor of I-type lysozyme) family. Here, we report high-resolution crystal structures of Salmonella typhimurium PliC (PliC-St) and Aeromonas hydrophila PliI (PliI-Ah). The structure of PliI-Ah is the first in the recently discovered PliI family of lysozyme inhibitors, while the structure of PliC-St is the first structure of a periplasmic lysozyme inhibitor from the PliC/MliC family. Using small-angle X-ray scattering, we demonstrate that both PliC-St and PliI-Ah form stable dimers in solution. The functional dimer architecture of PliC-St is very different from that of the recently described MliC from Pseudomonas aeruginosa (MliC-Pa), despite the close resemblance of their monomers. Furthermore, PliI-Ah has distinctly different monomer and dimer folds compared to PliC, MliC, and Ivy proteins. Site-directed mutagenesis suggests that the inhibitory action of PliI-Ah proceeds via an insertion of a loop containing the conserved SGxY motif into the active center of I-type lysozymes. This motif is related to the functional SGxxY motif found in the MliC/PliC family.
Collapse
Affiliation(s)
- S Leysen
- Laboratory for Biocrystallography, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Herestraat 49 bus 822, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Sheikh A, Charles RC, Rollins SM, Harris JB, Bhuiyan MS, Khanam F, Bukka A, Kalsy A, Porwollik S, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET. Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh. PLoS Negl Trop Dis 2010; 4:e908. [PMID: 21151879 PMCID: PMC2998432 DOI: 10.1371/journal.pntd.0000908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. METHODOLOGY/PRINCIPAL FINDINGS In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome). Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs) 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome). Of these, expression of 194 transcripts (4.7% of ORFs) was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes. CONCLUSION/SIGNIFICANCE To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen in the blood of naturally infected humans.
Collapse
Affiliation(s)
- Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Molecular mechanisms of persistence of mutualistic bacteria Photorhabdus in the entomopathogenic nematode host. PLoS One 2010; 5. [PMID: 20957199 PMCID: PMC2950140 DOI: 10.1371/journal.pone.0013154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/10/2010] [Indexed: 11/19/2022] Open
Abstract
Symbioses between microbes and animals are ubiquitous, yet little is known about the intricate mechanisms maintaining such associations. In an emerging mutualistic model system, insect-pathogenic bacteria Photorhabdus and their insect-parasitic nematode partner Heterorhabditis, we found that the bacteria undergo major transcriptional reshaping in the nematode intestine. Besides general starvation mechanisms, the bacteria induce cellular acidification to slow down growth, switch to pentose phosphate pathway to overcome oxidative stress and nutrition limitation, and shed motility but develop biofilm to persist in the nematode intestine until being released into the insect hemolymph. These findings demonstrate how the symbiotic bacteria reduce their nutritional dependence on the enduring nematode partner to ensure successful transmission of the couple to the next insect host.
Collapse
|
37
|
Forest CG, Ferraro E, Sabbagh SC, Daigle F. Intracellular survival of Salmonella enterica serovar Typhi in human macrophages is independent of Salmonella pathogenicity island (SPI)-2. MICROBIOLOGY-SGM 2010; 156:3689-3698. [PMID: 20817644 DOI: 10.1099/mic.0.041624-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For successful infection, Salmonella enterica secretes and injects effector proteins into host cells by two distinct type three secretion systems (T3SSs) located on Salmonella pathogenicity islands (SPIs)-1 and -2. The SPI-2 T3SS is involved in intracellular survival of S. enterica serovar Typhimurium and systemic disease. As little is known regarding the function of the SPI-2 T3SS from S. enterica serovar Typhi, the aetiological agent of typhoid fever, we investigated its role for survival in human macrophages. Mutations in the translocon (sseB), basal secretion apparatus (ssaR) and regulator (ssrB) did not result in any reduction in survival under many of the conditions tested. Similar results were obtained with another S. Typhi strain or by using human primary cells. Results were corroborated based on complete deletion of the SPI-2 T3SS. Surprisingly, the data suggest that the SPI-2 T3SS of S. Typhi is not required for survival in human macrophages.
Collapse
Affiliation(s)
- Chantal G Forest
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Elyse Ferraro
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Sébastien C Sabbagh
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
38
|
Guerrero-Ferreira RC, Nishiguchi MK. Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:514-523. [PMID: 20680094 PMCID: PMC2911791 DOI: 10.1111/j.1758-2229.2009.00077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Luminescent bacteria (gamma-Proteobacteria: Vibrionaceae) are found in complex bilobed light organs of both sepiolid and loliginid squids (Mollusca: Cephalopoda). Despite the existence of multiple strain colonization between Vibrio bacteria and loliginid squids, specificity at the genus level still exists and may influence interactions between symbiotic and free-living stages of the symbiont. The environmentally transmitted behaviour of Vibrio symbionts bestows a certain degree of recognition that exists prior and subsequent to the colonization process. Therefore, we identified bacterial genes required for successful colonization of loliginid light organs by examining transcripts solely expressed in either the light organ or free-living stages. Selective capture of transcribed sequences (SCOTS) was used to differentiate genes expressed by the same bacterium when thriving in two different environments (i.e. loliginid light organs and seawater). Genes specific for squid light organs included vulnibactin synthetase, outer membrane protein W and dihydroxy dehydratase, which have been associated with the maintenance of bacterial host associations in other systems. In contrast, genes that were solely expressed in the free-living condition consisted of transcripts recognized as important factors for bacterial survival in the environment. These transcripts included genes for methyl accepting chemotaxis proteins, arginine decarboxylase and chitinase. These results provide valuable information regarding mechanisms determining specificity, establishment, and maintenance of bacteria-squid associations.
Collapse
|
39
|
Van Herreweghe JM, Vanderkelen L, Callewaert L, Aertsen A, Compernolle G, Declerck PJ, Michiels CW. Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cell Mol Life Sci 2010; 67:1177-88. [PMID: 20049505 PMCID: PMC11115509 DOI: 10.1007/s00018-009-0241-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/30/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Invertebrate (I-) type lysozymes, like all other known lysozymes, are dedicated to the hydrolysis of peptidoglycan, the major bacterial cell wall polymer, thereby contributing to the innate immune system and/or digestive system of invertebrate organisms. Bacteria on the other hand have developed several protective strategies against lysozymes, including the production of periplasmic and/or membrane-bound lysozyme inhibitors. The latter have until now only been described for chicken (C-) type lysozymes. We here report the discovery, purification, identification and characterization of the first bacterial specific I-type lysozyme inhibitor from Aeromonas hydrophila, which we designate PliI (periplasmic lysozyme inhibitor of the I-type lysozyme). PliI has homologs in several proteobacterial genera and contributes to I-type lysozyme tolerance in A. hydrophila in the presence of an outer membrane permeabilizer. These and previous findings on C-type lysozyme inhibitors suggest that bacterial lysozyme inhibitors may have an important function, for example, in bacteria-host interactions.
Collapse
Affiliation(s)
- J. M. Van Herreweghe
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - L. Vanderkelen
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - L. Callewaert
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - A. Aertsen
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - G. Compernolle
- Laboratory for Pharmaceutical Biology, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - P. J. Declerck
- Laboratory for Pharmaceutical Biology, Katholieke Universiteit Leuven, O&N II Herestraat 49, 3000 Leuven, Belgium
| | - C. W. Michiels
- Laboratory of Food Microbiology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| |
Collapse
|
40
|
|
41
|
Emboulé L, Daigle F, Meyer DF, Mari B, Pinarello V, Sheikboudou C, Magnone V, Frutos R, Viari A, Barbry P, Martinez D, Lefrançois T, Vachiéry N. Innovative approach for transcriptomic analysis of obligate intracellular pathogen: selective capture of transcribed sequences of Ehrlichia ruminantium. BMC Mol Biol 2009; 10:111. [PMID: 20034374 PMCID: PMC2806407 DOI: 10.1186/1471-2199-10-111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 12/24/2009] [Indexed: 01/25/2023] Open
Abstract
Background Whole genome transcriptomic analysis is a powerful approach to elucidate the molecular mechanisms controlling the pathogenesis of obligate intracellular bacteria. However, the major hurdle resides in the low quantity of prokaryotic mRNAs extracted from host cells. Our model Ehrlichia ruminantium (ER), the causative agent of heartwater, is transmitted by tick Amblyomma variegatum. This bacterium affects wild and domestic ruminants and is present in Sub-Saharan Africa and the Caribbean islands. Because of its strictly intracellular location, which constitutes a limitation for its extensive study, the molecular mechanisms involved in its pathogenicity are still poorly understood. Results We successfully adapted the SCOTS method (Selective Capture of Transcribed Sequences) on the model Rickettsiales ER to capture mRNAs. Southern Blots and RT-PCR revealed an enrichment of ER's cDNAs and a diminution of ribosomal contaminants after three rounds of capture. qRT-PCR and whole-genome ER microarrays hybridizations demonstrated that SCOTS method introduced only a limited bias on gene expression. Indeed, we confirmed the differential gene expression between poorly and highly expressed genes before and after SCOTS captures. The comparative gene expression obtained from ER microarrays data, on samples before and after SCOTS at 96 hpi was significantly correlated (R2 = 0.7). Moreover, SCOTS method is crucial for microarrays analysis of ER, especially for early time points post-infection. There was low detection of transcripts for untreated samples whereas 24% and 70.7% were revealed for SCOTS samples at 24 and 96 hpi respectively. Conclusions We conclude that this SCOTS method has a key importance for the transcriptomic analysis of ER and can be potentially used for other Rickettsiales. This study constitutes the first step for further gene expression analyses that will lead to a better understanding of both ER pathogenicity and the adaptation of obligate intracellular bacteria to their environment.
Collapse
Affiliation(s)
- Loïc Emboulé
- UMR 15 CIRAD-INRA, Contrôle des maladies animales exotiques et émergentes, Site de Duclos, Prise d'Eau 97170, Petit Bourg, Guadeloupe.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The Salmonella enterica serotype Typhi Vi capsular antigen is expressed after the bacterium enters the ileal mucosa. Infect Immun 2009; 78:527-35. [PMID: 19901065 DOI: 10.1128/iai.00972-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica serotype Typhi, the etiological agent of typhoid fever, produces the Vi capsular antigen, a virulence factor absent in Salmonella enterica serotype Typhimurium. Previous studies suggest that the capsule-encoding viaB locus reduces inflammatory responses in intestinal tissue; however, there are currently no data regarding the in vivo expression of this locus. Here we implemented direct and indirect methods to localize and detect Vi antigen expression within polarized intestinal epithelial cells and in the bovine ileal mucosa. We report that tviB, a gene necessary for Vi production in S. Typhi, was significantly upregulated during invasion of intestinal epithelial cells in vitro. During infection of bovine ligated loops, tviB was expressed at levels significantly higher in calf tissue than those in the inoculum. The presence of the Vi capsular antigen was detected in calf ileal tissue via fluorescence microscopy. Together, these results support the concept that expression of the Vi capsular antigen is induced when S. Typhi transits from the intestinal lumen into the ileal mucosa.
Collapse
|
43
|
Pokusaeva K, Neves AR, Zomer A, O'Connell-Motherway M, MacSharry J, Curley P, Fitzgerald GF, van Sinderen D. Ribose utilization by the human commensal Bifidobacterium breve UCC2003. Microb Biotechnol 2009; 3:311-23. [PMID: 21255330 PMCID: PMC3815373 DOI: 10.1111/j.1751-7915.2009.00152.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growth of Bifidobacterium breve UCC2003 on ribose leads to the transcriptional induction of the rbsACBDK gene cluster. Generation and phenotypic analysis of an rbsA insertion mutant established that the rbs gene cluster is essential for ribose utilization, and that its transcription is likely regulated by a LacI‐type regulator encoded by rbsR, located immediately upstream of rbsA. Gel mobility shift assays using purified RbsRHis indicate that the promoter upstream of rbsABCDK is negatively controlled by RbsRHis binding to an 18 bp inverted repeat and that RbsRHis binding activity is modulated by d‐ribose. The rbsK gene of the rbs operon of B. breve UCC2003 was shown to specify a ribokinase (EC 2.7.1.15), which specifically directs its phosphorylating activity towards d‐ribose, converting this pentose sugar to ribose‐5‐phosphate.
Collapse
Affiliation(s)
- Karina Pokusaeva
- Alimentary Pharmabiotic Centre, Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
An R, Sreevatsan S, Grewal PS. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis. BMC Genomics 2009; 10:433. [PMID: 19754939 PMCID: PMC2760582 DOI: 10.1186/1471-2164-10-433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photorhabdus and Xenorhabdus are Gram-negative, phylogenetically related, enterobacteria, forming mutualism with the entomopathogenic nematodes Heterorhabditis and Steinernema, respectively. The mutualistic bacteria living in the intestines of the nematode infective juveniles are pathogenic to the insect upon release by the nematodes into the insect hemolymph. Such a switch needs activation of genes that promote bacterial virulence. We studied in vivo gene expression in Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the white grub Rhizotrogus majalis using selective capture of transcribed sequences technique. RESULTS A total of 40 genes in P. temperata and 39 in X. koppenhoeferi were found to be upregulated in R. majalis hemolymph at 24 h post infection. Genomic presence or upregulation of these genes specific in either one of the bacterium was confirmed by the assay of comparative hybridization, and the changes of randomly selected genes were further validated by quantitative real-time PCR. The identified genes could be broadly divided into seven functional groups including cell surface structure, regulation, virulence and secretion, stress response, intracellular metabolism, nutrient scavenging, and unknown. The two bacteria shared more genes in stress response category than any other functional group. More than 60% of the identified genes were uniquely induced in either bacterium suggesting vastly different molecular mechanisms of pathogenicity to the same insect host. In P. temperata lysR gene encoding transcriptional activator was induced, while genes yijC and rseA encoding transcriptional repressors were induced in X. koppenhoeferi. Lipopolysaccharide synthesis gene lpsE was induced in X. koppenhoeferi but not in P. temperata. Except tcaC and hemolysin related genes, other virulence genes were different between the two bacteria. Genes involved in TCA cycle were induced in P. temperata whereas those involved in glyoxylate pathway were induced in X. koppenhoeferi, suggesting differences in metabolism between the two bacteria in the same insect host. Upregulation of genes encoding different types of nutrient uptake systems further emphasized the differences in nutritional requirements of the two bacteria in the same insect host. Photorhabdus temperata displayed upregulation of genes encoding siderophore-dependent iron uptake system, but X. koppenhoeferi upregulated genes encoding siderophore-independent ion uptake system. Photorhabdus temperata induced genes for amino acid acquisition but X. koppenhoeferi upregulated malF gene, encoding a maltose uptake system. Further analyses identified possible mechanistic associations between the identified gene products in metabolic pathways, providing an interactive model of pathogenesis for each bacterium species. CONCLUSION This study identifies set of genes induced in P. temperata and X. koppenhoeferi upon infection of R. majalis, and highlights differences in molecular features used by these two closely related bacteria to promote their pathogenicity in the same insect host.
Collapse
Affiliation(s)
- Ruisheng An
- Department of Entomology, The Ohio State University, Wooster, OH 44691, USA.
| | | | | |
Collapse
|
45
|
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET. Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 2009; 4:e6994. [PMID: 19746165 PMCID: PMC2736619 DOI: 10.1371/journal.pone.0006994] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 12/20/2022] Open
Abstract
Background S. Typhi, a human-restricted Salmonella
enterica serovar, causes a systemic intracellular infection in
humans (typhoid fever). In comparison, S. Typhimurium
causes gastroenteritis in humans, but causes a systemic typhoidal illness in
mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately
regulated network of genes whose expression is required for intracellular
survival of S. enterica. Methodology/Principal Findings Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS),
we examined the protein expression profiles of three sequenced S.
enterica strains: S. Typhimurium LT2,
S. Typhi CT18, and S. Typhi Ty2 in
PhoP-inducing and non-inducing conditions in vitro and
compared these results to profiles of
phoP−/Q−
mutants derived from S. Typhimurium LT2 and
S. Typhi Ty2. Our analysis identified 53 proteins in
S. Typhimurium LT2 and 56 proteins in
S. Typhi that were regulated in a PhoP-dependent manner. As
expected, many proteins identified in S. Typhi demonstrated
concordant differential expression with a homologous protein in
S. Typhimurium. However, three proteins (HlyE, STY1499, and
CdtB) had no homolog in S. Typhimurium. HlyE is a
pore-forming toxin. STY1499 encodes a stably expressed protein of unknown
function transcribed in the same operon as HlyE. CdtB is a cytolethal
distending toxin associated with DNA damage, cell cycle arrest, and cellular
distension. Gene expression studies confirmed up-regulation of mRNA of HlyE,
STY1499, and CdtB in S. Typhi in PhoP-inducing
conditions. Conclusions/Significance This study is the first protein expression study of the PhoP virulence
associated regulon using strains of Salmonella mutant in
PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499)
that are not present in the genome of the wide host-range Typhimurium, and
includes the first protein expression profiling of a live attenuated
bacterial vaccine studied in humans (Ty800).
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Le Sage V, Zhu L, Lepage C, Portt A, Viau C, Daigle F, Gruenheid S, Le Moual H. An outer membrane protease of the omptin family prevents activation of the Citrobacter rodentium PhoPQ two-component system by antimicrobial peptides. Mol Microbiol 2009; 74:98-111. [PMID: 19708916 DOI: 10.1111/j.1365-2958.2009.06854.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The PhoPQ two-component system of the intracellular pathogen Salmonella enterica senses and controls resistance to alpha-helical antimicrobial peptides (AMPs) by regulating covalent modifications of lipid A. A homologue of the phoPQ operon was found in the genome of the murine enteric extracellular pathogen, Citrobacter rodentium. Here we report that C. rodentium PhoPQ was apparently unable to mediate activation of target genes in the presence of alpha-helical AMPs. However, these AMPs activated C. rodentium PhoPQ expressed in a S. entericaDeltaphoPQ mutant. Analysis of the outer membrane (OM) fractions of the C. rodentium wild-type and DeltaphoPQ strains led to the identification of an omptin family protease (CroP) that was absent in DeltaphoPQ. Deletion of croP in C. rodentium resulted in higher susceptibility to alpha-helical AMPs, indicating a direct role of CroP in AMP resistance. CroP greatly contributed to the protection of the OM from AMP damage by actively degrading alpha-helical AMPs before they reach the periplasmic space. Accordingly, transcriptional activation of PhoP-regulated genes by alpha-helical AMPs was restored in the DeltacroP mutant. This study shows that resistance to alpha-helical AMPs by the extracellular pathogen C. rodentium relies primarily on the CroP OM protease.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Lei Zhu
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Christine Lepage
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Andrea Portt
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Charles Viau
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Hervé Le Moual
- Department of Microbiology and Immunology andFaculty of Dentistry, McGill University, Montreal, QC, H3A 2B4, Canada.Department of Microbiology and Immunology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| |
Collapse
|
47
|
An improved method to knock out the asd gene of Salmonella enterica serovar Pullorum. J Biomed Biotechnol 2009; 2009:646380. [PMID: 19672470 PMCID: PMC2723734 DOI: 10.1155/2009/646380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/28/2009] [Accepted: 05/26/2009] [Indexed: 11/17/2022] Open
Abstract
An asd-deleted (Deltaasd) mutant of Salmonella enterica serovar Pullorum (SP) was constructed using an improved method of gene knockout by combining the pi-suicide plasmid system with the Red Disruption system. The asd gene was efficiently knocked out by the recombinant suicide vector, which replaced the asd gene with the CmR gene. Based on the balanced lethal host-vector system, the phenotype of the Deltaasd mutant was further defined. The improved method was simpler and more effective than previously reported conventional methods.
Collapse
|
48
|
High-throughput bioluminescence-based mutant screening strategy for identification of bacterial virulence genes. Appl Environ Microbiol 2009; 75:2166-75. [PMID: 19201969 DOI: 10.1128/aem.02449-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A high-throughput bioluminescence screening procedure for identification of virulence genes in bacteria was developed and applied to the fish pathogen Edwardsiella ictaluri. A random transposon mutant library expressing bioluminescence was constructed and robotically arrayed on 384-well plates. Mutants were cultivated and mixed with catfish serum and neutrophils in 96-well plates, and bioluminescence was used to detect mutants that are more susceptible to killing by these host factors. The virulence and vaccine efficacy of selected mutants were determined in channel catfish. Transposon insertion sites in 13 mutants attenuated in the natural host were mapped to the E. ictaluri genome. Ten unique genes were mutated, including genes encoding a negative regulator of sigmaE activity, a glycine cleavage system protein, tricarboxylic acid cycle enzymes, an O polysaccharide biosynthesis enzyme, proteins encoded on the native plasmid pEI1, and a fimbrial chaperon protein. Three of these mutants were found to have potential as live attenuated vaccines. This study demonstrates a novel application of bioluminescence to identify bacterial genes required for host resistance; as a result, efficacious and genetically defined live attenuated vaccine candidates were developed.
Collapse
|
49
|
Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo. Infect Immun 2008; 77:1071-82. [PMID: 19103774 DOI: 10.1128/iai.00693-08] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant bacterial vaccines must be fully attenuated for animal or human hosts to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Unfortunately, many well-studied means for attenuating Salmonella render strains more susceptible to host defense stresses encountered following oral vaccination than wild-type virulent strains and/or impair their ability to effectively colonize the gut-associated and internal lymphoid tissues. This thus impairs the ability of recombinant vaccines to serve as factories to produce recombinant antigens to induce the desired protective immunity. To address these problems, we designed strains that display features of wild-type virulent strains of Salmonella at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. We recently described one means to achieve this based on a reversible smooth-rough synthesis of lipopolysaccharide O antigen. We report here a second means to achieve regulated delayed attenuation in vivo that is based on the substitution of a tightly regulated araC P(BAD) cassette for the promoters of the fur, crp, phoPQ, and rpoS genes such that expression of these genes is dependent on arabinose provided during growth. Thus, following colonization of lymphoid tissues, the Fur, Crp, PhoPQ, and/or RpoS proteins cease to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. Means for achieving regulated delayed attenuation can be combined with other mutations, which together may yield safe efficacious recombinant attenuated Salmonella vaccines.
Collapse
|
50
|
Yum S, Kim MJ, Xu Y, Jin XL, Yoo HY, Park JW, Gong JH, Choe KM, Lee BL, Ha NC. Structural basis for the recognition of lysozyme by MliC, a periplasmic lysozyme inhibitor in Gram-negative bacteria. Biochem Biophys Res Commun 2008; 378:244-8. [PMID: 19028453 DOI: 10.1016/j.bbrc.2008.11.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Lysozymes are an important component of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall constituent. Many bacteria have contrived various means of dealing with this bactericidal enzyme, one of which is to produce lysozyme inhibitors. Recently, a novel family of bacterial lysozyme inhibitors was identified in various Gram-negative bacteria, named MliC (membrane bound lysozyme inhibitor of C-type lysozyme). Here, we report the crystal structure of Pseudomonas aeruginosa MliC in complex with chicken egg white lysozyme. Combined with mutational study, the complex structure demonstrates that the invariant loop of MliC plays a crucial role in the inhibition of the lysozyme by its insertion to the active site cleft of the lysozyme, where the loop forms hydrogen and ionic bonds with the catalytic residues. Since MliC family members have been implicated as putative colonization or virulence factors, the structures and mechanism of action of MliC will be of relevance to the control of bacterial growth in animal hosts.
Collapse
Affiliation(s)
- Soohwan Yum
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Room #311, Pharmacy Building, Jangjeon-dong Geumjeong-gu, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|