1
|
Cromie GA, Tan Z, Hays M, Sirr A, Dudley AM. Spatiotemporal patterns of gene expression during development of a complex colony morphology. PLoS One 2024; 19:e0311061. [PMID: 39637084 PMCID: PMC11620645 DOI: 10.1371/journal.pone.0311061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Clonal communities of single celled organisms, such as bacterial or fungal colonies and biofilms, are spatially structured, with subdomains of cells experiencing differing environmental conditions. In the development of such communities, cell specialization is not only important to respond and adapt to the local environment but has the potential to increase the fitness of the clonal community through division of labor. Here, we examine colony development in a yeast strain (F13) that produces colonies with a highly structured "ruffled" phenotype in the colony periphery and an unstructured "smooth" phenotype in the colony center. We demonstrate that in the F13 genetic background deletions of transcription factors can either increase (dig1D, sfl1D) or decrease (tec1D) the degree of colony structure. To investigate the development of colony structure, we carried out gene expression analysis on F13 and the three deletion strains using RNA-seq. Samples were taken early in colony growth (day2), which precedes ruffled phenotype development in F13, and from the peripheral and central regions of colonies later in development (day5), at which time these regions are structured and unstructured (respectively) in F13. We identify genes responding additively and non-additively to the genotype and spatiotemporal factors and cluster these genes into a number of different expression patterns. We identify clusters whose expression correlates closely with the degree of colony structure in each sample and include genes with known roles in the development of colony structure. Individual deletion of 26 genes sampled from different clusters identified 5 with strong effects on colony morphology (BUD8, CIS3, FLO11, MSB2 and SFG1), all of which eliminated or greatly reduced the structure of the F13 outer region.
Collapse
Affiliation(s)
- Gareth A. Cromie
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Zhihao Tan
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Michelle Hays
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Stanford School of Medicine, Stanford, California, United States of America
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
2
|
Di Nezio F, Ong ILH, Riedel R, Goshal A, Dhar J, Roman S, Storelli N, Sengupta A. Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication. PLoS One 2024; 19:e0310265. [PMID: 39436933 PMCID: PMC11495639 DOI: 10.1371/journal.pone.0310265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024] Open
Abstract
Isolating microorganisms from natural environments for cultivation under optimized laboratory settings has markedly improved our understanding of microbial ecology. Artificial growth conditions often diverge from those in natural ecosystems, forcing wild isolates into distinct selective pressures, resulting in diverse eco-physiological adaptations mediated by modification of key phenotypic traits. For motile microorganisms we still lack a biophysical understanding of the relevant traits emerging during domestication and their mechanistic interplay driving short-to-long-term microbial adaptation under laboratory conditions. Using microfluidics, atomic force microscopy, quantitative imaging, and mathematical modeling, we study phenotypic adaptation of Chromatium okenii, a motile phototrophic purple sulfur bacterium from meromictic Lake Cadagno, grown under laboratory conditions over multiple generations. Our results indicate that naturally planktonic C. okenii leverage shifts in cell-surface adhesive interactions, synergistically with changes in cell morphology, mass density, and distribution of intracellular sulfur globules, to suppress their swimming traits, ultimately switching to a sessile lifeform. A computational model of cell mechanics confirms the role of such phenotypic shifts in suppressing the planktonic lifeform. By investigating key phenotypic traits across different physiological stages of lab-grown C. okenii, we uncover a progressive loss of motility during the early stages of domestication, followed by concomitant deflagellation and enhanced surface attachment, ultimately driving the transition of motile sulfur bacteria to a sessile state. Our results establish a mechanistic link between suppression of motility and surface attachment via phenotypic changes, underscoring the emergence of adaptive fitness under laboratory conditions at the expense of traits tailored for natural environments.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Irvine Lian Hao Ong
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - René Riedel
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Arkajyoti Goshal
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Department of Mechanical Engineering, National Institute of Technology, Durgapur, India
| | - Samuele Roman
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Nicola Storelli
- Department of Environment, Institute of Microbiology, Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Mendrisio, Switzerland
- Microbiology Unit, Department of Plant Sciences, University of Geneva, Geneva, Switzerland
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
- Institute for Advanced Studies, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Amorim-Rodrigues M, Brandão RL, Cássio F, Lucas C. The yeast Wickerhamomyces anomalus acts as a predator of the olive anthracnose-causing fungi, Colletotrichum nymphaeae, C. godetiae, and C. gloeosporioides. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1463860. [PMID: 39355316 PMCID: PMC11443700 DOI: 10.3389/ffunb.2024.1463860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024]
Abstract
Olive tree anthracnose is caused by infection with Colletotrichum fungi, which in Portugal are mostly C. nymphaeae, C. godetiae, and C. gloeosporioides s.s. Severe economic losses are caused by this disease that would benefit from a greener and more efficient alternative to the present agrochemical methods. Yeasts are serious candidates for pre-harvest/in field biocontrol of fungal infections. This work identified the yeast Wickerhamomyces anomalus as a strong antagonizer of the three fungi and studied in vitro this ability and its associated mechanisms. Antagonism was shown to not depend on the secretion of volatile compounds (VOCs), or siderophores or any other agar-diffusible compound, including hydrolytic enzymes. Rather, it occurred mostly in a cell-to-cell contact dependent manner. This was devised through detailed microscopic assessment of yeast-fungus cocultures. This showed that W. anomalus antagonism of the three Colletotrichum proceeded through (i) the adhesion of yeast cells to the phytopathogen hyphae, (ii) the secretion of a viscous extracellular matrix, and (iii) the emptying of the hyphae. Yeasts ultimately putatively feed on hyphal contents, which is supported by light microscopy observation of MB and PI co-culture-stained samples. Accordingly, numerous W. anomalus cells were observed packing inside C. godetiae emptied hyphae. This behaviour can be considered microbial predation and classified as necrotrophic mycoparasitism, more explicitly in the case of C. godetiae. The results support the prospect of future application of W. anomalus as a living biofungicide/BCA in the preharvest control of olive anthracnose.
Collapse
Affiliation(s)
- Mariana Amorim-Rodrigues
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
| | - Rogélio Lopes Brandão
- Cellular and Molecular Biology Laboratory, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Fernanda Cássio
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
- Institute for Science and Innovation on Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Cândida Lucas
- Molecular and Environmental Biology Centre (CBMA), University of Minho, Braga, Portugal
- Aquatic Research Network (ARNET), CBMA, University of Minho, Braga, Portugal
- Institute for Science and Innovation on Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
4
|
Nowrouzi B, Torres-Montero P, Kerkhoven EJ, Martínez JL, Rios-Solis L. Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metab Eng Commun 2024; 18:e00229. [PMID: 38098801 PMCID: PMC10716015 DOI: 10.1016/j.mec.2023.e00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
Saccharomyces cerevisiae has been conveniently used to produce Taxol® anticancer drug early precursors. However, the harmful impact of oxidative stress by the first cytochrome P450-reductase enzymes (CYP725A4-POR) of Taxol® pathway has hampered sufficient progress in yeast. Here, we evolved an oxidative stress-resistant yeast strain with three-fold higher titre of their substrate, taxadiene. The performance of the evolved and parent strains were then evaluated in galactose-limited chemostats before and under the oxidative stress by an oxidising agent. The interaction of evolution and oxidative stress was comprehensively evaluated through transcriptomics and metabolite profiles integration in yeast enzyme-constrained genome scale model. Overall, the evolved strain showed improved respiration, reduced overflow metabolites production and oxidative stress re-induction tolerance. The cross-protection mechanism also potentially contributed to better heme, flavin and NADPH availability, essential for CYP725A4 and POR optimal activity in yeast. The results imply that the evolved strain is a robust cell factory for future efforts towards Taxol© production.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Pablo Torres-Montero
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Eduard J. Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - José L. Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, Kgs. Lyngby, 2800, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, The University of Edinburgh, Edinburgh, EH9 3BD, United Kingdom
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Ekdahl LI, Salcedo JA, Dungan MM, Mason DV, Myagmarsuren D, Murphy HA. Selection on plastic adherence leads to hyper-multicellular strains and incidental virulence in the budding yeast. eLife 2023; 12:e81056. [PMID: 37916911 PMCID: PMC10764007 DOI: 10.7554/elife.81056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/01/2023] [Indexed: 11/03/2023] Open
Abstract
Many disease-causing microbes are not obligate pathogens; rather, they are environmental microbes taking advantage of an ecological opportunity. The existence of microbes whose life cycle does not require a host and are not normally pathogenic, yet are well-suited to host exploitation, is an evolutionary puzzle. One hypothesis posits that selection in the environment may favor traits that incidentally lead to pathogenicity and virulence, or serve as pre-adaptations for survival in a host. An example of such a trait is surface adherence. To experimentally test the idea of 'accidental virulence', replicate populations of Saccharomyces cerevisiae were evolved to attach to a plastic bead for hundreds of generations. Along with plastic adherence, two multicellular phenotypes- biofilm formation and flor formation- increased; another phenotype, pseudohyphal growth, responded to the nutrient limitation. Thus, experimental selection led to the evolution of highly-adherent, hyper-multicellular strains. Wax moth larvae injected with evolved hyper-multicellular strains were significantly more likely to die than those injected with evolved non-multicellular strains. Hence, selection on plastic adherence incidentally led to the evolution of enhanced multicellularity and increased virulence. Our results support the idea that selection for a trait beneficial in the open environment can inadvertently generate opportunistic, 'accidental' pathogens.
Collapse
Affiliation(s)
- Luke I Ekdahl
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Juliana A Salcedo
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Matthew M Dungan
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | - Despina V Mason
- Department of Biology, College of William and MaryWilliamsburgUnited States
| | | | - Helen A Murphy
- Department of Biology, College of William and MaryWilliamsburgUnited States
| |
Collapse
|
6
|
Brickner JH. Inheritance of epigenetic transcriptional memory through read-write replication of a histone modification. Ann N Y Acad Sci 2023; 1526:50-58. [PMID: 37391188 PMCID: PMC11216120 DOI: 10.1111/nyas.15033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Epigenetic transcriptional regulation frequently requires histone modifications. Some, but not all, of these modifications are able to template their own inheritance. Here, I discuss the molecular mechanisms by which histone modifications can be inherited and relate these ideas to new results about epigenetic transcriptional memory, a phenomenon that poises recently repressed genes for faster reactivation and has been observed in diverse organisms. Recently, we found that the histone H3 lysine 4 dimethylation that is associated with this phenomenon plays a critical role in sustaining memory and, when factors critical for the establishment of memory are inactivated, can be stably maintained through multiple mitoses. This chromatin-mediated inheritance mechanism may involve a physical interaction between an H3K4me2 reader, SET3C, and an H3K4me2 writer, Spp1- COMPASS. This is the first example of a chromatin-mediated inheritance of a mark that promotes transcription.
Collapse
Affiliation(s)
- Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
7
|
Danner C, Mach RL, Mach-Aigner AR. The phenomenon of strain degeneration in biotechnologically relevant fungi. Appl Microbiol Biotechnol 2023; 107:4745-4758. [PMID: 37341752 PMCID: PMC10345034 DOI: 10.1007/s00253-023-12615-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Fungi are widely exploited for large-scale production in the biotechnological industry to produce a diverse range of substances due to their versatility and relative ease of growing on various substrates. The occurrence of a phenomenon-the so-called fungal strain degeneration-leads to the spontaneous loss or decline of production capacity and results in an economic loss on a tremendous scale. Some of the most commonly applied genera of fungi in the biotechnical industry, such as Aspergillus, Trichoderma, and Penicillium, are threatened by this phenomenon. Although fungal degeneration has been known for almost a century, the phenomenon and its underlying mechanisms still need to be understood. The proposed mechanisms causing fungi to degenerate can be of genetic or epigenetic origin. Other factors, such as culture conditions, stress, or aging, were also reported to have an influence. This mini-review addresses the topic of fungal degeneration by describing examples of productivity losses in biotechnical processes using Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, and Penicillium chrysogenum. Further, potential reasons, circumvention, and prevention methods are discussed. This is the first mini-review which provides a comprehensive overview on this phenomenon in biotechnologically used fungi, and it also includes a collection of strategies that can be useful to minimize economic losses which can arise from strain degeneration. KEY POINTS: • Spontaneous loss of productivity is evident in many fungi used in biotechnology. • The properties and mechanisms underlying this phenomenon are very versatile. • Only studying these underlying mechanisms enables the design of a tailored solution.
Collapse
Affiliation(s)
- Caroline Danner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
8
|
Tchamani Piame L, Kaktcham PM, Foko Kouam EM, Fotso Techeu UD, Ngouénam RJ, Zambou Ngoufack F. Technological characterisation and probiotic traits of yeasts isolated from Sha'a, a Cameroonian maize-based traditional fermented beverage. Heliyon 2022; 8:e10850. [PMID: 36247120 PMCID: PMC9557902 DOI: 10.1016/j.heliyon.2022.e10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
The current trend in starter selection is to combine both technological and probiotic properties to standardise and make functional artisanal fermented beverages such as Sha'a whose properties are very variable due to the lack of a known starter. The objective of this work was to study technological and probiotic properties of yeasts isolated from Sha'a sold in Bamenda, Bafoussam, Bonabérie, Dschang, Foumbot, Mbouda and Njombé (Cameroon). The isolated yeasts were studied for their ability to produce CO2 from glucose, to grow in the presence of 8% ethanol, 20% glucose and pH 3, to assimilate maltose and to produce ethanol. Then, the survival of the pre-selected isolates was assessed in simulated gastric (pH 2 and 3) and intestinal juices, followed by self-aggregation, co-aggregation, hydrophobicity, haemolysin, gelatinase, biogenic amine production, antibiotic and antifungal susceptibility, bile salt hydrolase and antiradical activity. The selected isolates were identified by sequencing the 5.8S/28S rRNA gene. From the 98 isolates obtained, 66 produced CO2 from glucose and 16 were then selected for their ability to grow in the presence of 8% ethanol, 20% glucose, pH 3 and maltose. The overall survival of isolates ranged from 4.12 ± 1.63 to 104.25 ± 0.19% (LT16) and from 0.56 ± 0.20 to 96.74 ± 1.60% (LT66) at pH 3 and pH 2 respectively. All of them have remarkable surface hydrophobicity properties. Based on principal component analysis, 5 isolates were selected as the best. However, only 3 of them, LT16 (the most promising), LT25 identified as Saccharomyces cerevisiae and LT80 as Nakaseomyces delphensis, do not produce a virulence factor. The latter can deconjugate bile salts with a maximum percentage of 60.54 ± 0.12% (LT16) and the highest inhibition of DPPH° radicals was 55.94 ± 1.14% (LT25). In summary, the yeast flora of Sha'a contains yeasts capable of fermenting and producing ethanol while producing bioactive compounds that would benefit the consumer.
Collapse
|
9
|
Quantifying yeast colony morphologies with feature engineering from time-lapse photography. Sci Data 2022; 9:216. [PMID: 35581201 PMCID: PMC9114130 DOI: 10.1038/s41597-022-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Baker’s yeast (Saccharomyces cerevisiae) is a model organism for studying the morphology that emerges at the scale of multi-cell colonies. To look at how morphology develops, we collect a dataset of time-lapse photographs of the growth of different strains of S. cerevisiae. We discuss the general statistical challenges that arise when using time-lapse photographs to extract time-dependent features. In particular, we show how texture-based feature engineering and representative clustering can be successfully applied to categorize the development of yeast colony morphology using our dataset. The Local binary pattern (LBP) from image processing is used to score the surface texture of colonies. This texture score develops along a smooth trajectory during growth. The path taken depends on how the morphology emerges. A hierarchical clustering of the colonies is performed according to their texture development trajectories. The clustering method is designed for practical interpretability; it obtains the best representative colony image for any hierarchical cluster. Measurement(s) | Yeast colony morphology | Technology Type(s) | Time-lapse photographs | Factor Type(s) | Genotype | Sample Characteristic - Organism | Saccharomyces cerevisiae |
Collapse
|
10
|
Palková Z, Váchová L. Spatially structured yeast communities: Understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J 2021; 19:5613-5621. [PMID: 34712401 PMCID: PMC8529026 DOI: 10.1016/j.csbj.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic
| |
Collapse
|
11
|
Hyun K, Kim S, Kwon Y. Performance evaluations of yeast based microbial fuel cells improved by the optimization of dead zone inside carbon felt electrode. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
High Foam Phenotypic Diversity and Variability in Flocculant Gene Observed for Various Yeast Cell Surfaces Present as Industrial Contaminants. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many contaminant yeast strains that survive inside fuel ethanol industrial vats show detrimental cell surface phenotypes. These harmful effects may include filamentation, invasive growth, flocculation, biofilm formation, and excessive foam production. Previous studies have linked some of these phenotypes to the expression of FLO genes, and the presence of gene length polymorphisms causing the expansion of FLO gene size appears to result in stronger flocculation and biofilm formation phenotypes. We performed here a molecular analysis of FLO1 and FLO11 gene polymorphisms present in contaminant strains of Saccharomyces cerevisiae from Brazilian fuel ethanol distilleries showing vigorous foaming phenotypes during fermentation. The size variability of these genes was correlated with cellular hydrophobicity, flocculation, and highly foaming phenotypes in these yeast strains. Our results also showed that deleting the primary activator of FLO genes (the FLO8 gene) from the genome of a contaminant and highly foaming industrial strain avoids complex foam formation, flocculation, invasive growth, and biofilm production by the engineered (flo8∆::BleR/flo8Δ::kanMX) yeast strain. Thus, the characterization of highly foaming yeasts and the influence of FLO8 in this phenotype open new perspectives for yeast strain engineering and optimization in the sugarcane fuel-ethanol industry.
Collapse
|
13
|
Keller B, Kuder H, Visscher C, Siesenop U, Kamphues J. Yeasts in Liquid Swine Diets: Identification Methods, Growth Temperatures and Gas-Formation Potential. J Fungi (Basel) 2020; 6:E337. [PMID: 33291632 PMCID: PMC7761980 DOI: 10.3390/jof6040337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Liquid feed is susceptible to microbiological growth. Yeasts are said to cause sudden death in swine due to intestinal gas formation. As not all animals given high yeast content feed fall ill, growth and gas formation potential at body temperature were investigated as possible causally required properties. The best identification method for these environmental yeasts should be tested beforehand. Yeasts derived from liquid diets without (LD - S) and liquid diets with maize silage (LD + S) were examined biochemically (ID32C-test) and with MALDI-TOF with direct smear (DS) and an extraction method (EX). Growth temperature and gas-forming potential were measured. With MALDI-EX, most yeast isolates were identified: Candida krusei most often in LD - S, and C. lambica most often in LD + S, significantly more than in LD - S. Larger colonies, 58.75% of all yeast isolates, were formed at 25 °C rather than at 37 °C; 17.5% of all isolates did not grow at 37 °C at all. Most C. krusei isolates formed high gas amounts within 24 h, whereas none of the C. lambica, C. holmii and most other isolates did. The gas pressure formed by yeast isolates varied more than tenfold. Only a minority of the yeasts were able to produce gas at temperatures common in the pig gut.
Collapse
Affiliation(s)
- Birgit Keller
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Henrike Kuder
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Ute Siesenop
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| |
Collapse
|
14
|
Barreto HC, Cordeiro TN, Henriques AO, Gordo I. Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 2020; 10:18886. [PMID: 33144634 PMCID: PMC7642357 DOI: 10.1038/s41598-020-76017-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Most model bacteria have been domesticated in laboratory conditions. Yet, the tempo with which a natural isolate diverges from its ancestral phenotype under domestication to a novel laboratory environment is poorly understood. Such knowledge, however is essential to understanding the rate of evolution, the time scale over which a natural isolate can be propagated without loss of its natural adaptive traits, and the reliability of experimental results across labs. Using experimental evolution, phenotypic assays, and whole-genome sequencing, we show that within a week of propagation in a common laboratory environment, a natural isolate of Bacillus subtilis acquires mutations that cause changes in a multitude of traits. A single adaptive mutational step in the gene coding for the transcriptional regulator DegU impairs a DegU-dependent positive autoregulatory loop and leads to loss of robust biofilm architecture, impaired swarming motility, reduced secretion of exoproteases, and to changes in the dynamics of sporulation across environments. Importantly, domestication also resulted in improved survival when the bacteria face pressure from cells of the innate immune system. These results show that degU is a target for mutations during domestication and underscores the importance of performing careful and extremely short-term propagations of natural isolates to conserve the traits encoded in their original genomes.
Collapse
Affiliation(s)
- Hugo C Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
15
|
Plocek V, Váchová L, Šťovíček V, Palková Z. Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops. Int J Mol Sci 2020; 21:ijms21113873. [PMID: 32485964 PMCID: PMC7312624 DOI: 10.3390/ijms21113873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell–cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified—the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.
Collapse
Affiliation(s)
- Vítězslav Plocek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 14220 Prague, Czech Republic;
| | - Vratislav Šťovíček
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 12800 Prague, Czech Republic; (V.P.); (V.Š.)
- Correspondence:
| |
Collapse
|
16
|
Abstract
The aim of this work was to study the fungal colonization of a new winery over time, specifically for Saccharomyces cerevisiae. Therefore, we analyzed the flora present before the arrival of the first harvest on the floor, the walls and the equipment of this new winery by Illumina MiSeq. The genus Saccharomyces (≤0.3%) was detected on floor and equipment but the presence of S. cerevisiae species was not reported. Wild S. cerevisiae strains were isolated from a ‘Pied de Cuve’ used during the first vintage to ensure the alcoholic fermentation (AF). Among 25 isolates belonging to this species, 17 different strains were identified highlighting a great intraspecific diversity. S. cerevisiae strains were also isolated from different vats throughout the spontaneous fermentations during the first vintage. The following year, some of these strains were isolated again during AF. Some of them (four) were found in the winery equipment before the arrival of the third harvest suggesting a potential colonization by these strains. To better understand what promotes the yeast colonization of the winery’s environment, the ability to form a biofilm on solid surfaces for eight colonizing or non-colonizing strains was studied. This capacity, different according to the strains, could partly explain the colonization observed for certain strains.
Collapse
|
17
|
Kowalski CH, Kerkaert JD, Liu KW, Bond MC, Hartmann R, Nadell CD, Stajich JE, Cramer RA. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat Microbiol 2019; 4:2430-2441. [PMID: 31548684 PMCID: PMC7396965 DOI: 10.1038/s41564-019-0558-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/09/2019] [Indexed: 01/13/2023]
Abstract
Microbial populations form intricate macroscopic colonies with diverse morphologies whose functions remain to be fully understood. Despite fungal colonies isolated from environmental and clinical samples revealing abundant intraspecies morphological diversity, it is unclear how this diversity affects fungal fitness and disease progression. Here we observe a notable effect of oxygen tension on the macroscopic and biofilm morphotypes of the human fungal pathogen Aspergillus fumigatus. A hypoxia-typic morphotype is generated through the expression of a subtelomeric gene cluster containing genes that alter the hyphal surface and perturb interhyphal interactions to disrupt in vivo biofilm and infection site morphologies. Consequently, this morphotype leads to increased host inflammation, rapid disease progression and mortality in a murine model of invasive aspergillosis. Taken together, these data suggest that filamentous fungal biofilm morphology affects fungal-host interactions and should be taken into consideration when assessing virulence and host disease progression of an isolated strain.
Collapse
Affiliation(s)
- Caitlin H. Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Matthew C. Bond
- Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | | | - Carey D. Nadell
- Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,Requests for materials or further information should be addressed to the corresponding author Robert A. Cramer:
| |
Collapse
|
18
|
Speranza B, Corbo MR, Campaniello D, Altieri C, Sinigaglia M, Bevilacqua A. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiol 2019; 87:103393. [PMID: 31948634 DOI: 10.1016/j.fm.2019.103393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/01/2019] [Accepted: 11/20/2019] [Indexed: 11/24/2022]
Abstract
Four wild strains of Saccharomyces cerevisiae and the collection strain S. cerevisiae var. boulardii ATCC MYA-796 were used as test organisms to study the effect of some environmental conditions on the formation of biofilm by potentially probiotic yeasts. In a first step, the formation of biofilm was studied in four different media (YPD-Yeast Peptone Glucose; diluted YPD; 2% BP, a medium containing only bacteriological peptone; 2% GLC, a medium containing only glucose). Then, the dilution of YPD was combined with pH and temperature through a mixture design to assess the weight of the interaction of the variables; the experiments were done on S. boulardii and on S. cerevisiae strain 4. The dilution of nutrients generally determined an increased biofilm formation, whereas the effect of pH relied upon the strain. For S. cerevisiae strain 4, the highest level of sessile cells was found at pH 4-5, while S. boulardii experienced an enhanced biofilm formation at pH 6.0. Concerning temperature, the highest biofilm formation was found at 25-30 °C for both strains. The importance of this work lies in its extension of our knowledge of the effect of different environmental conditions on biofilm formation by potentially probiotic S. cerevisiae strains, as a better understanding of this trait could be an important screening tool into the selection of new multifunctional yeasts.
Collapse
Affiliation(s)
- Barbara Speranza
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
19
|
Rivera‐Yoshida N, Hernández‐Terán A, Escalante AE, Benítez M. Laboratory biases hinder Eco‐Evo‐Devo integration: Hints from the microbial world. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:14-24. [DOI: 10.1002/jez.b.22917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Natsuko Rivera‐Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Alejandra Hernández‐Terán
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Programa de Doctorado en Ciencias BiomédicasUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Ana E. Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de EcologíaUniversidad Nacional Autónoma de México Mexico City Mexico
- Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
20
|
Kuzdzal‐Fick JJ, Chen L, Balázsi G. Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol Evol 2019; 9:8509-8523. [PMID: 31410258 PMCID: PMC6686284 DOI: 10.1002/ece3.5322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Multicellular organisms appeared on Earth through several independent major evolutionary transitions. Are such transitions reversible? Addressing this fundamental question entails understanding the benefits and costs of multicellularity versus unicellularity. For example, some wild yeast strains form multicellular clumps, which might be beneficial in stressful conditions, but this has been untested. Here, we show that unicellular yeast evolve from clump-forming ancestors by propagating samples from suspension after larger clumps have settled. Unicellular yeast strains differed from their clumping ancestors mainly by mutations in the AMN1 (Antagonist of Mitotic exit Network) gene. Ancestral yeast clumps were more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts, but they grew slower without stress. These findings suggest disadvantages and benefits to multicellularity and unicellularity that may have impacted the emergence of multicellular life forms.
Collapse
Affiliation(s)
- Jennie J. Kuzdzal‐Fick
- Department of Systems BiologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexas
| | - Lin Chen
- Department of Systems BiologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Gábor Balázsi
- Department of Systems BiologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Louis and Beatrice Laufer Center for Physical & Quantitative BiologyStony Brook UniversityStony BrookNew York
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York
| |
Collapse
|
21
|
Córdova-Alcántara IM, Venegas-Cortés DL, Martínez-Rivera MÁ, Pérez NO, Rodriguez-Tovar AV. Biofilm characterization of Fusarium solani keratitis isolate: increased resistance to antifungals and UV light. J Microbiol 2019; 57:485-497. [DOI: 10.1007/s12275-019-8637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022]
|
22
|
Tulha J, Lucas C. Saccharomyces cerevisiae mitochondrial Por1/yVDAC1 (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup1/HHATL in the control of cell wall integrity and programmed cell death. FEMS Yeast Res 2019; 18:5089977. [PMID: 30184078 DOI: 10.1093/femsyr/foy097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023] Open
Abstract
Gup1 is the yeast counterpart of the high eukaryotes HHATL. This and the close homologue Gup2/HHAT regulate the Hedgehog morphogenic, developmental pathway. In yeasts, a similar paracrine pathway is not known though the Δgup1 mutant is associated with morphology and proliferation/death processes. As a first step toward identifying the actual molecular/enzymatic function of Gup1, this work identified by co-immunoprecipitation the yeast mitochondria membrane VDAC1/Por1 as a physical partner of Gup1. Gup1 locates in the ER and the plasma membrane. It was now confirmed to further locate, as Por1, in the mitochondrial sub-cellular fraction. The yeast Por1-Gup1 association was found important for (i) the sensitivity to cell wall perturbing agents and high temperature, (ii) the differentiation into structured colonies, (iii) the size achieved by multicellular aggregates/mats and (iv) acetic-acid-induced Programmed Cell Death. Moreover, the absence of Gup1 increased the levels of POR1 mRNA, while decreasing the amounts of intracellular Por1, which was concomitantly previously known to be secreted by the mutant but not by wt. Additionally, Por1 patchy distribution in the mitochondrial membrane was evened. Results suggest that Por1 and Gup1 collaborate in the control of colony morphology and mat development, but more importantly of cellular integrity and death.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal.,Institute of Science and Innovation on Bio-sustainability (IB-S), University of Minho, 4710-054 Braga, Portugal
| |
Collapse
|
23
|
Váchová L, Palková Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res 2019; 18:4950397. [PMID: 29718174 DOI: 10.1093/femsyr/foy033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/20/2018] [Indexed: 12/28/2022] Open
Abstract
Yeasts, like other microorganisms, create numerous types of multicellular communities, which differ in their complexity, cell differentiation and in the occupation of different niches. Some of the communities, such as colonies and some types of biofilms, develop by division and subsequent differentiation of cells growing on semisolid or solid surfaces to which they are attached or which they can penetrate. Aggregation of individual cells is important for formation of other community types, such as multicellular flocs, which sediment to the bottom or float to the surface of liquid cultures forming flor biofilms, organized at the border between liquid and air under specific circumstances. These examples together with the existence of more obscure communities, such as stalks, demonstrate that multicellularity is widespread in yeast. Despite this fact, identification of mechanisms and regulations involved in complex multicellular behavior still remains one of the challenges of microbiology. Here, we briefly discuss metabolic differences between particular yeast communities as well as the presence and functions of various differentiated cells and provide examples of the ability of these cells to develop different ways to cope with stress during community development and aging.
Collapse
Affiliation(s)
- Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Czech Republic
| | - Zdena Palková
- Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic
| |
Collapse
|
24
|
Tek EL, Sundstrom JF, Gardner JM, Oliver SG, Jiranek V. Evaluation of the ability of commercial wine yeasts to form biofilms (mats) and adhere to plastic: implications for the microbiota of the winery environment. FEMS Microbiol Ecol 2019; 94:4831476. [PMID: 29394344 DOI: 10.1093/femsec/fix188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Commercially available active dried wine yeasts are regularly used by winemakers worldwide to achieve reliable fermentations and obtain quality wine. This practice has led to increased evidence of traces of commercial wine yeast in the vineyard, winery and uninoculated musts. The mechanism(s) that enables commercial wine yeast to persist in the winery environment and the influence to native microbial communities on this persistence is poorly understood. This study has investigated the ability of commercial wine yeasts to form biofilms and adhere to plastic. The results indicate that the biofilms formed by commercial yeasts consist of cells with a combination of different lifestyles (replicative and non-replicative) and growth modes including invasive growth, bud elongation, sporulation and a mat sectoring-like phenotype. Invasive growth was greatly enhanced on grape pulp regardless of strain, while adhesion on plastic varied between strains. The findings suggest a possible mechanism that allows commercial yeast to colonise and survive in the winery environment, which may have implications for the indigenous microbiota profile as well as the population profile in uninoculated fermentations if their dissemination is not controlled.
Collapse
Affiliation(s)
- Ee Lin Tek
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Joanna F Sundstrom
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Jennifer M Gardner
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Stephen G Oliver
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Vladimir Jiranek
- Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.,Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Waite Campus, Australia
| |
Collapse
|
25
|
Abstract
Fungi are prone to phenotypic instability, that is, the vegetative phase of these organisms, be they yeasts or molds, undergoes frequent switching between two or more behaviors, often with different morphologies, but also sometime having different physiologies without any obvious morphological outcome. In the context of industrial utilization of fungi, this can have a negative impact on the maintenance of strains and/or on their productivity. Instabilities have been shown to result from various mechanisms, either genetic or epigenetic. This chapter will review different types of instabilities and discuss some lesser-known ones, mostly in filamentous fungi, while it will direct readers to additional literature in the case of well-known phenomena such as the amyloid prions or fungal senescence. It will present in depth the "white/opaque" switch of Candida albicans and the "crippled growth" degeneration of the model fungus Podospora anserina. These are two of the most thoroughly studied epigenetic phenotypic switches. I will also discuss the "sectors" presented by many filamentous ascomycetes, for which a prion-based model exists but is not demonstrated. Finally, I will also describe intriguing examples of phenotypic instability for which an explanation has yet to be provided.
Collapse
|
26
|
Modeling of concentric pattern of Serratia marcescens colony. Arch Microbiol 2018; 201:87-92. [PMID: 30255199 DOI: 10.1007/s00203-018-1575-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
Serratia marcescens forms different colony patterns under distinct conditions. One of them is the concentric fountain-shaped pattern with pigmented center followed by unpigmented ring and pigmented rim. In this work, we study this pattern formation by construction of the mathematical model able to display this pattern based on putative metabolical traits, supported by series of experiments and by references. A pattern formation of such colony type depends on the disposition of glucose and amino acids, and is accompanied by a pH change in the agar medium. In this paper, we confirm that a metabolic activity of growing colony alters its environment which subsequently changes the colony formation. Presented model corresponds well with the real colony behaviour.
Collapse
|
27
|
Weissman Z, Pinsky M, Wolfgeher DJ, Kron SJ, Truman AW, Kornitzer D. Genetic analysis of Hsp70 phosphorylation sites reveals a role in Candida albicans cell and colony morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1868:140135. [PMID: 31964485 DOI: 10.1016/j.bbapap.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022]
Abstract
Heat shock proteins are best known for their role as chaperonins involved in general proteostasis, but they can also participate in specific cellular regulatory pathways, e.g. via their post-translational modification. Hsp70/Ssa1 is a central cytoplasmic chaperonin in eukaryotes, which also participates in cell cycle regulation via its phosphorylation at a specific residue. Here we analyze the role of Ssa1 phosphorylation in the morphogenesis of the fungus Candida albicans, a common human opportunistic pathogen. C. albicans can assume alternative yeast and hyphal (mold) morphologies, an ability that contributes to its virulence. We identified 11 phosphorylation sites on C. albicans Ssa1, of which 8 were only detected in the hyphal cells. Genetic analysis of these sites revealed allele-specific effects on growth or hyphae formation at 42 °C. Colony morphology, which is normally wrinkled or crenellated at 37 °C, reverted to smooth in several mutants, but this colony morphology phenotype was unrelated to cellular morphology. Two mutants exhibited a mild increase in sensitivity to the cell wall-active compounds caspofungin and calcofluor white. We suggest that this analysis could help direct screens for Ssa1-specific drugs to combat C. albicans virulence. The pleiotropic effects of many Ssa1 mutations are consistent with the large number of Ssa1 client proteins, whereas the lack of concordance between the phenotypes of the different alleles suggests that different sites on Ssa1 can affect interaction with specific classes of client proteins, and that modification of these sites can play cellular regulatory roles, consistent with the "chaperone code" hypothesis.
Collapse
Affiliation(s)
- Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa 31096, Israel.
| |
Collapse
|
28
|
Nguyen PV, Hlaváček O, Maršíková J, Váchová L, Palková Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet 2018; 14:e1007495. [PMID: 29965985 PMCID: PMC6044549 DOI: 10.1371/journal.pgen.1007495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/13/2018] [Accepted: 06/16/2018] [Indexed: 12/26/2022] Open
Abstract
Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.
Collapse
Affiliation(s)
- Phu Van Nguyen
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Otakar Hlaváček
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Maršíková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Deschaine BM, Heysel AR, Lenhart BA, Murphy HA. Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecol Evol 2018; 8:5541-5550. [PMID: 29938072 PMCID: PMC6010761 DOI: 10.1002/ece3.4082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.
Collapse
Affiliation(s)
| | - Angela R. Heysel
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - B. Adam Lenhart
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - Helen A. Murphy
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| |
Collapse
|
30
|
Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, Antoł A, Travisano M, Nespolo RF. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol 2018; 8:4619-4630. [PMID: 29760902 PMCID: PMC5938455 DOI: 10.1002/ece3.3979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/27/2023] Open
Abstract
There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
Collapse
Affiliation(s)
| | - Rocío Paleo-López
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | | | - María Josefina Poupin
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Thomas Ledger
- Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Laboratorio de Bioingeniería Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez Santiago Chile
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China.,CSIRO Oceans & Atmosphere Hobart TAS Australia
| | - Andrzej Antoł
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior University of Minnesota Minneapolis MN USA
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile.,Center of Applied Ecology and Sustainability (CAPES-UC) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.,Millennium Institute for Integrative Systems and Synthetic Biology (MIISSB) Santiago Chile
| |
Collapse
|
31
|
Mohd Azhar SH, Abdulla R. Bioethanol production from galactose by immobilized wild-type Saccharomyces cerevisiae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Baselga-Cervera B, Romero-López J, García-Balboa C, Costas E, López-Rodas V. Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChlSP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application. Front Microbiol 2018; 9:523. [PMID: 29662476 PMCID: PMC5890155 DOI: 10.3389/fmicb.2018.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g−1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g−1 DB, close to the theoretical maximum response (≈7.9 mg U g−1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g−1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.
Collapse
Affiliation(s)
- Beatriz Baselga-Cervera
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Romero-López
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Camino García-Balboa
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Costas
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria López-Rodas
- Department of Animal Production (Genetics), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Pedersen RM, Grønnemose RB, Stærk K, Asferg CA, Andersen TB, Kolmos HJ, Møller-Jensen J, Andersen TE. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria. Front Cell Infect Microbiol 2018; 8:16. [PMID: 29450193 PMCID: PMC5799267 DOI: 10.3389/fcimb.2018.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial surfaces. Measurement of bacterial adhesion to epithelial cells is therefore standard procedure in studies of bacterial virulence. Traditionally, such measurements have been conducted with microtiter plate cell cultures to which bacteria are added, followed by washing procedures and final quantification of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell layers is then performed by in situ time-lapse fluorescence microscopy and automatic detection of bacterial surface coverage. The method is demonstrated in three different infection models, simulating Staphylococcus aureus endothelial infection and Escherichia coli intestinal- and uroepithelial infection. The approach yields valuable information on the fitness of the bacterium to successfully adhere to and colonize epithelial surfaces and can be used to evaluate the influence of specific virulence genes, growth conditions, and antimicrobial treatment on this process.
Collapse
Affiliation(s)
- Rune M Pedersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Rasmus B Grønnemose
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Cecilie A Asferg
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Thea B Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hans J Kolmos
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas E Andersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
34
|
Sabir F, Loureiro-Dias MC, Soveral G, Prista C. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae. FEMS Microbiol Lett 2017; 364:3739791. [PMID: 28430948 DOI: 10.1093/femsle/fnx080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions.
Collapse
Affiliation(s)
- Farzana Sabir
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Maria C Loureiro-Dias
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Catarina Prista
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| |
Collapse
|
35
|
Maršíková J, Wilkinson D, Hlaváček O, Gilfillan GD, Mizeranschi A, Hughes T, Begany M, Rešetárová S, Váchová L, Palková Z. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling. BMC Genomics 2017; 18:814. [PMID: 29061122 PMCID: PMC5654107 DOI: 10.1186/s12864-017-4214-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Background Yeast infections are often connected with formation of biofilms that are extremely difficult to eradicate. An excellent model system for deciphering multifactorial determinants of yeast biofilm development is the colony biofilm, composed of surface (“aerial”) and invasive (“root”) cells. While surface cells have been partially analyzed before, we know little about invasive root cells. In particular, information on the metabolic, chemical and morphogenetic properties of invasive versus surface cells is lacking. In this study, we used a new strategy to isolate invasive cells from agar and extracellular matrix, and employed it to perform genome wide expression profiling and biochemical analyses of surface and invasive cells. Results RNA sequencing revealed expression differences in 1245 genes with high statistical significance, indicating large genetically regulated metabolic differences between surface and invasive cells. Functional annotation analyses implicated genes involved in stress defense, peroxisomal fatty acid β-oxidation, autophagy, protein degradation, storage compound metabolism and meiosis as being important in surface cells. In contrast, numerous genes with functions in nutrient transport and diverse synthetic metabolic reactions, including genes involved in ribosome biogenesis, biosynthesis and translation, were found to be important in invasive cells. Variation in gene expression correlated significantly with cell-type specific processes such as autophagy and storage compound accumulation as identified by microscopic and biochemical analyses. Expression profiling also provided indications of cell-specific regulations. Subsequent knockout strain analyses identified Gip2p, a regulatory subunit of type 1 protein phosphatase Glc7p, to be essential for glycogen accumulation in surface cells. Conclusions This is the first study reporting genome wide differences between surface and invasive cells of yeast colony biofilms. New findings show that surface and invasive cells display very different physiology, adapting to different conditions in different colony areas and contributing to development and survival of the colony biofilm as a whole. Notably, surface and invasive cells of colony biofilms differ significantly from upper and lower cells of smooth colonies adapted to plentiful laboratory conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4214-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jana Maršíková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Derek Wilkinson
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Otakar Hlaváček
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50, Vestec, Czech Republic
| | | | - Alexandru Mizeranschi
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
| | - Timothy Hughes
- Oslo University Hospital and University of Oslo, 0450, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, 0450, Oslo, Norway
| | - Markéta Begany
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50, Vestec, Czech Republic
| | - Stanislava Rešetárová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50, Vestec, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, 252 50, Vestec, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic.
| |
Collapse
|
36
|
Cromie GA, Tan Z, Hays M, Sirr A, Jeffery EW, Dudley AM. Transcriptional Profiling of Biofilm Regulators Identified by an Overexpression Screen in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2017; 7:2845-2854. [PMID: 28673928 PMCID: PMC5555487 DOI: 10.1534/g3.117.042440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022]
Abstract
Biofilm formation by microorganisms is a major cause of recurring infections and removal of biofilms has proven to be extremely difficult given their inherent drug resistance . Understanding the biological processes that underlie biofilm formation is thus extremely important and could lead to the development of more effective drug therapies, resulting in better infection outcomes. Using the yeast Saccharomyces cerevisiae as a biofilm model, overexpression screens identified DIG1, SFL1, HEK2, TOS8, SAN1, and ROF1/YHR177W as regulators of biofilm formation. Subsequent RNA-seq analysis of biofilm and nonbiofilm-forming strains revealed that all of the overexpression strains, other than DIG1 and TOS8, were adopting a single differential expression profile, although induced to varying degrees. TOS8 adopted a separate profile, while the expression profile of DIG1 reflected the common pattern seen in most of the strains, plus substantial DIG1-specific expression changes. We interpret the existence of the common transcriptional pattern seen across multiple, unrelated overexpression strains as reflecting a transcriptional state, that the yeast cell can access through regulatory signaling mechanisms, allowing an adaptive morphological change between biofilm-forming and nonbiofilm states.
Collapse
Affiliation(s)
- Gareth A Cromie
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Zhihao Tan
- Pacific Northwest Research Institute, Seattle, Washington 98122
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore 138648
| | - Michelle Hays
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Eric W Jeffery
- Pacific Northwest Research Institute, Seattle, Washington 98122
| | - Aimée M Dudley
- Pacific Northwest Research Institute, Seattle, Washington 98122
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
Bioethanol strains of Saccharomyces cerevisiae characterised by microsatellite and stress resistance. Braz J Microbiol 2016; 48:268-274. [PMID: 28057426 PMCID: PMC5470434 DOI: 10.1016/j.bjm.2016.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
Strains of Saccharomyces cerevisiae may display characteristics that are typical of rough-type colonies, made up of cells clustered in pseudohyphal structures and comprised of daughter buds that do not separate from the mother cell post-mitosis. These strains are known to occur frequently in fermentation tanks with significant lower ethanol yield when compared to fermentations carried out by smooth strains of S. cerevisiae that are composed of dispersed cells. In an attempt to delineate genetic and phenotypic differences underlying the two phenotypes, this study analysed 10 microsatellite loci of 22 S. cerevisiae strains as well as stress resistance towards high concentrations of ethanol and glucose, low pH and cell sedimentation rates. The results obtained from the phenotypic tests by Principal-Component Analysis revealed that unlike the smooth colonies, the rough colonies of S. cerevisiae exhibit an enhanced resistance to stressful conditions resulting from the presence of excessive glucose and ethanol and high sedimentation rate. The microsatellite analysis was not successful to distinguish between the colony phenotypes as phenotypic assays. The relevant industrial strain PE-2 was observed in close genetic proximity to rough-colony although it does not display this colony morphology. A unique genetic pattern specific to a particular phenotype remains elusive.
Collapse
|
38
|
Palková Z, Váchová L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol 2016; 57:110-119. [PMID: 27084693 DOI: 10.1016/j.semcdb.2016.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
Abstract
Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | - Libuše Váchová
- Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
39
|
Mitchell KF, Zarnowski R, Andes DR. The Extracellular Matrix of Fungal Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:21-35. [PMID: 27271680 DOI: 10.1007/5584_2016_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.
Collapse
Affiliation(s)
- Kaitlin F Mitchell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
40
|
Faria-Oliveira F, Carvalho J, Ferreira C, Hernáez ML, Gil C, Lucas C. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiol 2015; 15:271. [PMID: 26608260 PMCID: PMC4660637 DOI: 10.1186/s12866-015-0550-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022] Open
Abstract
Background Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation. Methods S. cerevisiae W303-1A wt strain and gup1∆ mutant were used as previously described to generate biofilm-like mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis. Results The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133. Conclusions yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1∆ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.
Collapse
Affiliation(s)
- Fábio Faria-Oliveira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana Carvalho
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Célia Ferreira
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria Luisa Hernáez
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid (UCM-PCM), Madrid, Spain.,Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Cândida Lucas
- CBMA - Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
41
|
Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio 2015; 6:mBio.00427-15. [PMID: 25873380 PMCID: PMC4453552 DOI: 10.1128/mbio.00427-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism. Therefore, the extended flocculation mechanism is based on the self-interaction of Flo proteins and this interaction is established in two stages, involving both glycan-glycan and protein-glycan interactions. The crucial role of calcium in both types of interaction was demonstrated: Ca2+ takes part in the binding of the carbohydrate to the protein, and the glycans aggregate only in the presence of Ca2+. These results unify the generally accepted lectin hypothesis with the historically first-proposed “Ca2+-bridge” hypothesis. Additionally, a new role of cell flocculation is demonstrated; i.e., flocculation is linked to cell conjugation and mating, and survival chances consequently increase significantly by spore formation and by introduction of genetic variability. The role of Flo1p in mating was demonstrated by showing that mating efficiency is increased when cells flocculate and by differential transcriptome analysis of flocculating versus nonflocculating cells in a low-shear environment (microgravity). The results show that a multicellular clump (floc) provides a uniquely organized multicellular ultrastructure that provides a suitable microenvironment to induce and perform cell conjugation and mating. Yeast cells can form multicellular clumps under adverse growth conditions that protect cells from harsh environmental stresses. The floc formation is based on the self-interaction of Flo proteins via an N-terminal PA14 lectin domain. We have focused on the flocculation mechanism and its role. We found that carbohydrate specificity and affinity are determined by the accessibility of the binding site of the Flo proteins where the external loops in the ligand-binding domains are involved in glycan recognition specificity. We demonstrated that, in addition to the Flo lectin-glycan interaction, glycan-glycan interactions also contribute significantly to cell-cell recognition and interaction. Additionally, we show that flocculation provides a uniquely organized multicellular ultrastructure that is suitable to induce and accomplish cell mating. Therefore, flocculation is an important mechanism to enhance long-term yeast survival.
Collapse
|
42
|
A complex path for domestication of B. subtilis sociality. Curr Genet 2015; 61:493-6. [PMID: 25680358 DOI: 10.1007/s00294-015-0479-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Microorganisms adapt to the lab environment by eliminating unnecessary genetic systems. In Bacillus subtilis, such adaptation resulted in the lab strain being unable to form complex, matrix-associated structures known as biofilms. We recently showed that the ancestor of the lab strain, which is considered by the research community to be a stereotypical 'wild' strain, carries an atypical mutation in the RapP-PhrP quorum-sensing system. We have found that this mutation has profound effects on the biofilm phenotype of the ancestral strain. Here we discuss these recent findings and present more data that focuses on the lessons that can be learned from this work on the domestication of microorganisms.
Collapse
|
43
|
Faria-Oliveira F, Carvalho J, Belmiro CLR, Ramalho G, Pavão M, Lucas C, Ferreira C. Elemental biochemical analysis of the polysaccharides in the extracellular matrix of the yeastSaccharomyces cerevisiae. J Basic Microbiol 2015; 55:685-94. [DOI: 10.1002/jobm.201400781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/08/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Fábio Faria-Oliveira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Joana Carvalho
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Celso LR Belmiro
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Federal University of Rio de Janeiro; Campus of Macaé RJ Brazil
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Gustavo Ramalho
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Mauro Pavão
- Laboratory of Glycoconjugates Biochemistry and Cellular Biology; Institute of Medical Biochemistry; Federal University of Rio de Janeiro; RJ Brazil
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Portugal
| |
Collapse
|
44
|
Vulin C, Di Meglio JM, Lindner AB, Daerr A, Murray A, Hersen P. Growing yeast into cylindrical colonies. Biophys J 2014; 106:2214-21. [PMID: 24853750 PMCID: PMC4052359 DOI: 10.1016/j.bpj.2014.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/28/2014] [Accepted: 02/25/2014] [Indexed: 10/27/2022] Open
Abstract
Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes.
Collapse
Affiliation(s)
- Clément Vulin
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Jean-Marc Di Meglio
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Ariel B Lindner
- Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Adrian Daerr
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Andrew Murray
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France; The Mechanobiology Institute, National University of Singapore, Singapore.
| |
Collapse
|
45
|
Faria-Oliveira F, Carvalho J, Belmiro CLR, Martinez-Gomariz M, Hernaez ML, Pavão M, Gil C, Lucas C, Ferreira C. Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics. BMC Microbiol 2014; 14:244. [PMID: 25344425 PMCID: PMC4219020 DOI: 10.1186/s12866-014-0244-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/09/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In a multicellular organism, the extracellular matrix (ECM) provides a cell-supporting scaffold and helps maintaining the biophysical integrity of tissues and organs. At the same time it plays crucial roles in cellular communication and signalling, with implications in spatial organisation, motility and differentiation. Similarly, the presence of an ECM-like extracellular polymeric substance is known to support and protect bacterial and fungal multicellular aggregates, such as biofilms or colonies. However, the roles and composition of this microbial ECM are still poorly understood. RESULTS This work presents a protocol to produce S. cerevisiae and C. albicans ECM in an equally highly reproducible manner. Additionally, methodologies for the extraction and fractionation into protein and glycosidic analytical pure fractions were improved. These were subjected to analytical procedures, respectively SDS-PAGE, 2-DE, MALDI-TOF-MS and LC-MS/MS, and DAE and FPLC. Additional chemical methods were also used to test for uronic acids and sulphation. CONCLUSIONS The methodologies hereby presented were equally efficiently applied to extract high amounts of ECM material from S. cerevisiae and C. albicans mats, therefore showing their robustness and reproducibility for yECM molecular and structural characterization. yECM from S. cerevisiae and C. albicans displayed a different proteome and glycoside fractions. S. cerevisiae yECM presented two well-defined polysaccharides with different mass/charge, and C. albicans ECM presented a single different one. The chemical methods further suggested the presence of uronic acids, and chemical modification, possibly through sulphate substitution. All taken, the procedures herein described present the first sensible and concise approach to the molecular and chemical characterisation of the yeast ECM, opening the way to the in-depth study of the microbe multicellular aggregates structure and life-style.
Collapse
Affiliation(s)
- Fábio Faria-Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Joana Carvalho
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Celso L R Belmiro
- Institute of Medical Biochemistry, Laboratory of Glycoconjugates Biochemistry and Cellular Biology, Federal University of Rio de Janeiro/ Polo de Macaé, Macaé, Brazil.
| | - Montserrat Martinez-Gomariz
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain.
| | - Maria Luisa Hernaez
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain.
| | - Mauro Pavão
- Institute of Medical Biochemistry, Laboratory of Glycoconjugates Biochemistry and Cellular Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Concha Gil
- Unidad de Proteómica, Universidad Complutense de Madrid - Parque Científico de Madrid UCM-PCM), Madrid, Spain. .,Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | - Cândida Lucas
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Célia Ferreira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| |
Collapse
|
46
|
Ruusuvuori P, Lin J, Scott AC, Tan Z, Sorsa S, Kallio A, Nykter M, Yli-Harja O, Shmulevich I, Dudley AM. Quantitative analysis of colony morphology in yeast. Biotechniques 2014; 56:18-27. [PMID: 24447135 DOI: 10.2144/000114123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/19/2013] [Indexed: 11/23/2022] Open
Abstract
Microorganisms often form multicellular structures such as biofilms and structured colonies that can influence the organism's virulence, drug resistance, and adherence to medical devices. Phenotypic classification of these structures has traditionally relied on qualitative scoring systems that limit detailed phenotypic comparisons between strains. Automated imaging and quantitative analysis have the potential to improve the speed and accuracy of experiments designed to study the genetic and molecular networks underlying different morphological traits. For this reason, we have developed a platform that uses automated image analysis and pattern recognition to quantify phenotypic signatures of yeast colonies. Our strategy enables quantitative analysis of individual colonies, measured at a single time point or over a series of time-lapse images, as well as the classification of distinct colony shapes based on image-derived features. Phenotypic changes in colony morphology can be expressed as changes in feature space trajectories over time, thereby enabling the visualization and quantitative analysis of morphological development. To facilitate data exploration, results are plotted dynamically through an interactive Yeast Image Analysis web application (YIMAA; http://yimaa.cs.tut.fi) that integrates the raw and processed images across all time points, allowing exploration of the image-based features and principal components associated with morphological development.
Collapse
Affiliation(s)
- Pekka Ruusuvuori
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland; Institute for Systems Biology, Seattle, WA
| | - Jake Lin
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland; Institute for Systems Biology, Seattle, WA; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Adrian C Scott
- Pacific Northwest Diabetes Research Institute, Seattle, WA
| | - Zhihao Tan
- Pacific Northwest Diabetes Research Institute, Seattle, WA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA
| | - Saija Sorsa
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Aleksi Kallio
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Matti Nykter
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Olli Yli-Harja
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland; Institute for Systems Biology, Seattle, WA
| | - Ilya Shmulevich
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland; Institute for Systems Biology, Seattle, WA
| | - Aimée M Dudley
- Pacific Northwest Diabetes Research Institute, Seattle, WA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA
| |
Collapse
|
47
|
Tofalo R, Perpetuini G, Di Gianvito P, Schirone M, Corsetti A, Suzzi G. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains. Int J Food Microbiol 2014; 191:45-52. [PMID: 25218464 DOI: 10.1016/j.ijfoodmicro.2014.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/23/2014] [Indexed: 11/16/2022]
Abstract
Twenty-eight flocculent wine strains were tested for adhesion and flocculation phenotypic variability. Moreover, the expression patterns of the main genes involved in flocculation (FLO1, FLO5 and FLO8) were studied both in synthetic medium and in presence of ethanol stress. Molecular identification and typing were achieved by PCR-RFLP of the 5.8S ITS rRNA region and microsatellite PCR fingerprinting, respectively. All isolates belong to Saccharomyces cerevisiae species. The analysis of microsatellites highlighted the intraspecific genetic diversity of flocculent wine S. cerevisiae strains allowing obtaining strain-specific profiles. Moreover, strains were characterized on the basis of adhesive properties. A wide biodiversity was observed even if none of the tested strains were able to form biofilms (or 'mats'), or to adhere to polystyrene. Moreover, genetic diversity of FLO1 and FLO5 flocculating genes was determined by PCR. Genetic diversity was detected for both genes, but a relationship with the flocculation degree was not found. So, the expression patterns of FLO1, FLO5 and FLO8 genes was investigated in a synthetic medium and a relationship between the expression of FLO5 gene and the flocculation capacity was established. To study the expression of FLO1, FLO5 and FLO8 genes in floc formation and ethanol stress resistance qRT-PCR was carried out and also in this case strains with flocculent capacity showed higher levels of FLO5 gene expression. This study confirmed the diversity of flocculation phenotype and genotype in wine yeasts. Moreover, the importance of FLO5 gene in development of high flocculent characteristic of wine yeasts was highlighted. The obtained collection of S. cerevisiae flocculent wine strains could be useful to study the relationship between the genetic variation and flocculation phenotype in wine yeasts.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy
| | - Paola Di Gianvito
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy
| | - Maria Schirone
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy
| | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via C.R. Lerici 1, 64023 Mosciano S. Angelo, Italy.
| |
Collapse
|
48
|
Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soveral G, Prista C. Exploring three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 2014; 9:e102087. [PMID: 25111598 PMCID: PMC4128642 DOI: 10.1371/journal.pone.0102087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24-38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.
Collapse
Affiliation(s)
- Farzana Sabir
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria José Leandro
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ana Paula Martins
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria C. Loureiro-Dias
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Teresa F. Moura
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Dept. de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Prista
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
49
|
Scherz K, Andersen, Bojsen R, Gro L, Rejkjær, Sørensen, Weiss M, Nielsen, Lisby M, Folkesson A, Regenberg B. Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium. G3 (BETHESDA, MD.) 2014; 4:1671-80. [PMID: 25009170 PMCID: PMC4169159 DOI: 10.1534/g3.114.010892] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
Biofilm-forming microorganisms switch between two forms: free-living planktonic and sessile multicellular. Sessile communities of yeast biofilms in liquid medium provide a primitive example of multicellularity and are clinically important because biofilms tend to have other growth characteristics than free-living cells. We investigated the genetic basis for yeast, Saccharomyces cerevisiae, biofilm on solid surfaces in liquid medium by screening a comprehensive deletion mutant collection in the Σ1278b background and found 71 genes that were essential for biofilm development. Quantitative northern blots further revealed that AIM1, ASG1, AVT1, DRN1, ELP4, FLO8, FMP10, HMT1, KAR5, MIT1, MRPL32, MSS11, NCP1, NPR1, PEP5, PEX25, RIM8, RIM101, RGT1, SNF8, SPC2, STB6, STP22, TEC1, VID24, VPS20, VTC3, YBL029W, YBL029C-A, YFL054C, YGR161W-C, YIL014C-A, YIR024C, YKL151C, YNL200C, YOR034C-A, and YOR223W controlled biofilm through FLO11 induction. Almost all deletion mutants that were unable to form biofilms in liquid medium also lost the ability to form surface-spreading biofilm colonies (mats) on agar and 69% also lost the ability to grow invasively. The protein kinase A isoform Tpk3p functioned specifically in biofilm and mat formation. In a tpk3 mutant, transcription of FLO11 was induced three-fold compared with wild-type, but biofilm development and cell-cell adhesion was absent, suggesting that Tpk3p regulates FLO11 positive posttranscriptionally and negative transcriptionally.The study provides a resource of biofilm-influencing genes for additional research on biofilm development and suggests that the regulation of FLO11 is more complex than previously anticipated.
Collapse
Affiliation(s)
- Kaj Scherz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Andersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Bojsen
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Laura Gro
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Rejkjær
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Weiss
- Department of Biology, University of Copenhagen, Copenhagen, Denmark Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Nielsen
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Folkesson
- Department of Systems Biology, Technical University of Denmark, Copenhagen, Denmark
| | | |
Collapse
|
50
|
|