1
|
Brangulis K, Sürth V, Marcinkiewicz AL, Akopjana I, Kazaks A, Bogans J, Huber A, Lin YP, Kraiczy P. CspZ variant-specific interaction with factor H incorporates a metal site to support Lyme borreliae complement evasion. J Biol Chem 2025; 301:108083. [PMID: 39675703 PMCID: PMC11773018 DOI: 10.1016/j.jbc.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease spirochete bacteria to assess the role of metals in protein-protein interaction. CspZ facilitates evasion of the complement system, the first line of immune defense through binding to the complement regulator factor H (FH). By obtaining a high-resolution cocrystal CspZ-FH structure, we identified a zinc coordinating the binding of FH SCR6-7 domains to a Glu65 on a loop from CspZ of Borrelia burgdorferi B31. However, zinc is dispensable for human FH binding for CspZ orthologs with a different loop orientation and/or lacking this glutamate. Phylogenetic analysis of all known human FH-binding CspZ variants further grouped the proteins into three unique lineages correlating with loop sequences. This suggests multiple FH-binding mechanisms evolved through Lyme disease spirochete-host interactions. Overall, this multidisciplinary work elucidates how the allelically specific immune evasion role of metals is impacted by microbial protein polymorphisms.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Valerie Sürth
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alisa Huber
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA; Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA.
| | - Peter Kraiczy
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
2
|
Singh P, Bankhead T. Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog 2025; 21:e1012871. [PMID: 39792948 PMCID: PMC11756760 DOI: 10.1371/journal.ppat.1012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown. The vls locus, which is the site of antigenic variation, has been notoriously challenging to manipulate genetically due to its highly conserved structural features, even with significant advancements in molecular biology and genetic engineering for this highly segmented pathogen. Our study highlights the pivotal role of plasmid topology in facilitating in trans gene recombination. We demonstrate that gene conversion can occur in trans when a copy of vlsE gene is present on a linear plasmid, contrary to previous observations suggesting a cis arrangement is required for vlsE recombination. Significantly, employing this in trans gene conversion strategy with a linear plasmid, we have, for the first time, achieved targeted genetic mutation of putative cis-acting elements in the native vlsE gene. This has unveiled a potentially crucial role for the 17 bp direct repeats that flank the central variable cassette region of vlsE. Furthermore, we validated the reliability and reproducibility of our mutational approach by successfully inserting stop codons at two distinct sites within the central variable cassette of vlsE. Thus, this study presents a significant methodological innovation enabling the direct manipulation of the vls locus and lays the groundwork for systematic exploration of specific mutations affecting the mechanism of antigenic variation. As a result, it creates new avenues for research and raises intriguing questions that could guide the development of novel methods to explore host-pathogen interactions of the agent of Lyme disease.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
3
|
Gutierrez MDLP, Huckaby AB, Yang E, Weaver KL, Hall JM, Hudson M, Dublin SR, Sen-Kilic E, Rocuskie-Marker CM, Miller SJ, Pritchett CL, Mummadisetti MP, Zhang Y, Driscoll T, Barbier M. Antibody-mediated immunological memory correlates with long-term Lyme veterinary vaccine protection in mice. Vaccine 2024; 42:126084. [PMID: 38937181 DOI: 10.1016/j.vaccine.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne illness in the United States. Despite the rise in Lyme disease incidence, there is no vaccine against B. burgdorferi approved for human use. Little is known about the immune correlates of protection needed to prevent Lyme disease. In this work, a mouse model was used to characterize the immune response and compare the protection provided by two USDA-approved vaccines for use in canines: Duramune (bacterin vaccine) and Vanguard crLyme (subunit vaccine composed of two outer surface proteins, OspA and OspC). C3H/HeNCrl mice were immunized with two doses of either Duramune or Vanguard, and immune responses and protection against B. burgdorferi were assessed in short (35 days) and long-term (120 days) studies. Flow cytometry, ELISPOT detection of antibody-producing cells, and antibody affinity studies were performed to identify correlates of vaccine-mediated protection. Both vaccines induced humoral responses, with high IgG titers against B. burgdorferi. However, the levels of anti-B. burgdorferi antibodies decayed over time in Vanguard-vaccinated mice. While both vaccines triggered the production of antibodies against both OspA and OspC, antibody levels against these proteins were also lower in Vanguard-vaccinated mice 120 days post-vaccination. Both vaccines only provided partial protection against B. burgdorferi at the dose used in this model. The protection provided by Duramune was superior to Vanguard 120 days post-vaccination, and was characterized by higher antibody titers, higher abundance of long-lived plasma cells, and higher avidity antibodies than Vanguard. Overall, these studies provide insights into the importance of the humoral memory response to veterinary vaccines against Lyme disease and will help inform the development of future human vaccines.
Collapse
Affiliation(s)
- Maria de la Paz Gutierrez
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Evita Yang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Kelly L Weaver
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Joshua M Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Matthew Hudson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Spencer R Dublin
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Carleena M Rocuskie-Marker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | - Sarah Jo Miller
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA
| | | | | | - Ying Zhang
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Timothy Driscoll
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, USA; Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
4
|
Bourgeois JS, Hu LT. Hitchhiker's Guide to Borrelia burgdorferi. J Bacteriol 2024; 206:e0011624. [PMID: 39140751 PMCID: PMC11411949 DOI: 10.1128/jb.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.
Collapse
Affiliation(s)
- Jeffrey S. Bourgeois
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University Lyme Disease Initiative, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Yamasaki Y, Singh P, Vimonish R, Ueti M, Bankhead T. Development and Application of an In Vitro Tick Feeding System to Identify Ixodes Tick Environment-Induced Genes of the Lyme Disease Agent, Borrelia burgdorferi. Pathogens 2024; 13:487. [PMID: 38921785 PMCID: PMC11207009 DOI: 10.3390/pathogens13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The bacterial agent of Lyme disease, Borrelia burgdorferi, exists in an enzootic cycle by adapting to dissimilar mammalian and tick environments. The genetic elements necessary for host and vector adaptation are spread across a bacterial genome comprised of a linear chromosome and essential linear and circular plasmids. The promoter trap system, In Vivo Expression Technology (IVET), has been used to identify promoters of B. burgdorferi that are transcriptionally active specifically during infection of a murine host. However, an observed infection bottleneck effect in mice prevented the application of this system to study promoters induced in a tick environment. In this study, we adapted a membrane-based in vitro feeding system as a novel method to infect the Ixodes spp. vector with B. burgdorferi. Once adapted, we performed IVET screens as a proof of principle via an infected bloodmeal on the system. The screen yielded B. burgdorferi promoters that are induced during tick infection and verified relative expression levels using qRT-PCR. The results of our study demonstrate the potential of our developed in vitro tick feeding system and IVET systems to gain insight into the adaptive gene expression of the Lyme disease bacteria to the tick vector.
Collapse
Affiliation(s)
- Youki Yamasaki
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Rubikah Vimonish
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| | - Massaro Ueti
- Animal Disease Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA 99164, USA;
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (Y.Y.); (P.S.); (R.V.)
| |
Collapse
|
6
|
Gwynne PJ, Stocks KLK, Karozichian ES, Pandit A, Hu LT. Metabolic modeling predicts unique drug targets in Borrelia burgdorferi. mSystems 2023; 8:e0083523. [PMID: 37855615 PMCID: PMC10734484 DOI: 10.1128/msystems.00835-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Lyme disease is often treated using long courses of antibiotics, which can cause side effects for patients and risks the evolution of antimicrobial resistance. Narrow-spectrum antimicrobials would reduce these risks, but their development has been slow because the Lyme disease bacterium, Borrelia burgdorferi, is difficult to work with in the laboratory. To accelerate the drug discovery pipeline, we developed a computational model of B. burgdorferi's metabolism and used it to predict essential enzymatic reactions whose inhibition prevented growth in silico. These predictions were validated using small-molecule enzyme inhibitors, several of which were shown to have specific activity against B. burgdorferi. Although the specific compounds used are not suitable for clinical use, we aim to use them as lead compounds to develop optimized drugs targeting the pathways discovered here.
Collapse
Affiliation(s)
- Peter J. Gwynne
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Kee-Lee K. Stocks
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Elysse S. Karozichian
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Aarya Pandit
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| | - Linden T. Hu
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Tufts Lyme Disease Initiative, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
8
|
Sze CW, Zhang K, Lynch MJ, Iyer R, Crane BR, Schwartz I, Li C. A chemosensory-like histidine kinase is dispensable for chemotaxis in vitro but regulates the virulence of Borrelia burgdorferi through modulating the stability of RpoS. PLoS Pathog 2023; 19:e1011752. [PMID: 38011206 PMCID: PMC10703414 DOI: 10.1371/journal.ppat.1011752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023] Open
Abstract
As an enzootic pathogen, the Lyme disease bacterium Borrelia burgdorferi possesses multiple copies of chemotaxis proteins, including two chemotaxis histidine kinases (CHK), CheA1 and CheA2. Our previous study showed that CheA2 is a genuine CHK that is required for chemotaxis; however, the role of CheA1 remains mysterious. This report first compares the structural features that differentiate CheA1 and CheA2 and then provides evidence to show that CheA1 is an atypical CHK that controls the virulence of B. burgdorferi through modulating the stability of RpoS, a key transcriptional regulator of the spirochete. First, microscopic analyses using green-fluorescence-protein (GFP) tags reveal that CheA1 has a unique and dynamic cellular localization. Second, loss-of-function studies indicate that CheA1 is not required for chemotaxis in vitro despite sharing a high sequence and structural similarity to its counterparts from other bacteria. Third, mouse infection studies using needle inoculations show that a deletion mutant of CheA1 (cheA1mut) is able to establish systemic infection in immune-deficient mice but fails to do so in immune-competent mice albeit the mutant can survive at the inoculation site for up to 28 days. Tick and mouse infection studies further demonstrate that CheA1 is dispensable for tick colonization and acquisition but essential for tick transmission. Lastly, mechanistic studies combining immunoblotting, protein turnover, mutagenesis, and RNA-seq analyses reveal that depletion of CheA1 affects RpoS stability, leading to reduced expression of several RpoS-regulated virulence factors (i.e., OspC, BBK32, and DbpA), likely due to dysregulated clpX and lon protease expression. Bulk RNA-seq analysis of infected mouse skin tissues further show that cheA1mut fails to elicit mouse tnf-α, il-10, il-1β, and ccl2 expression, four important cytokines for Lyme disease development and B. burgdorferi transmigration. Collectively, these results reveal a unique role and regulatory mechanism of CheA1 in modulating virulence factor expression and add new insights into understanding the regulatory network of B. burgdorferi.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael J. Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Radha Iyer
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Ira Schwartz
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
9
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. Microbiol Spectr 2023; 11:e0089523. [PMID: 37737593 PMCID: PMC10580987 DOI: 10.1128/spectrum.00895-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
10
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen Borrelia burgdorferi. Nat Commun 2023; 14:3931. [PMID: 37402717 PMCID: PMC10319736 DOI: 10.1038/s41467-023-39576-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. Here, we use several RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. We identify complex gene arrangements and operons, untranslated regions and small RNAs. We predict intrinsic terminators and experimentally test examples of Rho-dependent transcription termination. Remarkably, 63% of RNA 3' ends map upstream of or internal to open reading frames (ORFs), including genes involved in the unique infectious cycle of B. burgdorferi. We suggest these RNAs result from premature termination, processing and regulatory events such as cis-acting regulation. Furthermore, the polyamine spermidine globally influences the generation of truncated mRNAs. Collectively, our findings provide insights into transcription termination and uncover an abundance of potential RNA regulators in B. burgdorferi.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Philip P Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
- Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Kasumba IN, Tilly K, Lin T, Norris SJ, Rosa PA. Strict Conservation yet Non-Essential Nature of Plasmid Gene bba40 in the Lyme Disease Spirochete Borrelia burgdorferi. Microbiol Spectr 2023; 11:e0047723. [PMID: 37010416 PMCID: PMC10269632 DOI: 10.1128/spectrum.00477-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
The highly segmented genome of Borrelia burgdorferi, the tick-borne bacterium that causes Lyme disease, is composed of a linear chromosome and more than 20 co-existing endogenous plasmids. Many plasmid-borne genes are unique to B. burgdorferi and some have been shown to provide essential functions at discrete points of the infectious cycle between a tick vector and rodent host. In this study, we investigated the role of bba40, a highly conserved and differentially expressed gene on a ubiquitous linear plasmid of B. burgdorferi. In a prior genome-wide analysis, inactivation of bba40 by transposon insertion was linked with a noninfectious phenotype in mice, suggesting that conservation of the gene in the Lyme disease spirochete reflected a critical function of the encoded protein. To address this hypothesis, we moved the bba40::Tn allele into a similar wild-type background and compared the phenotypes of isogenic wild-type, mutant and complemented strains in vitro and throughout the in vivo mouse/tick infectious cycle. In contrast to the previous study, we identified no defect in the ability of the bba40 mutant to colonize the tick vector or murine host, or to be efficiently transmitted between them. We conclude that bba40 joins a growing list of unique, highly conserved, yet fully dispensable plasmid-borne genes of the Lyme disease spirochete. We infer that the experimental infectious cycle, while including the tick vector and murine host, lacks key selective forces imposed during the natural enzootic cycle. IMPORTANCE The key finding of this study contradicts our premise that the ubiquitous presence and strict sequence conservation of a unique gene in the Lyme disease spirochete, Borrelia burgdorferi, reflect a critical role in either the murine host or tick vector in which these bacteria are maintained in nature. Instead, the outcome of this investigation illustrates the inadequate nature of the experimental infectious cycle currently employed in the laboratory to fully model the enzootic cycle of the Lyme disease spirochete. This study also highlights the importance of complementation for accurate interpretation of mutant phenotypes in genetic studies of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Irene N. Kasumba
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kit Tilly
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
12
|
Sze CW, Li C. Chemotaxis Coupling Protein CheW 2 Is Not Required for the Chemotaxis but Contributes to the Full Pathogenicity of Borreliella burgdorferi. Infect Immun 2023; 91:e0000823. [PMID: 36939335 PMCID: PMC10112267 DOI: 10.1128/iai.00008-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/21/2023] Open
Abstract
The bacterial chemotaxis regulatory circuit mainly consists of coupling protein CheW, sensor histidine kinase CheA, and response regulator CheY. Most bacteria, such as Escherichia coli, have a single gene encoding each of these proteins. Interestingly, the Lyme disease pathogen, Borreliella burgdorferi, has multiple chemotaxis proteins, e.g., two CheA, three CheW, and three CheY proteins. The genes encoding these proteins mainly reside in two operons: cheW2-cheA1-cheB2-cheY2 (A-I) and cheA2-cheW3-cheX-cheY3 (A-II). Previous studies demonstrate that all the genes in A-II are essential for the chemotaxis of B. burgdorferi; however, the role of those genes in A-I remains unknown. This study aimed to fill this gap using the CheW2 gene, the first gene in A-I, as a surrogate. We first mapped the transcription start site of A-I upstream of cheW2 and identified a σ70-like promoter (PW2) and two binding sites (BS1 and BS2) of BosR, an unorthodox Fur/Per homolog. We then demonstrated that BosR binds to PW2 via BS1 and BS2 and that deletion of bosR significantly represses the expression of cheW2 and other genes in A-I, implying that BosR is a positive regulator of A-I. Deletion of cheW2 has no impact on the chemotaxis of B. burgdorferi in vitro but abrogates its ability to evade host adaptive immunity, because the mutant can establish systemic infection only in SCID mice and not in immunocompetent BALB/c mice. This report substantiates the previous proposition that A-I is not implicated in chemotaxis; rather, it may function as a signaling transduction pathway to regulate B. burgdorferi virulence gene expression.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Stevenson B, Brissette CA. Erp and Rev Adhesins of the Lyme Disease Spirochete's Ubiquitous cp32 Prophages Assist the Bacterium during Vertebrate Infection. Infect Immun 2023; 91:e0025022. [PMID: 36853019 PMCID: PMC10016077 DOI: 10.1128/iai.00250-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Almost all spirochetes in the genus Borrelia (sensu lato) naturally contain multiple variants of closely related prophages. In the Lyme disease borreliae, these prophages are maintained as circular episomes that are called circular plasmid 32 kb (cp32s). The cp32s of Lyme agents are particularly unique in that they encode two distinct families of lipoproteins, namely, Erp and Rev, that are expressed on the bacterial outer surface during infection of vertebrate hosts. All identified functions of those outer surface proteins involve interactions between the spirochetes and host molecules, as follows: Erp proteins bind plasmin(ogen), laminin, glycosaminoglycans, and/or components of complement and Rev proteins bind fibronectin. Thus, cp32 prophages provide their bacterial hosts with surface proteins that can enhance infection processes, thereby facilitating their own survival. Horizontal transfer via bacteriophage particles increases the spread of beneficial alleles and creates diversity among Erp and Rev proteins.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
14
|
Casselli T, Tourand Y, Gura K, Stevenson B, Zückert WR, Brissette CA. Endogenous Linear Plasmids lp28-4 and lp25 Are Required for Infectivity and Restriction Protection in the Lyme Disease Spirochete Borrelia mayonii. Infect Immun 2023; 91:e0006123. [PMID: 36853005 PMCID: PMC10016076 DOI: 10.1128/iai.00061-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Borrelia mayonii is a newly recognized causative agent of Lyme disease in the Upper Midwestern United States, with distinct clinical presentations compared to classical Lyme disease caused by other Lyme Borrelia species. However, little is known about the B. mayonii genetic determinants required for establishing infection or perpetuating disease in mammals. Extrachromosomal plasmids in Borrelia species often encode proteins necessary for infection and pathogenesis, and spontaneous loss of these plasmids can lead to the identification of virulence determinant genes. Here, we describe infection of Lyme disease-susceptible C3H mice with B. mayonii, and show bacterial dissemination and persistence in peripheral tissues. Loss of endogenous plasmids, including lp28-4, lp25, and lp36 correlated with reduced infectivity in mice. The apparent requirement for lp28-4 during murine infection suggests the presence of a novel virulence determinant, as this plasmid does not encode homologs of any known virulence determinant. We also describe transformation and stable maintenance of a self-replicating shuttle vector in B. mayonii, and show that loss of either lp25 or lp28-4 correlated with increased transformation competency. Finally, we demonstrate that linear plasmids lp25 and lp28-4 each encode functional restriction modification systems with distinct but partially overlapping target modification sequences, which likely accounts for the observed decrease in transformation efficiency when those plasmids are present. Taken together, this study describes a role for endogenous plasmids in mammalian infection and restriction protection in the Lyme disease spirochete Borrelia mayonii.
Collapse
Affiliation(s)
- Timothy Casselli
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yvonne Tourand
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Kaitlyn Gura
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, School of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Wolfram R. Zückert
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Catherine A. Brissette
- Department of Biological Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
15
|
Kneubehl AR, Lopez JE. Comparative genomics analysis of three conserved plasmid families in the Western Hemisphere soft tick-borne relapsing fever borreliae provides insight into variation in genome structure and antigenic variation systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531354. [PMID: 36945547 PMCID: PMC10028826 DOI: 10.1101/2023.03.06.531354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.
Collapse
Affiliation(s)
| | - Job E. Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Petroni E, Esnault C, Tetreault D, Dale RK, Storz G, Adams PP. Extensive diversity in RNA termination and regulation revealed by transcriptome mapping for the Lyme pathogen B. burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522626. [PMID: 36712141 PMCID: PMC9881889 DOI: 10.1101/2023.01.04.522626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transcription termination is an essential and dynamic process that can tune gene expression in response to diverse molecular signals. Yet, the genomic positions, molecular mechanisms, and regulatory consequences of termination have only been studied thoroughly in model bacteria. We employed complementary RNA-seq approaches to map RNA ends for the transcriptome of the spirochete Borrelia burgdorferi - the etiological agent of Lyme disease. By systematically mapping B. burgdorferi RNA ends at single nucleotide resolution, we delineated complex gene arrangements and operons and mapped untranslated regions (UTRs) and small RNAs (sRNAs). We experimentally tested modes of B. burgdorferi transcription termination and compared our findings to observations in E. coli , P. aeruginosa , and B. subtilis . We discovered 63% of B. burgdorferi RNA 3' ends map upstream or internal to open reading frames (ORFs), suggesting novel mechanisms of regulation. Northern analysis confirmed the presence of stable 5' derived RNAs from mRNAs encoding gene products involved in the unique infectious cycle of B. burgdorferi . We suggest these RNAs resulted from premature termination and regulatory events, including forms of cis- acting regulation. For example, we documented that the polyamine spermidine globally influences the generation of truncated mRNAs. In one case, we showed that high spermidine concentrations increased levels of RNA fragments derived from an mRNA encoding a spermidine import system, with a concomitant decrease in levels of the full- length mRNA. Collectively, our findings revealed new insight into transcription termination and uncovered an abundance of potential RNA regulators.
Collapse
Affiliation(s)
- Emily Petroni
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel Tetreault
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Philip P. Adams
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.,Independent Research Scholar Program, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.,correspondence:
| |
Collapse
|
17
|
Takacs CN, Nakajima Y, Haber JE, Jacobs-Wagner C. Cas9-mediated endogenous plasmid loss in Borrelia burgdorferi. PLoS One 2022; 17:e0278151. [PMID: 36441794 PMCID: PMC9704580 DOI: 10.1371/journal.pone.0278151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
The spirochete Borrelia burgdorferi, which causes Lyme disease, has the most segmented genome among known bacteria. In addition to a linear chromosome, the B. burgdorferi genome contains over 20 linear and circular endogenous plasmids. While many of these plasmids are dispensable under in vitro culture conditions, they are maintained during the natural life cycle of the pathogen. Plasmid-encoded functions are required for colonization of the tick vector, transmission to the vertebrate host, and evasion of host immune defenses. Different Borrelia strains can vary substantially in the type of plasmids they carry. The gene composition within the same type of plasmid can also differ from strain to strain, impeding the inference of plasmid function from one strain to another. To facilitate the investigation of the role of specific B. burgdorferi plasmids, we developed a Cas9-based approach that targets a plasmid for removal. As a proof-of-principle, we showed that targeting wild-type Cas9 to several loci on the endogenous plasmids lp25 or lp28-1 of the B. burgdorferi type strain B31 results in sgRNA-specific plasmid loss even when homologous sequences (i.e., potential sequence donors for DNA recombination) are present nearby. Cas9 nickase versions, Cas9D10A or Cas9H840A, also cause plasmid loss, though not as robustly. Thus, sgRNA-directed Cas9 DNA cleavage provides a highly efficient way to eliminate B. burgdorferi endogenous plasmids that are non-essential in axenic culture.
Collapse
Affiliation(s)
- Constantin N. Takacs
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| | - Yuko Nakajima
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Palo Alto, California, United States of America
- Sarafan ChEM-H Institute, Stanford University, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
18
|
Qiao X, Zhang X, Zhou Z, Guo L, Wu W, Ma S, Zhang X, Montell C, Huang J. An insecticide target in mechanoreceptor neurons. SCIENCE ADVANCES 2022; 8:eabq3132. [PMID: 36417522 PMCID: PMC9683716 DOI: 10.1126/sciadv.abq3132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/05/2022] [Indexed: 06/15/2023]
Abstract
Hundreds of neurotoxic insecticides are currently in use. However, only a few direct targets have been identified. Here, using Drosophila and the insecticide flonicamid, we identified nicotinamidase (Naam) as a previous unidentified molecular target for an insecticide. Naam is expressed in chordotonal stretch-receptor neurons, and inhibition of Naam by a metabolite of flonicamid, TFNA-AM (4-trifluoromethylnicotinamide), induces accumulation of substrate nicotinamide and greatly inhibits negative geotaxis. Engineered flies harboring a point mutation in the active site show insecticide resistance and defects in gravity sensing. Bees are resistant to flonicamid because of a gene duplication, resulting in the generation of a TFNA-AM-insensitive Naam. Our results, in combination with the absence of genes encoding Naam in vertebrate genomes, suggest that TFNA-AM and potential species-specific Naam inhibitors could be developed as novel insecticides, anthelmintics, and antimicrobials for agriculture and human health.
Collapse
Affiliation(s)
- Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhendong Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suhan Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology and the Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
A Live Cell Imaging Microfluidic Model for Studying Extravasation of Bloodborne Bacterial Pathogens. Cell Microbiol 2022. [DOI: 10.1155/2022/3130361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria that migrate (extravasate) out of the bloodstream during vascular dissemination can cause secondary infections in many tissues and organs, including the brain, heart, liver, joints, and bone with clinically serious and sometimes fatal outcomes. The mechanisms by which bacteria extravasate through endothelial barriers in the face of blood flow-induced shear stress are poorly understood, in part because individual bacteria are rarely observed traversing endothelia in vivo, and in vitro model systems inadequately mimic the vascular environment. To enable the study of bacterial extravasation mechanisms, we developed a transmembrane microfluidics device mimicking human blood vessels. Fast, quantitative, three-dimensional live cell imaging in this system permitted single-cell resolution measurement of the Lyme disease bacterium Borrelia burgdorferi transmigrating through monolayers of primary human endothelial cells under physiological shear stress. This cost-effective, flexible method was 10,000 times more sensitive than conventional plate reader-based methods for measuring transendothelial migration. Validation studies confirmed that B. burgdorferi transmigrate actively and strikingly do so at similar rates under static and physiological flow conditions. This method has significant potential for future studies of B. burgdorferi extravasation mechanisms, as well as the transendothelial migration mechanisms of other disseminating bloodborne pathogens.
Collapse
|
20
|
The ratio of nicotinic acid to nicotinamide as a microbial biomarker for assessing cell therapy product sterility. Mol Ther Methods Clin Dev 2022; 25:410-424. [PMID: 35573051 PMCID: PMC9065052 DOI: 10.1016/j.omtm.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/10/2022] [Indexed: 11/20/2022]
Abstract
Controlling microbial risks in cell therapy products (CTPs) is important for product safety. Here, we identified the nicotinic acid (NA) to nicotinamide (NAM) ratio as a biomarker that detects a broad spectrum of microbial contaminants in cell cultures. We separately added six different bacterial species into mesenchymal stromal cell and T cell culture and found that NA was uniquely present in these bacteria-contaminated CTPs due to the conversion from NAM by microbial nicotinamidases, which mammals lack. In cells inoculated with 1 × 104 CFUs/mL of different microorganisms, including USP <71> defined organisms, the increase in NA to NAM ratio ranged from 72 to 15,000 times higher than the uncontaminated controls after 24 h. Importantly, only live microorganisms caused increases in this ratio. In cells inoculated with 18 CFUs/mL of Escherichia coli, 20 CFUs/mL of Bacillus subtilis, and 10 CFUs/mL of Candida albicans, significant increase of NA to NAM ratio was detected using LC-MS after 18.5, 12.5, and 24.5 h, respectively. In contrast, compendial sterility test required >24 h to detect the same amount of these three organisms. In conclusion, the NA to NAM ratio is a useful biomarker for detection of early-stage microbial contaminations in CTPs.
Collapse
|
21
|
Crowley MA, Bankhead T. Potential Regulatory Role in Mammalian Host Adaptation for a Small Intergenic Region of Lp17 in the Lyme Disease Spirochete. Front Cell Infect Microbiol 2022; 12:892220. [PMID: 35586252 PMCID: PMC9108270 DOI: 10.3389/fcimb.2022.892220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial agent of Lyme disease, Borrelia burgdorferi, relies on an intricate gene regulatory network to transit between the disparate Ixodes tick vector and mammalian host environments. We recently reported that a B. burgdorferi mutant lacking a transcriptionally active intergenic region of lp17 displayed attenuated murine tissue colonization and pathogenesis due to altered expression of multiple antigens. In this study, a more detailed characterization of the putative regulatory factor encoded by the intergenic region was pursued. In cis complemented strains featuring mutations aimed at eliminating potential protein translation were capable of full tissue colonization, suggesting that the functional product encoded by the intergenic region is not a protein as previously predicted. In trans complementation of the intergenic region resulted in elevated transcription of the sequence compared to wild type and was found to completely abolish infectivity in both immunocompetent "and immunodeficient mice. Quantitative analysis of transcription of the intergenic region by wild-type B. burgdorferi showed it to be highly induced during murine infection relative to in vitro culture. Lastly, targeted deletion of this intergenic region resulted in significant changes to the transcriptome, including genes with potential roles in transmission and host adaptation. The findings reported herein strongly suggest that this segment of lp17 serves a potentially critical role in the regulation of genes required for adaptation and persistence of the pathogen in a mammalian host.
Collapse
Affiliation(s)
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
22
|
The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitol Res 2022; 121:781-803. [PMID: 35122516 PMCID: PMC8816687 DOI: 10.1007/s00436-022-07445-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Beside mosquitoes, ticks are well-known vectors of different human pathogens. In the Northern Hemisphere, Lyme borreliosis (Eurasia, LB) or Lyme disease (North America, LD) is the most commonly occurring vector-borne infectious disease caused by bacteria of the genus Borrelia which are transmitted by hard ticks of the genus Ixodes. The reported incidence of LB in Europe is about 22.6 cases per 100,000 inhabitants annually with a broad range depending on the geographical area analyzed. However, the epidemiological data are largely incomplete, because LB is not notifiable in all European countries. Furthermore, not only differ reporting procedures between countries, there is also variation in case definitions and diagnostic procedures. Lyme borreliosis is caused by several species of the Borrelia (B.) burgdorferi sensu lato (s.l.) complex which are maintained in complex networks including ixodid ticks and different reservoir hosts. Vector and host influence each other and are affected by multiple factors including climate that have a major impact on their habitats and ecology. To classify factors that influence the risk of transmission of B. burgdorferi s.l. to their different vertebrate hosts as well as to humans, we briefly summarize the current knowledge about the pathogens including their astonishing ability to overcome various host immune responses, regarding the main vector in Europe Ixodes ricinus, and the disease caused by borreliae. The research shows, that a higher standardization of case definition, diagnostic procedures, and standardized, long-term surveillance systems across Europe is necessary to improve clinical and epidemiological data.
Collapse
|
23
|
Probing the Role of bba30, a Highly Conserved Gene of the Lyme Disease Spirochete, Throughout the Mouse-Tick Infectious Cycle. Infect Immun 2021; 89:e0033321. [PMID: 34581605 DOI: 10.1128/iai.00333-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, has a complex and segmented genome consisting of a small linear chromosome and up to 21 linear and circular plasmids. Some of these plasmids are essential as they carry genes that are critical during the life cycle of the Lyme disease spirochete. Among these is a highly conserved linear plasmid, lp54, which is crucial for the mouse-tick infectious cycle of B. burgdorferi. However, the functions of most lp54-encoded open reading frames (ORFs) remain unknown. In this study, we investigate the contribution of a previously uncharacterized lp54 gene during the infectious cycle of B. burgdorferi. This gene, bba30, is conserved in the Borrelia genus but lacks any identified homologs outside the genus. Homology modeling of BBA30 ORF indicated the presence of a nucleic acid binding motif, helix-turn-helix (HTH), near the amino terminus of the protein, suggesting a putative regulatory function. A previous study reported that spirochetes with a transposon insertion in bba30 exhibited a noninfectious phenotype in mice. In the current study, however, we demonstrate that the highly conserved bba30 gene is not required by the Lyme disease spirochete at any stage of the experimental mouse-tick infectious cycle. We conclude that the undefined circumstances under which bba30 potentially confers a fitness advantage in the natural life cycle of B. burgdorferi are not factors of the experimental infectious cycle that we employ.
Collapse
|
24
|
Coburn J, Garcia B, Hu LT, Jewett MW, Kraiczy P, Norris SJ, Skare J. Lyme Disease Pathogenesis. Curr Issues Mol Biol 2020; 42:473-518. [PMID: 33353871 DOI: 10.21775/cimb.042.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Center For Infectious Disease Research, Medical College of Wisconsin, 8701 Watertown Plank Rd., TBRC C3980, Milwaukee, WI 53226, USA
| | - Brandon Garcia
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27858, USA
| | - Linden T Hu
- Department of Molecular Biology and Microbiology, Vice Dean of Research, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | - Mollie W Jewett
- Immunity and Pathogenesis Division Head, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd. Orlando, FL 32827, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt, Germany
| | - Steven J Norris
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225, USA
| | - Jon Skare
- Professor and Associate Head, Texas A and M University, 8447 Riverside Pkwy, Bryan, TX 77807, USA
| |
Collapse
|
25
|
Abstract
Genetic studies in Borrelia require special consideration of the highly segmented genome, complex growth requirements and evolutionary distance of spirochetes from other genetically tractable bacteria. Despite these challenges, a robust molecular genetic toolbox has been constructed to investigate the biology and pathogenic potential of these important human pathogens. In this review we summarize the tools and techniques that are currently available for the genetic manipulation of Borrelia, including the relapsing fever spirochetes, viewing them in the context of their utility and shortcomings. Our primary objective is to help researchers discern what is feasible and what is not practical when thinking about potential genetic experiments in Borrelia. We have summarized published methods and highlighted their critical elements, but we are not providing detailed protocols. Although many advances have been made since B. burgdorferi was first transformed over 25 years ago, some standard genetic tools remain elusive for Borrelia. We mention these limitations and why they persist, if known. We hope to encourage investigators to explore what might be possible, in addition to optimizing what currently can be achieved, through genetic manipulation of Borrelia.
Collapse
Affiliation(s)
- Patricia A. Rosa
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St. Hamilton, MT 59840 USA
| | - Mollie W. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd, Orlando, FL 32827 USA
| |
Collapse
|
26
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Zhang Y, Chen T, Raghunandanan S, Xiang X, Yang J, Liu Q, Edmondson DG, Norris SJ, Yang XF, Lou Y. YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008953. [PMID: 33048986 PMCID: PMC7584230 DOI: 10.1371/journal.ppat.1008953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/23/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Borrelia burgdorferi, the Lyme disease pathogen causes persistent infection by evading the host immune response. Differential expression of the surface-exposed lipoprotein VlsE that undergoes antigenic variation is a key immune evasion strategy employed by B. burgdorferi. Most studies focused on the mechanism of VlsE antigen variation, but little is known about VlsE regulation and factor(s) that regulates differential vlsE expression. In this study, we investigated BB0025, a putative YebC family transcriptional regulator (and hence designated BB0025 as YebC of B. burgdorferi herein). We constructed yebC mutant and complemented strain in an infectious strain of B. burgdorferi. The yebC mutant could infect immunocompromised SCID mice but not immunocompetent mice, suggesting that YebC plays an important role in evading host adaptive immunity. RNA-seq analyses identified vlsE as one of the genes whose expression was most affected by YebC. Quantitative RT-PCR and Western blot analyses confirmed that vlsE expression was dependent on YebC. In vitro, YebC and VlsE were co-regulated in response to growth temperature. In mice, both yebC and vlsE were inversely expressed with ospC in response to the host adaptive immune response. Furthermore, EMSA proved that YebC directly binds to the vlsE promoter, suggesting a direct transcriptional control. These data demonstrate that YebC is a new regulator that modulates expression of vlsE and other genes important for spirochetal infection and immune evasion in the mammalian host.
Collapse
Affiliation(s)
- Yan Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Optometry and Eye Hospital and School of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Tong Chen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina, United States of America
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Qiang Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, UTHealth Medical School, Houston, Texas, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Saputra EP, Trzeciakowski JP, Hyde JA. Borrelia burgdorferi spatiotemporal regulation of transcriptional regulator bosR and decorin binding protein during murine infection. Sci Rep 2020; 10:12534. [PMID: 32719448 PMCID: PMC7385660 DOI: 10.1038/s41598-020-69212-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi, is an inflammatory multistage infection, consisting of localized, disseminated, and persistent disease stages, impacting several organ systems through poorly defined gene regulation mechanisms. The purpose of this study is to further characterize the spatiotemporal transcriptional regulation of B. burgdorferi during mammalian infection of borrelial oxidative stress regulator (bosR) and decorin binding protein (dbpBA) by utilizing bioluminescent B. burgdorferi reporter strains and in vivo imaging. Fluctuating borrelial load was also monitored and used for normalization to evaluate expression levels. bosR transcription is driven by two promoters, Pbb0648 and PbosR, and we focused on the native promoter. bosR expression is low relative to the robustly expressed dbpBA throughout infection. In distal tissues, bosR was the highest in the heart during in the first week whereas dbpBA was readily detectable at all time points with each tissue displaying a distinct expression pattern. This data suggests bosR may have a role in heart colonization and the induction of dbpBA indicates a RpoS independent transcriptional regulation occurring in the mammalian cycle of pathogenesis. These finding demonstrate that B. burgdorferi engages unknown genetic mechanisms to uniquely respond to mammalian tissue environments and/or changing host response over time.
Collapse
Affiliation(s)
- Elizabeth P Saputra
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Jenny A Hyde
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA.
| |
Collapse
|
29
|
Lin YP, Tan X, Caine JA, Castellanos M, Chaconas G, Coburn J, Leong JM. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLoS Pathog 2020; 16:e1008516. [PMID: 32413091 PMCID: PMC7255614 DOI: 10.1371/journal.ppat.1008516] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi, B. afzelii and B. garinii, is a chronic, multi-systemic infection and the spectrum of tissues affected can vary with the Lyme disease strain. For example, whereas B. garinii infection is associated with neurologic manifestations, B. burgdorferi infection is associated with arthritis. The basis for tissue tropism is poorly understood, but has been long hypothesized to involve strain-specific interactions with host components in the target tissue. OspC (outer surface protein C) is a highly variable outer surface protein required for infectivity, and sequence differences in OspC are associated with variation in tissue invasiveness, but whether OspC directly influences tropism is unknown. We found that OspC binds to the extracellular matrix (ECM) components fibronectin and/or dermatan sulfate in an OspC variant-dependent manner. Murine infection by isogenic B. burgdorferi strains differing only in their ospC coding region revealed that two OspC variants capable of binding dermatan sulfate promoted colonization of all tissues tested, including joints. However, an isogenic strain producing OspC from B. garinii strain PBr, which binds fibronectin but not dermatan sulfate, colonized the skin, heart and bladder, but not joints. Moreover, a strain producing an OspC altered to recognize neither fibronectin nor dermatan sulfate displayed dramatically reduced levels of tissue colonization that were indistinguishable from a strain entirely deficient in OspC. Finally, intravital microscopy revealed that this OspC mutant, in contrast to a strain producing wild type OspC, was defective in promoting joint invasion by B. burgdorferi in living mice. We conclude that OspC functions as an ECM-binding adhesin that is required for joint invasion, and that variation in OspC sequence contributes to strain-specific differences in tissue tropism displayed among Lyme disease spirochetes. Infection by different Lyme disease bacteria is associated with different manifestations, such as cardiac, neurologic, or, in the case of B. burgdorferi, the major cause of Lyme disease in the U.S., joint disease. The basis for these differences is unknown, but likely involve strain-specific interactions with host components in the target tissue. The sequence of the outer surface lipoprotein OspC varies with the strains, and we found that this variation influences the spectrum of host extracellular matrix components recognized. Infection of mice with strains that are identical except for ospC revealed that OspC variants that differ in binding spectrum promote infection of different tissues. A strain producing OspC invaded and colonized the joint in living animals, but an altered OspC protein incapable of binding tissue components did not. Thus, tissue-binding by OspC is critical for infection and joint invasion, and OspC variation directly influences tissue tropism.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Xi Tan
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Caine
- Division of Infectious Diseases, and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mildred Castellanos
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jenifer Coburn
- Division of Infectious Diseases, and Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail: (JC); (JML)
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (JC); (JML)
| |
Collapse
|
30
|
Medina-Pérez DN, Wager B, Troy E, Gao L, Norris SJ, Lin T, Hu L, Hyde JA, Lybecker M, Skare JT. The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi. PLoS Pathog 2020; 16:e1008423. [PMID: 32365143 PMCID: PMC7224557 DOI: 10.1371/journal.ppat.1008423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Post-transcriptional regulation via small regulatory RNAs (sRNAs) has been implicated in diverse regulatory processes in bacteria, including virulence. One class of sRNAs, termed trans-acting sRNAs, can affect the stability and/or the translational efficiency of regulated transcripts. In this study, we utilized a collaborative approach that employed data from infection with the Borrelia burgdorferi Tn library, coupled with Tn-seq, together with borrelial sRNA and total RNA transcriptomes, to identify an intergenic trans-acting sRNA, which we designate here as ittA for infectivity-associated and tissue-tropic sRNA locus A. The genetic inactivation of ittA resulted in a significant attenuation in infectivity, with decreased spirochetal load in ear, heart, skin and joint tissues. In addition, the ittA mutant did not disseminate to peripheral skin sites or heart tissue, suggesting a role for ittA in regulating a tissue-tropic response. RNA-Seq analysis determined that 19 transcripts were differentially expressed in the ittA mutant relative to its genetic parent, including vraA, bba66, ospD and oms28 (bba74). Subsequent proteomic analyses also showed a significant decrease of OspD and Oms28 (BBA74) proteins. To our knowledge this is the first documented intergenic sRNA that alters the infectivity potential of B. burgdorferi.
Collapse
Affiliation(s)
- Diana N. Medina-Pérez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Beau Wager
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Erin Troy
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Lihui Gao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Tao Lin
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Linden Hu
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - Meghan Lybecker
- Department of Biology, University of Colorado at Colorado Springs, Colorado Springs, Colorado, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| |
Collapse
|
31
|
Hodzic E, Imai DM, Escobar E. Generality of Post-Antimicrobial Treatment Persistence of Borrelia burgdorferi Strains N40 and B31 in Genetically Susceptible and Resistant Mouse Strains. Infect Immun 2019; 87:e00442-19. [PMID: 31308087 PMCID: PMC6759297 DOI: 10.1128/iai.00442-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023] Open
Abstract
A basic feature of infection caused by Borrelia burgdorferi, the etiological agent of Lyme borreliosis, is that persistent infection is the rule in its many hosts. The ability to persist and evade host immune clearance poses a challenge to effective antimicrobial treatment. A link between therapy failure and the presence of persister cells has started to emerge. There is growing experimental evidence that viable but noncultivable spirochetes persist following treatment with several different antimicrobial agents. The current study utilized the mouse model to evaluate if persistence occurs following antimicrobial treatment in disease-susceptible (C3H/HeJ [C3H]) and disease-resistant (C57BL/6 [B6]) mouse strains infected with B. burgdorferi strains N40 and B31 and to confirm the generality of this phenomenon, as well as to assess the persisters' clinical relevance. The status of infection was evaluated at 12 and 18 months after treatment. The results demonstrated that persistent spirochetes remain viable for up to 18 months following treatment, as well as being noncultivable. The phenomenon of persistence in disease-susceptible C3H mice is equally evident in disease-resistant B6 mice and not unique to any particular B. burgdorferi strain. The results also demonstrate that, following antimicrobial treatment, both strains of B. burgdorferi, N40 and B31, lose one or more plasmids. The study demonstrated that noncultivable spirochetes can persist in a host following antimicrobial treatment for a long time but did not demonstrate their clinical relevance in a mouse model of chronic infection. The clinical relevance of persistent spirochetes beyond 18 months following antimicrobial treatment requires further studies in other animal models.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Edlin Escobar
- Real-Time PCR Research and Diagnostic Core Facility, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
32
|
Abstract
The spirochetes Borrelia (Borreliella) burgdorferi and Borrelia hermsii, the etiologic agents of Lyme disease and relapsing fever, respectively, cycle in nature between an arthropod vector and a vertebrate host. They have extraordinarily unusual genomes that are highly segmented and predominantly linear. The genetic analyses of Lyme disease spirochetes have become increasingly more sophisticated, while the age of genetic investigation in the relapsing fever spirochetes is just dawning. Molecular tools available for B. burgdorferi and related species range from simple selectable markers and gene reporters to state-of-the-art inducible gene expression systems that function in the animal model and high-throughput mutagenesis methodologies, despite nearly overwhelming experimental obstacles. This armamentarium has empowered borreliologists to build a formidable genetic understanding of the cellular physiology of the spirochete and the molecular pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| | - D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
| |
Collapse
|
33
|
Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT, Hu LT. Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathog 2019; 15:e1007644. [PMID: 31086414 PMCID: PMC6516651 DOI: 10.1371/journal.ppat.1007644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments. Here we describe the first ever use of transposon insertion sequencing (Tn-seq) to identify genes required for B. burgdorferi survival in its tick host. We found that insertions into 46 genes resulted in a complete loss of recovery of mutants from larval Ixodes ticks. Insertions in an additional 56 genes resulted in a >90% decrease in fitness. The screen identified both previously known and new genes important for larval tick survival. Almost half of the genes required for survival in the tick encode proteins of unknown function, while a significant portion (over 20%) encode membrane-associated proteins or lipoproteins. We validated the results of the screen for five Tn mutants by performing individual competition assays using mutant and complemented strains. To better understand the role of one of these genes in tick survival, we conducted mechanistic studies of bb0017, a gene previously shown to be required for resistance against oxidative stress. In this study we show that BB0017 affects the regulation of key borrelial virulence determinants. The application of Tn-seq to in vivo screening of B. burgdorferi in its natural vector is a powerful tool that can be used to address many different aspects of the host pathogen interaction. Borrelia burgdorferi, the causative agent of Lyme disease, must adjust to environmental changes as it moves between its tick and vertebrate hosts. We performed a screen of a B. burgdorferi transposon library using massively parallel sequencing (Tn-seq) to identify fitness defects involved in survival in its tick host. This screen accurately identified genes known to cause decreased fitness for tick survival and identified new genes involved in B. burgdorferi survival in ticks. All of the genes tested individually confirmed the Tn-seq results. One of the genes identified encodes a protein whose function was previously unknown that appears to be involved in regulating expression of proteins known to be involved in environmental adaptation. Tn-seq is a powerful tool for understanding vector-pathogen interactions and may reveal new opportunities for interrupting the infectious cycle of vector-borne diseases.
Collapse
Affiliation(s)
- James P. Phelan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| | - Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Meghan E. Ramsey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Maureen E. Lundt
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Tao Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lihui Gao
- MD Anderson Cancer Center Thoracic & Cardiovascular Surgery, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, Texas, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| |
Collapse
|
34
|
Parveen N, Fernandez MC, Haynes AM, Zhang RL, Godornes BC, Centurion-Lara A, Giacani L. Non-pathogenic Borrelia burgdorferi expressing Treponema pallidum TprK and Tp0435 antigens as a novel approach to evaluate syphilis vaccine candidates. Vaccine 2019; 37:1807-1818. [PMID: 30797635 DOI: 10.1016/j.vaccine.2019.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Syphilis is resurgent in many developed countries and still prevalent in developing nations. Current and future control campaigns would benefit from the development of a vaccine, but although promising vaccine candidates were identified among the putative surface-exposed integral outer membrane proteins of the syphilis spirochete, immunization experiments in the rabbit model using recombinant antigens have failed to fully protect animals upon infectious challenge. We speculated that such recombinant immunogens, purified under denaturing conditions from Escherichia coli prior to immunization might not necessarily harbor their original structure, and hypothesized that enhanced protection would result from performing similar immunization/challenge experiments with native antigens. METHODS To test our hypothesis, we engineered non-infectious Borrelia burgdorferi strains to express the tp0897 (tprK) and tp0435 genes of Treponema pallidum subsp. pallidum and immunized two groups of rabbits by injecting recombinant strains intramuscularly with no adjuvant. TprK is a putative integral outer membrane protein of the syphilis agent, while tp0435 encodes the highly immunogenic T. pallidum 17-kDa lipoprotein, a periplasmic antigen that was also shown on the pathogen surface. Following development of a specific host immune response to these antigens as the result of immunization, animals were challenged by intradermal inoculation of T. pallidum. Cutaneous lesion development was monitored and treponemal burden within lesions were assessed by dark-field microscopy and RT-qPCR, in comparison to control rabbits. RESULTS Partial protection was observed in rabbits immunized with B. burgdorferi expressing TprK while immunity to Tp0435 was not protective. Analysis of the humoral response to TprK antigen suggested reactivity to conformational epitopes. CONCLUSIONS Immunization with native antigens might not be sufficient to obtain complete protection to infection. Nonetheless we showed that non-infectious B. burgdorferi can be an effective carrier to deliver and elicit a specific host response to T. pallidum antigens to assess the efficacy of syphilis vaccine candidates.
Collapse
Affiliation(s)
- Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, United States
| | - Mark C Fernandez
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | - Rui-Li Zhang
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Dermatology, Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, 214002 Wuxi, China
| | - B Charmie Godornes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States
| | | | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, WA 98104, United States; Department of Global Health, University of Washington, Seattle, WA 98104, United States.
| |
Collapse
|
35
|
Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi. Mol Microbiol 2019; 111:750-763. [PMID: 30580501 DOI: 10.1111/mmi.14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2018] [Indexed: 11/26/2022]
Abstract
Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
36
|
Castellanos M, Verhey TB, Chaconas G. A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice: investigation of the role of plasmid topology and the long inverted repeat. Mol Microbiol 2018; 109:710-721. [PMID: 29995993 DOI: 10.1111/mmi.14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 12/23/2022]
Abstract
Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.
Collapse
Affiliation(s)
- Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
37
|
Borrelia Host Adaptation Protein (BadP) Is Required for the Colonization of a Mammalian Host by the Agent of Lyme Disease. Infect Immun 2018; 86:IAI.00057-18. [PMID: 29685985 DOI: 10.1128/iai.00057-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease (LD), uses host-derived signals to modulate gene expression during the vector and mammalian phases of infection. Microarray analysis of mutants lacking the B orrelia host adaptation regulator (BadR) revealed the downregulation of genes encoding enzymes whose role in the pathophysiology of B. burgdorferi is unknown. Immunoblot analysis of the badR mutants confirmed reduced levels of these enzymes, and one of these enzymes, encoded by bb0086, shares homology to prokaryotic magnesium chelatase and Lon-type proteases. The BB0086 levels in B. burgdorferi were higher under conditions mimicking those in fed ticks. Mutants lacking bb0086 had no apparent in vitro growth defect but were incapable of colonizing immunocompetent C3H/HeN or immunodeficient SCID mice. Immunoblot analysis revealed reduced levels of proteins critical for the adaptation of B. burgdorferi to the mammalian host, such as OspC, DbpA, and BBK32. Both RpoS and BosR, key regulators of gene expression in B. burgdorferi, were downregulated in the bb0086 mutants. Therefore, we designated BB0086 the B orrelia host adaptation protein (BadP). Unlike badP mutants, the control strains established infection in C3H/HeN mice at 4 days postinfection, indicating an early colonization defect in mutants due to reduced levels of the lipoproteins/regulators critical for initial stages of infection. However, badP mutants survived within dialysis membrane chambers (DMCs) implanted within the rat peritoneal cavity but, unlike the control strains, did not display complete switching of OspA to OspC, suggesting incomplete adaptation to the mammalian phase of infection. These findings have opened a novel regulatory mechanism which impacts the virulence potential of B burgdorferi.
Collapse
|
38
|
Selection of Borrelia burgdorferi Promoter Sequences Active During Mammalian Infection Using In Vivo Expression Technology. Methods Mol Biol 2018; 1690:137-154. [PMID: 29032543 DOI: 10.1007/978-1-4939-7383-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In vivo expression technology (IVET) has been applied to a variety of organisms to identify active promoters in specific environments or growth conditions of interest. Here, we describe modifications to employ this genome-wide screening method for Borrelia burgdorferi, the Lyme disease spirochete, during an active murine infection. Utilization of this technique provides valuable insights into the B. burgdorferi transcriptome during infection, despite the low bacterial numbers in the mammalian host environment.
Collapse
|
39
|
Caimano MJ. Generation of Mammalian Host-Adapted Borrelia burgdorferi by Cultivation in Peritoneal Dialysis Membrane Chamber Implantation in Rats. Methods Mol Biol 2018; 1690:35-45. [PMID: 29032534 DOI: 10.1007/978-1-4939-7383-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The transmission, survival, and virulence of Borrelia burgdorferi depend upon the spirochete's ability to modulate its transcriptome as it cycles between its arthropod vector and reservoir host. This complex adaptive process is collectively referred to as "host-adaptation." The paucibacillary nature of borrelial infections precludes the detailed analysis of host adaptation within infected mammalian tissues. To circumvent this limitation, we (J Clin Invest 101:2240-2250, 1998) developed a model system whereby spirochetes are cultivated within dialysis membrane chambers (DMCs) surgically implanted within the peritoneal cavity of a rat. Spirochetes within DMCs are exposed to many, if not all, of the environmental signals and physiological cues required for mammalian host adaptation but are protected from clearance by the host's immune system.
Collapse
Affiliation(s)
- Melissa J Caimano
- Department of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
- Department of Pediatrics, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Ave., Farmington, CT, 06030-3715, USA.
| |
Collapse
|
40
|
Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, Ram S, Kraiczy P, Lin YP. Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS Pathog 2018; 14:e1007106. [PMID: 29813137 PMCID: PMC5993331 DOI: 10.1371/journal.ppat.1007106] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/08/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Borrelia burgdorferi sensu lato (Bbsl), the causative agent of Lyme disease, establishes an initial infection in the host's skin following a tick bite, and then disseminates to distant organs, leading to multisystem manifestations. Tick-to-vertebrate host transmission requires that Bbsl survives during blood feeding. Complement is an important innate host defense in blood and interstitial fluid. Bbsl produces a polymorphic surface protein, CspA, that binds to a complement regulator, Factor H (FH) to block complement activation in vitro. However, the role that CspA plays in the Bbsl enzootic cycle remains unclear. In this study, we demonstrated that different CspA variants promote spirochete binding to FH to inactivate complement and promote serum resistance in a host-specific manner. Utilizing a tick-to-mouse transmission model, we observed that a cspA-knockout B. burgdorferi is eliminated from nymphal ticks in the first 24 hours of feeding and is unable to be transmitted to naïve mice. Conversely, ectopically producing CspA derived from B. burgdorferi or B. afzelii, but not B. garinii in a cspA-knockout strain restored spirochete survival in fed nymphs and tick-to-mouse transmission. Furthermore, a CspA point mutant, CspA-L246D that was defective in FH-binding, failed to survive in fed nymphs and at the inoculation site or bloodstream in mice. We also allowed those spirochete-infected nymphs to feed on C3-/- mice that lacked functional complement. The cspA-knockout B. burgdorferi or this mutant strain complemented with cspA variants or cspA-L246D was found at similar levels as wild type B. burgdorferi in the fed nymphs and mouse tissues. These novel findings suggest that the FH-binding activity of CspA protects spirochetes from complement-mediated killing in fed nymphal ticks, which ultimately allows Bbsl transmission to mammalian hosts.
Collapse
Affiliation(s)
- Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
| | - Ngoc Thien Thu Nguyen
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Departments of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Science, State University of New York at Albany, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hart T, Yang X, Pal U, Lin YP. Identification of Lyme borreliae proteins promoting vertebrate host blood-specific spirochete survival in Ixodes scapularis nymphs using artificial feeding chambers. Ticks Tick Borne Dis 2018; 9:1057-1063. [PMID: 29653905 DOI: 10.1016/j.ttbdis.2018.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 12/31/2022]
Abstract
Lyme borreliosis, the most common vector-borne illness in Europe and the United States, is caused by spirochetes of the Borrelia burgdorferi sensu lato complex and transmitted by Ixodes ticks. In humans, the spirochetes disseminate from the tick bite site to multiple tissues, leading to serious clinical manifestations. The ability of spirochetes to survive in ticks during blood feeding is thought to be essential for Lyme borreliae to be transmitted to different vertebrate hosts. This ability is partly attributed to several B. burgdorferi proteins, including BBA52 and Lp6.6, which promote spirochete survival in nymphal ticks feeding on mice. One of the strategies to identify such proteins without using live animals is to feed B. burgdorferi-infected ticks on blood via artificial feeding chambers. In previous studies, ticks were only fed on bovine blood in the feeding chambers. In this study, we used this chamber model and showed that I. scapularis ticks will not only acquire bovine blood but human and quail blood as well. The latter two are the incidental host and an avian host of Lyme borreliae, respectively. We also investigated the roles that BBA52 and Lp6.6 play in promoting spirochete survival in nymphal ticks fed on human or quail blood. After feeding on human blood, spirochete burdens in ticks infected with an lp6.6-deficient B. burgdorferi were significantly reduced, while bba52-deficient spirochete burdens in ticks remained unchanged, similar to the wild-type strain. No strain showed a change in spirochete burdens in ticks fed on quail blood. These results indicate that Lp6.6 plays a role for B. burgdorferi in nymphs fed on human but not quail blood. Such information also demonstrates that the artificial feeding chamber is a powerful tool to identify B. burgdorferi proteins that promote vertebrate host blood-specific spirochete survival in I. scapularis ticks.
Collapse
Affiliation(s)
- Thomas Hart
- Department of Biological Sciences, State University of New York at Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD, USA
| | - Yi-Pin Lin
- Department of Biomedical Sciences, State University of New York at Albany, NY, USA; Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
42
|
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 2018; 19:218. [PMID: 29580205 PMCID: PMC5870499 DOI: 10.1186/s12864-018-4597-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND With approximately one-third of their genomes consisting of linear and circular plasmids, the Lyme disease agent cluster of species has the most complex genomes among known bacteria. We report here a comparative analysis of plasmids in eleven Borreliella (also known as Borrelia burgdorferi sensu lato) species. RESULTS We sequenced the complete genomes of two B. afzelii, two B. garinii, and individual B. spielmanii, B. bissettiae, B. valaisiana and B. finlandensis isolates. These individual isolates carry between seven and sixteen plasmids, and together harbor 99 plasmids. We report here a comparative analysis of these plasmids, along with 70 additional Borreliella plasmids available in the public sequence databases. We identify only one new putative plasmid compatibility type (the 30th) among these 169 plasmid sequences, suggesting that all or nearly all such types have now been discovered. We find that the linear plasmids in the non-B. burgdorferi species have undergone the same kinds of apparently random, chaotic rearrangements mediated by non-homologous recombination that we previously discovered in B. burgdorferi. These rearrangements occurred independently in the different species lineages, and they, along with an expanded chromosomal phylogeny reported here, allow the identification of several whole plasmid transfer events among these species. Phylogenetic analyses of the plasmid partition genes show that a majority of the plasmid compatibility types arose early, most likely before separation of the Lyme agent Borreliella and relapsing fever Borrelia clades, and this, with occasional cross species plasmid transfers, has resulted in few if any species-specific or geographic region-specific Borreliella plasmid types. CONCLUSIONS The primordial origin and persistent maintenance of the Borreliella plasmid types support their functional indispensability as well as evolutionary roles in facilitating genome diversity. The improved resolution of Borreliella plasmid phylogeny based on conserved partition-gene clusters will lead to better determination of gene orthology which is essential for prediction of biological function, and it will provide a basis for inferring detailed evolutionary mechanisms of Borreliella genomic variability including homologous gene and plasmid exchanges as well as non-homologous rearrangements.
Collapse
Affiliation(s)
- Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Salt Lake City, UT USA
- Biology Department, University of Utah, Salt Lake City, UT USA
- Pathology Department, University of Utah School of Medicine, Room 2200K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112 USA
| | - Lia Di
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
| | - Saymon Akther
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Benjamin J. Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Steven E. Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, USA
| |
Collapse
|
43
|
Abstract
The disciplines of Borrelia (Borreliella) burgdorferi microbiology and Lyme disease pathogenesis have come to depend on the genetic manipulation of the spirochete. Generating mutants in these recalcitrant bacteria, while not straightforward, is routinely accomplished in numerous laboratories, although there are several crucial caveats to consider. This chapter describes the design of basic molecular genetic experiments as well as the detailed methodologies to prepare and transform competent cells, select for and isolate transformants, and complement or genetically restore mutants.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Laura S Hall
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
44
|
Aslam B, Nisar MA, Khurshid M, Farooq Salamat MK. Immune escape strategies of Borrelia burgdorferi. Future Microbiol 2017; 12:1219-1237. [PMID: 28972415 DOI: 10.2217/fmb-2017-0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The borrelial resurge demonstrates that Borrelia burgdorferi is a persistent health problem. This spirochete is responsible for a global public health concern called Lyme disease. B. burgdorferi faces diverse environmental conditions of its vector and host during its life cycle. To circumvent the host immune system is a prominent feature of B. burgdorferi. To date, numerous studies have reported on the various mechanisms used by this pathogen to evade the host defense mechanisms. This current review attempts to consolidate this information to describe the immunological and molecular methods used by B. burgdorferi for its survival.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
45
|
Zapata-Pérez R, Martínez-Moñino AB, García-Saura AG, Cabanes J, Takami H, Sánchez-Ferrer Á. Biochemical characterization of a new nicotinamidase from an unclassified bacterium thriving in a geothermal water stream microbial mat community. PLoS One 2017; 12:e0181561. [PMID: 28750065 PMCID: PMC5531466 DOI: 10.1371/journal.pone.0181561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Nicotinamidases are amidohydrolases that convert nicotinamide into nicotinic acid, contributing to NAD+ homeostasis in most organisms. In order to increase the number of nicotinamidases described to date, this manuscript characterizes a nicotinamidase obtained from a metagenomic library fosmid clone (JFF054_F02) obtained from a geothermal water stream microbial mat community in a Japanese epithermal mine. The enzyme showed an optimum temperature of 90°C, making it the first hyperthermophilic bacterial nicotinamidase to be characterized, since the phylogenetic analysis of this fosmid clone placed it in a clade of uncultured geothermal bacteria. The enzyme, named as UbNic, not only showed an alkaline optimum pH, but also a biphasic pH dependence of its kcat, with a maximum at pH 9.5-10.0. The two pKa values obtained were 4.2 and 8.6 for pKes1 and pKes2, respectively. These results suggest a possible flexible catalytic mechanism for nicotinamidases, which reconciles the two previously proposed mechanisms. In addition, the enzyme showed a high catalytic efficiency, not only toward nicotinamide, but also toward other nicotinamide analogs. Its mutational analysis showed that a tryptophan (W83) is needed in one of the faces of the active site to maintain low Km values toward all the substrates tested. Furthermore, UbNic proved to contain a Fe2+ ion in its metal binding site, and was revealed to belong to a new nicotinamidase subgroup. All these characteristics, together with its high pH- and thermal stability, distinguish UbNic from previously described nicotinamidases, and suggest that a wide diversity of enzymes remains to be discovered in extreme environments.
Collapse
Affiliation(s)
- Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Ana-Belén Martínez-Moñino
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Antonio-Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Juana Cabanes
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Hideto Takami
- Microbial Genome Research Group, Yokohama Institute, JAMSTEC, Kanazawa, Yokohama, Japan
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
46
|
Xiang X, Yang Y, Du J, Lin T, Chen T, Yang XF, Lou Y. Investigation of ospC Expression Variation among Borrelia burgdorferi Strains. Front Cell Infect Microbiol 2017; 7:131. [PMID: 28473966 PMCID: PMC5397415 DOI: 10.3389/fcimb.2017.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/30/2017] [Indexed: 11/13/2022] Open
Abstract
Outer surface protein C (OspC) is the most studied major virulence factor of Borrelia burgdorferi, the causative agent of Lyme disease. The level of OspC varies dramatically among B. burgdorferi strains when cultured in vitro, but little is known about what causes such variation. It has been proposed that the difference in endogenous plasmid contents among strains contribute to variation in OspC phenotype, as B. burgdorferi contains more than 21 endogenous linear (lp) and circular plasmids (cp), and some of which are prone to be lost. In this study, we analyzed several clones isolated from B. burgdorferi strain 297, one of the most commonly used strains for studying ospC expression. By taking advantage of recently published plasmid sequence of strain 297, we developed a multiplex PCR method specifically for rapid plasmid profiling of B. burgdorferi strain 297. We found that some commonly used 297 clones that were thought having a complete plasmid profile, actually lacked some endogenous plasmids. Importantly, the result showed that the difference in plasmid profiles did not contribute to the ospC expression variation among the clones. Furthermore, we found that B. burgdorferi clones expressed different levels of BosR, which in turn led to different levels of RpoS and subsequently, resulted in OspC level variation among B. burgdorferi strains.
Collapse
Affiliation(s)
- Xuwu Xiang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical UniversityWenzhou, China.,Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Jimei Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical UniversityWenzhou, China
| | - Tianyu Lin
- College of Arts and Sciences, University of PennsylvaniaPhiladelphia, PA, USA
| | - Tong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical UniversityWenzhou, China.,Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - X Frank Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical UniversityWenzhou, China.,Department of Microbiology and Immunology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Yongliang Lou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
47
|
A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLoS Pathog 2017; 13:e1006225. [PMID: 28212410 PMCID: PMC5333916 DOI: 10.1371/journal.ppat.1006225] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/02/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in humans, is exposed to reactive oxygen and nitrogen species (ROS and RNS) in both the tick vector and vertebrate reservoir hosts. B. burgdorferi contains a limited repertoire of canonical oxidative stress response genes, suggesting that novel gene functions may be important for protection of B. burgdorferi against ROS or RNS exposure. Here, we use transposon insertion sequencing (Tn-seq) to conduct an unbiased search for genes involved in resistance to nitric oxide, hydrogen peroxide, and tertiary-butyl hydroperoxide in vitro. The screens identified 66 genes whose disruption resulted in increased susceptibility to at least one of the stressors. These genes include previously characterized mediators of ROS and RNS resistance (including components of the nucleotide excision repair pathway and a subunit of a riboflavin transporter), as well as novel putative resistance candidates. DNA repair mutants were among the most sensitive to RNS in the Tn-seq screen, and survival assays with individual Tn mutants confirmed that the putative ribonuclease BB0839 is involved in resistance to nitric oxide. In contrast, mutants lacking predicted inner membrane proteins or transporters were among the most sensitive to ROS, and the contribution of three such membrane proteins (BB0017, BB0164, and BB0202) to ROS sensitivity was confirmed using individual Tn mutants and complemented strains. Further analysis showed that levels of intracellular manganese are significantly reduced in the Tn::bb0164 mutant, identifying a novel role for BB0164 in B. burgdorferi manganese homeostasis. Infection of C57BL/6 and gp91phox-/- mice with a mini-library of 39 Tn mutants showed that many of the genes identified in the in vitro screens are required for infectivity in mice. Collectively, our data provide insight into how B. burgdorferi responds to ROS and RNS and suggests that this response is relevant to the in vivo success of the organism.
Collapse
|
48
|
Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 2017; 18:165. [PMID: 28201991 PMCID: PMC5310021 DOI: 10.1186/s12864-017-3553-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/03/2017] [Indexed: 01/13/2023] Open
Abstract
Background Bacteria from the genus Borrelia are known to harbor numerous linear and circular plasmids. We report here a comparative analysis of the nucleotide sequences of 236 plasmids present in fourteen independent isolates of the Lyme disease agent B. burgdorferi. Results We have sequenced the genomes of 14 B. burgdorferi sensu stricto isolates that carry a total of 236 plasmids. These individual isolates carry between seven and 23 plasmids. Their chromosomes, the cp26 and cp32 circular plasmids, as well as the lp54 linear plasmid, are quite evolutionarily stable; however, the remaining plasmids have undergone numerous non-homologous and often duplicative recombination events. We identify 32 different putative plasmid compatibility types among the 236 plasmids, of which 15 are (usually) circular and 17 are linear. Because of past rearrangements, any given gene, even though it might be universally present in these isolates, is often found on different linear plasmid compatibility types in different isolates. For example, the arp gene and the vls cassette region are present on plasmids of four and five different compatibility types, respectively, in different isolates. A majority of the plasmid types have more than one organizationally different subtype, and the number of such variants ranges from one to eight among the 18 linear plasmid types. In spite of this substantial organizational diversity, the plasmids are not so variable that every isolate has a novel version of every plasmid (i.e., there appears to be a limited number of extant plasmid subtypes). Conclusions Although there have been many past recombination events, both homologous and nonhomologous, among the plasmids, particular organizational variants of these plasmids correlate with particular chromosomal genotypes, suggesting that there has not been rapid horizontal transfer of whole linear plasmids among B. burgdorferi lineages. We argue that plasmid rearrangements are essentially non-revertable and are present at a frequency of only about 0.65% that of single nucleotide changes, making rearrangement-derived novel junctions (mosaic boundaries) ideal phylogenetic markers in the study of B. burgdorferi population structure and plasmid evolution and exchange. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3553-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA. .,Biology Department, University of Utah, Salt Lake City, UT, USA.
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA
| | - Marija Vujadinovic
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Room 2200 K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT, 84112, USA.,Present Address: Janssen Disease and Vaccines, Pharmaceutical Companies of Johnson and Johnson, Leiden, The Netherlands
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland BioPark, Baltimore, MD, USA
| | - Benjamin J Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY, USA
| | - Steven E Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland BioPark, Baltimore, MD, USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York City, New York, NY, USA.,Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York City, New York, NY, USA
| |
Collapse
|
49
|
Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun 2016; 85:IAI.00890-16. [PMID: 27799330 DOI: 10.1128/iai.00890-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires.
Collapse
|
50
|
Zapata-Pérez R, García-Saura AG, Jebbar M, Golyshin PN, Sánchez-Ferrer Á. Combined Whole-Cell High-Throughput Functional Screening for Identification of New Nicotinamidases/Pyrazinamidases in Metagenomic/Polygenomic Libraries. Front Microbiol 2016; 7:1915. [PMID: 28018295 PMCID: PMC5147024 DOI: 10.3389/fmicb.2016.01915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/15/2016] [Indexed: 11/13/2022] Open
Abstract
Nicotinamidases catalyze the hydrolysis of the amide bond in nicotinamide (NAM) to produce ammonia and nicotinic acid (NA). These enzymes are an essential component of the NAD+ salvage pathway and are implicated in the viability of several pathogenic organisms. Its absence in humans makes them a promising drug target. In addition, although they are key analytical biocatalysts for screening modulators in relevant biomedical enzymes, such as sirtuins and poly-ADP-ribosyltransferases, no commercial sources are available. Surprisingly, the finding of an affordable source of nicotinamidase from metagenomic libraries is hindered by the absence of a suitable and fast screening method. In this manuscript, we describe the development of two new whole-cell methods using the chemical property of one of the products formed in the enzymatic reaction (pyrazinoic or NA) to form colored complexes with stable iron salts, such as ammonium ferrous sulfate or sodium nitroprusside (SNP). After optimization of the assay conditions, a fosmid polygenomic expression library obtained from deep-sea mesophilic bacteria was screened, discovering several positive clones with the ammonium ferrous sulfate method. Their quantitative rescreening with the SNP method allowed the finding of the first nicotinamidase with balanced catalytic efficiency toward NAM (nicotinamidase activity) and pyrazinamide (pyrazinamidase activity). Its biochemical characterization has also made possible the development of the first high-throughput whole-cell method for prescreening of new nicotinamidase inhibitors by the naked eye, saving time and costs in the design of future antimicrobial and antiparasitic agents.
Collapse
Affiliation(s)
- Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia Murcia, Spain
| | - Antonio G García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia Murcia, Spain
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM) Plouzané, France
| | - Peter N Golyshin
- School of Biological Sciences, Bangor UniversityBangor, UK; Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of MurciaMurcia, Spain; Murcia Biomedical Research InstituteMurcia, Spain
| |
Collapse
|