1
|
Zielinska Z, Oldak L, Guszcz T, Hermanowicz A, Gorodkiewicz E. SPRi Biosensor for Simultaneous Determination of HIF-1α, Angiopoietin-2, and Interleukin-1β in Blood Plasma. SENSORS (BASEL, SWITZERLAND) 2024; 24:5481. [PMID: 39275392 PMCID: PMC11397757 DOI: 10.3390/s24175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
A new analytical method, based on SPRi biosensors, has been developed for the simultaneous determination of the pro-angiogenic factors HIF-1α, angiopoietin-2 (ANG-2), and interleukin-1β (IL-1β) in biological fluids. These proteins take part in the process of angiogenesis, i.e., the creation of new blood vessels, which is a key stage of cancer development and metastasis. A separate validation process was carried out for each individual compound, indicating that the method can also be used to study one selected protein. Low values of the limit of detection (LOD) and quantification (LOQ) indicate that the developed method enables the determination of very low concentrations, in the order of pg/mL. The LOD values obtained for HIF-1α, ANG-2, and IL-1β were 0.09, 0.01, and 0.01 pg/mL, respectively. The LOQ values were 0.27, 0.039, and 0.02 pg/mL, and the response ranges of the biosensor were 5.00-100.00, 1.00-20.00, and 1.00-15.00 pg/mL. Moreover, determining the appropriate validation parameters confirmed that the design offers high precision, accuracy, and sensitivity. To prove the usefulness of the biosensor in practice, determinations were made in plasma samples from a control group and from a study group consisting of patients with diagnosed bladder cancer. The preliminary results obtained indicate that this biosensor can be used for broader analyses of bladder cancer. Each of the potential biomarkers, HIF-1α, ANG-2, and IL-1β, produced higher concentrations in the study group than in the control group. These are preliminary studies that serve to develop hypotheses, and their confirmation requires the analysis of a larger number of samples. However, the constructed biosensor is characterized by its ease and speed of measurement, and the method does not require special preparation of samples. SPRi biosensors can be used as a sensitive and highly selective method for determining potential blood biomarkers, which in the future may become part of the routine diagnosis of cancers.
Collapse
Affiliation(s)
- Zuzanna Zielinska
- Bioanalysis Laboratory, Doctoral School of Exact and Natural Science, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Lukasz Oldak
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (L.O.); (E.G.)
| | - Tomasz Guszcz
- Department of Urology, Hospital of Ministry of Interior and Administration in Bialystok, Fabryczna 27, 15-471 Bialystok, Poland;
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (L.O.); (E.G.)
| |
Collapse
|
2
|
Kerdkumthong K, Roytrakul S, Songsurin K, Pratummanee K, Runsaeng P, Obchoei S. Proteomics and Bioinformatics Identify Drug-Resistant-Related Genes with Prognostic Potential in Cholangiocarcinoma. Biomolecules 2024; 14:969. [PMID: 39199357 PMCID: PMC11352417 DOI: 10.3390/biom14080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Drug resistance is a major challenge in the treatment of advanced cholangiocarcinoma (CCA). Understanding the mechanisms of drug resistance can aid in identifying novel prognostic biomarkers and therapeutic targets to improve treatment efficacy. This study established 5-fluorouracil- (5-FU) and gemcitabine-resistant CCA cell lines, KKU-213FR and KKU-213GR, and utilized comparative proteomics to identify differentially expressed proteins in drug-resistant cells compared to parental cells. Additionally, bioinformatics analyses were conducted to explore the biological and clinical significance of key proteins. The drug-resistant phenotypes of KKU-213FR and KKU-213GR cell lines were confirmed. In addition, these cells demonstrated increased migration and invasion abilities. Proteomics analysis identified 81 differentially expressed proteins in drug-resistant cells, primarily related to binding functions, biological regulation, and metabolic processes. Protein-protein interaction analysis revealed a highly interconnected network involving MET, LAMB1, ITGA3, NOTCH2, CDH2, and NDRG1. siRNA-mediated knockdown of these genes in drug-resistant cell lines attenuated cell migration and cell invasion abilities and increased sensitivity to 5-FU and gemcitabine. The mRNA expression of these genes is upregulated in CCA patient samples and is associated with poor prognosis in gastrointestinal cancers. Furthermore, the functions of these proteins are closely related to the epithelial-mesenchymal transition (EMT) pathway. These findings elucidate the potential molecular mechanisms underlying drug resistance and tumor progression in CCA, providing insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Tani 12120, Thailand;
| | - Kawinnath Songsurin
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand; (K.K.); (K.S.); (K.P.); (P.R.)
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai District, Songkhla 90110, Thailand
| |
Collapse
|
3
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
4
|
Hogea P, Tudorache E, Fira-Mladinescu O, Marc M, Velescu D, Manolescu D, Bratosin F, Rosca O, Mavrea A, Oancea C. Serum and Bronchoalveolar Lavage Fluid Levels of Cytokines in Patients with Lung Cancer and Chronic Lung Disease: A Prospective Comparative Study. J Pers Med 2023; 13:998. [PMID: 37373987 DOI: 10.3390/jpm13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The role of chronic inflammation in the initiation and progression of carcinogenesis has been well-established in previous studies, particularly in the stages of malignant conversion, invasion, and metastasis. This study aimed to explore the potential correlation between the levels of cytokines in serum and bronchoalveolar lavage fluid (BALF) by comparing their levels between patients with lung cancer and those with benign lung diseases. The study measured the concentration of IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-10, and IL-12p70, in venous blood and BALF of a total of 33 patients with lung cancer and 33 patients with benign lung diseases. Significant differences were found between the two groups in various clinical parameters. The cytokine levels were significantly higher among patients with malignant disease, while the BALF analysis revealed higher cytokine levels compared with serum analysis. It was discovered that the levels of cancer-specific cytokines in the lavage fluid increased significantly sooner and were present at a greater concentration than those in the peripheral blood. After one month of treatment, the serum markers decreased significantly but slower in the lavage fluid. The differences between serum and BALF markers remained significant. It was observed that the highest correlation was among IL-6 (serum) and IL-6 (lavage), with a coefficient of 0.774 (p-value < 0.001), and IL-1 (serum) and IL-1β (lavage), with a coefficient value of 0.610 (p-value < 0.001). Other significant correlations among serum and lavage cytokines were observed between IL-6 (lavage) and IL-1 (serum) (rho = 0.631, p-value < 0.001) and CRP (rho = 0.428, p-value = 0.001), respectively. This study revealed significant differences and correlations in clinical parameters, serum markers, and BALF inflammatory markers between patients with lung cancer and those with benign lung pathologies. The results highlight the importance of understanding the inflammatory profiles of these conditions and could contribute to the development of targeted therapies or diagnostic approaches in the future. Further research is needed to validate these findings, explore their implications for clinical practice, and determine the diagnostic and prognostic value of these cytokines for lung cancer.
Collapse
Affiliation(s)
- Patricia Hogea
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- 1st Pulmonology Clinic, Clinical Hospital of Infectious Diseases and Pulmonology, "Victor Babes", Gheorghe Adam Street 13, 300310 Timisoara, Romania
| | - Ovidiu Fira-Mladinescu
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- 2nd Pulmonology Clinic, Clinical Hospital of Infectious Diseases and Pulmonology, "Victor Babes", Gheorghe Adam Street 13, 300310 Timisoara, Romania
| | - Monica Marc
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- 2nd Pulmonology Clinic, Clinical Hospital of Infectious Diseases and Pulmonology, "Victor Babes", Gheorghe Adam Street 13, 300310 Timisoara, Romania
| | - Diana Velescu
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Diana Manolescu
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- Discipline of Radiology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Discipline of Infectious Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ovidiu Rosca
- Discipline of Infectious Diseases, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Adelina Mavrea
- Department of Internal Medicine I, Cardiology Clinic, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cristian Oancea
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
- 1st Pulmonology Clinic, Clinical Hospital of Infectious Diseases and Pulmonology, "Victor Babes", Gheorghe Adam Street 13, 300310 Timisoara, Romania
| |
Collapse
|
5
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Bian DJH, Sabri S, Abdulkarim BS. Interactions between COVID-19 and Lung Cancer: Lessons Learned during the Pandemic. Cancers (Basel) 2022; 14:cancers14153598. [PMID: 35892857 PMCID: PMC9367272 DOI: 10.3390/cancers14153598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary COVID-19 is a respiratory infectious disease caused by the coronavirus SARS-CoV-2. Lung cancer is the leading cause of all cancer-related deaths worldwide. As both SARS-CoV-2 and lung cancer affect the lungs, the aim of this narrative review is to provide a consolidation of lessons learned throughout the pandemic regarding lung cancer and COVID-19. Risk factors found in lung cancer patients, such as advanced cancers, smoking, male, etc., have been associated with severe COVID-19. The cancer treatments hormonal therapy, immunotherapy, and targeted therapy have shown no association with severe COVID-19 disease, but chemotherapy and radiation therapy have shown conflicting results. Logistical changes and modifications in treatment plans were instituted during the pandemic to minimize SARS-CoV-2 exposure while maintaining life-saving cancer care. Finally, medications have been developed to treat early COVID-19, which can be highly beneficial in vulnerable cancer patients, with paxlovid being the most efficacious drug currently available. Abstract Cancer patients, specifically lung cancer patients, show heightened vulnerability to severe COVID-19 outcomes. The immunological and inflammatory pathophysiological similarities between lung cancer and COVID-19-related ARDS might explain the predisposition of cancer patients to severe COVID-19, while multiple risk factors in lung cancer patients have been associated with worse COVID-19 outcomes, including smoking status, older age, etc. Recent cancer treatments have also been urgently evaluated during the pandemic as potential risk factors for severe COVID-19, with conflicting findings regarding systemic chemotherapy and radiation therapy, while other therapies were not associated with altered outcomes. Given this vulnerability of lung cancer patients for severe COVID-19, the delivery of cancer care was significantly modified during the pandemic to both proceed with cancer care and minimize SARS-CoV-2 infection risk. However, COVID-19-related delays and patients’ aversion to clinical settings have led to increased diagnosis of more advanced tumors, with an expected increase in cancer mortality. Waning immunity and vaccine breakthroughs related to novel variants of concern threaten to further impede the delivery of cancer services. Cancer patients have a high risk of severe COVID-19, despite being fully vaccinated. Numerous treatments for early COVID-19 have been developed to prevent disease progression and are crucial for infected cancer patients to minimize severe COVID-19 outcomes and resume cancer care. In this literature review, we will explore the lessons learned during the COVID-19 pandemic to specifically mitigate COVID-19 treatment decisions and the clinical management of lung cancer patients.
Collapse
Affiliation(s)
- David J. H. Bian
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Bassam S. Abdulkarim
- Cancer Research Program, Research Institute, and Department of Oncology, Cedars Cancer Center, McGill University Health Center Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
7
|
Oncogenic Mutation BRAF V600E Changes Phenotypic Behavior of THLE-2 Liver Cells through Alteration of Gene Expression. Int J Mol Sci 2022; 23:ijms23031548. [PMID: 35163468 PMCID: PMC8836259 DOI: 10.3390/ijms23031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
The accumulation of mutations in cancer driver genes, such as tumor suppressors or proto-oncogenes, affects cellular homeostasis. Disturbances in the mechanism controlling proliferation cause significant augmentation of cell growth and division due to the loss of sensitivity to the regulatory signals. Nowadays, an increasing number of cases of liver cancer are observed worldwide. Data provided by the International Cancer Genome Consortium (ICGC) have indicated many alterations within gene sequences, whose roles in tumor development are not well understood. A comprehensive analysis of liver cancer (virus-associated hepatocellular carcinoma) samples has identified new and rare mutations in B-Raf proto-oncogene (BRAF) in Japanese HCC patients, as well as BRAF V600E mutations in French HCC patients. However, their function in liver cancer has never been investigated. Here, using functional analysis and next generation sequencing, we demonstrate the tumorigenic effect of BRAF V600E on hepatocytes (THLE-2 cell line). Moreover, we identified genes such as BMP6, CXCL11, IL1B, TBX21, RSAD2, MMP10, and SERPIND1, which are possibly regulated by the BRAF V600E-mediated, mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. Through several functional assays, we demonstrate that BRAF L537M, D594A, and E648G mutations alone are not pathogenic in liver cancer. The investigation of genome mutations and the determination of their impact on cellular processes and functions is crucial to unraveling the molecular mechanisms of liver cancer development.
Collapse
|
8
|
Bezel P, Valaperti A, Steiner U, Scholtze D, Wieser S, Vonow-Eisenring M, Widmer A, Kowalski B, Kohler M, Franzen DP. Evaluation of cytokines in the tumor microenvironment of lung cancer using bronchoalveolar lavage fluid analysis. Cancer Immunol Immunother 2021; 70:1867-1876. [PMID: 33394095 PMCID: PMC8195789 DOI: 10.1007/s00262-020-02798-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Lung cancer is the leading cause of death by cancer. In recent years, immunotherapy with checkpoint inhibitors (ICI) emerged as a promising new therapeutic approach. However, a deeper understanding of the immunologic responses adjacent to the tumor known as tumor microenvironment (TME) is needed. Our study investigated TME of lung cancer by analyzing cytokines in bronchoalveolar lavage fluid (BALF). MATERIALS AND METHODS Between January 2018 and June 2019, 119 patients were prospectively enrolled in this study. For each cancer patient, levels of 16 cytokines (fractalkine, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukins (IL): IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12p70, IL-13, IL-17A, and IL-23) were measured in BALF and serum and compared to healthy individuals and patients with other lung diseases. RESULTS There were several significant differences of cytokine levels of patients with lung cancer compared to healthy individuals. However, none of them remained in the multivariate analysis compared to other lung diseases in either BALF or serum. Furthermore, there were no significant differences between the groups in cell differentiation of either BALF or serum. Cytokine levels in BALF were generally near the lower detection limit and showed almost no correlation with their respective levels measured in serum of the same individual. CONCLUSIONS Cytokines in BALF and serum of lung cancer patients may indicate unspecific inflammation. BAL is not recommendable as a tool to investigate TME of lung cancer. Therefore, cytokines measured in BALF are probably not appropriate as predictors in patients treated with ICIs.
Collapse
Affiliation(s)
- Pascal Bezel
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alan Valaperti
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Urs Steiner
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Dieter Scholtze
- Department of Pulmonology, City Hospital Triemli, Birmensdorferstrasse 497, 8063, Zurich, Switzerland
| | - Stephan Wieser
- Department of Pulmonology, City Hospital Waid, Tièchestrasse 99, 8037, Zurich, Switzerland
| | - Maya Vonow-Eisenring
- Department of Immunology, University Hospital Zurich, Gloriastrasse 23, 8091, Zurich, Switzerland
| | - Andrea Widmer
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Benedikt Kowalski
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Daniel P Franzen
- Department of Pulmonology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
9
|
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 2021; 10:1889-1916. [PMID: 34012800 PMCID: PMC8107755 DOI: 10.21037/tlcr-20-1241] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are prominent components of the cancer immune microenvironment with diverse supportive and inhibitory effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with different functions have been identified. They include inflammatory or classically activated (M1) and anti-inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer (NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways regulating their function in lung cancer microenvironment as well as the role of these immune cells in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
10
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Hsieh KY, Tsai JY, Lin YH, Chang FR, Wang HC, Wu CC. Golden berry 4β-hydroxywithanolide E prevents tumor necrosis factor α-induced procoagulant activity with enhanced cytotoxicity against human lung cancer cells. Sci Rep 2021; 11:4610. [PMID: 33633307 PMCID: PMC7907079 DOI: 10.1038/s41598-021-84207-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammation in the tumor microenvironment is positively correlated with cancer progression and metastasis as well as the risk of thromboembolism in lung cancer patients. Here we show, in human non-small cell lung cancer (NSCLC) cell lines, the master inflammatory cytokine tumor necrosis factor (TNF-α) induced tissue factor expression and procoagulant activity, and these effects were potently inhibited by 4β-hydroxywithanolide E (4HW), a natural compound isolated from Physalis peruviana. Furthermore, combination of 4HW and TNF-α caused synergistic cytotoxicity against NSCLC cells by inducing caspase-dependent apoptosis. The underlying mechanism by which 4HW reverses the procoagulant effect of TNF-α but enhances its cytotoxic effect appears to be due to inhibition of NF-κB, which is a key switch for both inflammation-induced coagulation and cell survival. Our results suggest that 4HW may have a potential application for treating inflammation-derived cancer progression and cancer-associated hypercoagulable state.
Collapse
Affiliation(s)
- Kan-Yen Hsieh
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ju-Ying Tsai
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Han Lin
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Chun Wang
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Lian J, Hua T, Xu J, Ding J, Liu Z, Fan Y. Interleukin-1β weakens paclitaxel sensitivity through regulating autophagy in the non-small cell lung cancer cell line A549. Exp Ther Med 2021; 21:293. [PMID: 33717236 PMCID: PMC7885084 DOI: 10.3892/etm.2021.9724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a threat to human health and paclitaxel chemotherapy has been approved for the treatment of this type of cancer. However, resistance to treatment severely compromises the survival rate and prognosis of patients with NSCLC. The aim of the present study was to investigate the role of IL-1β in paclitaxel sensitivity of NSCLC cells and elucidate the underlying mechanism. The expression of IL-1β was found to be upregulated in NSCLC tissues and cells compared with healthy adjacent tissues and a normal epithelial cell line, respectively, as detected by reverse transcription-quantitative PCR and western blot analyses. Subsequently, Cell Counting Kit-8 assay and flow cytometry revealed that IL-1β weakened the sensitivity of A549 cells to paclitaxel. It was subsequently demonstrated that IL-1β induced A549 cell autophagy, while tunicamycin-induced autophagy increased the IL-1β expression level and weakened paclitaxel sensitivity. Thus, the results revealed that IL-1β reduced the sensitivity to paclitaxel in A549 cells by promoting autophagy and suggested that IL-1β may be of value for improving the therapeutic efficacy of paclitaxel chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
13
|
Wadhwa R, Paudel KR, Chin LH, Hon CM, Madheswaran T, Gupta G, Panneerselvam J, Lakshmi T, Singh SK, Gulati M, Dureja H, Hsu A, Mehta M, Anand K, Devkota HP, Chellian J, Chellappan DK, Hansbro PM, Dua K. Anti-inflammatory and anticancer activities of Naringenin-loaded liquid crystalline nanoparticles in vitro. J Food Biochem 2020; 45:e13572. [PMID: 33249629 DOI: 10.1111/jfbc.13572] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
In this study, we had developed Naringenin-loaded liquid crystalline nanoparticles (LCNs) and investigated the anti-inflammatory and anticancer activities of Naringenin-LCNs against human airway epithelium-derived basal cells (BCi-NS1.1) and human lung epithelial carcinoma (A549) cell lines, respectively. The anti-inflammatory potential of Naringenin-LCNs evaluated by qPCR revealed a decreased expression of IL-6, IL-8, IL-1β, and TNF-α in lipopolysaccharide-induced BCi-NS1.1 cells. The activity of LCNs was comparable to the positive control drug Fluticasone propionate (10 nM). The anticancer activity was studied by evaluating the antiproliferative (MTT and trypan blue assays), antimigratory (scratch wound healing assay, modified Boyden chamber assay, and immunoblot), and anticolony formation activity in A549 cells. Naringenin LCNs showed promising antiproliferative, antimigratory, and anticolony formation activities in A549 cells, in vitro. Therefore, based on our observations and results, we conclude that Naringenin-LCNs may be employed as a potential therapy-based intervention to ameliorate airway inflammation and to inhibit the progression of lung cancer. PRACTICAL APPLICATIONS: Naringenin was encapsulated into liquid crystalline nanoparticles, thus, attributing to their sustained-release nature. In addition, Naringenin-loaded LCNs efficiently reduced the levels of pro-inflammatory markers, namely, IL-1β, IL-6, TNF-α, and IL-8. In addition, the Naringenin-loaded LCNs also possess potent anticancer activity, when tested in the A549 cell line, as revealed by the inhibition of proliferation and migration of cells. They also attenuated colony formation and induced apoptosis in the A549 cells. The findings from our study could form the basis for future research that may be translated into an in vivo model to validate the possible therapeutic alternative for lung cancer using Naringenin-loaded LCNs. In addition, the applications of Naringenin-loaded LCNs as an intervention would be of great interest to biological, formulation and respiratory scientists and clinicians.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Li Hian Chin
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Chian Ming Hon
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Thangavelu Lakshmi
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
14
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
15
|
Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Front Oncol 2020; 10:324. [PMID: 32219066 PMCID: PMC7078651 DOI: 10.3389/fonc.2020.00324] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Regardless of the promising results of certain immune checkpoint blockers, current immunotherapeutics have met a bottleneck concerning response rate, toxicity, and resistance in lung cancer patients. Accumulating evidence forecasts that the crosstalk between tumor and immune cells takes center stage in cancer development by modulating tumor malignancy, immune cell infiltration, and immune evasion in the tumor microenvironment (TME). Cytokines and chemokines secreted by this crosstalk play a major role in cancer development, progression, and therapeutic management. An increased infiltration of Tumor-associated macrophages (TAMs) was observed in most of the human cancers, including lung cancer. In this review, we emphasize the role of cytokines and chemokines in TAM-tumor cell crosstalk in the lung TME. Given the role of cytokines and chemokines in immunomodulation, we propose that TAM-derived cytokines and chemokines govern the cancer-promoting immune responses in the TME and offer a new immunotherapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Hardy-Werbin M, Rocha P, Arpi O, Taus Á, Nonell L, Durán X, Villanueva X, Joseph-Pietras D, Nolan L, Danson S, Griffiths R, Lopez-Botet M, Rovira A, Albanell J, Ottensmeier C, Arriola E. Serum cytokine levels as predictive biomarkers of benefit from ipilimumab in small cell lung cancer. Oncoimmunology 2019; 8:e1593810. [PMID: 31069160 DOI: 10.1080/2162402x.2019.1593810] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
Background. Immunotherapy has shown efficacy in small cell lung cancer (SCLC), but only a subset of patients benefits. Surrogate biomarkers are urgently needed. Our aim was to evaluate serum Th1, Th2, and proinflammatory cytokines in two cohorts of SCLC patients before and during treatment with chemotherapy with or without ipilimumab and to correlate them with survival. Patients and methods. Two cohorts of SCLC patients were studied: patients treated with chemotherapy (n = 47), and patients treated with chemotherapy plus ipilimumab (n = 37). Baseline, on-treatment and after-treatment serum samples were evaluated for the presence of IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IFN-gamma, TNF-alpha, GM-CSF, and Mip-1alpha using a Luminex assay. Differential changes in cytokines between cohorts were analyzed. Associations between cytokine levels and their changes with overall survival were evaluated. Results. Patients treated with ipilimumab showed a global increase of all cytokines after treatment initiation. A high level of IL-8 at baseline was associated with worse prognosis regardless of treatment. Baseline increased IL-2 levels predicted sensitivity to ipilimumab, while high IL-6 and TNF-alpha predicted resistance. An on-treatment increase in IL-4 levels in patients treated with immune-chemotherapy was associated with a better overall survival. Conclusions. The addition of ipilimumab to standard chemotherapy in SCLC modulates the serum levels of cytokines. Baseline levels and their change over time relate to overall survival. Blood-based biomarkers are convenient for patients, and our results support prospective validation of cytokines as predictive biomarkers for ipilimumab in SCLC.
Collapse
Affiliation(s)
- Max Hardy-Werbin
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pedro Rocha
- Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Oriol Arpi
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Álvaro Taus
- Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Lara Nonell
- Microarrays analysis service, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Xavier Durán
- Statistics department, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
| | - Xavier Villanueva
- Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| | | | - Luke Nolan
- Medical Oncology Department, University Hospital Southampton, Southampton, UK
| | - Sarah Danson
- Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, Sheffield, UK
| | | | - Miguel Lopez-Botet
- Immunology unit, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Rovira
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Christian Ottensmeier
- NIHR Experimental Cancer Medicine Centre, Southampton, UK.,Cancer Science Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Edurne Arriola
- Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.,Medical Oncology Department, Hospital del Mar-CIBERONC, Barcelona, Spain
| |
Collapse
|
17
|
Bingula R, Filaire M, Radosevic-Robin N, Berthon JY, Bernalier-Donadille A, Vasson MP, Thivat E, Kwiatkowski F, Filaire E. Characterisation of gut, lung, and upper airways microbiota in patients with non-small cell lung carcinoma: Study protocol for case-control observational trial. Medicine (Baltimore) 2018; 97:e13676. [PMID: 30558074 PMCID: PMC6320062 DOI: 10.1097/md.0000000000013676] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Several studies have confirmed the important role of the gut microbiota in the regulation of immune functions and its correlation with different diseases, including cancer. While brain-gut and liver-gut axes have already been demonstrated, the existence of a lung-gut axis has been suggested more recently, with the idea that changes in the gut microbiota could affect the lung microbiota, and vice versa. Likewise, the close connection between gut microbiota and cancer of proximal sites (intestines, kidneys, liver, etc.) is already well established. However, little is known whether there is a similar relation when looking at world's number one cause of death from cancer-lung cancer. OBJECTIVE Firstly, this study aims to characterise the gut, lung, and upper airways (UAs) microbiota in patients with non-small cell lung cancer (NSCLC) treated with surgery or neoadjuvant chemotherapy plus surgery. Secondly, it aims to evaluate a chemotherapy effect on site-specific microbiota and its influence on immune profile. To our knowledge, this is the 1st study that will analyse multi-site microbiota in NSCLC patients along with site-specific immune response. METHODS The study is a case-controlled observational trial. Forty NSCLC patients will be divided into 2 groups depending on their anamnesis: Pchir, patients eligible for surgery, or Pct-chir, patients eligible for neoadjuvant chemotherapy plus surgery. Composition of the UAs (saliva), gut (faeces), and lung microbiota (from broncho-alveolar lavage fluid (BALF) and 3 lung pieces: "healthy" tissue distal to tumour, peritumoural tissue and tumour itself) will be analysed in both groups. Immune properties will be evaluated on the local (evaluation of the tumour immune cell infiltrate, tumour classification and properties, immune cell phenotyping in BALF; human neutrophil protein (HNP) 1-3, β-defensin 2, and calprotectin in faeces) and systemic level (blood cytokine and immune cell profile). Short-chain fatty acids (SCFAs) (major products of bacterial fermentation with an effect on immune system) will be dosed in faecal samples. Other factors such as nutrition and smoking status will be recorded for each patient. We hypothesise that smoking status and tumour type/grade will be major factors influencing both microbiota and immune/inflammatory profile of all sampling sites. Furthermore, due to non-selectivity, the same effect is expected from chemotherapy.
Collapse
Affiliation(s)
- Rea Bingula
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
| | - Marc Filaire
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Centre Jean Perrin, Thoracic Surgery Department, Clermont-Ferrand
| | - Nina Radosevic-Robin
- INSERM U1240, University Clermont Auvergne, Centre Jean Perrin, Department of Pathology, Clermont-Ferrand
| | | | | | - Marie-Paule Vasson
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Centre Jean Perrin, CHU Gabriel-Montpied, Clinical Nutrition Unit, Clermont-Ferrand
| | - Emilie Thivat
- University of Clermont-Auvergne, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand
- Centre Jean Perrin, Clinical Research Department, Clermont-Ferrand, France
| | - Fabrice Kwiatkowski
- University of Clermont-Auvergne, INSERM U1240 Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand
- Centre Jean Perrin, Clinical Research Department, Clermont-Ferrand, France
| | - Edith Filaire
- University of Clermont-Auvergne, UMR 1019 INRA-UCA, Human Nutrition Unit (UNH), Clermont-Ferrand
- Greentech SA, Biopole Clermont-Limagne, Saint-Beauzire
| |
Collapse
|
18
|
Silva EM, Mariano VS, Pastrez PRA, Pinto MC, Castro AG, Syrjanen KJ, Longatto-Filho A. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS One 2017; 12:e0181125. [PMID: 28715437 PMCID: PMC5513446 DOI: 10.1371/journal.pone.0181125] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Characteristic cytokine patterns have been described in different cancer patients and they are related to their diagnosis, prognosis, prediction of treatment responses and survival. A panel of cytokines was evaluated in the plasma of non-small cell lung cancer (NSCLC) patients and healthy controls to investigate their profile and relationship with clinical characteristics and overall survival. The case-controlled cross-sectional study design recruited 77 patients with confirmed diagnosis of NSCLC (cases) and 91 healthy subjects (controls) aimed to examine peripheral pro-inflammatory and anti-inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, TNF and IFN-γ) by Cytometry Beads Arrays (CBA Flex) in. The cytokine IL-6 showed a statistically significant difference among groups with increased expression in the case group (p < 0.001). The correlation between the cytokines expression with patient’s clinical characteristics variables revealed the cytokine IL-6 was found to be associated with gender, showing higher levels in male (p = 0.036), whereas IL-17A levels were associated with TNM stage, being higher in III–IV stages (p = 0.044). We observed worse overall survival for individuals with high levels of IL-6 when compared to those with low levels of this cytokine in 6, 12 and 24 months. Further studies of IL-6 levels in independent cohort could clarify the real role of IL-6 as an independent marker of prognostic of NSCLC.
Collapse
Affiliation(s)
- Estela Maria Silva
- Teaching and Research Institute, Barretos Cancer Hospital–Pio XII Foundation, Barretos, Sao Paulo, Brazil
| | - Vânia Sammartino Mariano
- Teaching and Research Institute, Barretos Cancer Hospital–Pio XII Foundation, Barretos, Sao Paulo, Brazil
| | | | - Miguel Cordoba Pinto
- Department of Chest, Barretos Cancer Hospital–Pio XII Foundation, Barretos, Sao Paulo, Brazil
| | - António Gil Castro
- Research Institute of Life and Health Sciences (ICVS), University of Minho, Braga, Portugal
- ICVS / 3B's—Associated Laboratory to the Government of Portugal, Braga / Guimarães, Portugal
| | | | - Adhemar Longatto-Filho
- Teaching and Research Institute, Barretos Cancer Hospital–Pio XII Foundation, Barretos, Sao Paulo, Brazil
- Research Institute of Life and Health Sciences (ICVS), University of Minho, Braga, Portugal
- ICVS / 3B's—Associated Laboratory to the Government of Portugal, Braga / Guimarães, Portugal
- Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Faculty of Medicine, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Moraes JL, Moraes AB, Aran V, Alves MR, Schluckbier L, Duarte M, Toscano E, Zamboni M, Sternberg C, de Moraes E, Lapa E Silva JR, Ferreira CG. Functional analysis of polymorphisms in the COX-2 gene and risk of lung cancer. Mol Clin Oncol 2017; 6:494-502. [PMID: 28413655 PMCID: PMC5374939 DOI: 10.3892/mco.2017.1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
The enzyme cyclooxygenase 2 (COX-2) is known to be involved in tumorigenesis and metastasis in certain types of cancer. Nevertheless, the prognostic value of COX-2 overexpression and its polymorphisms in patients with non-small cell lung cancer (NSCLC) have yet to be fully elucidated. The aim of the present study was to investigate the association between the three most commonly studied COX-2 gene polymorphisms (-1195 G/A, -765 G/C and 8473 T/C) with COX-2 expression and lung cancer risk in a Brazilian cohort. In the present hospital based, case-control retrospective study, 104 patients with NSCLC and 202 cancer free control subjects were genotyped for -1195 G/A, -765 G/C and 8473 T/C polymorphisms using allelic discrimination with a reverse transcription quantitative polymerase chain reaction method. COX-2 mRNA expression was analyzed in surgically resected tumors from 34 patients with NSCLC. The results revealed that COX-2 expression levels were higher in tumor tissue compared with normal lung tissue. However, this overexpression of COX-2 was not associated with the patient outcome, and furthermore, none of the analyzed polymorphisms were associated with the risk of developing lung cancer, COX-2 overexpression, or the overall survival of the patients with NSCLC. Taken together, the findings described in the present study do not support a major role for COX-2 polymorphisms and COX-2 overexpression in lung carcinogenesis within the Brazilian population.
Collapse
Affiliation(s)
- Joyce L Moraes
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Amanda B Moraes
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Veronica Aran
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Marcelo R Alves
- Evandro Chagas Clinical Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Luciene Schluckbier
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana Duarte
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Edson Toscano
- Department of Thoracic Surgery, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mauro Zamboni
- Department of Thoracic Surgery, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Cinthya Sternberg
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Emanuela de Moraes
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos Gil Ferreira
- National Clinical Cancer Research Network (RNPCC) SCTIE/MS, Rio de Janeiro, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Holliday EB, Dieckmann NF, McDonald TL, Hung AY, Thomas CR, Wood LJ. Relationship between fatigue, sleep quality and inflammatory cytokines during external beam radiation therapy for prostate cancer: A prospective study. Radiother Oncol 2015; 118:105-11. [PMID: 26743832 DOI: 10.1016/j.radonc.2015.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Mechanisms of fatigue reported during radiotherapy are poorly defined but may include inflammatory cytokines and/or sleep disturbances. This prospective, longitudinal, phase II study assessed fatigue, sleep, and serum cytokine levels during radiotherapy for early-stage prostate cancer (PCa). MATERIAL AND METHODS Twenty-eight men undergoing radiotherapy for early-stage PCa wore an Actiwatch Score to record fatigue level, sleep time, onset latency, efficiency and wake after sleep onset. Serum levels of IL-1α, IL-1β, TNF-α, IL-6, IL-8, IL-10 and VEGF were measured weekly during radiotherapy. Patient reported quality of life (QOL) metrics were collected before and after treatment. Linear mixed effects models examined trajectories across treatment weeks. RESULTS Fatigue increased across treatment weeks (P<.01), and fatigue was associated with decreased patient-reported QOL. Sleep efficiency increased across treatment weeks (rate of change over time=.29, P=.03), and sleep onset latency decreased (rate of change over time=.86, P=.06). IL-6 tended to increase during treatment (P=0.09), but none of the cytokine levels or sleep variables were significantly related to fatigue trajectories. CONCLUSIONS Despite increased sleep efficiency across treatment weeks, fatigue significantly increased. Although IL-6 increased during the course of radiotherapy, cytokines levels were not associated with fatigue scores or sleep disturbance. Further studies are needed to define the mechanisms for fatigue during radiotherapy.
Collapse
Affiliation(s)
- Emma B Holliday
- The University of Texas MD Anderson Cancer Center Division of Radiation Oncology, Houston, United States
| | - Nathan F Dieckmann
- Oregon Health & Science University School of Nursing, Department of Public Health and Preventative Medicine & Department of Psychiatry, Portland, United States
| | - Tasha L McDonald
- Oregon Health & Science University Department of Radiation Medicine, Portland, United States
| | - Arthur Y Hung
- Oregon Health & Science University Department of Radiation Medicine, Portland, United States
| | - Charles R Thomas
- Oregon Health & Science University Department of Radiation Medicine, Portland, United States
| | - Lisa J Wood
- The University of Texas MD Anderson Cancer Center Division of Radiation Oncology, Houston, United States; Massachussettes General Hospital Institute of Health Professions, Boston, United States.
| |
Collapse
|
21
|
Systemic and alveolar inflammatory response in the dependent and nondependent lung in patients undergoing lung resection surgery. Eur J Anaesthesiol 2015; 32:872-80. [DOI: 10.1097/eja.0000000000000233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS. Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. CANCER MICROENVIRONMENT 2015; 9:1-11. [PMID: 26319408 DOI: 10.1007/s12307-015-0174-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Lung cancer is one of the most commonly reported cancers, and is known to be associated with a poor prognosis. The function of tumour-associated macrophages (TAMs) in lung cancer patients is multifaceted and the literature shows conflicting roles. (I) To analyze the Th1 and Th2 cytokine levels that contribute to the differentiation of M1 and M2 macrophage populations in the serum of patients with NSCLC versus non-cancer controls; and (II) To characterize the M1 and M2 macrophage populations within TAMs in different subtypes of NSCLC compared to non-tumour tissue. The Th1 and Th2 cytokine levels were analyzed in serum using the Bio-Plex assay. In addition, TAMs subsets from non-tumour and tumour tissues were analyzed using immunohistochemistry (IHC). The level of IL-1β, IL-4, IL-6 and IL-8 was found to be increased in the serum of patients with large cell carcinoma but not in other NSCLC subtypes compared to non-cancer controls. In addition, the expression of CD68 and M2 marker CD163 was found to be increased (P ≤ 0.0001) in all NSCLC subtypes compared to non-tumour tissues. In contrast, the expression of iNOS (M1 marker) was decreased in the tumour tissue of patients with adenocarcinoma (P ≤ 0.01) and squamous carcinoma (P ≤ 0.05) but not in large cell carcinoma compared to non-tumour tissue. The results of this study indicate that NSCLC might have the ability to alter phenotype within the lung tumour areas in the local environment (TAMs) but not in the bloodstream in the systemic environment (serum) except for large cell carcinoma.
Collapse
Affiliation(s)
- S A Almatroodi
- Cancer & Tissue Repair Laboratory, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria, Australia, 3083. .,Applied Medical Sciences College, Qassim University, Buraidah, Saudi Arabia.
| | - C F McDonald
- Institute for Breathing & Sleep, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - I A Darby
- Cancer & Tissue Repair Laboratory, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria, Australia, 3083
| | - D S Pouniotis
- Cancer & Tissue Repair Laboratory, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria, Australia, 3083
| |
Collapse
|
23
|
Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol 2015; 36:7501-13. [PMID: 25910707 DOI: 10.1007/s13277-015-3473-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
As pivotal elements involved in inflammation, inflammasomes represent a group of multiprotein complexes triggering the maturation of proinflammatory cytokine interleukin (IL)-1β and IL-18. Although the importance of the inflammasomes in inflammatory diseases is well appreciated, a precise characterization of their expressions in lung cancer remains obscure. This study aimed to determine the expressions of inflammasomes in various lung cancer cell lines and tissues to understand their potential roles in lung cancer. Our findings showed that inflammasome components were markedly upregulated in lung cancer and elicited the maturation of IL-1β and IL-18. In addition, enormous variations in subtypes and levels of inflammasomes were detected in lung cancers depending on their histological type and grading, invasion ability, as well as chemoresistance. Generally, AIM2 inflammasome was overexpressed in nonsmall cell lung cancer (NSCLC), while NLRP3 inflammasome was upregulated in lung adenocarcinoma (ADC) and small cell lung cancer (SCLC). The high-metastatic or cisplatin-sensitive NSCLC cells expressed more inflammasome components and products than their counterpart low-metastatic or cisplatin-resistant NSCLC cells, respectively. In resected lung cancer tissues, high-grade ADC expressed more inflammasome components and products than low-grade ADC. Together, these findings suggest that inflammasomes may be crucial biomarkers for lung cancer as well as potential modulators of the biological behaviors of lung cancer. Further, pharmacotherapeutics targeting inflammasomes might be novel adjuvant therapy strategies for lung cancer.
Collapse
|
24
|
Association between TNF-α gene 308G>A polymorphism and lung cancer risk: a meta-analysis. Tumour Biol 2014; 35:9693-9. [PMID: 24969564 DOI: 10.1007/s13277-014-2265-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/19/2014] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the association between tumor necrosis factor alpha (TNF-α) gene 308G/A polymorphism and lung cancer risk, but the results were inconsistent. We thus comprehensively searched the PubMed, EMBASE, and BIOSIS Previews databases and extracted data from all eligible articles to estimate the association between TNF-α gene 308G/A polymorphism and lung cancer risk. The pooled odds ratio (OR) with 95 % confidence intervals (CIs) were calculated. Twelve case-control studies in 11 articles involving 2,436 cases and 2,573 controls were included in the meta-analysis to assess the association between TNF-α gene 308G>A polymorphism and susceptibility to lung cancer. Overall, TNF-α gene 308G>A polymorphism was significantly associated with an increased risk of lung cancer for A vs. G (OR = 1.13, 95 % CI 1.00 ~ 1.27, P = 0.04). Subgroup analysis by ethnicity showed that there was a significant association between TNF-α gene 308G>A polymorphism and increased risk of lung cancer in Asians, but not in Caucasians. In subgroup analysis by tumor type, there were significant associations between TNF-α gene 308G>A polymorphism and increased risk of lung cancer in small cell lung cancer (SCLC) for AA+AG vs. GG, in non-small cell lung cancer (NSCLC) for A vs. G, AA vs. GG, and AA+AG vs. GG. No association between the genotypes and different stages of lung cancer was detected. The meta-analysis suggests that TNF-α gene 308G>A polymorphism is associated with an increased risk of lung cancer, particularly among Asians, both for SCLC and NSCLC, considering tumor type.
Collapse
|
25
|
Alveolar Macrophage Polarisation in Lung Cancer. LUNG CANCER INTERNATIONAL 2014; 2014:721087. [PMID: 26316944 PMCID: PMC4437403 DOI: 10.1155/2014/721087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/11/2014] [Indexed: 01/03/2023]
Abstract
The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth), and cytotoxicity (macrophage-mediated killing). In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.
Collapse
|
26
|
Jiao F, Xu D, Li Q, Liu G, Liu H, Ren T. Lack of association between -174G>C and -634C>G polymorphisms in interleukin-6 promoter region and lung cancer risk: a meta-analysis. Tumour Biol 2014; 35:5021-7. [PMID: 24492940 DOI: 10.1007/s13277-014-1662-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
Evidence suggested that the -174G>C and -634C>G polymorphisms in interleukin-6 (IL6) promoter region may modulate risk of lung cancer; however, the conclusion was still inconclusive. Therefore, we performed this meta-analysis to determine the association between IL6 -174G>C and -634C>G polymorphisms and lung cancer risk. The association strength was measured by odds ratios (ORs) and 95% confidence intervals (CI). Egger's test and Begg's test were performed to detect potential publication bias. By searching PubMed, EMBASE and China National Knowledge Infrastructure, we included 16 eligible studies in this meta-analysis, involving 6,202 lung cancer cases and 7,067 controls. Five studies about -174G>C polymorphism and 11 studies about -634C>G polymorphism were analyzed. By pooling eligible studies, we found no significant association of -174G>C with lung cancer risk (C vs. G: OR = 1.029; 95% CI, 0.957-1.106; heterogeneity, P = 0.478) and no statistic association of -634C > G with lung cancer susceptibility (G vs. C: OR = 1.050; 95% CI, 0.893-1.235; Heterogeneity, P < 0.001). No significant publication bias was observed. In conclusion, we found that -634C>G and -174G>C polymorphisms in IL6 promoter region were not associated with lung cancer risk.
Collapse
Affiliation(s)
- Fanglei Jiao
- Department of Thoracic Surgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China,
| | | | | | | | | | | |
Collapse
|
27
|
Kiyohara C, Horiuchi T, Takayama K, Nakanishi Y. Genetic polymorphisms involved in the inflammatory response and lung cancer risk: A case-control study in Japan. Cytokine 2014; 65:88-94. [DOI: 10.1016/j.cyto.2013.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022]
|
28
|
Marshall AL, Christiani DC. Genetic susceptibility to lung cancer--light at the end of the tunnel? Carcinogenesis 2013; 34:487-502. [PMID: 23349013 DOI: 10.1093/carcin/bgt016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is one of the most common and deadliest cancers in the world. The major socio-environmental risk factor involved in the development of lung cancer is cigarette smoking. Additionally, there are multiple genetic factors, which may also play a role in lung cancer risk. Early work focused on the presence of relatively prevalent but low-penetrance alterations in candidate genes leading to increased risk of lung cancer. Development of new technologies such as genomic profiling and genome-wide association studies has been helpful in the detection of new genetic variants likely involved in lung cancer risk. In this review, we discuss the role of multiple genetic variants and review their putative role in the risk of lung cancer. Identifying genetic biomarkers and patterns of genetic risk may be useful in the earlier detection and treatment of lung cancer patients.
Collapse
Affiliation(s)
- Ariela L Marshall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Abstract
Reticular erythematous mucinosis (REM) is a rare cutaneous condition often referred to as plaque-like mucinosis and midline mucinosis. Although the exact etiology remains undefined, efforts to elucidate pathogenesis, disease associations, and prospective treatment modalities have been encouraging. Induction of the disease has been associated with viral processes, solar irradiation, specific cell lines, and cytokines such as Interleukin (IL)-1β. Clinically, patients typically develop erythematous macules and papules that coalesce into reticulated patterns on the midline of the chest or back. The lesions have a tendency to respond to systemic antimalarial therapy, but novel therapeutic approaches with ultraviolet A1 light (UVA1) and pulse dye laser (PDL) have been promising. Histologically, REM is associated with a mild, predominantly lymphocytic infiltrate with variable deep perivascular extension. Mucin may be seen in the upper and mid dermis and is prominent around the infiltrate and appendages. IgM deposits may be visualized under direct immunoflourescence along the basal layer. Because of the similarities between REM and tumid lupus, the two disease processes have often been grouped together. The remarkable overlap between the two diseases suggests that the two conditions may actually be the same disease.
Collapse
Affiliation(s)
- Sumeet Thareja
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, USA.
| | | | | | | |
Collapse
|
30
|
Elevated levels of anti inflammatory IL-10 and pro inflammatory IL-17 in malignant pleural effusions. J Cardiothorac Surg 2012; 7:104. [PMID: 23034167 PMCID: PMC3539908 DOI: 10.1186/1749-8090-7-104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Pleural effusions can be caused by highly different underlying diseases and are characterized by complex interactions of various local and circulating cells as well as numerous soluble parameters like interleukins (IL). Knowledge of this complex network can be helpful in order to make the differential diagnosis in known malignant pleural effusions and understand the underlying immunochemistry of each disease or condition. Methods We investigated immunoreactive concentrations of Interleukin 10 (IL-10) and Interleukin 17 (IL-17) in malignant pleural effusions and peripheral blood from patients with bronchial carcinomas and other carcinomas, excluding other conditions such as congestive heart failure (CHF) and pneumonias in twenty four (24) patients (9 men/15 women), 37-74 years (mean:61) with already diagnosed malignant pleural effusions applying the ELISA method. Results The SPSS 15 program for Windows was used. Quantitative analysis showed high concentrations of IL-10 and IL-17 in pleural fluid and blood. Even though IL-17 levels -both blood and pleural- were lower than IL-10’s, statistical correlation between blood and pleural concentations was proven, confirming once more the systematic action of these cytokines. At the same time high IL-17 levels in malignant effusions shows maybe a new perspective in understanding the pathophysiology of malignant pleural effusions. Conclusions Our results confirm the pathogenetic role of these cytokines in malignant pleural effusions combining for the first time a pro- and an anti- inflammatory cytokine. The observation that IL-17 is elevated in malignant pleural effusions may give a new meaning in Virchow’s remarks 100 years ago. Larger number of patients is needed to confirm our hypothesis.
Collapse
|
31
|
Involvement of interleukin-1β mediated nuclear factor κB signalling pathways to down-regulate prostate-specific antigen and cell proliferation in LNCaP prostate cancer cells. Cell Biol Int 2012; 36:449-54. [PMID: 22103356 DOI: 10.1042/cbi20100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Involvement of NF-κB (nuclear factor κB) mediated by IL-1β (interleukin-1β) on cell proliferation and PSA (prostate-specific antigen) production of LNCaP prostate cell lines and the possible cross-talk with Akt (also known as protein kinase B) signalling pathway has been investigated. NF-κB and Akt were analysed by Western blotting from LNCaP cells treated by IL-1β before proliferation and PSA production were measured. IL-1β inhibited proliferation and decreased PSA production. The Akt pathway was not sensitive, whereas NF-κB phosphorylation occurred as a result of treatment. PSA production and proliferation of LNCaP cells were down-regulated by NF-κB mediated by IL-1β promoting anti-apoptotic signalling and co-suppressor factors of PSA expression. IL-1β through NF-κB activation provides a rationale for therapeutic approaches in the anticancer treatment of prostate.
Collapse
|
32
|
Abstract
Asthma is a very common chronic disease that occurs in all age groups. Its high prevalence has significant health costs, which are even higher in the most severe disease forms. Lung cancer has the highest incidence of all cancers in the developed world and is an important cause of mortality. Patients with lung cancer are a big economic burden on health services, both in direct and indirect costs. Different authors suggest that atopic constitution, including different manifestations of allergy and asthma, are possible risk factors for lung cancer, above all in never-smokers. Given the high asthma prevalence and lung cancer incidence and mortality in developed countries, this association would have important public health implications. Uncertainties about the association and the underlying physiopathological mechanisms, however, seem to require further studies.
Collapse
|
33
|
Devrim B, Bozkir A, Canefe K. Preparation and evaluation of PLGA microparticles as carrier for the pulmonary delivery of rhIL-2 : I. Effects of some formulation parameters on microparticle characteristics. J Microencapsul 2011; 28:582-94. [PMID: 21827360 DOI: 10.3109/02652048.2011.599438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, recombinant human interleukin-2 (rhIL-2) containing poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared for pulmonary administration by modified w/o/w double emulsion solvent extraction method and the effects of various formulation parameters on the physicochemical properties of the microparticles were investigated. Microparticles in suitable size for pulmonary administration (4.02 µm) were obtained by increasing dichloromethane volume used in the organic phase. Also, a very high encapsulation efficiency (99.22%) value could be reached in these microparticles. In the sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis, rhIL-2 extracted from microparticles having a similar band with native rhIL-2 showed that the protein was not affected by the encapsulation process. The release curves of microparticles exhibited a biphasic fashion, characterized by a fast release phase at initial 1 day, followed by a slower one on the remaining days. Bioactivity investigations using T cells show that rhIL-2 encapsulated in PLGA microparticles retain their biological activity.
Collapse
Affiliation(s)
- Burcu Devrim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06100 Tandoğan, Ankara, Turkey
| | | | | |
Collapse
|
34
|
Karadag F, Gulen ST, Karul AB, Kilicarslan N, Ceylan E, Kuman NK, Cildag O. Osteopontin as a marker of weight loss in lung cancer. Scandinavian Journal of Clinical and Laboratory Investigation 2011; 71:690-4. [PMID: 22017168 DOI: 10.3109/00365513.2011.621549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although the role of osteopontin (OPN) in tumorigenesis and invasiveness is well-known, its role in systemic consequences of lung cancer has not been studied yet. The objective of the current study was to assess the value of osteopontin as a marker of weight loss in relation to systemic inflammation in non-small cell lung cancer (NSCLC) patients. A total of 63 male NSCLC patients (stage III and IV) and 25 age and sex-matched controls were included. The NSCLC patients were further divided into subgroups depending on whether they had > 5% weight loss in the last 6 months or not. Serum OPN and TNF-α concentrations were measured by ELISA using commercially available kits. Serum C-reactive protein (CRP) concentration was measured by the turbidimetric method. OPN (p = 0.001) and CRP (p < 0.001) concentrations were significantly higher in lung cancer patients compared to controls whereas TNF-α concentrations were similar in cancer and control groups (p = 0.063). There were 33 NSCLC patients (52.4%) with weight loss. Serum OPN concentration was found to be higher in this weight-losing group (p = 0.042). CRP concentration was also higher in the weight-losing group but the difference was not statistically significant (p = 0.246). TNF-α concentrations were similar in both subgroups (p = 0.094). In correlation tests, there was a positive correlation between OPN and CRP (r = 0.299, p = 0.044), but no correlation was detected between OPN and TNF-α (r = − 0.009, p = 0.930). A negative correlation was detected between OPN and BMI (r = − 0.246, p = 0.048). In addition to being an indicator of systemic inflammation in lung cancer patients, osteopontin may also be an indicator of weight loss.
Collapse
Affiliation(s)
- Fisun Karadag
- Department of Chest Diseases, School of Medicine, Adnan Menderes University, Aydin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Carpagnano GE, Palladino GP, Lacedonia D, Koutelou A, Orlando S, Foschino-Barbaro MP. Neutrophilic airways inflammation in lung cancer: the role of exhaled LTB-4 and IL-8. BMC Cancer 2011; 11:226. [PMID: 21649887 PMCID: PMC3130703 DOI: 10.1186/1471-2407-11-226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in lung cancer biology presuppose its inflammatory origin. In this regard, LTB-4 and IL-8 are recognized to play a crucial role in neutrophil recruitment into airways during lung cancer.Notwithstanding the intriguing hypothesis, the exact role of neutrophilic inflammation in tumour biology remains complex and not completely known.The aim of this study was to give our contribution in this field by investigating LTB-4 and IL-8 in the breath condensate of NSCLC patients and verifying their role in cancer development and progression. METHOD We enrolled 50 NSCLC patients and 35 controls. LTB-4 and IL-8 concentrations were measured in the breath condensate and the blood of all the subjects under study using EIA kits. Thirty NSCLC patients and ten controls underwent induced sputum collection and analysis. RESULTS LTB-4 and IL-8 resulted higher in breath condensate and the blood of NSCLC patients compared to controls. Significantly higher concentrations were found as the cancer stages progressed. A positive correlation was observed between exhaled IL-8 and LTB-4 and the percentage of neutrophils in the induced sputum. CONCLUSION The high concentrations of exhaled LTB-4 and IL-8 showed the presence of a neutrophilic inflammation in the airways of NSCLC patients and gave a further support to the inflammatory signalling in lung cancer. These exhaled proteins could represent a suitable non-invasive marker in the diagnosis and monitoring of lung cancer.
Collapse
Affiliation(s)
- Giovanna E Carpagnano
- Department of Medical and Occupational Sciences, Institute of Respiratory Disease, University of Foggia, Via degli Aviatori 1, Foggia 71100, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Huang YT, Liu MY, Tsai CH, Yeh TH. Upregulation of interleukin-1 by Epstein-Barr virus latent membrane protein 1 and its possible role in nasopharyngeal carcinoma cell growth. Head Neck 2010; 32:869-76. [PMID: 19827118 DOI: 10.1002/hed.21270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is associated with Epstein-Barr virus (EBV) infection. We previously found that interleukin (IL)-1alpha and IL-1beta significantly increased in NPC tissues. This study investigated what EBV-encoded proteins were involved in such IL-1 production. METHODS AND RESULTS IL-1alpha and IL-1beta messenger ribonucleic acids (mRNAs) were detected in the EBV latent membrane protein 1 (LMP1) transfectant (LMP135) only by reverse transcriptase-polymerase chain reaction (RT-PCR). LMP1-mediated IL-1alpha and IL-1beta production could be enhanced by tumor necrosis factor alpha (TNF-alpha), determined by enzyme-linked immunosorbent assay (ELISA). Moreover, IL-1alpha and IL-1beta mRNAs and proteins were increased in a dose-dependent manner in epithelial cells transiently transfected by an LMP1 plasmid. Besides, immortalized human epidermal keratinocyte (RHEK-1) epithelial cells could be enhanced to proliferate by IL-1alpha and IL-1beta determined by water-soluble tetrazolium salt (WST-1) assay. CONCLUSIONS EBV LMP1 is capable of upregulating IL-1alpha and IL-1beta secretions from epithelial cells and positively modulated by TNF-alpha. This may consequently contribute to tumor growth in patients with NPC.
Collapse
Affiliation(s)
- Yu-Tzu Huang
- School of Medicine, Fu Jen Catholic University, Hsin-Chuang, Taipei Hsien, Taiwan, Republic of China
| | | | | | | |
Collapse
|
37
|
Cytokines and growth factors stimulate hyaluronan production: role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J Biomed Biotechnol 2010; 2010:485468. [PMID: 20671927 PMCID: PMC2910509 DOI: 10.1155/2010/485468] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 03/23/2010] [Accepted: 05/05/2010] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the role of hyaluronan (HA) in non-small cell lung cancer (NSCLC) since close association between HA level and malignancy has been reported. HA is an abundant extracellular matrix component and its synthesis is regulated by growth factors and cytokines that include epidermal growth factor (EGF) and interleukin-1β (IL-1β). We showed that treatment with recombinant EGF and IL-1β, alone or in combination with TGF-β, was able to stimulate HA production in lung adenocarcinoma cell line A549. TGF-β/IL-1β treatment induced epithelial to mesenchymal-like phenotype transition (EMT), changing cell morphology and expression of vimentin and E-cadherin. We also overexpressed hyaluronan synthase-3 (HAS3) in epithelial lung adenocarcinoma cell line H358, resulting in induced HA expression, EMT phenotype, enhanced MMP9 and MMP2 activities and increased invasion. Furthermore, adding exogenous HA to A549 cells and inducing HA H358 cells resulted in increased resistance to epidermal growth factor receptor (EGFR) inhibitor, Iressa. Together, these results suggest that elevated HA production is able to induce EMT and increase resistance to Iressa in NSCLC. Therefore, regulation of HA level in NSCLC may be a new target for therapeutic intervention.
Collapse
|
38
|
Cytokines in bronchoalveolar lavage fluid and serum of lung cancer patients during radiotherapy — Association of interleukin-8 and VEGF with survival. Cytokine 2010; 50:30-6. [DOI: 10.1016/j.cyto.2009.11.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/25/2009] [Accepted: 11/22/2009] [Indexed: 11/23/2022]
|
39
|
Xu J, Futakuchi M, Iigo M, Fukamachi K, Alexander DB, Shimizu H, Sakai Y, Tamano S, Furukawa F, Uchino T, Tokunaga H, Nishimura T, Hirose A, Kanno J, Tsuda H. Involvement of macrophage inflammatory protein 1α (MIP1α) in promotion of rat lung and mammary carcinogenic activity of nanoscale titanium dioxide particles administered by intra-pulmonary spraying. Carcinogenesis 2010; 31:927-35. [DOI: 10.1093/carcin/bgq029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Van Dyke AL, Cote ML, Wenzlaff AS, Chen W, Abrams J, Land S, Giroux CN, Schwartz AG. Cytokine and cytokine receptor single-nucleotide polymorphisms predict risk for non-small cell lung cancer among women. Cancer Epidemiol Biomarkers Prev 2009; 18:1829-40. [PMID: 19505916 PMCID: PMC3771080 DOI: 10.1158/1055-9965.epi-08-0962] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Studies on the relationships between inflammatory pathway genes and lung cancer risk have not included African-Americans and have only included a handful of genes. In a population-based case-control study on 198 African-American and 744 Caucasian women, we examined the association between 70 cytokine and cytokine receptor single-nucleotide polymorphisms (SNPs) and risk of non-small cell lung cancer (NSCLC). Unconditional logistic regression was used to estimate odds ratios and 95% confidence intervals in a dominant model adjusting for major risk factors for lung cancer. Separate analyses were conducted by race and by smoking history and history of chronic obstructive pulmonary disease among Caucasians. Random forest analysis was conducted by race. On logistic regression analysis, IL6 (interleukin 6), IL7R, IL15, TNF (tumor necrosis factor), and IL10 SNP were associated with risk of non-small cell lung cancer among African-Americans; IL7R and IL10 SNPs were also associated with risk of lung cancer among Caucasians. Although random forest analysis showed IL7R and IL10 SNPs as being associated with risk for lung cancer among African-Americans, it also identified TNFRSF10A SNP as an important predictor. On random forest analysis, an IL1A SNP was identified as an important predictor of lung cancer among Caucasian women. Inflammatory SNPs differentially predicted risk for NSCLC according to race, as well as based on smoking history and history of chronic obstructive pulmonary disease among Caucasian women. Pathway analysis results are presented. Inflammatory pathway genotypes may serve to define a high risk group; further exploration of these genes in minority populations is warranted.
Collapse
Affiliation(s)
- Alison L Van Dyke
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Enewold L, Mechanic LE, Bowman ED, Zheng YL, Yu Z, Trivers G, Alberg AJ, Harris CC. Serum concentrations of cytokines and lung cancer survival in African Americans and Caucasians. Cancer Epidemiol Biomarkers Prev 2009; 18:215-22. [PMID: 19124500 DOI: 10.1158/1055-9965.epi-08-0705] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence suggests a role for inflammation in the development and progression of cancer. Our group recently identified a cytokine gene signature in lung tissue associated with lung cancer prognosis. Therefore, we hypothesized that concentrations of circulating cytokines in serum may be associated with lung cancer survival. Ten serum cytokines, namely, interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, granulocyte macrophage colony-stimulating factor, interferon (IFN)-gamma, and tumor necrosis factor-alpha, were assessed in 353 non-small cell lung cancer cases from a case-control study of lung cancer in the greater Baltimore, Maryland area. Cytokines were measured using an ultrasensitive electrochemiluminescence immunoassay. IL-6 serum concentrations (>or=4.0 pg/mL) were associated with significantly poorer survival in both African Americans [hazard ratio (HR), 2.71; 95% confidence interval (CI), 1.26-5.80] and Caucasians (HR, 1.71; 95% CI, 1.22-2.40). IL-10 (HR, 2.62; 95% CI, 1.33-5.15) and IL-12 (HR, 1.98; 95% CI, 1.14-3.44) were associated with lung cancer survival only in African Americans. Some evidence for an association of tumor necrosis factor-alpha levels with survival in Caucasians was observed, although these results were not significant. These hypothesis-generating findings indicate that selected serum cytokine concentrations are associated with lung cancer survival, and indicate that further research is warranted to better understand the mechanistic underpinnings of these associations.
Collapse
Affiliation(s)
- Lindsey Enewold
- Lombardi Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ho CC, Liao WY, Wang CY, Lu YH, Huang HY, Chen HY, Chan WK, Chen HW, Yang PC. TREM-1 Expression in Tumor-associated Macrophages and Clinical Outcome in Lung Cancer. Am J Respir Crit Care Med 2008; 177:763-70. [DOI: 10.1164/rccm.200704-641oc] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Kong X, Wang X, Xu W, Behera S, Hellermann G, Kumar A, Lockey RF, Mohapatra S, Mohapatra SS. Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 2008; 68:249-56. [PMID: 18172317 DOI: 10.1158/0008-5472.can-07-3086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor for atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPRA), is expressed in cancer cells, and natriuretic peptides have been implicated in cancers. However, the direct role of NPRA signaling in tumorigenesis remains elusive. Here, we report that NPRA expression and signaling is important for tumor growth. NPRA-deficient mice showed significantly reduced antigen-induced pulmonary inflammation. NPRA deficiency also substantially protected C57BL/6 mice from lung, skin, and ovarian cancers. Furthermore, a nanoparticle-formulated interfering RNA for NPRA attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH(2)-terminal peptide of the ANP prohormone, which down-regulates NPRA expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. The antitumor activity of NP73-102 was in part attributed to apoptosis of tumor cells. Western blot and immunohistochemistry staining indicated that the transcription factor, nuclear factor-kappaB, was inactivated, whereas the level of tumor suppressor retinoblastoma protein was up-regulated in the lungs of NPRA-deficient mice. Furthermore, expression of vascular endothelial growth factor was down-regulated in the lungs of NPRA-deficient mice compared with that in wild-type mice. These results suggest that NPRA is involved in tumor angiogenesis and represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyuan Kong
- Joy McCann Culverhouse Airway Disease and Nanomedicine Research Center, Allergy and Immunology Division, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Küpeli E, Karnak D, Beder S, Kayacan O, Tutkak H. Diagnostic Accuracy of Cytokine Levels (TNF-α, IL-2 and IFN-γ) in Bronchoalveolar Lavage Fluid of Smear-Negative Pulmonary Tuberculosis Patients. Respiration 2007; 75:73-8. [DOI: 10.1159/000110744] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/28/2007] [Indexed: 11/19/2022] Open
|
45
|
Yu YRA, Fong AM, Combadiere C, Gao JL, Murphy PM, Patel DD. Defective antitumor responses in CX3CR1-deficient mice. Int J Cancer 2007; 121:316-22. [PMID: 17372897 DOI: 10.1002/ijc.22660] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Innate immunity is critically important for tumor surveillance and regulating tumor metastasis. Fractalkine (FKN, CX3CL1), operating through the receptor CX3CR1, is an effective chemoattractant and adhesion receptor for NK cells and monocytes, important constituents of the innate immune response. Previous studies have shown that over-expression of CX3CL1 by tumor cells enhances antitumor responses. However, since most tumors do not express CX3CL1, it remains unclear if CX3CL1/CX3CR1 has a role in tumor immunity in the absence of ligand over-expression. To determine the role of CX3CL1 and CX3CR1 in regulating antitumor immune responses, we tested the response of wildtype and CX3CR1-deficient animals to unmanipulated B16 melanoma that does not express CX3CL1. We studied the distribution and trafficking of mononuclear cells (MNC) under homeostatic conditions and in the presence of B16 metastatic melanoma, cytotoxic activity, and cytokine production in wild-type and CX3CR1-deficient animals. We found that B16-treated CX3CR1-/- mice had increased lung tumor burden and cachexia. There was a selective reduction of monocytes and NK cells in the lungs of CX3CR1-deficient animals under homeostatic conditions and in response to B16. CX3CR1-deficient NK cells effectively killed B16 cells in cytotoxicity assays. However, CX3CR1-deficient NK cells exhibited a tumorigenic cytokine production profile with defective IFN-gamma expression and enhanced IL-6 production in response to TLR3 activation with polyIC. Our studies indicate that CX3CR1 is an important contributor to innate immunity at multiple levels. Its role in tumor immunity is not limited by expression of CX3CL1 by tumor cells.
Collapse
MESH Headings
- Animals
- CD3 Complex/analysis
- CX3C Chemokine Receptor 1
- Cell Line, Tumor
- Cytokines/analysis
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/genetics
- Female
- Flow Cytometry
- Immunohistochemistry
- Interferon-gamma/metabolism
- Interleukin-6/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lung/metabolism
- Lung/pathology
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/metabolism
- Monocytes/pathology
- Poly C/pharmacology
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Tumor Burden
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Thurston Arthritis Research Center and the Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
46
|
Schoenhals JE, Seyedin SN, Anderson C, Brooks ED, Li YR, Younes AI, Niknam S, Li A, Barsoumian HB, Cortez MA, Welsh JW. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Transl Lung Cancer Res 2007; 6:148-158. [PMID: 28529897 DOI: 10.21037/tlcr.2017.03.06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of immunology has led to breakthroughs in treating non-small cell lung cancer (NSCLC). The recent approval of an anti-PD1 checkpoint drug for NSCLC has generated much interest in novel combination therapies that might provide further benefit for patients. However, a better understanding of which combinations may (or may not) work in NSCLC requires understanding the lung immune microenvironment under homeostatic conditions and the changes in that microenvironment in the setting of cancer progression and with radiotherapy. This review provides background information on immune cells found in the lung and the prognostic significance of these cell types in lung cancer. It also addresses current clinical directions for the combination of checkpoint inhibitors with radiation for NSCLC.
Collapse
Affiliation(s)
- Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Clark Anderson
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Eric D Brooks
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun R Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ahmed I Younes
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailin Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hampartsoum B Barsoumian
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
47
|
Campa D, Hashibe M, Zaridze D, Szeszenia-Dabrowska N, Mates IN, Janout V, Holcatova I, Fabiánová E, Gaborieau V, Hung RJ, Boffetta P, Brennan P, Canzian F. Association of common polymorphisms in inflammatory genes with risk of developing cancers of the upper aerodigestive tract. Cancer Causes Control 2007; 18:449-55. [PMID: 17356794 DOI: 10.1007/s10552-007-0129-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/15/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the role of polymorphisms of genes involved in inflammation in the risk of cancers of the upper aerodigestive tract (UADT). METHODS We have evaluated the role of polymorphisms in key genes related to inflammation, namely IL1B (rs1143627), COX2/PTGS2 (rs5275), and IL8 (rs4073) in a large case-control study comprising 811 UADT cancer cases and 1,083 controls. RESULTS An association was observed for squamous cell carcinoma of the pharynx for a polymorphism in the promoter of the IL1B gene, with an OR of 2.39 (95% CI = 1.19-4.81) for the homozygotes for the minor allele A promoter polymorphism of IL8 was associated with decreased risk of laryngeal cancer, with an OR of 0.70 (95% CI = 0.50-0.98) for carriers of the minor allele. CONCLUSIONS To our knowledge, this is the first report on the role of these polymorphisms with respect to UADT carcinogenesis. Our results suggest that inflammation-related polymorphisms play a role, albeit minor, in the risk of developing cancers of the upper aerodigestive tract.
Collapse
Affiliation(s)
- Daniele Campa
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Antoniou D, Pavlakou G, Stathopoulos GP, Karydis I, Chondrou E, Papageorgiou C, Dariotaki F, Chaimala D, Veslemes M. Predictive value of D-dimer plasma levels in response and progressive disease in patients with lung cancer. Lung Cancer 2007; 53:205-10. [PMID: 16769149 DOI: 10.1016/j.lungcan.2006.03.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 03/13/2006] [Accepted: 03/21/2006] [Indexed: 11/18/2022]
Abstract
Patients with cancer may present with one or more circulatory markers of haemostatic activation which may be associated with tumor growth and cancer cell dissemination. In our clinical practice we observed haemostatic abnormalities with or without thrombotic episodes in cancer patients. The aim of the present study was to detect the D-dimer plasma levels in advanced-stage lung cancer patients before, during and after chemotherapy, and to determine whether there is a correlation with response rate, disease recurrence and survival, in order to estimate the possible predictive value of D-dimer plasma levels. Forty-seven/52 patients were evaluable and analysed; 38 patients had non-small-cell lung cancer (NSCLC) and 9 small-cell lung cancer (SCLC) and all were at an advanced stage or inoperable. Two (4.3%) achieved complete response (CR), 17 (36.2%) partial response (PR), and 16 (34%) had progressive disease (PD). We found that 14/19 (73.7%) patients with CR or PR showed a reduction in D-dimer plasma values and 11/16 (68.8%) with PD showed increased values; also, in patients with recurrent disease (12/13, 92.3%), D-dimer plasma levels were increased. All of the above values were statistically significant. D-Dimer plasma levels decrease or increase after response and progressive disease, respectively, and can act as a predictive factor of the evolution of the disease.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/blood
- Bridged-Ring Compounds/administration & dosage
- Camptothecin/administration & dosage
- Camptothecin/analogs & derivatives
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Small Cell/blood
- Carcinoma, Small Cell/drug therapy
- Carcinoma, Small Cell/mortality
- Carcinoma, Small Cell/pathology
- Deoxycytidine/administration & dosage
- Deoxycytidine/analogs & derivatives
- Disease Progression
- Docetaxel
- Female
- Fibrin Fibrinogen Degradation Products/drug effects
- Fibrin Fibrinogen Degradation Products/metabolism
- Humans
- Irinotecan
- Lung Neoplasms/blood
- Lung Neoplasms/drug therapy
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Paclitaxel/administration & dosage
- Patient Compliance
- Predictive Value of Tests
- Prospective Studies
- Survival Analysis
- Taxoids/administration & dosage
- Treatment Outcome
- Vinblastine/administration & dosage
- Gemcitabine
Collapse
Affiliation(s)
- Dimosthenis Antoniou
- 7th Department of Pulmonary Medicine, Sotiria Hospital of Chest Diseases, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arpin D, Perol D, Blay JY, Falchero L, Claude L, Vuillermoz-Blas S, Martel-Lafay I, Ginestet C, Alberti L, Nosov D, Etienne-Mastroianni B, Cottin V, Perol M, Guerin JC, Cordier JF, Carrie C. Early variations of circulating interleukin-6 and interleukin-10 levels during thoracic radiotherapy are predictive for radiation pneumonitis. J Clin Oncol 2006; 23:8748-56. [PMID: 16314635 DOI: 10.1200/jco.2005.01.7145] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate variations of circulating serum levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNFalpha), and interleukin-10 (IL-10) during three-dimensional conformal radiation therapy (3D-CRT) in patients with non-small-cell lung cancer and correlate these variations with the occurrence of radiation pneumonitis. PATIENTS AND METHODS Ninety-six patients receiving 3D-CRT for stage I to III disease were evaluated prospectively. Circulating cytokine levels were determined before, every 2 weeks during, and at the end of treatment. Radiation pneumonitis was evaluated prospectively between 6 and 8 weeks after 3D-CRT. The predictive value of clinical, dosimetric, and biologic (cytokine levels) factors was evaluated both in univariate and multivariate analyses. RESULTS Forty patients (44%) experienced score 1 or more radiation pneumonitis. No association was found between baseline cytokine levels and the risk of radiation pneumonitis. In the whole population, mean levels of TNFalpha, IL-6, and IL-10 remained stable during radiotherapy. IL-6 levels were significantly higher (P = .047) during 3D-CRT in patients with radiation pneumonitis. In the multivariate analysis, covariations of IL-6 and IL-10 levels during the first 2 weeks of 3D-CRT were evidenced as independently predictive of radiation pneumonitis in this series (P = .011). CONCLUSION Early variations of circulating IL-6 and IL-10 levels during 3D-CRT are significantly associated with the risk of radiation pneumonitis. Variations of circulating IL-6 and IL-10 levels during 3D-CRT may serve as independent predictive factors for this complication.
Collapse
Affiliation(s)
- Dominique Arpin
- Department of Pneumology, Hôpital de la Croix Rousse, 103 Grande Rue de la Croix Rousse, 69317 Lyon Cedex 04, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pouniotis DS, Plebanski M, Apostolopoulos V, McDonald CF. Alveolar macrophage function is altered in patients with lung cancer. Clin Exp Immunol 2006; 143:363-72. [PMID: 16412062 PMCID: PMC1809587 DOI: 10.1111/j.1365-2249.2006.02998.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2005] [Indexed: 11/30/2022] Open
Abstract
The alveolar macrophage (AM) is believed to be of central importance in the immune response against infection and tumour. We examined patients with lung cancer in order to evaluate the immuno-stimulatory potential of AM in lung cancer. Bronchoalveolar lavage fluid samples were obtained from patients with adenocarcinoma, squamous cell carcinoma, large cell undifferentiated lung carcinoma, small cell carcinoma and control subjects. AM were isolated and phagocytic function, flow cytometry and cytokine analysis were assessed. AM from patients with small and squamous cell carcinoma had impaired uptake in vitro of 40 nm fluorescent polystyrene beads. AM from patients with small, squamous and large cell undifferentiated carcinoma showed impaired uptake of 1000 nm fluorescent polystyrene beads. Secreted levels of TNF-alpha and IL-1 from AM of patients with small, squamous, and large cell undifferentiated carcinoma were decreased compared to controls. Secreted AM IL-6 levels were decreased in small and large cell undifferentiated carcinoma. AM from adenocarcinoma patients showed similar levels of IL-10, IL-6, IL-1 and TNF-alpha compared to controls. Phenotypic analysis demonstrated that patients with small cell carcinoma were the only group that showed a decrease in MHC class II surface expression. Surface expression of ICAM-1 and CD83 was decreased on AM from patients with large, squamous and small cell carcinoma compared to controls but not adenocarcinoma. Mannose receptor levels were only decreased on AM from patients with squamous and small cell carcinoma but not adenocarcinoma and large cell undifferentiated carcinoma. We conclude that there are type-specific alterations in uptake ability, cytokine secretion and phenotype of AM from lung cancer patients, which may result in an inability to stimulate anti-tumour immunity. The observed differences between lung cancer subgroups may explain previously reported inconsistencies in descriptions of AM characteristics in lung cancer.
Collapse
Affiliation(s)
- D S Pouniotis
- Immunology and Vaccine Laboratory, Austin Research Institute, Heidelberg, Victoria, Australia
| | | | | | | |
Collapse
|