1
|
Yadav P, Mohapatra S, Jaiswal PO, Dokka N, Tyagi S, Sreevathsa R, Shasany AK. Characterization of a novel cytosolic sesquiterpene synthase MpTPS4 from Mentha ×piperita as a bioresource for the enrichment of invaluable viridiflorol in mentha essential oil. Int J Biol Macromol 2024; 277:134214. [PMID: 39069055 DOI: 10.1016/j.ijbiomac.2024.134214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Our research addresses the challenge of low concentrations of viridiflorol, a unique and highly valuable sesquiterpene found in various Mentha species. We employed biotechnological strategies to enhance viridiflorol production, which could significantly boost export revenue. Mentha piperita L. sesquiterpene synthase (MpTPS4) was the focus of our study because it is a key enzyme in the biosynthesis of viridiflorol. Through biochemical characterization, we confirmed that MpTPS4 exclusively synthesizes viridiflorol. By overexpressing MpTPS4 in M. ×piperita L. using a glandular trichome-specific promoter, we achieved a notable increase (9-25 %) in viridiflorol content. Additionally, we explored the practical application of viridiflorol as a deterrent against the herbivore Helicoverpa armigera. The RNAi-mediated knockdown of MpTPS4 resulted in a significant reduction in viridiflorol levels in the essential oil. More importantly, these results show how relevant MpTPS4 is for making viridiflorol and how biotechnology could be used to increase biosynthesis. Our research provides valuable insights into enhancing the production of this commercially important sesquiterpene, offering promising opportunities for the mentha industry.
Collapse
Affiliation(s)
- Pallavi Yadav
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, UP, India
| | - Soumyajit Mohapatra
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka O Jaiswal
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, UP, India
| | - Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India.
| | - Ajit Kumar Shasany
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, UP, India; CSIR-National Botanical Research Institute, Lucknow 226001, UP, India.
| |
Collapse
|
2
|
Fujiwara MT, Yoshioka Y, Kazama Y, Hirano T, Niwa Y, Moriyama T, Sato N, Abe T, Yoshida S, Itoh RD. Principles of amyloplast replication in the ovule integuments of Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:137-152. [PMID: 38829834 PMCID: PMC11376375 DOI: 10.1093/plphys/kiae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
- Department of Biology, Graduate School of Science and Technology, Sophia University, Kioicho, Chiyoda 102-8554, Japan
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yasushi Yoshioka
- Graduate School of Science, Nagoya University, Furo-cho, Nagoya 464-8602, Japan
| | - Yusuke Kazama
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Tomonari Hirano
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasuo Niwa
- Laboratory of Plant Cell Technology, University of Shizuoka, Yada, Shizuoka 422-8526, Japan
| | - Takashi Moriyama
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Naoki Sato
- College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
3
|
Yoshimura R, Minamikawa S, Suzuki T, Goto K, Latrasse D, Sicar S, Raynaud C, Benhamed M, Yoshioka Y. CRUMPLED LEAF supports plastid OUTER ENVELOPE PROTEIN OF 80 KDA complex formation in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:2422-2433. [PMID: 38235762 DOI: 10.1093/plphys/kiae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
Embedded β-barrel proteins in the outer envelope membrane mediate most cellular trafficking between the cytoplasm and plastids. Although the TRANSLOCON AT THE OUTER ENVELOPE MEMBRANE OF CHLOROPLASTS 75-V (TOC75-V)/OUTER ENVELOPE PROTEIN OF 80 KDA (OEP80) complex has been implicated in the insertion and assembly of β-barrel proteins in the outer envelope membrane of Arabidopsis (Arabidopsis thaliana) chloroplasts, relatively little is known about this process. CRUMPLED LEAF (CRL) encodes a chloroplast outer envelope membrane-localized protein, and its loss-of-function mutation results in pleiotropic defects, including altered plant morphogenesis, growth retardation, suppression of plastid division, and spontaneous light intensity-dependent localized cell death. A suppressor screen conducted on mutagenized crl mutants revealed that a missense mutation in OEP80 suppresses the pleiotropic defects of crl. Furthermore, we found that OEP80 complex formation is compromised in crl. Additionally, we demonstrated that CRL interacts with OEP80 in vivo and that a portion of CRL is present at the same molecular weight as the OEP80 complex. Our results suggest that CRL interacts with OEP80 to facilitate its complex formation. CRL is involved in plastid protein import; therefore, the pleiotropic defects in crl are likely due to the combined effects of decreased plastid protein import and altered membrane integration of β-barrel proteins in the outer envelope membrane. This study sheds light on the mechanisms that allow β-barrel protein integration into the plastid outer envelope membrane and the importance of this finding for plant cellular processes.
Collapse
Affiliation(s)
- Ryo Yoshimura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Syun Minamikawa
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Kotaro Goto
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David Latrasse
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, 91405 Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Sanchari Sicar
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, 91405 Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Cécile Raynaud
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, 91405 Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Moussa Benhamed
- CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, 91405 Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- Institut Universitaire de France (IUF)
| | - Yasushi Yoshioka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Łabuz J, Banaś AK, Zgłobicki P, Bażant A, Sztatelman O, Giza A, Lasok H, Prochwicz A, Kozłowska-Mroczek A, Jankowska U, Hermanowicz P. Phototropin2 3'UTR overlaps with the AT5G58150 gene encoding an inactive RLK kinase. BMC PLANT BIOLOGY 2024; 24:55. [PMID: 38238701 PMCID: PMC10795372 DOI: 10.1186/s12870-024-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND This study examines the biological implications of an overlap between two sequences in the Arabidopsis genome, the 3'UTR of the PHOT2 gene and a putative AT5G58150 gene, encoded on the complementary strand. AT5G58150 is a probably inactive protein kinase that belongs to the transmembrane, leucine-rich repeat receptor-like kinase family. Phot2 is a membrane-bound UV/blue light photoreceptor kinase. Thus, both proteins share their cellular localization, on top of the proximity of their loci. RESULTS The extent of the overlap between 3'UTR regions of AT5G58150 and PHOT2 was found to be 66 bp, using RACE PCR. Both the at5g58150 T-DNA SALK_093781C (with insertion in the promoter region) and 35S::AT5G58150-GFP lines overexpress the AT5G58150 gene. A detailed analysis did not reveal any substantial impact of PHOT2 or AT5G58150 on their mutual expression levels in different light and osmotic stress conditions. AT5G58150 is a plasma membrane protein, with no apparent kinase activity, as tested on several potential substrates. It appears not to form homodimers and it does not interact with PHOT2. Lines that overexpress AT5G58150 exhibit a greater reduction in lateral root density due to salt and osmotic stress than wild-type plants, which suggests that AT5G58150 may participate in root elongation and formation of lateral roots. In line with this, mass spectrometry analysis identified proteins with ATPase activity, which are involved in proton transport and cell elongation, as putative interactors of AT5G58150. Membrane kinases, including other members of the LRR RLK family and BSK kinases (positive regulators of brassinosteroid signalling), can also act as partners for AT5G58150. CONCLUSIONS AT5G58150 is a membrane protein that does not exhibit measurable kinase activity, but is involved in signalling through interactions with other proteins. Based on the interactome and root architecture analysis, AT5G58150 may be involved in plant response to salt and osmotic stress and the formation of roots in Arabidopsis.
Collapse
Affiliation(s)
- Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Giza
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Hanna Lasok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Aneta Prochwicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Anna Kozłowska-Mroczek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| |
Collapse
|
5
|
Kuběnová L, Haberland J, Dvořák P, Šamaj J, Ovečka M. Spatiotemporal distribution of reactive oxygen species production, delivery, and use in Arabidopsis root hairs. PLANT PHYSIOLOGY 2023; 193:2337-2360. [PMID: 37666000 PMCID: PMC10663114 DOI: 10.1093/plphys/kiad484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Fluorescent selective probes for reactive oxygen species (ROS) detection in living cells are versatile tools for the documentation of ROS production in plant developmental or stress reactions. We employed high-resolution live-cell imaging and semiquantitative analysis of Arabidopsis (Arabidopsis thaliana) stained with CM-H2DCFDA, CellROX Deep Red, and Amplex Red for functional characterization of the spatiotemporal mode of ROS production, delivery, and utilization during root hair formation. Cell viability marker fluorescein diacetate served as a positive control for dye loading and undisturbed root hair tip growth after staining. Using a colocalization analysis with subcellular molecular markers and two root hair mutants with similar phenotypes of nonelongating root hairs, but with contrasting reasons for this impairment, we found that: (i) CM-H2DCFDA is a sensitive probe for ROS generation in the cytoplasm, (ii) CellROX Deep Red labels ROS in mitochondria, (iii) Amplex Red labels apoplastic ROS and mitochondria and shows high selectivity to root hairs, (iv) the root hair defective 2-1 (rhd2-1) mutant with nonfunctional NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG PROTEIN C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2) has a low level of CM-H2DCFDA-reactive ROS in cytoplasm and lacks Amplex Red-reactive ROS in apoplast, and (v) the ACTIN2-deficient deformed root hairs1-3 (der1-3) mutant is not altered in these aspects. The sensitivity of CellROX Deep Red was documented by discrimination between larger ROS-containing mitochondria and small, yet ROS-free premature mitochondria in the growing tip of root hairs. We characterized spatial changes in ROS production and compartmentalization induced by external ROS modulators, ethylene precursor 1-aminocyclopropane-1-carboxylic acid, and ionophore valinomycin. This dynamic and high-resolution study of ROS production and utilization opens opportunities for precise speciation of particular ROS involved in root hair formation.
Collapse
Affiliation(s)
- Lenka Kuběnová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Haberland
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Miller S, Rønager A, Holm R, Fontanet-Manzaneque JB, Caño-Delgado AI, Bjarnholt N. New methods for sorghum transformation in temperate climates. AOB PLANTS 2023; 15:plad030. [PMID: 37396498 PMCID: PMC10308921 DOI: 10.1093/aobpla/plad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Sorghum (Sorghum bicolor) is an emerging cereal crop in temperate climates due to its high drought tolerance and other valuable traits. Genetic transformation is an important tool for the improvement of cereals. However, sorghum is recalcitrant to genetic transformation which is almost only successful in warmer climates. Here, we test the application of two new techniques for sorghum transformation in temperate climates, namely transient transformation by Agrobacterium tumefaciens-mediated agroinfiltration and stable transformation using gold particle bombardment and leaf whorls as explants. We optimized the transient transformation method, including post-infiltration incubation of plants in the dark and using Agrobacterium grown on plates with a high cell density (OD600 = 2.0). Expression of the green fluorescence protein (GFP)-tagged endogenous sorghum gene SbDHR2 was achieved with low transformation efficiency, and our results point out a potential weakness in using this approach for localization studies. Furthermore, we succeeded in the production of callus and somatic embryos from leaf whorls, although no genetic transformation was accomplished with this method. Both methods show potential, even if they seem to be influenced by climatic conditions and therefore need further optimization to be applied routinely in temperate climates.
Collapse
Affiliation(s)
- Sara Miller
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Asta Rønager
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Rose Holm
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Nanna Bjarnholt
- Section for Plant Biochemistry, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksbergs, Denmark
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
7
|
Kojima S, Minagawa H, Yoshida C, Inoue E, Takahashi H, Ishiyama K. Coregulation of glutamine synthetase1;2 ( GLN1;2) and NADH-dependent glutamate synthase ( GLT1) gene expression in Arabidopsis roots in response to ammonium supply. FRONTIERS IN PLANT SCIENCE 2023; 14:1127006. [PMID: 36890884 PMCID: PMC9986259 DOI: 10.3389/fpls.2023.1127006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Ammonium absorbed by roots is assimilated into amino acids. The glutamine synthetase/glutamate synthase (glutamine 2-oxoglutarate aminotransferase) (GS/GOGAT) cycle is essential to this biological process. In Arabidopsis thaliana, GLN1;2 and GLT1 are the GS and GOGAT isoenzymes induced in response to ammonium supply and playing key roles in ammonium utilization. Although recent studies suggest gene regulatory networks involved in transcriptional regulation of ammonium-responsive genes, direct regulatory mechanisms for ammonium-induced expression of GS/GOGAT remain unclear. In this study, we revealed that the expression of GLN1;2 and GLT1 in Arabidopsis is not directly induced by ammonium but is regulated by glutamine or post-glutamine metabolites produced by ammonium assimilation. Previously, we identified a promoter region required for ammonium-responsive expression of GLN1;2. In this study, we further dissected the ammonium-responsive region of the GLN1;2 promoter and also performed a deletion analysis of the GLT1 promoter, which led to the identification of a conserved ammonium-responsive region. Yeast one-hybrid screening using the ammonium-responsive region of the GLN1;2 promoter as a decoy sequence revealed a trihelix family transcription factor DF1 that binds to this region. A putative DF1 binding site was also found in the ammonium-responsive region of the GLT1 promoter.
Collapse
Affiliation(s)
- Soichi Kojima
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Haruka Minagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Chika Yoshida
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Eri Inoue
- Plant Science Center, RIKEN, Yokohama, Japan
| | - Hideki Takahashi
- Plant Science Center, RIKEN, Yokohama, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Keiki Ishiyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Plant Science Center, RIKEN, Yokohama, Japan
| |
Collapse
|
8
|
Hiwatashi Y, Murata T. Using Spinning Disk Microscopy to Observe the Mitotic and Cytokinetic Apparatus in Physcomitrium patens. Methods Mol Biol 2023; 2604:159-171. [PMID: 36773232 DOI: 10.1007/978-1-0716-2867-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Protonemata of the moss Physcomitrium patens are ideal structures in which to observe cytoskeletal organization and dynamics. Special care is needed to prepare P. patens cultures for high-resolution microscopy. Here, we describe methods for spinning disk microscopy of dividing P. patens cells expressing sGFP-tubulin and H2B-mCherry, including detailed methods for culturing P. patens.
Collapse
Affiliation(s)
- Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan.
| |
Collapse
|
9
|
Gani U, Nautiyal AK, Kundan M, Rout B, Pandey A, Misra P. Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6186-6206. [PMID: 35662335 DOI: 10.1093/jxb/erac249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The β-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Moriwaki K, Yanagisawa S, Iba K, Negi J. Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:440-451. [PMID: 35061307 DOI: 10.1111/tpj.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.
Collapse
Affiliation(s)
- Kosuke Moriwaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress. Saudi J Biol Sci 2021; 28:5800-5807. [PMID: 34588894 PMCID: PMC8459076 DOI: 10.1016/j.sjbs.2021.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
Cyclic nucleotide gated ion channels (CNGCs) in plants have very important role in signaling and development. The study reports role of CNGC19 and CNGC20 in salt stress in A. thaliana. In-silico, genome wide analysis showed that CNGC19 and CNGC20 are related to salt stress with maximum expression after 6 h in A. thaliana. The position of inserted T-DNA was determined (in-vivo) through TAIL-PCR for activation tagged mutants of CNGC19 and CNGC20 under salt stress. The expression of AtCNGC19 and AtCNGC20 after cloning under 35S promoter of expression vectors pBCH1 and pEarleyGate100 was determined in A. thaliana by real-time PCR analysis. Genome wide analysis showed that AtCNGC11 had lowest and AtCNGC20 highest molecular weight as well as number of amino acid residues. In-vivo expression of AtCNGC19 and AtCNGC20 was enhanced through T-DNA insertion and 35S promoter in over-expressed plants under high salt concentration. AtCNGC19 was activated twice in control and about five times under 150 mM NaCl stress level, and expression value was also higher than AtCNGC20. Phenotypically, over-expressed plants and calli were healthier while knock-out plants and calli showed retarded growth under salinity stress. The study provides new insight for the role of AtCNGC19 and AtCNGC20 under salt stress regulation in A. thaliana and will be helpful for improvement of crop plants for salt stress to combat food shortage and security.
Collapse
|
12
|
An Apoplastic Defensin of Wheat Elicits the Production of Extracellular Polysaccharides in Snow Mold. PLANTS 2021; 10:plants10081607. [PMID: 34451652 PMCID: PMC8400062 DOI: 10.3390/plants10081607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
TAD1 (Triticum aestivum defensin 1) is a plant defensin specifically induced by low temperature in winter wheat. In this study, we demonstrated that TAD1 accumulated in the apoplast during cold acclimation and displayed antifungal activity against the pink snow mold fungi Microdochium nivale. When M. nivale was treated with TAD1, Congo red-stainable extracellular polysaccharides (EPS) were produced. The EPS were degradable by cellulase treatment, suggesting the involvement of β-1,4 glucans. Interestingly, when the fungus was treated with FITC-labeled TAD1, fluorescent signals were observed within the EPS layer. Taken together, these results support the hypothesis that the EPS plays a role as a physical barrier against antimicrobial proteins secreted by plants. We anticipate that the findings from our study will have broad impact and will increase our understanding of plant–snow mold interactions under snow.
Collapse
|
13
|
Nishikawa SI, Yamaguchi Y, Suzuki C, Yabe A, Sato Y, Kurihara D, Sato Y, Susaki D, Higashiyama T, Maruyama D. Arabidopsis GEX1 Is a Nuclear Membrane Protein of Gametes Required for Nuclear Fusion During Reproduction. FRONTIERS IN PLANT SCIENCE 2020; 11:548032. [PMID: 33154760 PMCID: PMC7586128 DOI: 10.3389/fpls.2020.548032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/15/2020] [Indexed: 05/25/2023]
Abstract
During the life cycle of flowering plants, nuclear fusion, or karyogamy, occurs three times: once during female gametogenesis, when the two polar nuclei fuse in the central cell, and twice during double fertilization. In Arabidopsis thaliana, nuclear fusion events during sexual reproduction proceed without the breakdown of the nuclear envelope, indicating that nuclear membrane fusion is essential for the completion of this process. Arabidopsis gamete expressed 1 (GEX1) is a membrane protein that is conserved among plant species. GEX1 shares homology with the yeast karyogamy protein Kar5, which is primarily expressed in the nuclear membrane. The GEX1 family represents a putative karyogamy factor. Herein, we show that GEX1 is required for the nuclear fusion events in Arabidopsis reproduction. GEX1-deficient mature female gametophytes were found to contain two unfused polar nuclei in close proximity within the central cell. Electron microscopy showed that the outer membrane of the polar nuclei was connected via the endoplasmic reticulum, whereas the inner membrane remained unfused. These results indicate that GEX1 is involved in polar nuclear membrane fusion following the fusion of the outer nuclear membrane. Furthermore, sperm nuclear fusion events were defective in the fertilized egg and central cell following plasmogamy in the fertilization of gex1-1 female gametophytes by gex1-1 pollen. An analysis of GEX1 localization in the female gametophyte using a transgenic line expressing GFP-tagged GEX1 driven by the GEX1 promoter showed that GEX1 is a nuclear membrane protein in the egg and central cell. Time-lapse live-cell imaging showed that in developing female gametophytes, the nuclear GFP-GEX1 signal was first detectable in the central cell shortly before the polar nuclei came in close contact, and then in the egg cell. Thus, we suggest that the GEX1-family proteins are nuclear membrane proteins involved in karyogamy in the reproduction of eukaryotes including flowering plants.
Collapse
Affiliation(s)
| | - Yuki Yamaguchi
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Chiharu Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Ayaka Yabe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yuzuru Sato
- Biology Program, Faculty of Science, Niigata University, Niigata, Japan
| | - Daisuke Kurihara
- Japan Science and Technology Agency, PRESTO, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
14
|
Islam MS, Van Nguyen T, Sakamoto W, Takagi S. Phototropin- and photosynthesis-dependent mitochondrial positioning in Arabidopsis thaliana mesophyll cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1352-1371. [PMID: 31961050 DOI: 10.1111/jipb.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue-light-dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue-light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop-and-go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma-membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2- and photosynthesis-dependent signals. The present study might add novel regulatory mechanism for light-dependent plant organelle interactions.
Collapse
Affiliation(s)
- Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Toan Van Nguyen
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
- Agricultural Genetics Institute, National Key Laboratory for Plant Cell Biotechnology, Pham Van Dong road, Bac Tu Liem district, Ha Noi, Vietnam
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
15
|
Garagounis C, Beritza K, Georgopoulou ME, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou KK. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialised metabolite pathway elucidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:451-462. [PMID: 32659648 DOI: 10.1016/j.plaphy.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The development of genetic transformation methods is critical for enabling the thorough characterization of an organism and is a key step in exploiting any species as a platform for synthetic biology and metabolic engineering approaches. In this work we describe the development of an Agrobacterium rhizogenes-mediated hairy root transformation protocol for the crop and medicinal legume fenugreek (Trigonella foenum-graecum). Fenugreek has a rich and diverse content in bioactive specialised metabolites, notably diosgenin, which is a common precursor for synthetic human hormone production. This makes fenugreek a prime target for identification and engineering of specific biosynthetic pathways for the production of triterpene and steroidal saponins, phenolics, and galactomanans. Through this transformation protocol, we identified a suitable promoter for robust transgene expression in fenugreek. Finally, we establish the proof of principle for the utility of the fenugreek system for metabolic engineering programs, by heterologous expression of known triterpene saponin biosynthesis regulators from the related legume Medicago truncatula in fenugreek hairy roots.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Konstantina Beritza
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria-Eleni Georgopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Prashant Sonawane
- Faculty of Biochemistry, Department of Plant Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Kosmas Haralampidis
- Faculty of Botany, Department of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Asaph Aharoni
- Faculty of Biochemistry, Department of Plant Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
16
|
Utsunomiya H, Fujita M, Naito F, Kaneta T. Cell cycle-dependent dynamics of a plant intermediate filament motif protein with intracellular localization related to microtubules. PROTOPLASMA 2020; 257:1387-1400. [PMID: 32488394 DOI: 10.1007/s00709-020-01512-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Although intermediate filaments (IFs) are biochemically and immunologically suggested to exist in plant cells, there are few molecular genetic studies related to the proteins that form these structures. In this study, Arabidopsis AT3G05270 was selected as a candidate gene for a protein constituting IF in plant cells. The protein encoded by AT3G05270 has a large α-helix as well as the IF protein motif indispensable for maintaining the structures of IF. Moreover, fluorescence signals of this protein fused with GFP exhibited cytoskeleton-like filamentous structures in plant cells. Thus, we named the protein encoded by AT3G05270 as Intermediate Filament Motif Protein 1 (IFMoP1). The structures composed of IFMoP1 and their localizations were examined in IFMoP1-GFP-expressing tobacco BY-2 cells whose cell cycle was synchronized using aphidicolin, a DNA synthesis inhibitor, and propyzamide, a microtubule-disrupting agent. The IFMoP1-GFP signals were present at the spindles and phragmoplasts in the mitotic phase. In addition, the frequency of cells with cytoskeleton-like filamentous structures composed of IFMoP1-GFP increased with the increase in cells that completed cell division, and then decreased after several hours. In terms of the relationship in intracellular localization between IFMoP1 and microtubules, the filamentous structures composed of IFMoP1 were present independently of microtubules during interphase. In living cells, these filamentous structures moved along with the nucleus. IFMoP1 co-localized with spindle and phragmoplast microtubules during mitosis, as well as with a part of the cortical microtubules in interphase.
Collapse
Affiliation(s)
- Hikaru Utsunomiya
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Masayuki Fujita
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Fumio Naito
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tsuyoshi Kaneta
- Department of Chemistry & Biology, Graduate School of Science & Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
17
|
Kuki Y, Ohno R, Yoshida K, Takumi S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:71-79. [PMID: 32120271 DOI: 10.1016/j.plaphy.2020.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hybrid necrosis and hybrid chlorosis are sometimes observed in interspecific hybrids between the tetraploid wheat cultivar Langdon and diploid wild wheat Aegilops tauschii. Many WRKY transcription factor genes are dramatically upregulated in necrosis and chlorosis wheat hybrids. Here, we isolated cDNA clones for four wheat WRKY transcription factor genes, TaWRKY49, TaWRKY92, TaWRKY112, and TaWRKY142, that were commonly upregulated in the hybrid necrosis and hybrid chlorosis and belonged to the same clade of the WRKY gene family. Expression patterns of the four TaWRKY genes in response to several stress conditions were similar in wheat seeding leaves. The four TaWRKY-GFP fusion proteins were targeted to the nucleus in onion epidermal cells. The TaWRKY gene expression levels were increased by high salt, dehydration, darkness, and blast fungus treatment in common wheat. Expression of either of the TaWRKY genes increased salinity and osmotic stress tolerance accompanied with overexpression of STZ/Zat10, and induced overexpression of the salicylic acid-signal pathway marker gene AtPR1 in transgenic Arabidopsis. TaWRKY142 expression also induced the jasmonic acid-pathway marker gene AtPDF1.2 and enhanced resistance against the fungal pathogen Colletotrichum higginsianum in transgenic Arabidopsis. These results suggest that the four TaWRKY genes act as integrated hubs of multiple stress signaling pathways in wheat and play important roles in autoimmune response-inducing hybrid necrosis and hybrid chlorosis.
Collapse
Affiliation(s)
- Yasunobu Kuki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Ryoko Ohno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| |
Collapse
|
18
|
Utsugi S, Ashikawa I, Nakamura S, Shibasaka M. TaABI5, a wheat homolog of Arabidopsis thaliana ABA insensitive 5, controls seed germination. JOURNAL OF PLANT RESEARCH 2020; 133:245-256. [PMID: 32048094 DOI: 10.1007/s10265-020-01166-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/20/2020] [Indexed: 05/25/2023]
Abstract
Abscisic acid (ABA) response element (ABRE)-binding factors (ABFs) are basic region/leucine zipper motif (bZIP) transcription factors that regulate the expression of ABA-induced genes containing ABRE in their promoters. The amino acid sequence of the wheat bZIP protein, TaABI5, showed high homology to that of Arabidopsis ABA insensitive 5 (ABI5). TaABI5 was classified into the clade of ABI5s in Arabidopsis and rice, unlike TRAB1 of rice, Wabi5 of wheat, and HvABI5 of barley in the bZIP Group A family, by a phylogenetic analysis. TaABI5 was strongly expressed in seeds during the late ripening and maturing stages; however, its expression level markedly decreased after germination. An in situ hybridization analysis showed that TaABI5 mRNA accumulated in seed embryos, particularly the scutellum. In a transient assay using wheat aleurone cells, TaABI5 activated the promoter of Em containing ABRE, which is an embryogenesis abundant protein gene, indicating that TaABI5 acts as a transcription factor in wheat seeds. Furthermore, the seeds of transgenic Arabidopsis lines introduced with 35S:TaABI5 exhibited high sensitivity to ABA and the inhibition of germination. The seed dormancy of the transgenic Arabidopsis lines was stronger than that of Col. These results support TaABI5 playing an important role in mature seeds, particularly before seed germination, and acting as a functional ortholog to Arabidopsis ABI5.
Collapse
Affiliation(s)
- Shigeko Utsugi
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Ikuo Ashikawa
- Institute of Crop Science, NARO, 2-1-2 Kannonndai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shingo Nakamura
- Institute of Crop Science, NARO, 2-1-2 Kannonndai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
19
|
Zuo ZF, Kang HG, Park MY, Jeong H, Sun HJ, Song PS, Lee HY. Zoysia japonica MYC type transcription factor ZjICE1 regulates cold tolerance in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110254. [PMID: 31623785 DOI: 10.1016/j.plantsci.2019.110254] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 05/21/2023]
Abstract
ICE1 (Inducer of CBF Expression 1) is a regulator of cold-induced transcriptome, which plays an important role in plant cold response pathway. To enhance the cold tolerance of Zoysia japonica, one of the warm-season turfgrasses, it is helpful to understand the cold response mechanism in Zoysia japonica. We identified stress-responsive ZjICE1 from Zoysia japonica and characterized its function in cold stress. Our results showed that ZjICE1 shared the typical feature of ICE homolog proteins belonging to a nucleic protein. Transactivation activity assay revealed that ZjICE1 bound to the MYC cis-element in the ZjDREB1's promotor. The ZjICE1 overexpressed transgenic Arabidopsis showed enhanced tolerance to cold stress with an increases in SOD, POD, and free proline content and reduction in MDA content. They also induced the transcripts abundance of cold-responsive genes (CBF1, CBF2, CBF3, COR47A, KIN1, and RD29A) after cold treatment. These results suggest that ZjICE1 is a positive regulator in Zoysia japonica plant during cold stress and can be a useful gene for the molecular breeding program to develop the cold tolerant zoysiagrass. Furthermore, the ZjICE1 also conferred resistance to salt and drought stresses, providing the better understanding of the basic helix-loop-helix (bHLH) gene family in abiotic stress responses.
Collapse
Affiliation(s)
- Zhi-Fang Zuo
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hong-Gyu Kang
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| | - Mi-Young Park
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hana Jeong
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Hyo-Yeon Lee
- Department of Biotechnology, Jeju National University, Jeju, Republic of Korea; Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea.
| |
Collapse
|
20
|
Agarwal P, Pathak S, Kumar RS, Dhar YV, Pandey A, Shukla S, Trivedi PK. 3'O-Methyltransferase, Ps3'OMT, from opium poppy: involvement in papaverine biosynthesis. PLANT CELL REPORTS 2019; 38:1235-1248. [PMID: 31190213 DOI: 10.1007/s00299-019-02439-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Using, in silico, in vitro and in planta functional assays, we demonstrate that Ps3'OMT, an 3'-O methyl transferase is linked to papaverine biosynthesis in opium poppy. Papaverine, one of the benzylisoquinoline alkaloids (BIA) synthesized in the medicinally important plant, Papaver somniferum, is known for the potent pharmacological properties. Papaverine biosynthesis has remained debatable as two different pathways, NH (involving N-desmethylated intermediates) and the NCH3 (involving N-methylated intermediates), have been proposed. In addition, there are several intermediate steps in both the proposed pathways that are not very well characterized in terms of specific enzymes. In this study, we report the identification and functional characterization of 3'O-methyltransferase (Ps3'OMT) which might participate in the 3'O-methylation of the intermediates in the papaverine biosynthesis. Comparison of transcript and metabolite profiles of high and low papaverine producing cultivar revealed the occurrence of a 3'O-methyltransferase, Ps3'OMT, which was abundant in aerial organs and shared 72% identity with the GfLOMT7 predicted to have 3'OMT activity. In silico studies based on homology modeling, docking and MD simulations predicted (S)-norlaudanine as the potential substrate forming a stable complex with Ps3'OMT. Suppression of Ps3'OMT through virus-induced gene silencing resulted in a remarkable decrease in the level of papaverine in comparison to control plants. The characterization of the functionally unique Ps3'OMT involved in BIA metabolism suggests an involvement of the NH pathway leading to papaverine biosynthesis.
Collapse
Affiliation(s)
- Parul Agarwal
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumya Pathak
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Ravi Shankar Kumar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogeshwar Vikram Dhar
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashutosh Pandey
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sudhir Shukla
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Kakiyama S, Tabara M, Nishibori Y, Moriyama H, Fukuhara T. Long DCL4-substrate dsRNAs efficiently induce RNA interference in plant cells. Sci Rep 2019; 9:6920. [PMID: 31061468 PMCID: PMC6502814 DOI: 10.1038/s41598-019-43443-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/26/2019] [Indexed: 12/29/2022] Open
Abstract
RNA interference (RNAi) is induced by the direct transfer of double-stranded RNAs (dsRNAs) into protoplasts prepared from Arabidopsis thaliana seedlings. In this protoplast RNAi system, we compared the efficacies of various-sized dsRNAs (between 21 and 139 nucleotides [nt]) for inducing RNAi and assessed the dsRNA-cleaving activities of Dicer-like 3 (DCL3) and 4 (DCL4). After the direct transfer of dsRNAs into protoplasts, cleaved RNA products of 21 nt were detected from long 130- or 500-nt dsRNAs by DCL4 but not from 37-nt dsRNAs. These results indicate that DCL4 preferentially cleaves long dsRNAs in protoplasts, consistent with our previous biochemical data regarding the substrate specificity of DCL4. Direct transfer of long dsRNAs of approximately 130 nt into protoplasts induces RNAi much more effectively (by approximately 60- to 400-fold) than direct transfer of short 37-nt dsRNAs. Although transfer of 21-nt dsRNAs into protoplasts induced RNAi without DCL4 activity, the induction of RNAi was less effective (by approximately 0.01-fold) compared with long dsRNAs. These results indicate that cleavage of long dsRNAs exceeding 100 nt by DCL4 into 21-nt dsRNAs is essential for efficient induction of RNAi in plant cells.
Collapse
Affiliation(s)
- Sayaka Kakiyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Yuki Nishibori
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
22
|
Sogawa A, Yamazaki A, Yamasaki H, Komi M, Manabe T, Tajima S, Hayashi M, Nomura M. SNARE Proteins LjVAMP72a and LjVAMP72b Are Required for Root Symbiosis and Root Hair Formation in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2019; 9:1992. [PMID: 30700990 PMCID: PMC6343493 DOI: 10.3389/fpls.2018.01992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 05/27/2023]
Abstract
SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins mediate membrane trafficking in eukaryotic cells. Both LjVAMP72a and LjVAMP72b are members of R-SNARE and belong to a symbiotic subgroup of VAMP72 in Lotus japonicus. Their sequences are closely related and both were induced in the root upon rhizobial inoculation. The expression level of LjVAMP72a in the nodules was higher than in the leaves or roots; however, LjVMAP72b was expressed constitutively in the leaves, roots, and nodules. Immunoblot analysis showed that not only LjVAMP72a but also LjVAMP72b were accumulated in a symbiosome-enriched fraction, suggesting its localization in the symbiosome membrane during nodulation. Since there was 89% similarity between LjVAMP72a and LjVAMP72b, knockdown mutant by RNAi suppressed both genes. The suppression of both genes impaired root nodule symbiosis (RNS). The number of bacteroids and the nitrogen fixation activity were severely curtailed in the nodules formed on knockdown roots (RNAi-LjVAMP72a/72b). Arbuscular mycorrhization (AM) was also attenuated in knockdown roots, indicating that LjVAMP72a and LjVAMP72b were required to establish not only RNS but also AM. In addition, transgenic hairy roots of RNAi-LjVAMP72a/72b suppressed the elongation of root hairs without infections by rhizobia or arbuscular mycorrhizal fungi. Amino acid alignment showed the symbiotic subclade of VAMP72s containing LjVAMP72a and LjVAMP72b were a conserved six amino acid region (HHQAQD) within the SNARE motif. Taken together, our data suggested that LjVAMP72a and LjVAMP72b positively controlled both symbioses and root hair formation by affecting the secretory pathway.
Collapse
Affiliation(s)
- Aoi Sogawa
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | | | | | - Misa Komi
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Tomomi Manabe
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | | | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| |
Collapse
|
23
|
Bahaji A, Muñoz FJ, Seguí-Simarro JM, Camacho-Fernández C, Rivas-Sendra A, Parra-Vega V, Ovecka M, Li J, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Pozueta-Romero J. Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:242. [PMID: 30915089 PMCID: PMC6423154 DOI: 10.3389/fpls.2019.00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/13/2019] [Indexed: 05/10/2023]
Abstract
Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial localization of ZmBT1-1 suggested that this protein may have as-yet unidentified function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and characterized transgenic Zmbt1-1 plants expressing ZmBT1-1 delivered specifically to mitochondria. Metabolic and differential proteomic analyses showed down-regulation of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism, and up-regulation of the conversion of sucrose breakdown products generated by cell wall invertase (CWI) into ethanol and alanine, in Zmbt1-1 endosperms compared to wild-type. Electron microscopic analyses of Zmbt1-1 endosperm cells showed gross alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern, metabolic profile, and aberrant mitochondrial ultrastructure of Zmbt1-1 endosperms were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented here provide evidence that the reduced starch content in Zmbt1-1 endosperms is at least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of sucrose into ethanol and alanine metabolism, and (iii) reduced SuSy-mediated channeling of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1 is not the sole ADPglucose transporter in maize endosperm amyloplasts. The possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial AMP and cytosolic ADP is discussed.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
| | - Jose María Seguí-Simarro
- COMAV - Institute for Conservation & Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Carolina Camacho-Fernández
- COMAV - Institute for Conservation & Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Alba Rivas-Sendra
- COMAV - Institute for Conservation & Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Verónica Parra-Vega
- COMAV - Institute for Conservation & Improvement of Valencian Agrodiversity, Universitat Politècnica de València, Valencia, Spain
| | - Miroslav Ovecka
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
- Department of Cell Biology, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czechia
| | - Jun Li
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas, Gobierno de Navarra, Navarra, Spain
- *Correspondence: Javier Pozueta-Romero
| |
Collapse
|
24
|
Li H, Ji G, Wang Y, Qian Q, Xu J, Sodmergen, Liu G, Zhao X, Chen M, Zhai W, Li D, Zhu L. WHITE PANICLE3, a Novel Nucleus-Encoded Mitochondrial Protein, Is Essential for Proper Development and Maintenance of Chloroplasts and Mitochondria in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:762. [PMID: 29928286 PMCID: PMC5997807 DOI: 10.3389/fpls.2018.00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 09/11/2023]
Abstract
Mitochondria and chloroplasts are interacting organelles that play important roles in plant development. In addition to a small number proteins encoded by their own genomes, the majority of mitochondrial and chloroplast proteins are encoded in the cell nucleus and imported into the organelle. As a consequence, coordination between mitochondria, chloroplasts, and the nucleus is of crucial importance to plant cells. Variegated mutants are chloroplast-defective mutants and are considered to be ideal models for studying the intercommunication between these organelles. Here, we report the isolation of WHITE PANICLE3 (WP3), a nuclear gene involved in variegation, from a naturally occurring white panicle rice mutant. Disrupted expression of WP3 in the mutant leads to severe developmental defects in both chloroplasts and mitochondria, and consequently causes the appearance of white-striped leaves and white panicles in the mutant plants. Further investigation showed that WP3 encodes a protein most likely targeted to mitochondria and is specifically expressed in rice panicles. Interestingly, we demonstrate that the recessive white-panicle phenotype in the wp3 mutant is inherited in a typical Mendelian manner, while the white-striped leaf phenotype in wp3 is maternally inherited. Our data collectively suggest that the nucleus-encoded mitochondrial protein, WP3, plays an essential role in the regulation of chloroplast development in rice panicles by maintaining functional mitochondria. Therefore, the wp3 mutant is an excellent model in which to explore the communication between the nucleus, mitochondria, and chloroplasts in plant cells.
Collapse
Affiliation(s)
- Hongchang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guobiao Ji
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qian Qian
- China National Rice Research Institute, Hangzhou, China
| | - Jichen Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sodmergen
- School of Life Sciences, Peking University, Beijing, China
| | - Guozhen Liu
- College of Life Sciences, Agricultural University of Hebei, Baoding, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingsheng Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenxue Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Fujiwara MT, Yasuzawa M, Kojo KH, Niwa Y, Abe T, Yoshida S, Nakano T, Itoh RD. The Arabidopsis arc5 and arc6 mutations differentially affect plastid morphology in pavement and guard cells in the leaf epidermis. PLoS One 2018; 13:e0192380. [PMID: 29466386 PMCID: PMC5821325 DOI: 10.1371/journal.pone.0192380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/20/2018] [Indexed: 01/09/2023] Open
Abstract
Chloroplasts, or photosynthetic plastids, multiply by binary fission, forming a homogeneous population in plant cells. In Arabidopsis thaliana, the division apparatus (or division ring) of mesophyll chloroplasts includes an inner envelope transmembrane protein ARC6, a cytoplasmic dynamin-related protein ARC5 (DRP5B), and members of the FtsZ1 and FtsZ2 families of proteins, which co-assemble in the stromal mid-plastid division ring (FtsZ ring). FtsZ ring placement is controlled by several proteins, including a stromal factor MinE (AtMinE1). During leaf mesophyll development, ARC6 and AtMinE1 are necessary for FtsZ ring formation and thus plastid division initiation, while ARC5 is essential for a later stage of plastid division. Here, we examined plastid morphology in leaf epidermal pavement cells (PCs) and stomatal guard cells (GCs) in the arc5 and arc6 mutants using stroma-targeted fluorescent proteins. The arc5 PC plastids were generally a bit larger than those of the wild type, but most had normal shapes and were division-competent, unlike mutant mesophyll chloroplasts. The arc6 PC plastids were heterogeneous in size and shape, including the formation of giant and mini-plastids, plastids with highly developed stromules, and grape-like plastid clusters, which varied on a cell-by-cell basis. Moreover, unique plastid phenotypes for stomatal GCs were observed in both mutants. The arc5 GCs rarely lacked chlorophyll-bearing plastids (chloroplasts), while they accumulated minute chlorophyll-less plastids, whereas most GCs developed wild type-like chloroplasts. The arc6 GCs produced large chloroplasts and/or chlorophyll-less plastids, as previously observed, but unexpectedly, their chloroplasts/plastids exhibited marked morphological variations. We quantitatively analyzed plastid morphology and partitioning in paired GCs from wild-type, arc5, arc6, and atminE1 plants. Collectively, our results support the notion that ARC5 is dispensable in the process of equal division of epidermal plastids, and indicate that dysfunctions in ARC5 and ARC6 differentially affect plastid replication among mesophyll cells, PCs, and GCs within a single leaf.
Collapse
Affiliation(s)
- Makoto T. Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mana Yasuzawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Kei H. Kojo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
- CREST, JST (Japan Science and Technology Agency), Kawaguchi, Saitama, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
26
|
El Mannai Y, Akabane K, Hiratsu K, Satoh-Nagasawa N, Wabiko H. The NAC Transcription Factor Gene OsY37 (ONAC011) Promotes Leaf Senescence and Accelerates Heading Time in Rice. Int J Mol Sci 2017; 18:E2165. [PMID: 29039754 PMCID: PMC5666846 DOI: 10.3390/ijms18102165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/17/2022] Open
Abstract
Leaf senescence is an important physiological process involving the degradation of a number of metabolites and their remobilization to new reproductive and storage organs. NAC (NAM, ATAF, and CUC) transcription factors are reported as important regulators of the senescence process. Here, we describe the identification and functional characterization of the NAC transcription factor gene, OsY37 (Oryza sativa Yellow37, ONAC011) obtained from Oryza sativa cv. indica, and japonica. We created transgenic plants expressing the OsY37 gene under the control of a strong and constitutive CaMV35S promoter. The resulting transgenic plants overexpressing OsY37 gene showed early heading and precocious senescence phenotype of flag leaves compared with wild-type plants. By contrast, blocking the function of this gene via RNAi (RNA interference) and CRES-T (Chimeric Repressor Silencing Technology) technology, delayed both heading time and leaf senescence. Furthermore, knockdown of OsY37 expression caused dwarfism and high accumulation of chlorophyll during the vegetative phase. Irrespective of early or delayed senescence, transgenic plants showed reduced grain yields. Our results indicate that OsY37 acts as a positive regulator of heading and senescence during the reproductive phase in rice. In addition, OsY37 may be involved in plant development and grain yield.
Collapse
Affiliation(s)
- Yousra El Mannai
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Kenta Akabane
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy of Japan, Yokosuka 239-8686, Japan.
| | - Namiko Satoh-Nagasawa
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| | - Hiroetsu Wabiko
- Faculty of Bioresource Sciences, Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan.
| |
Collapse
|
27
|
Kamiya M, Higashio SY, Isomoto A, Kim JM, Seki M, Miyashima S, Nakajima K. Control of root cap maturation and cell detachment by BEARSKIN transcription factors in Arabidopsis. Development 2017; 143:4063-4072. [PMID: 27803060 DOI: 10.1242/dev.142331] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/19/2016] [Indexed: 01/29/2023]
Abstract
The root cap supports root growth by protecting the root meristem, sensing gravity and interacting with the rhizosphere through metabolite secretion and cell dispersal. Sustained root cap functions therefore rely on balanced proliferation of proximal stem cells and regulated detachment of distal mature cells. Although the gene regulatory network that governs stem cell activity in the root cap has been extensively studied in Arabidopsis, the mechanisms by which root cap cells mature and detach from the root tip are poorly understood. We performed a detailed expression analysis of three regulators of root cap differentiation, SOMBRERO, BEARSKIN1 and BEARSKIN2, and identified their downstream genes. Our results indicate that expression of BEARSKIN1 and BEARSKIN2 is associated with cell positioning on the root surface. We identified a glycosyl hydrolase 28 (GH28) family polygalacturonase (PG) gene as a direct target of BEARSKIN1. Overexpression and loss-of-function analyses demonstrated that the protein encoded by this PG gene facilitates cell detachment. We thus revealed a molecular link between the key regulators of root cap differentiation and the cellular events underlying root cap-specific functions.
Collapse
Affiliation(s)
- Masako Kamiya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shin-Ya Higashio
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Atsushi Isomoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Jong-Myong Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
28
|
Fujiwara MT, Yasuzawa M, Sasaki S, Nakano T, Niwa Y, Yoshida S, Abe T, Itoh RD. The Arabidopsis minD mutation causes aberrant FtsZ1 ring placement and moderate heterogeneity of chloroplasts in the leaf epidermis. PLANT SIGNALING & BEHAVIOR 2017. [PMID: 28644708 PMCID: PMC5586359 DOI: 10.1080/15592324.2017.1343776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Symmetric division of leaf mesophyll chloroplasts requires MinD and MinE, which work together to suppress division other than at the mid-chloroplast. arc11 is a MinD loss-of-function mutant of Arabidopsis thaliana. In arc11 plants, asymmetric chloroplast division, as well as its delay or arrest, results in extreme size polymorphism of chloroplasts in mature mesophyll cells. The current study examined chloroplast phenotypes in the epidermis of arc11 leaves. Fluorescence microscopy analysis revealed that epidermal chloroplasts in mature leaves exhibited moderate heterogeneity in size. This probably resulted from completion of many of the previous non-equatorial or multiple division events in expanding leaves. Additionally, analyses of plastids found that epidermal chloroplasts in arc11 mutants showed several phenotypes that have not previously been described.
Collapse
Affiliation(s)
- Makoto T. Fujiwara
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
- Department of Biology, Sophia University, Chiyoda, Tokyo, Japan
- CONTACT Makoto T. Fujiwara Department of Biology, Sophia University, 7–1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Mana Yasuzawa
- Department of Biology, Sophia University, Chiyoda, Tokyo, Japan
| | - Shun Sasaki
- Department of Biology, Sophia University, Chiyoda, Tokyo, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- CREST, JST (Japan Science and Technology Agency), Kawaguchi, Saitama, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Shigeo Yoshida
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Tomoko Abe
- Nishina Center and Plant Functions Laboratory, RIKEN, Wako, Saitama, Japan
| | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
29
|
Shimada A, Okumura A, Yamasaki S, Iwata Y, Koizumi N, Nishihara M, Mishiba KI. A 64-bp sequence containing the GAAGA motif is essential for CaMV-35S promoter methylation in gentian. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017. [PMID: 28624556 DOI: 10.1016/j.bbagrm.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigated sequence specificity and perenniality of DNA methylation in the cauliflower mosaic virus (CaMV) 35S promoter of transgenic gentian (Gentiana triflora×G. scabra) plants. Unlike conventional transgene silencing models, 35S promoter hypermethylation in gentian is species-specific and occurs irrespective of the T-DNA copy number and genomic location. Modified 35S promoters were introduced into gentian, and single-copy transgenic lines were selected for methylation analysis. Modified 35S promoter lacking a core (-90) region [35S(Δcore)] in gentian conferred hypermethylation and high levels of de novo methylation of the CpHpH/CpCpG sites in the 35S enhancer regions (-298 to -241 and -148 to -85). Therefore, promoter transcription may not be an absolute requirement for the methylation machinery. In vitro, de novo methylation persisted for more than eight years. In another modified 35S promoter, two "GAAGA" motifs (-268 to -264 and -135 to -131) were replaced by "GTTCA" in the two highly de novo methylated regions. It did not support hypermethylation and showed transgene expression. A 64-bp fragment of the 35S enhancer region (-148 to -85) was introduced into gentian and the resultant transgenic lines analyzed. The 64-bp region exhibited hypermethylation at the CpG/CpWpG sites, but the CpHpH/CpCpG methylation frequency was lower than those of the unmodified 35S- and 35S(Δcore) promoters. Nevertheless, a distinct CpHpH/CpCpG methylation peak was found in the 64-bp region of all single-copy transgenic lines. These results suggest that the 64-bp region may contain an element required for 35S methylation but insufficient for high de novo methylation compared with those in the unmodified 35S and 35S(Δcore) promoters.
Collapse
Affiliation(s)
- Asahi Shimada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Azusa Okumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Satoshi Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitami, Iwate 024-0003, Japan
| | - Kei-Ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
30
|
Hayashi M, Inoue SI, Ueno Y, Kinoshita T. A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening. Sci Rep 2017; 7:45586. [PMID: 28358053 PMCID: PMC5372365 DOI: 10.1038/srep45586] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H+-ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H+-ATPase activation drives stomatal opening. However, details of the signaling between phototropins and H+-ATPase remain largely unknown. In this study, through a screening of specific inhibitors for the blue light-dependent H+-ATPase phosphorylation in guard cells, we identified a Raf-like protein kinase, BLUE LIGHT-DEPENDENT H+-ATPASE PHOSPHORYLATION (BHP). Guard cells in the bhp mutant showed impairments of stomatal opening and H+-ATPase phosphorylation in response to blue light. BHP is abundantly expressed in the cytosol of guard cells and interacts with BLUS1 both in vitro and in vivo. Based on these results, BHP is a novel signaling mediator in blue light-dependent stomatal opening, likely downstream of BLUS1.
Collapse
Affiliation(s)
- Maki Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shin-Ichiro Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Yoshihisa Ueno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toshinori Kinoshita
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
31
|
Comprehensive assessment of the genes involved in withanolide biosynthesis from Withania somnifera: chemotype-specific and elicitor-responsive expression. Funct Integr Genomics 2017; 17:477-490. [PMID: 28285413 DOI: 10.1007/s10142-017-0548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
Withania somnifera (L.) Dunal (Family, Solanaceae), is among the most valuable medicinal plants used in Ayurveda owing to its rich reservoir of pharmaceutically active secondary metabolites known as withanolides. Withanolides are C28-steroidal lactones having a triterpenoidal metabolic origin synthesised via mevalonate (MVA) pathway and methyl-D-erythritol-4-phosphate (MEP) pathway involving metabolic intermediacy of 24-methylene (C30-terpenoid) cholesterol. Phytochemical studies suggest differences in the content and/or nature of withanolides in different tissues of different chemotypes. Though development of genomic resources has provided information about putative genes encoding enzymes for biosynthesis of intermediate steps of terpenoid backbone, not much is known about their regulation and response to elicitation. In this study, we generated detailed molecular information about genes catalysing key regulatory steps of withanolide biosynthetic pathway. The full-length sequences of genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis and their paralogs have been characterized for their functional and structural properties as well as phylogeny using bioinformatics approach. The expression analysis suggests that these genes are differentially expressed in different tissues (with maximal expression in young leaf), chemotypes and in response to salicylic acid (SA) and methyl jasmonate (MJ) treatments. Sub-cellular localization studies suggest that both paralogs of sterol ∆-7 reductase (WsDWF5-1 and WsDWF5-2) are localized in the endoplasmic reticulum (ER) thus supporting their indispensible role in withanolide biosynthesis. Comprehensive information developed, in this study, will lead to elucidation of chemotype- as well as tissue-specific withanolide biosynthesis and development of new tools for functional genomics in this important medicinal plant.
Collapse
|
32
|
Che J, Yamaji N, Shen RF, Ma JF. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:132-142. [PMID: 27302336 DOI: 10.1111/tpj.13237] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Expansins are cell wall loosening proteins, which are encoded by multigene families. However, the physiological role of most expansin genes is still poorly understood. Here, we functionally characterized an Al-inducible expansin gene, OsEXPA10, which is regulated by a C2H2-type zinc-finger transcription factor, ART1 in rice. A detailed expression analysis showed that OsEXPA10 was expressed in both the roots and shoots at a similar level, but only the expression in the roots was rapidly upregulated in response to Al. Furthermore, spatial expression analysis showed that the Al-induced expression was only found in the root tips (0-3 mm), but not in the mature root zones. The expression was neither induced by other metals including Cd and La nor by low pH. Immunostaining showed that OsEXPA10 was localized at all cells of the root tips. Knockout of OsEXPA10 resulted in a significant decrease in the cell elongation of the roots in the absence of Al. In the presence of Al, knockout of OsEXPA10 did not alter the Al sensitivity evaluated by relative root elongation, but the root cell wall of knockout lines accumulated less Al compared to those of the wild-type rice. Collectively, our results indicate that OsEXPA10 expressed in the root tips is required for the root cell elongation, but that the contribution of this gene to high Al tolerance in rice is small.
Collapse
Affiliation(s)
- Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Jian Feng Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
| |
Collapse
|
33
|
Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis. Sci Rep 2016; 6:31988. [PMID: 27552928 PMCID: PMC4995487 DOI: 10.1038/srep31988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/01/2016] [Indexed: 11/12/2022] Open
Abstract
Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs.
Collapse
|
34
|
Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Sci Rep 2016; 6:29940. [PMID: 27416900 PMCID: PMC4945916 DOI: 10.1038/srep29940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes.
Collapse
|
35
|
Chen Y, Ma J, Miller AJ, Luo B, Wang M, Zhu Z, Ouwerkerk PBF. OsCHX14 is Involved in the K+ Homeostasis in Rice (Oryza sativa) Flowers. PLANT & CELL PHYSIOLOGY 2016; 57:1530-1543. [PMID: 27903806 DOI: 10.1093/pcp/pcw088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/26/2016] [Indexed: 05/22/2023]
Abstract
Previously we showed in the osjar1 mutants that the lodicule senescence which controls the closing of rice flowers was delayed. This resulted in florets staying open longer when compared with the wild type. The gene OsJAR1 is silenced in osjar1 mutants and is a key member of the jasmonic acid (JA) signaling pathway. We found that K concentrations in lodicules and flowers of osjar1-2 were significantly elevated compared with the wild type, indicating that K+ homeostasis may play a role in regulating the closure of rice flowers. The cation/H+ exchanger (CHX) family from rice was screened for potential K+ transporters involved as many members of this family in Arabidopsis were exclusively or preferentially expressed in flowers. Expression profiling confirmed that among 17 CHX genes in rice, OsCHX14 was the only member that showed an expression polymorphism, not only in osjar1 mutants but also in RNAi (RNA interference) lines of OsCOI1, another key member of the JA signaling pathway. This suggests that the expression of OsCHX14 is regulated by the JA signaling pathway. Green fluorescent protein (GFP)-tagged OsCHX14 protein was preferentially localized to the endoplasmic reticulum. Promoter-β-glucuronidase (GUS) analysis of transgenic rice revealed that OsCHX14 is mainly expressed in lodicules and the region close by throughout the flowering process. Characterization in yeast and Xenopus laevis oocytes verified that OsCHX14 is able to transport K+, Rb+ and Cs+ in vivo. Our data suggest that OsCHX14 may play an important role in K+ homeostasis during flowering in rice.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jingkun Ma
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bingbing Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 219500, China
| | - Mei Wang
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
- TNO Quality of Life, Zernikedreef 9, 2333 CK Leiden, PO Box 2215, 2301 CE Leiden, The Netherlands
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Pieter B F Ouwerkerk
- Institute of Biology (IBL), Leiden University, Sylvius Laboratory, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
36
|
Okumura A, Shimada A, Yamasaki S, Horino T, Iwata Y, Koizumi N, Nishihara M, Mishiba KI. CaMV-35S promoter sequence-specific DNA methylation in lettuce. PLANT CELL REPORTS 2016; 35:43-51. [PMID: 26373653 DOI: 10.1007/s00299-015-1865-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.
Collapse
Affiliation(s)
- Azusa Okumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
- Miyoshi Co., Ltd., 187 Kamisasao, Kobuchizawa, Hokuto, Yamanashi, 408-0041, Japan
| | - Asahi Shimada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Satoshi Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
- Tempstaff People Co., Ltd, 1-5 Shinsakae, Naka-ku, Nagoya, Aichi, 460-8482, Japan
| | - Takuya Horino
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitami, Iwate, 024-0003, Japan
| | - Kei-ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
37
|
Moon SJ, Han SY, Kim DY, Yoon IS, Shin D, Byun MO, Kwon HB, Kim BG. Ectopic expression of a hot pepper bZIP-like transcription factor in potato enhances drought tolerance without decreasing tuber yield. PLANT MOLECULAR BIOLOGY 2015; 89:421-31. [PMID: 26394867 DOI: 10.1007/s11103-015-0378-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/10/2015] [Indexed: 05/23/2023]
Abstract
Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Se-Youn Han
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Dool-Yi Kim
- Crop Foundation Research Division, National Institute of Crop Science, RDA, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - In Sun Yoon
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, Department of Southern Area, National Institute of Crop Science, RDA, Miryang, 627-803, Republic of Korea
| | - Myung-Ok Byun
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea
| | - Hawk-Bin Kwon
- Department of Biomedical Sciences, Sunmoon University, Asan, 336-708, Republic of Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA, Jeonju, 560-500, Republic of Korea.
| |
Collapse
|
38
|
Fujiwara MT, Kojo KH, Kazama Y, Sasaki S, Abe T, Itoh RD. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis. FRONTIERS IN PLANT SCIENCE 2015; 6:823. [PMID: 26500667 PMCID: PMC4593956 DOI: 10.3389/fpls.2015.00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/22/2015] [Indexed: 05/25/2023]
Abstract
Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids.
Collapse
Affiliation(s)
- Makoto T. Fujiwara
- RIKEN Nishina CenterSaitama, Japan
- Graduate School of Science and Technology, Sophia UniversityTokyo, Japan
| | - Kei H. Kojo
- Graduate School of Science and Technology, Sophia UniversityTokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of TokyoKashiwa, Japan
- LPixel Inc.Tokyo, Japan
| | | | - Shun Sasaki
- Graduate School of Science and Technology, Sophia UniversityTokyo, Japan
| | | | - Ryuuichi D. Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the RyukyusOkinawa, Japan
| |
Collapse
|
39
|
Ahmad A, Niwa Y, Goto S, Kobayashi K, Shimizu M, Ito S, Usui Y, Nakayama T, Kobayashi H. Genome-wide screening of salt tolerant genes by activation-tagging using dedifferentiated calli of Arabidopsis and its application to finding gene for Myo-inositol-1-p-synthase. PLoS One 2015; 10:e0115502. [PMID: 25978457 PMCID: PMC4433338 DOI: 10.1371/journal.pone.0115502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/23/2014] [Indexed: 11/19/2022] Open
Abstract
Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis.
Collapse
Affiliation(s)
- Aftab Ahmad
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Shingo Goto
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Kyoko Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Masanori Shimizu
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Sohei Ito
- Laboratory of Protein Engineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yumiko Usui
- Laboratory of Molecular Fooineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Tsutomu Nakayama
- Laboratory of Molecular Fooineering, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52–1 Yada, Suruga, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
40
|
Ahmad A, Niwa Y, Goto S, Ogawa T, Shimizu M, Suzuki A, Kobayashi K, Kobayashi H. bHLH106 Integrates Functions of Multiple Genes through Their G-Box to Confer Salt Tolerance on Arabidopsis. PLoS One 2015; 10:e0126872. [PMID: 25978450 PMCID: PMC4433118 DOI: 10.1371/journal.pone.0126872] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/08/2015] [Indexed: 12/16/2022] Open
Abstract
An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.
Collapse
Affiliation(s)
- Aftab Ahmad
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Yasuo Niwa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Shingo Goto
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Takeshi Ogawa
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Masanori Shimizu
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Akane Suzuki
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Kyoko Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
| | - Hirokazu Kobayashi
- Laboratory of Plant Molecular Improvement, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 1–52 Yada, Suruga, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
41
|
Maruyama D, Völz R, Takeuchi H, Mori T, Igawa T, Kurihara D, Kawashima T, Ueda M, Ito M, Umeda M, Nishikawa SI, Groß-Hardt R, Higashiyama T. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism. Cell 2015; 161:907-18. [PMID: 25913191 DOI: 10.1016/j.cell.2015.03.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/09/2015] [Accepted: 02/20/2015] [Indexed: 11/19/2022]
Abstract
In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization.
Collapse
Affiliation(s)
- Daisuke Maruyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore.
| | - Ronny Völz
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany; Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hidenori Takeuchi
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshiyuki Mori
- Waseda Institute for Advanced Study, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-City, Chiba 271-8510, Japan
| | - Daisuke Kurihara
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tomokazu Kawashima
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore; Gregor Mendel Institute, Dr-BohrGasse 3, 1030 Vienna, Austria
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; JST, CREST, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shuh-Ichi Nishikawa
- Department of Life and Food Science, Graduate School of Science, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Rita Groß-Hardt
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany; Center for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2 28359, Germany
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
42
|
Tezuka D, Ito A, Mitsuhashi W, Toyomasu T, Imai R. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase. Biochem Biophys Res Commun 2015; 460:766-71. [PMID: 25824047 DOI: 10.1016/j.bbrc.2015.03.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.
Collapse
Affiliation(s)
- Daisuke Tezuka
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | - Akira Ito
- Faculty of Agriculture, Yamagata University, Yamagata 997-8555, Japan
| | - Wataru Mitsuhashi
- Faculty of Agriculture, Yamagata University, Yamagata 997-8555, Japan
| | - Tomonobu Toyomasu
- Faculty of Agriculture, Yamagata University, Yamagata 997-8555, Japan
| | - Ryozo Imai
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Toyohira-ku, Sapporo 062-8555, Japan; Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
43
|
Yamada Y, Motomura Y, Sato F. CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells. ACTA ACUST UNITED AC 2015; 56:1019-30. [DOI: 10.1093/pcp/pcv027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
|
44
|
Ohno R, Takumi S. Extracellular trafficking of a wheat cold-responsive protein, WLT10. JOURNAL OF PLANT PHYSIOLOGY 2015; 174:71-74. [PMID: 25462969 DOI: 10.1016/j.jplph.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
A cold-responsive wheat gene, WLT10, encodes a member of the cereal-specific low temperature-responsive/cold-responsive protein family, which contains a hydrophobic N-terminal 20 amino acid sequence that corresponds to signal peptides associated with extracellular trafficking. To verify the subcellular localization of WLT10 and the function of its putative signal peptide, we constructed three chimeric genes in which either the WLT10 signal peptide, a signal peptide with only 6 additional amino acids, or the full-length WLT10 polypeptide was fused to the N-terminus of green fluorescent protein (GFP). These fusion constructs were transiently introduced into onion epidermal cells by particle bombardment. GFP signals were observed not only in the extracellular space (ECS) but also in the endoplasmic reticulum (ER) and Golgi apparatus. The time course of GFP signal localization suggests the movement of WLT10 through the ER/Golgi pathway and into the ECS. Thus, WLT10 is a cold-responsive secreted protein, and its N-terminal 20 amino acid region is important for transport to the ECS.
Collapse
Affiliation(s)
- Ryoko Ohno
- Core Research Division, Organization of Advanced Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
45
|
Sutoh K, Washio K, Imai R, Wada M, Nakai T, Yamauchi D. An N-terminal region of a Myb-like protein is involved in its intracellular localization and activation of a gibberellin-inducible proteinase gene in germinated rice seeds. Biosci Biotechnol Biochem 2015; 79:747-59. [PMID: 25559339 DOI: 10.1080/09168451.2014.998620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.
Collapse
Affiliation(s)
- Keita Sutoh
- a R&D Planning Admin Dept , Life Science Institute Co. Ltd , Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yano K, Yanagisawa T, Mukae K, Niwa Y, Inoue Y, Moriyasu Y. Dissection of autophagy in tobacco BY-2 cells under sucrose starvation conditions using the vacuolar H(+)-ATPase inhibitor concanamycin A and the autophagy-related protein Atg8. PLANT SIGNALING & BEHAVIOR 2015; 10:e1082699. [PMID: 26368310 PMCID: PMC4883836 DOI: 10.1080/15592324.2015.1082699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 05/08/2023]
Abstract
Tobacco BY-2 cells undergo autophagy in sucrose-free culture medium, which is the process mostly responsible for intracellular protein degradation under these conditions. Autophagy was inhibited by the vacuolar H(+)-ATPase inhibitors concanamycin A and bafilomycin A1, which caused the accumulation of autophagic bodies in the central vacuoles. Such accumulation did not occur in the presence of the autophagy inhibitor 3-methyladenine, and concanamycin in turn inhibited the accumulation of autolysosomes in the presence of the cysteine protease inhibitor E-64c. Electron microscopy revealed not only that the autophagic bodies were accumulated in the central vacuole, but also that autophagosome-like structures were more frequently observed in the cytoplasm in treatments with concanamycin, suggesting that concanamycin affects the morphology of autophagosomes in addition to raising the pH of the central vacuole. Using BY-2 cells that constitutively express a fusion protein of autophagosome marker protein Atg8 and green fluorescent protein (GFP), we observed the appearance of autophagosomes by fluorescence microscopy, which is a reliable morphological marker of autophagy, and the processing of the fusion protein to GFP, which is a biochemical marker of autophagy. Together, these results suggest the involvement of vacuole type H(+)-ATPase in the maturation step of autophagosomes to autolysosomes in the autophagic process of BY-2 cells. The accumulation of autophagic bodies in the central vacuole by concanamycin is a marker of the occurrence of autophagy; however, it does not necessarily mean that the central vacuole is the site of cytoplasm degradation.
Collapse
Affiliation(s)
- Kanako Yano
- Graduate School of Food and Nutritional Sciences; University of Shizuoka; Shizuoka, Japan
| | - Takahiro Yanagisawa
- Department of Regulatory Biology; Graduate School of Science and Engineering; Saitama University; Saitama, Japan
| | - Kyosuke Mukae
- Department of Regulatory Biology; Graduate School of Science and Engineering; Saitama University; Saitama, Japan
| | - Yasuo Niwa
- Graduate School of Food and Nutritional Sciences; University of Shizuoka; Shizuoka, Japan
| | - Yuko Inoue
- Department of Regulatory Biology; Graduate School of Science and Engineering; Saitama University; Saitama, Japan
| | - Yuji Moriyasu
- Department of Regulatory Biology; Graduate School of Science and Engineering; Saitama University; Saitama, Japan
| |
Collapse
|
47
|
Yamada T, Mori Y, Yasue K, Maruyama N, Kitamura K, Abe J. Knockdown of the 7S globulin subunits shifts distribution of nitrogen sources to the residual protein fraction in transgenic soybean seeds. PLANT CELL REPORTS 2014; 33:1963-76. [PMID: 25120001 DOI: 10.1007/s00299-014-1671-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/27/2014] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE A platform of gene silencing by amiRNA had been established in fertile transgenic soybean. We demonstrated that knockdown of storage protein shifted the distribution of nitrogen sources in soybean seeds. Artificial microRNAs (amiRNAs) were designed using the precursor sequence of the endogenous soybean (Glycine max L. Merrill) miRNA gma-miR159a and expressed in transgenic soybean plants to suppress the biosynthesis of 7S globulin, which is one of the major storage proteins. Seed-specific expression of these amiRNAs (amiR-7S) resulted in a strong suppression of 7S globulin subunit genes and decreased accumulation of the 7S globulin subunits in seeds. Thus, the results demonstrate that a platform for gene silencing by amiRNA was first developed in fertile transgenic soybean plants. There was no difference in nitrogen, carbon, and lipid contents between amiR-7S and control seeds. Four protein fractions were collected from defatted mature seeds on the basis of solubility at different pH to examine the distribution of nitrogen sources and compensatory effects. In the whey and lipophilic fractions, nitrogen content was similar in amiR-7S and control seeds. Nitrogen content was significantly decreased in the major soluble protein fraction and increased in the residual fraction (okara) of the amiR-7S seeds. Amino acid analysis revealed that increased nitrogen compounds in okara were proteins or peptides rather than free amino acids. Our study indicates that the decrease in 7S globulin subunits shifts the distribution of nitrogen sources to okara in transgenic soybean seeds.
Collapse
Affiliation(s)
- Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita9 Nishi9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan,
| | | | | | | | | | | |
Collapse
|
48
|
Yokotani N, Tsuchida-Mayama T, Ichikawa H, Mitsuda N, Ohme-Takagi M, Kaku H, Minami E, Nishizawa Y. OsNAC111, a blast disease-responsive transcription factor in rice, positively regulates the expression of defense-related genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1027-34. [PMID: 25014590 DOI: 10.1094/mpmi-03-14-0065-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants respond to pathogen attack by transcriptionally regulating defense-related genes via various types of transcription factors. We identified a transcription factor in rice, OsNAC111, belonging to the TERN subgroup of the NAC family that was transcriptionally upregulated after rice blast fungus (Magnaporthe oryzae) inoculation. OsNAC111 was localized in the nucleus of rice cells and had transcriptional activation activity in yeast and rice cells. Transgenic rice plants overexpressing OsNAC111 showed increased resistance to the rice blast fungus. In OsNAC111-overexpressing plants, the expression of several defense-related genes, including pathogenesis-related (PR) genes, was constitutively high compared with the control. These genes all showed blast disease-responsive expression in leaves. Among them, two chitinase genes and one β-1,3-glucanase gene showed reduced expression in transgenic rice plants in which OsNAC111 function was suppressed by a chimeric repressor (OsNAC111-SRDX). OsNAC111 activated transcription from the promoters of the chitinase and β-1,3-glucanase genes in rice cells. In addition, brown pigmentation at the infection sites, a defense response of rice cells to the blast fungus, was lowered in OsNAC111-SRDX plants at the early infection stage. These results indicate that OsNAC111 positively regulates the expression of a specific set of PR genes in the disease response and contributes to disease resistance.
Collapse
|
49
|
Segami S, Makino S, Miyake A, Asaoka M, Maeshima M. Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. THE PLANT CELL 2014; 26:3416-34. [PMID: 25118245 PMCID: PMC4371836 DOI: 10.1105/tpc.114.127571] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H(+)-pyrophosphatase (H(+)-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H(+)-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitative analyses revealed that the occurrence of the bulbs correlated with the amount of GFP. Next, we prepared a construct of H(+)-PPase linked with a nondimerizing GFP (mGFP); we detected no bulbs. These results indicate that the membranes adhere face-to-face by antiparallel dimerization of GFP, resulting in the formation of bulbs. In plants expressing H(+)-PPase-mGFP, intravacuolar spherical structures with double membranes, which differed from bulbs in fluorescence intensity and intermembrane spacing, were still observed in peripheral endosperm, pistil epidermis and hypocotyls. Four-dimensional imaging revealed the dynamics of formation, transformation, and disappearance of intravacuolar spherical structures and transvacuolar strands in living cells. Visualization of H(+)-PPase-mGFP revealed intensive accumulation of the enzyme, not only in dividing and elongating cells but also in mesophyll, phloem, and nectary cells, which may have high sugar content. Dynamic morphological changes including transformation of vacuolar structures between transvacuolar strands, intravacuolar sheet-like structures, and intravacuolar spherical structures were also revealed.
Collapse
Affiliation(s)
- Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Sachi Makino
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ai Miyake
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mariko Asaoka
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
50
|
Minato N, Komatsu K, Okano Y, Maejima K, Ozeki J, Senshu H, Takahashi S, Yamaji Y, Namba S. Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Arch Virol 2014; 159:885-96. [PMID: 24154949 DOI: 10.1007/s00705-013-1860-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/24/2013] [Indexed: 01/04/2023]
Abstract
Plant virus expression vectors provide a powerful tool for basic research as well as for practical applications. Here, we report the construction of an expression vector based on plantago asiatica mosaic virus (PlAMV), a member of the genus Potexvirus. Modification of a vector to enhance the expression of a foreign gene, combined with the use of the foot-and-mouth disease virus 2A peptide, allowed efficient expression of the foreign gene in two model plant species, Arabidopsis thaliana and Nicotiana benthamiana. Comparison with the widely used potato virus X (PVX) vector demonstrated that the PlAMV vector retains an inserted foreign gene for a longer period than PVX. Moreover, our results showed that the GFP expression construct PlAMV-GFP exhibits stronger RNA silencing suppression activity than PVX-GFP, which is likely to contribute to the stability of the PlAMV vector.
Collapse
Affiliation(s)
- Nami Minato
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|