1
|
Majumdar A, Kar RK. Chloroplast avoidance movement: a novel paradigm of ROS signalling. PHOTOSYNTHESIS RESEARCH 2020; 144:109-121. [PMID: 32222888 DOI: 10.1007/s11120-020-00736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The damaging effects of supra-optimal irradiance on plants, often turning to be lethal, may be circumvented by chloroplast avoidance movement which realigns chloroplasts to the anticlinal surfaces of cells (parallel to the incident light), essentially minimizing photon absorption. In angiosperms and many other groups of plants, chloroplast avoidance movement has been identified to be a strong blue light (BL)-dependent process being mediated by actin filaments wherein phototropins are identified as the photoreceptor involved. Studies through the last few decades have identified key molecular mechanisms involving Chloroplast Unusual Positioning 1 (CHUP1) protein and specific chloroplast-actin (cp-actin) filaments. However, the signal transduction pathway from strong BL absorption down to directional re-localization of chloroplasts by actin filaments is complex and ambiguous. Being the immediate cellular products of high irradiance absorption and having properties of remodelling actin as well as phototropin, reactive oxygen species (ROS) deemed to be more able and prompt than any other signalling agent in mediating chloroplast avoidance movement. Although ROS are presently being identified as fundamental component for regulating different plant processes ranging from growth, development and immunity, its role in avoidance movement have hardly been explored in depth. However, few recent reports have demonstrated the direct stimulatory involvement of ROS, especially H2O2, in chloroplast avoidance movement with Ca2+ playing a pivotal role. With this perspective, the present review discusses the mechanisms of ROS-mediated chloroplast avoidance movement involving ROS-Ca2+-actin communication system and NADPH oxidase (NOX)-plasma membrane (PM) H+-ATPase positive feed-forward loop. A possible working model is proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- Department of Botany, City College, 102/1 Raja Rammohan Sarani, Kolkata, West Bengal, 700009, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
2
|
Lee JW, Kim GH. Two-Track Control of Cellular Machinery for Photomovement in Spirogyra varians (Streptophyta, Zygnematales). PLANT & CELL PHYSIOLOGY 2017; 58:1812-1822. [PMID: 29036553 DOI: 10.1093/pcp/pcx120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Plants and freshwater algae devoid of flagella evolved various photomovements to optimize their photosynthetic efficiency. The filaments of Spirogyra varians exhibit complex swaying and undulating movement and form a compact mat which enables them to adjust their light exposure. Photomovement of filament fragments (1-10 cells) was analyzed using various photoreceptor and cytoskeleton inhibitors under monochromatic light. Different patterns of movement were observed under red and blue light. The filaments showed positive phototropism under blue light. Under red light, the filaments bent to undulating shape, but rapidly became unbent by a short exposure to far-red light suggesting the involvement of phytochrome in this movement. The mechanical effector for the red-light response was microtubules; the movement was inhibited effectively by the microtubule inhibitor, oryzalin. The blue-light movement was partially inhibited by the single treatment of either cytochalasin D or oryzalin, but was completely blocked when both chemicals were applied together. Phototropin-signaling inhibitors, wortmannin and LY294002, reversibly inhibited the blue-light movement. Caffeine treatment reversibly stopped the blue-light movement, while the red-light movement was not affected by calcium inhibitors. Our results suggest that the complex photomovement of S. varians is the result of a two-track control of microtubules and microfilaments signaled by the combination of phytochrome and phototropin-like receptors.
Collapse
Affiliation(s)
- Ji Woong Lee
- Department of Biology, Kongju National University, Kongju 32588, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju 32588, Korea
| |
Collapse
|
3
|
Higa T, Hasegawa S, Hayasaki Y, Kodama Y, Wada M. Temperature-dependent signal transmission in chloroplast accumulation response. JOURNAL OF PLANT RESEARCH 2017; 130:779-789. [PMID: 28421371 DOI: 10.1007/s10265-017-0938-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast photorelocation movement, well-characterized light-induced response found in various plant species from alga to higher plants, is an important phenomenon for plants to increase photosynthesis efficiency and avoid photodamage. The signal for chloroplast accumulation movement connecting the blue light receptor, phototropin, and chloroplasts remains to be identified, although the photoreceptors and the mechanism of movement via chloroplast actin filaments have now been revealed in land plants. The characteristics of the signal have been found; the speed of signal transfer is about 1 µm min-1 and that the signal for the accumulation response has a longer life and is transferred a longer distance than that of the avoidance response. Here, to collect the clues of the unknown signal substances, we studied the effect of temperature on the speed of signal transmission using the fern Adiantum capillus-veneris and found the possibility that the mechanism of signal transfer was not dependent on the simple diffusion of a substance; thus, some chemical reaction must also be involved. We also found new insights of signaling substances, such that microtubules are not involved in the signal transmission, and that the signal could even be transmitted through the narrow space between chloroplasts and the plasma membrane.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Tokyo, 192-0397, Japan
| | - Satoshi Hasegawa
- Center for Optical Research and Education, Utsunomiya University, Tochigi, 321-8585, Japan
| | - Yoshio Hayasaki
- Center for Optical Research and Education, Utsunomiya University, Tochigi, 321-8585, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, 321-8505, Japan
| | - Masamitsu Wada
- Department of Biological Sciences, Tokyo Metropolitan University, Minamiosawa, Tokyo, 192-0397, Japan.
| |
Collapse
|
4
|
Majumdar A, Kar RK. Integrated role of ROS and Ca +2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. PROTOPLASMA 2016; 253:1529-1539. [PMID: 26573536 DOI: 10.1007/s00709-015-0911-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
5
|
Łabuz J, Samardakiewicz S, Hermanowicz P, Wyroba E, Pilarska M, Gabryś H. Blue light-dependent changes in loosely bound calcium in Arabidopsis mesophyll cells: an X-ray microanalysis study. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3953-64. [PMID: 26957564 PMCID: PMC4915525 DOI: 10.1093/jxb/erw089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Wyroba
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Pilarska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Łabuz J, Hermanowicz P, Gabryś H. The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:238-49. [PMID: 26398808 DOI: 10.1016/j.plantsci.2015.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 05/04/2023]
Abstract
Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
7
|
Samardakiewicz S, Krzeszowiec-Jeleń W, Bednarski W, Jankowski A, Suski S, Gabryś H, Woźny A. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L. PLoS One 2015; 10:e0116757. [PMID: 25646776 PMCID: PMC4315572 DOI: 10.1371/journal.pone.0116757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022] Open
Abstract
Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic effect of lead on chloroplasts can include disturbances in their movement and distribution pattern.
Collapse
Affiliation(s)
- Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Weronika Krzeszowiec-Jeleń
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
| | - Artur Jankowski
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Szymon Suski
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Adam Woźny
- Laboratory of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
8
|
Higa T, Wada M. Clues to the signals for chloroplast photo-relocation from the lifetimes of accumulation and avoidance responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:120-126. [PMID: 25376644 DOI: 10.1111/jipb.12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Chloroplast photo-relocation movement is crucial for plant survival; however, the mechanism of this phenomenon is still poorly understood. Especially, the signal that goes from photoreceptor to chloroplast is unknown, although the photoreceptors (phototropin 1 and 2) have been identified and an actin structure (chloroplast actin filaments) has been characterized that is specific for chloroplast movement. Here, in gametophytes of the fern Adiantum capillus-veneris, gametophores of the moss Physcomiterella patens, and leaves of the seed plant Arabidopsis thaliana, we sought to characterize the signaling system by measuring the lifetime of the induced response. Chloroplast movements were induced by microbeam irradiation with high-intensity blue light and recorded. The lifetime of the avoidance state was measured as a lag time between switching off the beam and the loss of avoidance behavior, and that of the accumulation state was measured as the duration of accumulation behavior following the extinction of the beam. The lifetime for the avoidance response state is approximately 3-4 min and that for the accumulation response is 19-28 min. These data suggest that the two responses are based on distinct signals.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
9
|
Sakai Y, Inoue SI, Harada A, Shimazaki KI, Takagi S. Blue-light-induced rapid chloroplast de-anchoring in Vallisneria epidermal cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:93-105. [PMID: 25231366 DOI: 10.1111/jipb.12284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/12/2014] [Indexed: 06/03/2023]
Abstract
In the outer periclinal cytoplasm of leaf epidermal cells of an aquatic angiosperm Vallisneria, blue light induces "chloroplast de-anchoring", a rapid decline in the resistance of chloroplasts against centrifugal force. Chloroplast de-anchoring is known induced within 1 min of irradiation with high-fluence-rate blue light specifically, preceding the commencement of chloroplasts migration toward the anticlinal cytoplasm. However, its regulatory mechanism has remained elusive, although pharmacological analysis suggested that a calcium release from intracellular calcium stores is necessary for the response. In search of the responsible photoreceptors, immunoblotting analysis using antibodies against phototropins demonstrated that cross-reactive polypeptides of 120-kDa exist in the plasma-membrane fraction prepared from the leaves. In vitro phosphorylation analysis revealed that 120-kDa polypeptides were phosphorylated by exposure to blue light in a fluence-dependent manner. The blue-light-induced phosphorylation activity was sensitive to a Ser/Thr kinase inhibitor, staurosporine, and unusually was retained at a high level for a long time in darkness. Furthermore, phototropin gene homologs (Vallisneria PHOTOTROPIN1 and PHOTOTROPIN2) expressed in leaves were isolated. We propose that calcium-regulated chloroplast de-anchoring, possibly mediated by phototropins, is an initial process of the blue-light-induced avoidance response of chloroplasts in Vallisneria.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | | | | | | | | |
Collapse
|
10
|
Rojas-Pierce M, Whippo CW, Davis PA, Hangarter RP, Springer PS. PLASTID MOVEMENT IMPAIRED1 mediates ABA sensitivity during germination and implicates ABA in light-mediated Chloroplast movements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:185-193. [PMID: 25154696 DOI: 10.1016/j.plaphy.2014.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/17/2014] [Indexed: 06/03/2023]
Abstract
The plant hormone abscisic acid (ABA) controls many aspects of plant growth and development, including seed development, germination and responses to water-deficit stress. A complex ABA signaling network integrates environmental signals including water availability and light intensity and quality to fine-tune the response to a changing environment. To further define the regulatory pathways that control water-deficit and ABA responses, we carried out a gene-trap tagging screen for water-deficit-regulated genes in Arabidopsis thaliana. This screen identified PLASTID MOVEMENT IMPAIRED1 (PMI1), a gene involved in blue-light-induced chloroplast movement, as functioning in ABA-response pathways. We provide evidence that PMI1 is involved in the regulation of seed germination by ABA, acting upstream of the intersection between ABA and low-glucose signaling pathways. Furthermore, PMI1 participates in the regulation of ABA accumulation during periods of water deficit at the seedling stage. The combined phenotypes of pmi1 mutants in chloroplast movement and ABA responses indicate that ABA signaling may modulate chloroplast motility. This result was further supported by the detection of altered chloroplast movements in the ABA mutants aba1-6, aba2-1 and abi1-1.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Craig W Whippo
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA; Department of Natural Science, Dickinson State University, Dickinson, ND 58601, USA
| | - Phillip A Davis
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN 47405-3700, USA
| | - Patricia S Springer
- Department of Botany and Plant Sciences and the Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Chloroplast Movement in Higher Plants, Ferns and Bryophytes: A Comparative Point of View. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Aggarwal C, Labuz J, Gabryś H. Decoding the role of phosphoinositides in phototropin signaling involved in chloroplast movements. PLANT SIGNALING & BEHAVIOR 2013; 8:25105. [PMID: 23733070 PMCID: PMC3999074 DOI: 10.4161/psb.25105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 05/20/2023]
Abstract
In angiosperms, light-dependent chloroplast movements are exclusively mediated by UVA/blue light receptors - phototropins. The two photoreceptors of Arabidopsis thaliana, phot1 and phot2, have overlapping roles in the control of these movements. Experiments performed in different plant species point to the participation of phosphoinositides in blue light-controlled chloroplast relocations. Here, we report a summary of recent findings presenting the involvement of phosphatidylinositol 4,5-bisphosphate as well as phosphatidylinositol 3- and 4-phosphates in weak blue light-mediated (accumulation) and strong blue light-mediated (avoidance) responses of chloroplasts. The blue light-activated alterations in phosphoinositide concentration are partly responsible for cytosolic Ca (2+) changes. Ca (2+) influx from apoplast does not seem to be involved in the mechanism of movement responses. In summary, interplay between phosphoinositides and intracellular Ca (2+) regulates chloroplast redistribution in response to blue light in higher plants.
Collapse
|
13
|
Tsuboi H, Wada M. Chloroplasts continuously monitor photoreceptor signals during accumulation movement. JOURNAL OF PLANT RESEARCH 2013; 126:557-566. [PMID: 23263455 DOI: 10.1007/s10265-012-0542-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023]
Abstract
Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.
Collapse
Affiliation(s)
- Hidenori Tsuboi
- Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
14
|
Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 2013; 8:e55393. [PMID: 23405144 PMCID: PMC3566141 DOI: 10.1371/journal.pone.0055393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
15
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
16
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
17
|
Takamatsu H, Takagi S. Actin-dependent chloroplast anchoring is regulated by Ca(2+)-calmodulin in spinach mesophyll cells. PLANT & CELL PHYSIOLOGY 2011; 52:1973-1982. [PMID: 21949029 DOI: 10.1093/pcp/pcr130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplasts are actively anchored at the appropriate intracellular regions to maintain advantageous distribution patterns under specific environmental conditions. Redistribution of chloroplasts is accompanied by their de-anchoring and re-anchoring, respectively, from and to the cortical cytoplasm. In spinach mesophyll cells, high-intensity blue light and Ca(2+) treatment induced the disappearance of the meshwork-like array of actin filaments surrounding chloroplasts, which was suppressed by a calmodulin antagonist. Regulatory mechanisms of chloroplast anchoring were investigated using plasma membrane (PM) ghosts, on which the cortical cytoplasm underlying the PM was exposed. Addition of an actin-depolymerizing reagent or > 1 µM Ca(2+) induced detachment of a substantial number of chloroplasts from the PM ghosts concomitant with disordered actin organization. Calmodulin antagonists and anti-calmodulin antibodies negated the effects of Ca(2+). In addition, Ca(2+)-induced detachment of chloroplasts was no longer evident on the calmodulin-depleted PM ghosts. We propose that chloroplasts are anchored onto the cortical cytoplasm through interaction with the actin cytoskeleton, and that Ca(2+)-calmodulin-sensitized de-anchoring of chloroplasts is a critical early step in chloroplast redistribution induced by environmental stimuli.
Collapse
Affiliation(s)
- Hideyasu Takamatsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | |
Collapse
|
18
|
Lehmann P, Nöthen J, von Braun SS, Bohnsack MT, Mirus O, Schleiff E. Transitions of gene expression induced by short-term blue light. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:349-61. [PMID: 21309982 DOI: 10.1111/j.1438-8677.2010.00377.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blue light modulates many processes in plants and plant cells. It influences global and long-term responses, such as seedling development and phototropism, and induces short-term adaptations like stomatal opening and chloroplast movement. Three genes were identified as important for the latter process, namely PHOT1, PHOT2 and CHUP1. The former two phototropin blue light receptors act in perception of the blue light signal. The protein CHUP1 is localised to the outer envelope membrane of chloroplasts and is involved in chloroplast movement. To explore whether short-term reactions required for chloroplast movement are under transcriptional control, we analysed the transcriptome in wild-type Arabidopsis thaliana, phot1, phot2 and chup1 with different blue light treatments for 5 or 30 min. Blue light-induced changes in transcription depended on illumination time and intensity. Illumination with 100 μmol·m(-2) · s(-1) blue light induced down-regulation of several genes and might point to cascades that could be important for sensing low levels of blue light. Analysis of the transcriptome of the mutants in response to the different light regimes suggests that the transcriptional response to blue light in the wild-type can be attributed to phot1 rather than phot2, suggesting that blue light-induced alteration of expression is a function of phot1. In contrast, the blue light response at the transcriptional level of chup1 plants was unique, and confirmed the higher light sensitivity of this mutant.
Collapse
Affiliation(s)
- P Lehmann
- JWGU Frankfurt am Main, CEF Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Tsuboi H, Wada M. Speed of signal transfer in the chloroplast accumulation response. JOURNAL OF PLANT RESEARCH 2010; 123:381-90. [PMID: 19953289 DOI: 10.1007/s10265-009-0284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 10/25/2009] [Indexed: 05/15/2023]
Abstract
Chloroplast photorelocation movement is important for plants to perform efficient photosynthesis. Phototropins were identified as blue-light receptors for chloroplast movement in Arabidopsis thaliana and in the fern Adiantum capillus-veneris, whereas neochrome functions as a dual red/blue light receptor in the latter. However, the signal transduction pathways involved in chloroplast movement remain to be clarified. To investigate the kinetic properties of signalling from these photoreceptors to the chloroplasts, we deduced the speed of signal transfer using Adiantum capillus-veneris gametophytes. When a region of dark-adapted gametophyte cells was subjected to microbeam irradiation, chloroplasts moved towards the irradiated area even in subsequent darkness. We therefore recorded the movement and calculated the speeds of signal transfer by time-lapse imaging. Movement speeds under red or blue light were similar, e.g., about 1.0 microm min(-1) in prothallial cells. However, speeds varied according to cell polarity in protonemal cells. The speed of signal transfer from the protonemal apex to the base was approximately 0.7 microm min(-1), but roughly 2.3 microm min(-1) in the opposite direction. The speed of signal transfer in Arabidopsis thaliana mesophyll cells was approximately 0.8 microm min(-1) by comparison. Surprisingly, chloroplasts located farthest away from the microbeam were found to move faster than those in close proximity to the site of irradiation both in Adiantum capillus-veneris and A. thaliana.
Collapse
Affiliation(s)
- Hidenori Tsuboi
- Tokyo Metropolitan University, Minami-Osawa 1-1, Tokyo 192-0397, Japan
| | | |
Collapse
|
20
|
Tsuboi H, Wada M. The speed of intracellular signal transfer for chloroplast movement. PLANT SIGNALING & BEHAVIOR 2010; 5:433-5. [PMID: 20383069 PMCID: PMC2958595 DOI: 10.4161/psb.5.4.11338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 05/22/2023]
Abstract
The photoreceptors for chloroplast photorelocation movement have been known, but the signal(s) raised by photoreceptors remains unknown. To know the properties of the signal(s) for chloroplast accumulation movement, we examined the speed of signal transferred from light-irradiated area to chloroplasts in gametophytes of Adiantum capillus-veneris. When dark-adapted gametophyte cells were irradiated with a microbeam of various light intensities of red or blue light for 1 min or continuously, the chloroplasts started to move towards the irradiated area. The speed of signal transfer was calculated from the relationship between the timing of start moving and the distance of chloroplasts from the microbeam and was found to be constant at any light conditions. In prothallial cells, the speed was about 1.0 μm min(-1) and in protonemal cells about 0.7 μm min(-1) towards base and about 2.3 μm min(-1) towards the apex. We confirmed the speed of signal transfer in Arabidopsis thaliana mesophyll cells under continuous irradiation of blue light, as was about 0.8 μm min(-1). Possible candidates of the signal are discussed depending on the speed of signal transfer.
Collapse
|
21
|
Takagi S, Takamatsu H, Sakurai-Ozato N. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3301-3310. [PMID: 19546116 DOI: 10.1093/jxb/erp193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.
Collapse
Affiliation(s)
- Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
22
|
Anielska-Mazur A, Bernaś T, Gabryś H. In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC PLANT BIOLOGY 2009; 9:64. [PMID: 19480655 PMCID: PMC2702303 DOI: 10.1186/1471-2229-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/29/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. RESULTS The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca(2+) or Mg(2+). Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca(2+) and Mg(2+). Magnesium ions were equally or more effective than Ca(2+) in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. CONCLUSION The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg(2+) is a regulatory molecule cooperating with Ca(2+) in the signaling pathway of blue light-induced tobacco chloroplast movements.
Collapse
Affiliation(s)
- Anna Anielska-Mazur
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Tytus Bernaś
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, Silesian University, Jagiellońska 26/28, 40-032 Katowice, Poland
| | - Halina Gabryś
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
23
|
Harada A, Shimazaki KI. Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. PLANT & CELL PHYSIOLOGY 2009; 50:360-73. [PMID: 19106118 DOI: 10.1093/pcp/pcn203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phototropins (phot1 and phot2) are blue light (BL) receptors that mediate responses including phototropism, chloroplast movement and stomatal opening, and increased cytosolic Ca(2+). BL absorbed by phototropins activates plasma membrane H(+)-ATPase in guard cells, resulting in membrane hyperpolarization, and drives K(+) uptake and stomatal opening. However, it is unclear whether the phototropin-mediated Ca(2+) increase activates the H(+)-ATPase. Here, we determined cytosolic Ca(2+) concentrations in guard cell protoplasts (GCPs) from Arabidopsis transformed with aequorin. Cytosolic Ca(2+) increased rapidly in response to BL in GCPs from both the wild type and phot1 phot2 double mutants, but was mostly suppressed by an inhibitor of photosynthetic electron flow (DCMU). With depleted external K(+), we observed another slower Ca(2+) increase, which was phototropin- dependent. Fusicoccin, a H(+)-ATPase activator, mimicked the effect of BL. The slow Ca(2+) increase thus appears to result from membrane hyperpolarization. The slow Ca(2+) increase was suppressed by external K(+) and was restored by blockers of inward-rectifying K(+) channels, CsCl and tetraethylammonium, suggesting the preferential uptake of K(+) over Ca(2+). Such efficient K(+) uptake in response to BL was not found in mesophyll cells. Both the fast and the slow Ca(2+) increases were inhibited by Ca(2+) channel blockers (CoCl(2) and LaCl(3)) and a chelating agent (EGTA). These results indicate that the phototropin-mediated Ca(2+) increase was not observed prior to H(+)-ATPase activation in guard cells and that Ca(2+) entered guard cells via Ca(2+) channels through photosynthesis and phototropin-mediated membrane hyperpolarization.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
24
|
|
25
|
Omasa K, Konishi A, Tamura H, Hosoi F. 3D Confocal Laser Scanning Microscopy for the Analysis of Chlorophyll Fluorescence Parameters of Chloroplasts in Intact Leaf Tissues. ACTA ACUST UNITED AC 2008; 50:90-105. [DOI: 10.1093/pcp/pcn174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Naus J, Rolencová M, Hlavácková V. Is chloroplast movement in tobacco plants influenced systemically after local illumination or burning stress? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1292-9. [PMID: 19017116 DOI: 10.1111/j.1744-7909.2008.00743.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chloroplast movement has been studied in many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive periodic movement of chloroplasts was used in high or low (2 000 or 50 micromol/m(2) per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough to evoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.
Collapse
Affiliation(s)
- Jan Naus
- Laboratory of Biophysics, Department of Experimental Physics, Palacký University, tr. Svobody 26, 77146 Olomouc, Czech Republic
| | | | | |
Collapse
|
27
|
Wen F, Xing D, Zhang L. Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2891-901. [PMID: 18550599 DOI: 10.1093/jxb/ern147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the most important functions of blue light (BL) is to induce chloroplast movements in order to reduce the damage to the photosynthetic machinery under excess light. Hydrogen peroxide (H(2)O(2)), which is commonly generated under various environmental stimuli, can act as a signalling molecule that regulates a number of developmental processes and stress responses. To investigate whether H(2)O(2) is involved in high-fluence BL-induced chloroplast avoidance movements, a laser scanning confocal microscope and a luminescence spectrometer were used to observe H(2)O(2) generation in situ with the assistance of the fluorescence probe dichlorofluorescein diacetate (H(2)DCF-DA). After treatment with high-fluence BL, an enhanced accumulation of H(2)O(2), indicated by the fluorescence intensity of DCF, can be observed in leaf cells of Arabidopsis thaliana. Exogenously applied H(2)O(2) promotes the high-fluence BL-induced chloroplast movements in a concentration-dependent manner within the range of 0-10(-4) M, not only increasing the degree of movements but also accelerating the start of migrations. Moreover, the high-fluence BL-induced H(2)O(2) generation and the subsequent chloroplast movements can be largely abolished by the administration of the H(2)O(2)-specific scavenger catalase and other antioxidants. In addition, in-depth subcellular experiments indicated that high-fluence BL-induced H(2)O(2) generation can be partly abolished by the addition of diphenyleneiodonium (DPI), which is an NADPH oxidase inhibitor, and the blocker of electron transport chain dichlorophenyl dimethylurea (DCMU), respectively. The results presented here suggest that high-fluence BL can induce H(2)O(2) generation at both the plasma membrane and the chloroplast, and that the production of H(2)O(2) is involved in high-fluence BL-induced chloroplast avoidance movements.
Collapse
Affiliation(s)
- Feng Wen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
28
|
|
29
|
Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 2007; 388:927-35. [PMID: 17696776 DOI: 10.1515/bc.2007.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chloroplasts gather in areas irradiated with weak light to maximize photosynthesis (the accumulation response). They move away from areas irradiated with strong light to minimize damage of the photosynthetic apparatus (the avoidance response). The processes underlying these chloroplast movements can be divided into three parts: photoperception, signal transduction, and chloroplast movement. Photoreceptors for chloroplast movement have been identified recently in various plant species. A blue light receptor phototropin (phot) mediates chloroplast photorelocation movement in the seed plant Arabidopsis thaliana, the fern Adiantum capillus-veneris, the moss Physcomitrella patens and possibly the green alga Mougeotia scalaris. A chimeric photoreceptor between phytochrome and phototropin, neochrome (neo), was found in some advanced ferns and in the green alga M. scalaris. While the mechanism of chloroplast movement is not well understood, it is known that actin filaments play an important role in this process. To understand the molecular mechanisms associated with chloroplast movement, several mutants were isolated in A. thaliana (jac1 and chup1) and the corresponding genes were cloned. In this review, recent progress in photoreceptor research into chloroplast movement in various plant species and the possible factors functioning in signal transduction or the regulation of actin filaments identified in A. thaliana is discussed.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
30
|
Harada A, Shimazaki KI. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 2007; 83:102-11. [PMID: 16906793 DOI: 10.1562/2006-03-08-ir-837] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plants have several kinds of photoreceptors, which regulate growth and development. Recent investigations using Arabidopsis thaliana revealed that the newly found blue light receptor phototropins mediate phototropism, chloroplast relocation, stomatal opening, rapid inhibition of hypocotyl elongation and leaf expansion. Several physiological studies suggest that one of the intermediates in phototropin signaling is cytosolic Ca2+. Studies using phototropin mutants have demonstrated that phototropins induce an increase in cytosolic Ca2+ concentration. However, the function of Ca2+ in the phototropin-mediated signaling process remains largely unknown. This review presents findings about phototropin-mediated calcium mobilization and the involvement of calcium in blue light-dependent plant responses.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka, Japan.
| | | |
Collapse
|
31
|
Grabalska M, Malec P. Blue Light-induced Chloroplast Reorientations in Lemna trisulca L. (Duckweed) are Controlled by Two Separable Cellular Mechanisms as Suggested by Different Sensitivity to Wortmannin¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00019.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Shimazaki KI, Doi M, Assmann SM, Kinoshita T. Light regulation of stomatal movement. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:219-47. [PMID: 17209798 DOI: 10.1146/annurev.arplant.57.032905.105434] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stomatal pores, each surrounded by a pair of guard cells, regulate CO2 uptake and water loss from leaves. Stomatal opening is driven by the accumulation of K+ salts and sugars in guard cells, which is mediated by electrogenic proton pumps in the plasma membrane and/or metabolic activity. Opening responses are achieved by coordination of light signaling, light-energy conversion, membrane ion transport, and metabolic activity in guard cells. In this review, we focus on recent progress in blue- and red-light-dependent stomatal opening. Because the blue-light response of stomata appears to be strongly affected by red light, we discuss underlying mechanisms in the interaction between blue-light signaling and guard cell chloroplasts.
Collapse
Affiliation(s)
- Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan.
| | | | | | | |
Collapse
|
33
|
Berg R, Königer M, Schjeide BM, Dikmak G, Kohler S, Harris GC. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement. PHOTOSYNTHESIS RESEARCH 2006; 87:303-11. [PMID: 16699921 DOI: 10.1007/s11120-005-9012-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 05/26/2005] [Indexed: 05/09/2023]
Abstract
A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.
Collapse
Affiliation(s)
- Robert Berg
- Department of Physics, Wellesley College, Wellesley, MA 02481, USA
| | | | | | | | | | | |
Collapse
|
34
|
DeBlasio SL, Luesse DL, Hangarter RP. A plant-specific protein essential for blue-light-induced chloroplast movements. PLANT PHYSIOLOGY 2005; 139:101-14. [PMID: 16113226 PMCID: PMC1203361 DOI: 10.1104/pp.105.061887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/25/2005] [Accepted: 05/25/2005] [Indexed: 05/04/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), light-dependent chloroplast movements are induced by blue light. When exposed to low fluence rates of light, chloroplasts accumulate in periclinal layers perpendicular to the direction of light, presumably to optimize light absorption by exposing more chloroplast area to the light. Under high light conditions, chloroplasts become positioned parallel to the incoming light in a response that can reduce exposure to light intensities that may damage the photosynthetic machinery. To identify components of the pathway downstream of the photoreceptors that mediate chloroplast movements (i.e. phototropins), we conducted a mutant screen that has led to the isolation of several Arabidopsis mutants displaying altered chloroplast movements. The plastid movement impaired1 (pmi1) mutant exhibits severely attenuated chloroplast movements under all tested fluence rates of light, suggesting that it is a necessary component for both the low- and high-light-dependant chloroplast movement responses. Analysis of pmi1 leaf cross sections revealed that regardless of the light condition, chloroplasts are more evenly distributed in leaf mesophyll cells than in the wild type. The pmi1-1 mutant was found to contain a single nonsense mutation within the open reading frame of At1g42550. This gene encodes a plant-specific protein of unknown function that appears to be conserved among angiosperms. Sequence analysis of the protein suggests that it may be involved in calcium-mediated signal transduction, possibly through protein-protein interactions.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Department of Biology, Indiana University, Bloomington, 47405, USA
| | | | | |
Collapse
|
35
|
Suetsugu N, Kagawa T, Wada M. An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. PLANT PHYSIOLOGY 2005; 139:151-62. [PMID: 16113208 PMCID: PMC1203365 DOI: 10.1104/pp.105.067371] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ambient-light conditions mediate chloroplast relocation in plant cells. Under the low-light conditions, chloroplasts accumulate in the light (accumulation response), while under the high-light conditions, they avoid the light (avoidance response). In Arabidopsis (Arabidopsis thaliana), the accumulation response is mediated by two blue-light receptors, termed phototropins (phot1 and phot2) that act redundantly, and the avoidance response is mediated by phot2 alone. A mutant, J-domain protein required for chloroplast accumulation response 1 (jac1), lacks the accumulation response under weak blue light but shows a normal avoidance response under strong blue light. In dark-adapted wild-type cells, chloroplasts accumulate on the bottom of cells. Both the jac1 and phot2 mutants are defective in this chloroplast movement in darkness. Positional cloning of JAC1 reveals that this gene encodes a J-domain protein, resembling clathrin-uncoating factor auxilin at its C terminus. The amounts of JAC1 transcripts and JAC1 proteins are not regulated by light and by phototropins. A green fluorescent protein-JAC1 fusion protein showed a similar localization pattern to green fluorescent protein alone in a transient expression assay using Arabidopsis mesophyll cells and onion (Allium cepa) epidermal cells, suggesting that the JAC1 protein may be a soluble cytosolic protein. Together, these results suggest that JAC1 is an essential component of phototropin-mediated chloroplast movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
36
|
|
37
|
Grabalska M, Malec P. Blue Light–induced Chloroplast Reorientations in Lemna trisulca L. (Duckweed) are Controlled by Two Separable Cellular Mechanisms as Suggested by Different Sensitivity to Wortmannin¶. Photochem Photobiol 2004; 79:343-8. [PMID: 15137511 DOI: 10.1562/le-03-16.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chloroplast reorientations within mesophyll cells are among the most rapid physiological responses of higher plants to blue light. At light intensities below the saturation point of photosynthesis, chloroplasts move to the cell walls perpendicular to the direction of light and maximize light absorption (low-fluence rate response [LFR]). At light intensities above the saturation point of photosynthesis, chloroplasts redistribute to cell walls parallel to the direction of light (high-fluence rate response [HFR]). The actin-based mechanism is responsible for the light-induced chloroplast movements. We have found that an inhibitor of phosphoinositide-3-kinases, wortmannin, potently and irreversibly inhibited LFR and HFR chloroplast responses to blue light in Lemna trisulca L. mesophyll cells. Microscopic observations and photometric measurement indicated that 100 nM wortmannin specifically inhibited LFR in Lemna, whereas HFR displayed no sensitivity to the inhibitor at this concentration. A complete inhibition of the HFR could be obtained by 1 microM wortmannin. These data indicate that LFR is more sensitive to wortmannin than HFR and suggest that these two responses may be under the control of different cellular mechanisms. Our results suggest that phosphoinositide kinases and other phosphoinositide cycle enzymes may play a role in the transduction of the light signal to the actin cytoskeleton in Lemna as factors specifying the direction of chloroplast movements. A hypothetical model assuming three signaling pathways regulating light-induced chloroplast reorientations in mesophyll cells is proposed.
Collapse
Affiliation(s)
- Magdalena Grabalska
- Department of Plant Physiology and Biochemistry, The Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
38
|
Gorton HL, Herbert SK, Vogelmann TC. Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. PLANT PHYSIOLOGY 2003; 132:1529-39. [PMID: 12857833 PMCID: PMC167091 DOI: 10.1104/pp.102.019612] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Revised: 01/21/2003] [Accepted: 03/28/2003] [Indexed: 05/20/2023]
Abstract
Light-mediated chloroplast movements are common in plants. When leaves of Alocasia brisbanensis (F.M. Bailey) Domin are exposed to dim light, mesophyll chloroplasts spread along the periclinal walls normal to the light, maximizing absorbance. Under high light, the chloroplasts move to anticlinal walls. It has been proposed that movement to the high-light position shortens the diffusion path for CO(2) from the intercellular air spaces to the chloroplasts, thus reducing CO(2) limitation of photosynthesis. To test this hypothesis, we used pulsed photoacoustics to measure oxygen diffusion times as a proxy for CO(2) diffusion in leaf cells. We found no evidence that chloroplast movement to the high-light position enhanced gas diffusion. Times for oxygen diffusion were not shorter in leaves pretreated with white light, which induced chloroplast movement to the high-light position, compared with leaves pretreated with 500 to 700 nm light, which did not induce movement. From the oxygen diffusion time and the diffusion distance from chloroplasts to the intercellular gas space, we calculated an oxygen permeability of 2.25 x 10(-)(6) cm(2) s(-)(1) for leaf cells at 20 degrees C. When leaf temperature was varied from 5 degrees C to 40 degrees C, the permeability for oxygen increased between 5 degrees C and 20 degrees C but changed little between 20 degrees C and 40 degrees C, indicating changes in viscosity or other physical parameters of leaf cells above 20 degrees C. Resistance for CO(2) estimated from oxygen permeability was in good agreement with published values, validating photoacoustics as another way of assessing internal resistances to CO(2) diffusion.
Collapse
Affiliation(s)
- Holly L Gorton
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland 20686-3001, USA.
| | | | | |
Collapse
|
39
|
Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci U S A 2003; 100:1456-61. [PMID: 12540824 PMCID: PMC298794 DOI: 10.1073/pnas.0333408100] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Indexed: 11/18/2022] Open
Abstract
Light is a central regulator of plant growth and development. Among the processes triggered by blue and UV-A light, phototropism, stomatal movement, and chloroplast orientation rely on the activation of blue-light receptors known as phototropins. So far, these photoreceptors constitute a class of light receptor kinases unique to the plant kingdom. In Arabidopsis thaliana, the two members phot1 and phot2 have been shown to display partially overlapping functions. Up to now little is known about the signaling cascade, which links these phototropins to the physiological responses downstream of blue-light perception. Here, we show that on illumination with blue light, but not red light, voltage-dependent and calcium-permeable channels activate in the plasma membrane of mesophyll cells. Blue-light stimulation in the presence of the photosynthetic electron transport inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicates that blue-light receptors rather than photosynthesis control channel activity. Sensitivity toward the protein kinase inhibitor K252a further pointed to the possible involvement of light receptor kinases. In support of this hypothesis, in the photoreceptor mutant phot1-5, blue-light induction of calcium currents was dramatically reduced and was eliminated in the double mutant phot1-5 phot2-1. By contrast, in cry1-304 cry2-1, an Arabidopsis mutant lacking another class of plant blue-light receptors, the channel remained sensitive to blue light. We thus conclude that blue light triggers calcium fluxes via the phototropin-activated calcium-permeable channel.
Collapse
Affiliation(s)
- Sonja Stoelzle
- Department of Molecular Plant Physiology and Biophysics, Julius von Sachs Institute of Biosciences, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Abstract
The study of chloroplast movement made a quantum leap at the beginning of the twenty-first century. Research based on reverse-genetic approaches using targeted mutants has brought new concepts to this field. One of the most exciting findings has been the discovery of photoreceptors for both accumulation and avoidance responses in Arabidopsis and in the fern Adiantum. Evidence for the adaptive advantage of chloroplast avoidance movements in plant survival has also been found. Additional discoveries include mechano-stress-induced chloroplast movement in ferns and mosses, and microtubule-mediated chloroplast movement in the moss Physcomitrella. The possible ecological significance of chloroplast movement is discussed in the final part of this review.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | | | | |
Collapse
|
41
|
Engstrom EM, Ehrhardt DW, Mitra RM, Long SR. Pharmacological analysis of nod factor-induced calcium spiking in Medicago truncatula. Evidence for the requirement of type IIA calcium pumps and phosphoinositide signaling. PLANT PHYSIOLOGY 2002; 128:1390-401. [PMID: 11950987 PMCID: PMC154266 DOI: 10.1104/pp.010691] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 11/08/2001] [Accepted: 12/20/2001] [Indexed: 05/18/2023]
Abstract
Bacterial Nod factors trigger a number of cellular responses in root hairs of compatible legume hosts, which include periodic, transient increases in cytosolic calcium levels, termed calcium spiking. We screened 13 pharmaceutical modulators of eukaryotic signal transduction for effects on Nod factor-induced calcium spiking. The purpose of this screening was 2-fold: to implicate enzymes required for Nod factor-induced calcium spiking in Medicago sp., and to identify inhibitors of calcium spiking suitable for correlating calcium spiking to other Nod factor responses to begin to understand the function of calcium spiking in Nod factor signal transduction. 2-Aminoethoxydiphenylborate, caffeine, cyclopiazonic acid (CPA), 2,5-di-(t-butyl)-1,4-hydroquinone, and U-73122 inhibit Nod factor-induced calcium spiking. CPA and U-73122 are inhibitors of plant type IIA calcium pumps and phospholipase C, respectively, and implicate the requirement for these enzymes in Nod factor-induced calcium spiking. CPA and U-73122 inhibit Nod factor-induced calcium spiking robustly at concentrations with no apparent toxicity to root hairs, making CPA and U-73122 suitable for testing whether calcium spiking is causal to subsequent Nod factor responses.
Collapse
Affiliation(s)
- Eric M Engstrom
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
42
|
Sato Y, Wada M, Kadota A. External Ca(2+) is essential for chloroplast movement induced by mechanical stimulation but not by light stimulation. PLANT PHYSIOLOGY 2001. [PMID: 11598224 DOI: 10.1104/pp.010405] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In the fern Adiantum capillus-veneris, chloroplast movement is induced by mechanical stimulation as well as by light stimulation. Directional movement of both types depends on an actin-based motile system. To investigate the physiological relationship between mechanical and light signaling in the regulation of chloroplast movement, we examined the mechano-response of chloroplasts whose motility had been already restricted after photo-relocation. Chloroplast mechano-avoidance movement was induced under all of the photo-relocation conditions tested, indicating that mechano-specific signals generated by mechanical stimulation dominate over the light signals and reactivate the motility of chloroplasts. When the effects of external Ca(2+) on the induction of mechano- and light responses were examined, strikingly different requirements of external Ca(2+) were found for each. In medium without Ca(2+), the mechano-response was suppressed but no effects were observed on photo-response. Mechano-relocation movement of chloroplasts was inhibited by 100 microM lanthanum (La(3+)), a plasma membrane calcium channel blocker, and by 10 microM gadolinium (Gd(3+)), a stretch-activated channel blocker. However, the same concentrations of these drugs did not affect the photo-relocation movement at all. These results suggest that the influx of external Ca(2+) is crucial for the early signaling step of chloroplast mechano-relocation but not for that of photo-relocation. This is the first report showing the separation of signaling pathways in mechano- and photo-relocation of chloroplasts.
Collapse
Affiliation(s)
- Y Sato
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
43
|
Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 2001; 98:6969-74. [PMID: 11371609 PMCID: PMC34462 DOI: 10.1073/pnas.101137598] [Citation(s) in RCA: 503] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1 npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1 npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.
Collapse
Affiliation(s)
- T Sakai
- RIKEN (The Institute of Physical and Chemical Research) Plant Science Center, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Plieth C. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. PROTOPLASMA 2001; 218:1-23. [PMID: 11732314 DOI: 10.1007/bf01288356] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review focusses on Ca(2+)-mediated plant cell signaling and optical methods for in vivo [Ca2+] monitoring and imaging in plants. The cytosolic free calcium concentration has long been considered the central cellular key in plants. However, more and more data are turning up that critically question this view. Conflicting arguments show that there are still many open questions. One conclusion is that the cytosolic free Ca2+ concentration is just one of many cellular network parameters orchestrating complex cellular signaling. Novel experimental strategies which unveil interference of cellular parameters and communication of transduction pathways are required to understand this network. To date only optical methods are able to provide both kinetic and spatial information about cellular key parameters simultaneously. Focussing on calcium there are currently three classes of calcium indicators employed (i.e., chemical fluorescent dyes, luminescent indicators, and green-fluorescent-protein-based indicators). Properties and capabilities as well as advantages and disadvantages of these indicators when used in plant systems are discussed. Finally, general experimental strategies are mentioned which are able to answer open questions raised here.
Collapse
Affiliation(s)
- C Plieth
- Zentrum für Biochemie und Molekularbiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, 24118 Kiel, Federal Republic of Germany.
| |
Collapse
|
45
|
Mullineaux P, Ball L, Escobar C, Karpinska B, Creissen G, Karpinski S. Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy? Philos Trans R Soc Lond B Biol Sci 2000; 355:1531-40. [PMID: 11128006 PMCID: PMC1692875 DOI: 10.1098/rstb.2000.0713] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content and induction of antioxidant defences. The induction of extra-plastidial antioxidant systems is important in the protection of the chloroplast under EL conditions. A larger range of transcripts encoding different antioxidant defence enzymes may be induced in the systemically acclimated leaves and these include those encoded by the glutathione peroxidase (GPX2) and glutathione-S-transferase (GST) genes, which are also highly induced in the hypersensitive response and associated systemic acquired resistance (SAR) in incompatible plant-pathogen interactions. Furthermore, the expression of the SAR-inducible pathogenesis-related protein gene, PR2, is enhanced in SAA leaves. Wounded leaf tissue also shows enhanced systemic induction of a cytosolic ascorbate peroxidase gene (APX2) under EL conditions. These and other considerations, suggest H2O2 and other reactive oxygen species (ROS) could be the common factor in signalling pathways for diverse environmental stresses. These effects may be mediated by changes in the level and redox state of the cellular glutathione pool. Mutants with constitutive expression of a normally EL-inducible APX2 gene have much reduced levels of foliar glutathione. The expression of APX1 and APX3, encoding cytosolic and peroxisome-associated isoforms, respectively, are also under phytochrome-A-mediated control. The expression of these genes is tightly linked to the greening of plastids in etiolated seedlings. These data suggest that part of the developmental processes that bring about the acclimation of leaves to high light includes the configuration of antioxidant defences. Therefore, the linkage between immediate responses of leaves to EL, acclimation of chloroplasts to EEE and the subsequent changes to leaf form and function in high light could be mediated by the activity of foliar antioxidant defences and changes in the concentration of ROS.
Collapse
Affiliation(s)
- P Mullineaux
- Department of Applied Genetics, John Innes Centre, Norwich Research Park, Colney, UK.
| | | | | | | | | | | |
Collapse
|