1
|
A novel Triticum durum Annexin 12 protein: Expression, purification and biological activities against Listeria monocytogenes growth in meat under refrigeration. Microb Pathog 2020; 143:104143. [DOI: 10.1016/j.micpath.2020.104143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
2
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
3
|
Majumdar A, Kar RK. Integrated role of ROS and Ca +2 in blue light-induced chloroplast avoidance movement in leaves of Hydrilla verticillata (L.f.) Royle. PROTOPLASMA 2016; 253:1529-1539. [PMID: 26573536 DOI: 10.1007/s00709-015-0911-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
4
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
He M, Yang X, Cui S, Mu G, Hou M, Chen H, Liu L. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.). Gene 2015; 568:40-9. [PMID: 25958350 DOI: 10.1016/j.gene.2015.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/23/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses.
Collapse
Affiliation(s)
- MeiJing He
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - XinLei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - ShunLi Cui
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - GuoJun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - MingYu Hou
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - HuanYing Chen
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - LiFeng Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Laboratory of Crop Germplasm Resources of Hebei, Agricultural University of Hebei, Baoding 071001, People's Republic of China.
| |
Collapse
|
6
|
Luczak M, Krzeszowiec-Jeleń W, Konopka-Postupolska D, Wojtaszek P. Collagenase as a useful tool for the analysis of plant cellular peripheries. PHYTOCHEMISTRY 2015; 112:195-209. [PMID: 25435175 DOI: 10.1016/j.phytochem.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries.
Collapse
Affiliation(s)
- Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
7
|
Zhu J, Wu X, Yuan S, Qian D, Nan Q, An L, Xiang Y. Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking. PLoS One 2014; 9:e102407. [PMID: 25019283 PMCID: PMC4097066 DOI: 10.1371/journal.pone.0102407] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022] Open
Abstract
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative "linker" between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Huang Y, Wang J, Zhang L, Zuo K. A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1. PLoS One 2013; 8:e66160. [PMID: 23750279 PMCID: PMC3672135 DOI: 10.1371/journal.pone.0066160] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/02/2013] [Indexed: 01/18/2023] Open
Abstract
Annexins are assumed to be involved in regulating cotton fiber elongation, but direct evidence remains to be presented. Here we cloned six Annexin genes (AnxGb) abundantly expressed in fiber from sea-island cotton (G. barbadense). qRT-PCR results indicated that all six G. barbadense annexin genes were expressed in elongating cotton fibers, while only the expression of AnxGb6 was cotton fiber-specific. Yeast two hybridization and BiFC analysis revealed that AnxGb6 homodimer interacted with a cotton fiber specific actin GbAct1. Ectopic-expressed AnxGb6 in Arabidopsis enhanced its root elongation without increasing the root cell number. Ectopic AnxGb6 expression resulted in more F-actin accumulation in the basal part of the root cell elongation zone. Analysis of AnxGb6 expression in three cotton genotypes with different fiber length confirmed that AnxGb6 expression was correlated to cotton fiber length, especially fiber elongation rate. Our results demonstrated that AnxGb6 was important for fiber elongation by potentially providing a domain for F-actin organization.
Collapse
Affiliation(s)
- Yiqun Huang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lida Zhang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaijing Zuo
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Konopka-Postupolska D, Clark G, Hofmann A. Structure, function and membrane interactions of plant annexins: an update. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:230-41. [PMID: 21763533 DOI: 10.1016/j.plantsci.2011.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 05/08/2023]
Abstract
Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities. In this review, we appraise the current knowledge of plant annexin molecular, functional and structural properties with a special emphasis on topics of less coverage in recent past overviews. In particular, plant annexin post-translational modification, roles in polar growth and membrane stabilisation processes are discussed.
Collapse
|
10
|
Baucher M, Oukouomi Lowe Y, Vandeputte OM, Mukoko Bopopi J, Moussawi J, Vermeersch M, Mol A, El Jaziri M, Homblé F, Pérez-Morga D. Ntann12 annexin expression is induced by auxin in tobacco roots. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4055-65. [PMID: 21543519 PMCID: PMC3134359 DOI: 10.1093/jxb/err112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 05/18/2023]
Abstract
Ntann12, encoding a polypeptide homologous to annexins, was found previously to be induced upon infection of tobacco with the bacterium Rhodococcus fascians. In this study, Ntann12 is shown to bind negatively charged phospholipids in a Ca(2+)-dependent manner. In plants growing in light conditions, Ntann12 is principally expressed in roots and the corresponding protein was mainly immunolocalized in the nucleus. Ntann12 expression was inhibited following plant transfer to darkness and in plants lacking the aerial part. However, an auxin (indole-3-acetic acid) treatment restored the expression of Ntann12 in the root system in dark conditions. Conversely, polar auxin transport inhibitors such as 1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid (TIBA) inhibited Ntann12 expression in light condition. These results indicate that the expression of Ntann12 in the root is linked to the perception of a signal in the aerial part of the plant that is transmitted to the root via polar auxin transport.
Collapse
Affiliation(s)
- Marie Baucher
- Université Libre de Bruxelles, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Annexins are multifunctional lipid-binding proteins. Plant annexins are expressed throughout the life cycle and are under environmental control. Their association or insertion into membranes may be governed by a range of local conditions (Ca(2+), pH, voltage or lipid identity) and nonclassical sorting motifs. Protein functions include exocytosis, actin binding, peroxidase activity, callose synthase regulation and ion transport. As such, annexins appear capable of linking Ca(2+), redox and lipid signalling to coordinate development with responses to the biotic and abiotic environment. Significant advances in plant annexin research have been made in the past 2 yr. Here, we review the basis of annexin multifunctionality and suggest how these proteins may operate in the life and death of a plant cell.
Collapse
|
12
|
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1019-30. [PMID: 18768323 DOI: 10.1016/j.plaphy.2008.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/10/2008] [Indexed: 05/18/2023]
Abstract
Plant annexins belong to a multigene family and are suggested to play a role in stress responses. A full-length cDNA for a gene encoding an annexin protein was isolated and characterized from Brassica juncea (AnnBj1). AnnBj1 message levels were regulated by abscisic acid, ethephon, salicylic acid, and methyl jasmonate as well as chemicals that induce osmotic stress (NaCl, Mannitol or PEG), heavy metal stress (CdCl(2)) and oxidative stress (methyl viologen or H(2)O(2)). In order to determine if AnnBj1 functions in protection against stress, we generated transgenic tobacco plants ectopically expressing AnnBj1 under the control of constitutive CaMV 35S promoter. The transgenic tobacco plants showed significant tolerance to dehydration (mannitol), salt (NaCl), heavy metal (CdCl(2)) and oxidative stress (H(2)O(2)) at the seedling stage and retained higher chlorophyll levels in response to the above stresses as determined in detached leaf senescence assays. The transgenic plants also showed decreased accumulation of thiobarbituric acid-reactive substances (TBARS) compared to wild-type plants in response to mannitol treatments in leaf disc assays. AnnBj1 recombinant protein exhibited low levels of peroxidase activity in vitro and transgenic plants showed increased total peroxidase activity. Additionally, the transgenic plants showed enhanced resistance to the oomycete pathogen, Phytophthora parasitica var. nicotianae, and increased message levels for several pathogenesis-related proteins. Our results demonstrate that ectopic expression of AnnBj1 in tobacco provides tolerance to a variety of abiotic and biotic stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad-500046, AP, India
| | | | | | | | | | | |
Collapse
|
13
|
Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM. Annexins: multifunctional components of growth and adaptation. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:533-44. [PMID: 18267940 DOI: 10.1093/jxb/erm344] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant annexins are ubiquitous, soluble proteins capable of Ca(2+)-dependent and Ca(2+)-independent binding to endomembranes and the plasma membrane. Some members of this multigene family are capable of binding to F-actin, hydrolysing ATP and GTP, acting as peroxidases or cation channels. These multifunctional proteins are distributed throughout the plant and throughout the life cycle. Their expression and intracellular localization are under developmental and environmental control. The in vitro properties of annexins and their known, dynamic distribution patterns suggest that they could be central regulators or effectors of plant growth and stress signalling. Potentially, they could operate in signalling pathways involving cytosolic free calcium and reactive oxygen species.
Collapse
Affiliation(s)
- Jennifer C Mortimer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI. Auxin, actin and growth of the Arabidopsis thaliana primary root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:514-28. [PMID: 17419848 DOI: 10.1111/j.1365-313x.2007.03068.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To understand how auxin regulates root growth, we quantified cell division and elemental elongation, and examined actin organization in the primary root of Arabidopsis thaliana. In treatments for 48 h that inhibited root elongation rate by 50%, we find that auxins and auxin-transport inhibitors can be divided into two classes based on their effects on cell division, elongation and actin organization. Indole acetic acid (IAA), 1-naphthalene acetic acid (NAA) and tri-iodobenzoic acid (TIBA) inhibit root growth primarily through reducing the length of the growth zone rather than the maximal rate of elemental elongation and they do not reduce cell production rate. These three compounds have little effect on the extent of filamentous actin, as imaged in living cells or by chemical fixation and immuno-cytochemistry, but tend to increase actin bundling. In contrast, 2,4-dichlorophenoxy-acetic acid (2,4-D) and naphthylphthalamic acid (NPA) inhibit root growth primarily by reducing cell production rate. These compounds remove actin and slow down cytoplasmic streaming, but do not lead to mislocalization of the auxin-efflux proteins, PIN1 or PIN2. The effects of 2,4-D and NPA were mimicked by the actin inhibitor, latrunculin B. The effects of these compounds on actin were also elicited by a 2 h treatment at higher concentration but were not seen in two mutants, eir1-1 and aux1-7, with deficient auxin transport. Our results show that IAA regulates the size of the root elongation zone whereas 2,4-D affects cell production and actin-dependent processes; and, further, that elemental elongation and localization of PINs are appreciably independent of actin.
Collapse
Affiliation(s)
- Abidur Rahman
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
15
|
Konopka-Postupolska D. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. PROTOPLASMA 2007; 230:203-15. [PMID: 17458635 DOI: 10.1007/s00709-006-0234-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/14/2006] [Indexed: 05/08/2023]
Abstract
The plasma membrane, the most external cellular structure, is at the forefront between the plant cell and its environment. Hence, it is naturally adapted to function in detection of external signals, their transduction throughout the cell, and finally, in cell reactions. Membrane lipids and the cytoskeleton, once regarded as simple and static structures, have recently been recognized as significant players in signal transduction. Proteins involved in signal detection and transduction are organised in specific domains at the plasma membrane. Their aggregation allows to bring together and orient the downstream and upstream members of signalling pathways. The cortical cytoskeleton provides a structural framework for rapid signal transduction from the cell periphery into the nucleus. It leads to intracellular reorganisation and wide-scale modulation of cellular metabolism which results in accumulation of newly synthesised proteins and/or secondary metabolites which, in turn, have to be distributed to the appropriate cell compartments. And again, in plant cells, the secretory vesicles that govern polar cellular transport are delivered to their target membranes by interaction with actin microfilaments. In search for factors that could govern subsequent steps of the cell response delineated above we focused on an evolutionary conserved protein family, the annexins, that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic changes in membrane architecture and to organise the interface between secretory vesicles and the membrane. Certain proteins from this family were also identified as actin binding, making them ideal mediators in cell membrane and cytoskeleton interactions.
Collapse
Affiliation(s)
- D Konopka-Postupolska
- Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Aparicio-Fabre R, Guillén G, Estrada G, Olivares-Grajales J, Gurrola G, Sánchez F. Profilin tyrosine phosphorylation in poly-L-proline-binding regions inhibits binding to phosphoinositide 3-kinase in Phaseolus vulgaris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:491-500. [PMID: 16827923 DOI: 10.1111/j.1365-313x.2006.02787.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The profilin family consists of a group of ubiquitous highly conserved 12-15 kDa eukaryotic proteins that bind actin, phosphoinositides, poly-l-proline (PLP) and proteins with proline-rich motifs. Some proteins with proline-rich motifs form complexes that have been implicated in the dynamics of the actin cytoskeleton and processes such as vesicular trafficking. A major unanswered question in the field is how profilin achieves the required specificity to bind such an array of proteins. It is now becoming clear that profilin isoforms are subject to differential regulation and that they may play distinct roles within the cell. Considerable evidence suggests that these isoforms have different functional roles in the sorting of diverse proteins with proline-rich motifs. All profilins contain highly conserved aromatic residues involved in PLP binding which are presumably implicated in the interaction with proline-rich motif proteins. We have previously shown that profilin is phosphorylated on tyrosine residues. Here, we show that profilin can bind directly to Phaseolus vulgaris phosphoinositide 3-kinase (PI3K) type III. We demonstrate that a new region around Y72 of profilin, as well as the N- and C-terminal PLP-binding domain, recognizes and binds PLP and PI3K. In vitro binding assays indicate that PI3K type III forms a complex with profilin in a manner that depends on the tyrosine phosphorylation status within the proline-rich-binding domain in profilin. Profilin-PI3K type III interaction suggests that profilin may be involved in membrane trafficking and in linking the endocytic pathway with actin reorganization dynamics.
Collapse
Affiliation(s)
- Rosaura Aparicio-Fabre
- Departmento de Biología Molecular de Plantas, Institute de Biotechnología, UNAM, México, Av. Universidad 2001, Chamilpa, Cuernavaca Mor 62210, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluska F. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. PLANT SIGNALING & BEHAVIOR 2006; 1:122-33. [PMID: 19521492 PMCID: PMC2635008 DOI: 10.4161/psb.1.3.2759] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/03/2006] [Indexed: 05/18/2023]
Abstract
Immunolocalization of auxin using a new specific antibody revealed, besides the expected diffuse cytoplasmic signal, enrichments of auxin at end-poles (cross-walls), within endosomes and within nuclei of those root apex cells which accumulate abundant F-actin at their end-poles. In Brefeldin A (BFA) treated roots, a strong auxin signal was scored within BFA-induced compartments of cells having abundant actin and auxin at their end-poles, as well as within adjacent endosomes, but not in other root cells. Importantly, several types of polar auxin transport (PAT) inhibitors exert similar inhibitory effects on endocytosis, vesicle recycling, and on the enrichments of F-actin at the end-poles. These findings indicate that auxin is transported across F-actin-enriched end-poles (synapses) via neurotransmitter-like secretion. This new concept finds genetic support from the semaphore1, rum1 and rum1/lrt1 mutants of maize which are impaired in PAT, endocytosis and vesicle recycling, as well as in recruitment of F-actin and auxin to the auxin transporting end-poles. Although PIN1 localizes abundantly to the end-poles, and they also fail to support the formation of in these mutants affected in PAT, auxin and F-actin are depleted from their end-poles which also fail to support formation of the large BFA-induced compartments.
Collapse
Affiliation(s)
- Markus Schlicht
- IZMB; Rheinische Friedrich-Wilhelms-Universität; Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Benjamins R, Malenica N, Luschnig C. Regulating the regulator: the control of auxin transport. Bioessays 2006; 27:1246-55. [PMID: 16299756 DOI: 10.1002/bies.20322] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With the discovery of the phytohormone auxin in the late 1920s, it became possible to link the regulation of complex plant growth responses to a single biologically active compound. Among all the plant growth regulators characterised so far, only auxin appears to be actively transported throughout the plant to create complex variations in concentration patterns and flow directions over time. This stimulated interest in the specific mechanisms underlying auxin transport as key factors in plant growth responses. Research in the last decade revealed several genes involved in the controlled transport of auxin and greatly improved our understanding of the basic principles of auxin-mediated responses. We are at this point, however, only starting to understand the complex interplay and control of factors that ultimately underlie the observed spatiotemporal variations in auxin transport and thus mediate plant growth and environmental responses. This review highlights important findings that provide us with a framework of molecular players and potential regulatory mechanisms that should contribute to the formulation of a comprehensive dynamic model of spatiotemporal auxin distribution.
Collapse
Affiliation(s)
- René Benjamins
- Institute for Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | |
Collapse
|
19
|
Clark GB, Lee D, Dauwalder M, Roux SJ. Immunolocalization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. PLANTA 2005; 220:621-31. [PMID: 15368128 DOI: 10.1007/s00425-004-1374-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/07/2004] [Indexed: 05/08/2023]
Abstract
Annexins are a multigene, multifunctional family of calcium-dependent, membrane-binding proteins found in animal and plant cells. In plants, annexins have been localized in the cytoplasm and at the cell periphery of highly secretory cell types, and in the tip region of polarly growing cells. Consequently, one proposed function for annexins in plant cells is participation in the Golgi-mediated secretion of new wall materials. In Arabidopsis, there are eight different annexin cDNAs, which share between 30% and 81% deduced amino acid sequence identity. We have used two monospecific Arabidopsis anti-annexin antibodies, raised against divergent 31-mer peptides from AnnAt1 and AnnAt2 and a previously characterized pea anti-annexin p35 antibody, for Western blot and immunolocalization studies in Arabidopsis. Western blot analyses of various Arabidopsis protein fractions showed that the two Arabidopsis antibodies are able to specifically recognize annexins in both soluble and membrane fractions. Immunofluorescence results with the three annexin antibodies show staining of secretory cells, especially at the cell periphery in developing sieve tubes, outer root cap cells, and in root hairs, consistent with previous results. In developmentally different stages some staining was also seen near the apical meristem, in some leaf cells, and in phloem-associated cells. Autoradiography following 3H-galactose incorporation was used to more clearly correlate active secretion of wall materials with the localization patterns of a specific individual annexin protein in the same cells at the same developmental stage. The results obtained in this study provide further support for the hypothesis that these two Arabidopsis annexins function in Golgi-mediated secretion during early seedling growth and development.
Collapse
Affiliation(s)
- Gregory B Clark
- School of Biological Sciences, Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
20
|
Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S, Blancaflor EB. The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:113-25. [PMID: 15200646 DOI: 10.1111/j.1365-313x.2004.02114.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The actin cytoskeleton has been implicated in regulating plant gravitropism. However, its precise role in this process remains uncertain. We have shown previously that disruption of the actin cytoskeleton with Latrunculin B (Lat B) strongly promoted gravitropism in maize roots. These effects were most evident on a clinostat as curvature that would exceed 90 degrees despite short periods of horizontal stimulation. To probe further the cellular mechanisms underlying these enhanced gravity responses, we extended our studies to roots of Arabidopsis. Similar to our observations in other plant species, Lat B enhanced the response of Arabidopsis roots to gravity. Lat B (100 nm) and a stimulation time of 5-10 min were sufficient to induce enhanced bending responses during clinorotation. Lat B (100 nm) disrupted the fine actin filament network in different regions of the root and altered the dynamics of amyloplasts in the columella but did not inhibit the gravity-induced alkalinization of the columella cytoplasm. However, the duration of the alkalinization response during continuous gravistimulation was extended in Lat B-treated roots. Indirect visualization of auxin redistribution using the DR5:beta-glucuronidase (DR5:GUS) auxin-responsive reporter showed that the enhanced curvature of Lat B-treated roots during clinorotation was accompanied by a persistent lateral auxin gradient. Blocking the gravity-induced alkalinization of the columella cytoplasm with caged protons reduced Lat B-induced curvature and the development of the lateral auxin gradient. Our data indicate that the actin cytoskeleton is unnecessary for the initial perception of gravity but likely acts to downregulate gravitropism by continuously resetting the gravitropic-signaling system.
Collapse
Affiliation(s)
- Guichuan Hou
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Sun H, Basu S, Brady SR, Luciano RL, Muday GK. Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. PLANT PHYSIOLOGY 2004; 135:266-78. [PMID: 15122028 PMCID: PMC429370 DOI: 10.1104/pp.103.034900] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/15/2004] [Accepted: 03/21/2004] [Indexed: 05/19/2023]
Abstract
Land plants orient their growth relative to light and gravity through complex mechanisms that require auxin redistribution. Embryos of brown algae use similar environmental stimuli to orient their developmental polarity. These studies of the brown algae Fucus distichus examined whether auxin and auxin transport are also required during polarization in early embryos and to orient growth in already developed tissues. These embryos polarize with the gravity vector in the absence of a light cue. The auxin, indole-3-acetic acid (IAA), and auxin efflux inhibitors, such as naphthylphthalamic acid (NPA), reduced environmental polarization in response to gravity and light vectors. Young rhizoids are negatively phototropic, and NPA also inhibits rhizoid phototropism. The effect of IAA and NPA on gravity and photopolarization is maximal within 2.5 to 4.5 h after fertilization (AF). Over the first 6 h AF, auxin transport is relatively constant, suggesting that developmentally controlled sensitivity to auxin determines the narrow window during which NPA and IAA reduce environmental polarization. Actin patches were formed during the first hour AF and began to photolocalize within 3 h, coinciding with the time of NPA and IAA action. Treatment with NPA reduced the polar localization of actin patches but not patch formation. Latrunculin B prevented environmental polarization in a time frame that overlaps the formation of actin patches and IAA and NPA action. Latrunculin B also altered auxin transport. Together, these results indicate a role for auxin in the orientation of developmental polarity and suggest interactions between the actin cytoskeleton and auxin transport in F. distichus embryos.
Collapse
Affiliation(s)
- Haiguo Sun
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109-7325, USA
| | | | | | | | | |
Collapse
|
22
|
Zazimalova E, Napier RM. Points of regulation for auxin action. PLANT CELL REPORTS 2003; 21:625-634. [PMID: 12789411 DOI: 10.1007/s00299-002-0562-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 11/09/2002] [Accepted: 11/09/2002] [Indexed: 05/24/2023]
Abstract
There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited.
Collapse
Affiliation(s)
- E Zazimalova
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 135, 16502, Prague 6-Lysolaje, Czech Republic
| | | |
Collapse
|
23
|
Hou G, Mohamalawari DR, Blancaflor EB. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. PLANT PHYSIOLOGY 2003; 131:1360-73. [PMID: 12644685 PMCID: PMC166895 DOI: 10.1104/pp.014423] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Revised: 10/22/2002] [Accepted: 11/20/2002] [Indexed: 05/18/2023]
Abstract
The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.
Collapse
Affiliation(s)
- Guichuan Hou
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | | | | |
Collapse
|
24
|
Petrásek J, Cerná A, Schwarzerová K, Elckner M, Morris DA, Zazímalová E. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? PLANT PHYSIOLOGY 2003; 131:254-63. [PMID: 12529533 PMCID: PMC166805 DOI: 10.1104/pp.012740] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 09/10/2002] [Accepted: 10/12/2002] [Indexed: 05/20/2023]
Abstract
Phytotropins such as 1-N-naphthylphthalamic acid (NPA) strongly inhibit auxin efflux, but the mechanism of this inhibition remains unknown. Auxin efflux is also strongly decreased by the vesicle trafficking inhibitor brefeldin A (BFA). Using suspension-cultured interphase cells of the BY-2 tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line, we compared the effects of NPA and BFA on auxin accumulation and on the arrangement of the cytoskeleton and endoplasmic reticulum (ER). The inhibition of auxin efflux (stimulation of net accumulation) by both NPA and BFA occurred rapidly with no measurable lag. NPA had no observable effect on the arrangement of microtubules, actin filaments, or ER. Thus, its inhibitory effect on auxin efflux was not mediated by perturbation of the cytoskeletal system and ER. BFA, however, caused substantial alterations to the arrangement of actin filaments and ER, including a characteristic accumulation of actin in the perinuclear cytoplasm. Even at saturating concentrations, NPA inhibited net auxin efflux far more effectively than did BFA. Therefore, a proportion of the NPA-sensitive auxin efflux carriers may be protected from the action of BFA. Maximum inhibition of auxin efflux occurred at concentrations of NPA substantially below those previously reported to be necessary to perturb vesicle trafficking. We found no evidence to support recent suggestions that the action of auxin transport inhibitors is mediated by a general inhibition of vesicle-mediated protein traffic to the plasma membrane.
Collapse
Affiliation(s)
- Jan Petrásek
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 135, CZ-16502 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
De Carvalho-Niebel F, Timmers ACJ, Chabaud M, Defaux-Petras A, Barker DG. The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:343-52. [PMID: 12410812 DOI: 10.1046/j.1365-313x.2002.01429.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Medicago truncatula MtAnn1 gene, encoding a putative annexin, is transcriptionally activated in root tissues in response to rhizobial Nod factors. To gain further insight into MtAnn1 function during the early stages of nodulation, we have examined in detail both spatio-temporal gene expression patterns and MtAnn1 activity and localisation in root tissues. Analysis of transgenic Medicago plants expressing a pMtAnn1-GUS fusion has revealed a novel pattern of transcription in both outer and inner cell layers of the root following either Nod factor-treatment or rhizobial inoculation. The highest gene expression levels were observed in the endodermis and outer cortex. These transgenic plants also revealed that MtAnn1 expression is associated with lateral root development and cell differentiation in the root apex independent of nodulation. By purifying recombinant MtAnn1 we were able to demonstrate that this plant annexin indeed possesses the calcium-dependent binding to acidic phospholipids typical of the annexin family. Antisera against recombinant MtAnn1 were then used to show that tissue-specific localisation of the MtAnn1 protein in Medicago roots matches the pMtAnn1-GUS expression pattern. Finally, both immunolabelling and in vivo studies using MtAnn1-GFP reporter fusions have revealed that MtAnn1 is cytosolic and in particular localises to the nuclear periphery in cortical cells activated during the early stages of nodulation. In the light of our findings, we discuss the possible role of this annexin in root tissues responding to symbiotic rhizobial signals.
Collapse
Affiliation(s)
- Fernanda De Carvalho-Niebel
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS UMR 215, BP 27, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Basu S, Sun H, Brian L, Quatrano RL, Muday GK. Early embryo development in Fucus distichus is auxin sensitive. PLANT PHYSIOLOGY 2002; 130:292-302. [PMID: 12226509 PMCID: PMC166562 DOI: 10.1104/pp.004747] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2002] [Revised: 04/05/2002] [Accepted: 05/21/2002] [Indexed: 05/19/2023]
Abstract
Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.
Collapse
Affiliation(s)
- Swati Basu
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109-7325, USA
| | | | | | | | | |
Collapse
|
27
|
Hussey PJ, Allwood EG, Smertenko AP. Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R Soc Lond B Biol Sci 2002; 357:791-8. [PMID: 12079674 PMCID: PMC1692981 DOI: 10.1098/rstb.2002.1086] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.
Collapse
Affiliation(s)
- Patrick J Hussey
- The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
28
|
Abstract
The functions of microtubules and actin filaments during various processes that are essential for the growth, reproduction and survival of single plant cells have been well characterized. A large number of plant structural cytoskeletal or cytoskeleton-associated proteins, as well as genes encoding such proteins, have been identified. Although many of these genes and proteins have been partially characterized with respect to their functions, a coherent picture of how they interact to execute cytoskeletal functions in plant cells has yet to emerge. Cytoskeleton-controlled cellular processes are expected to play crucial roles during plant cell differentiation and organogenesis, but what exactly these roles are has only been investigated in a limited number of studies in the whole plant context. The intent of this review is to discuss the results of these studies in the light of what is known about the cellular functions of the plant cytoskeleton, and about the proteins and genes that are required for them. Directions are outlined for future work to advance our understanding of how the cytoskeleton contributes to plant organogenesis and development.
Collapse
Affiliation(s)
- Benedikt Kost
- Laboratory of Plant Cell Biology, Institute of Molecular Biology, National University of Singapore, 1 Research Link, Singapore 117 604
| | | | | |
Collapse
|
29
|
Abstract
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been crystallized, and their molecular structures reveal interesting features that include the architecture of the annexin-type Ca2+ binding sites and a central hydrophilic pore proposed to function as a Ca2+ channel. In addition to the conserved core, all annexins contain a second principal domain. This domain, which NH2-terminally precedes the core, is unique for a given member of the family and most likely specifies individual annexin properties in vivo. Cellular and animal knock-out models as well as dominant-negative mutants have recently been established for a number of annexins, and the effects of such manipulations are strikingly different for different members of the family. At least for some annexins, it appears that they participate in the regulation of membrane organization and membrane traffic and the regulation of ion (Ca2+) currents across membranes or Ca2+ concentrations within cells. Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation. Finally, deregulations in annexin expression and activity have been correlated with human diseases, e.g., in acute promyelocytic leukemia and the antiphospholipid antibody syndrome, and the term annexinopathies has been coined.
Collapse
Affiliation(s)
- Volker Gerke
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
30
|
Abstract
Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.
Collapse
Affiliation(s)
- G K Muday
- Dept Biology, Wake Forest University, Winston-Salem, NC 27109, USA.
| | | |
Collapse
|
31
|
McCurdy DW, Kovar DR, Staiger CJ. Actin and actin-binding proteins in higher plants. PROTOPLASMA 2001; 215:89-104. [PMID: 11732068 DOI: 10.1007/bf01280306] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actin cytoskeleton is a complex and dynamic structure that participates in diverse cellular events which contribute to plant morphogenesis and development. Plant actins and associated actin-binding proteins are encoded by large, differentially expressed gene families. The complexity of these gene families is thought to have been conserved to maintain a pool of protein isovariants with unique properties, thus providing a mechanistic basis for the observed diversity of plant actin functions. Plants contain actin-binding proteins which regulate the supramolecular organization and function of the actin cytoskeleton, including monomer-binding proteins (profilin), severing and dynamizing proteins (ADF/cofilin), and side-binding proteins (fimbrin, 135-ABP/villin, 115-ABP). Although significant progress in documenting the biochemical activities of many of these classes of proteins has been made, the precise roles of actin-binding proteins in vivo awaits clarification by detailed mutational analyses.
Collapse
Affiliation(s)
- D W McCurdy
- School of Biological and Chemical Sciences, University of Newcastle, Newcastle, New South Wales, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
32
|
Clark GB, Rafati DS, Bolton RJ, Dauwalder M, Roux SJ. Redistribution of annexin in gravistimulated pea plumules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2000; 38:937-47. [PMID: 11708356 DOI: 10.1016/s0981-9428(00)01206-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants.
Collapse
Affiliation(s)
- G B Clark
- Department of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78713, USA
| | | | | | | | | |
Collapse
|