1
|
Wen S, Chen Y, Yang X, Zhang G, Jin L, Zhang X, Fang Y, Xue D. How the Ectopic Expression of the Barley F-Box Gene HvFBX158 Enhances Drought Resistance in Arabidopsis thaliana. Int J Mol Sci 2025; 26:342. [PMID: 39796198 PMCID: PMC11719962 DOI: 10.3390/ijms26010342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
In this study, the drought-responsive gene HvFBX158 from barley was transferred to Arabidopsis thaliana, and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing HvFBX158 exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants. Additionally, malondialdehyde and hydrogen peroxide contents were significantly lower in transgenic lines, while superoxide dismutase activity was elevated. Quantitative RT-PCR showed that the expression levels of drought and stress response genes, including AtP5CS, AtDREB2A, AtGSH1, AtHSP17.8, and AtSOD, were significantly upregulated. Transcriptome analysis further confirmed that HvFBX158 regulated multiple stress tolerance pathways. In summary, the overexpression of the HvFBX158 gene enhanced drought tolerance in Arabidopsis thaliana by regulating multiple stress response pathways. This study provides a practical basis for improving drought-resistant barley varieties and lays a foundation for subsequent research on F-box family genes for stress resistance in barley.
Collapse
Affiliation(s)
- Shuting Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
| | - Yicheng Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
| | - Xingzhe Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
| | - Guo Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
| | - Lulu Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (Y.C.); (X.Y.); (G.Z.); (L.J.); (D.X.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Wang P, Zhang T, Li Y, Zhao X, Liu W, Hu Y, Wang J, Zhou Y. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress. Int J Biol Macromol 2024; 258:129001. [PMID: 38158058 DOI: 10.1016/j.ijbiomac.2023.129001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Heat shock proteins (HSPs) are a class of protective proteins in response to abiotic stress in plants, and HSP20 plays an essential role in response to temperature stress. However, there are few studies on HSP20 in Dendrobium catenatum. In this study, 18 DcHSP20 genes were identified from the D. catenatum genome. Phylogenetic analysis showed that DcHSP20s could be classified into six subgroups, each member of which has similar conserved motifs and gene structures. Gene expression analysis of 18 DcHSP20 genes revealed that they exhibited variable expression patterns in different plant tissues. Meanwhile, all 18 DcHSP20 genes were induced to be up-regulated under high temperature, while six genes (DcHSP20-2/9/10/12/16/17) were significantly up-regulated under low temperature. Moreover, combining gene expression under high and low temperature stress, the DcHSP20-12 gene was cloned for functional analysis. The germination ratios, fresh weights, root lengths of two DcHSP20-12-overexpressing transgenic Arabidopsis thaliana lines were significantly higher, but MDA contents were lower than that of wild-type (WT) plants under heat and cold stresses, displayed enhanced thermotolerance and cold-resistance. These results lay a foundation for the functional characterization of DcHSP20s and provide a candidate gene, DcHSP20-12, for improving the tolerance of D. catenatum to temperature stress in the future.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Tingting Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Xi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Wen Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China; Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, Hainan, China
| | - Jian Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yang Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
3
|
Vassileva V, Georgieva M, Todorov D, Mishev K. Small Sized Yet Powerful: Nuclear Distribution C Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 13:119. [PMID: 38202427 PMCID: PMC10780334 DOI: 10.3390/plants13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The family of Nuclear Distribution C (NudC) proteins plays a pivotal and evolutionarily conserved role in all eukaryotes. In animal systems, these proteins influence vital cellular processes like cell division, protein folding, nuclear migration and positioning, intracellular transport, and stress response. This review synthesizes past and current research on NudC family members, focusing on their growing importance in plants and intricate contributions to plant growth, development, and stress tolerance. Leveraging information from available genomic databases, we conducted a thorough characterization of NudC family members, utilizing phylogenetic analysis and assessing gene structure, motif organization, and conserved protein domains. Our spotlight on two Arabidopsis NudC genes, BOB1 and NMig1, underscores their indispensable roles in embryogenesis and postembryonic development, stress responses, and tolerance mechanisms. Emphasizing the chaperone activity of plant NudC family members, crucial for mitigating stress effects and enhancing plant resilience, we highlight their potential as valuable targets for enhancing crop performance. Moreover, the structural and functional conservation of NudC proteins across species suggests their potential applications in medical research, particularly in functions related to cell division, microtubule regulation, and associated pathways. Finally, we outline future research avenues centering on the exploration of under investigated functions of NudC proteins in plants.
Collapse
Affiliation(s)
- Valya Vassileva
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| | | | | | - Kiril Mishev
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| |
Collapse
|
4
|
Zhang C, Zhang Y, Su Z, Shen Z, Song H, Cai Z, Xu J, Guo L, Zhang Y, Guo S, Sun M, Li S, Yu M. Integrated analysis of HSP20 genes in the developing flesh of peach: identification, expression profiling, and subcellular localization. BMC PLANT BIOLOGY 2023; 23:663. [PMID: 38129812 PMCID: PMC10740231 DOI: 10.1186/s12870-023-04621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Plant HSP20s are not only synthesized in response to heat stress but are also involved in plant biotic and abiotic stress resistance, normal metabolism, development, differentiation, survival, ripening, and death. Thus, HSP20 family genes play very important and diverse roles in plants. To our knowledge, HSP20 family genes in peach have not yet been characterized in detail, and little is known about their possible function in the development of red flesh in peach. RESULTS In total, 44 PpHSP20 members were identified in the peach genome in this study. Forty-four PpHSP20s were classified into 10 subfamilies, CI, CII, CIII, CV, CVI, CVII, MII, CP, ER, and Po, containing 18, 2, 2, 10, 5, 1, 1, 2, 1, and 2 proteins, respectively. Among the 44 PpHSP20 genes, 6, 4, 4, 3, 7, 11, 5, and 4 PpHSP20 genes were located on chromosomes 1 to 8, respectively. In particular, approximately 15 PpHSP20 genes were located at both termini or one terminus of each chromosome. A total of 15 tandem PpHSP20 genes were found in the peach genome, which belonged to five tandemly duplicated groups. Overall, among the three cultivars, the number of PpHSP20 genes with higher expression levels in red flesh was greater than that in yellow or white flesh. The expression profiling for most of the PpHSP20 genes in the red-fleshed 'BJ' was higher overall at the S3 stage than at the S2, S4-1, and S4-2 stages, with the S3 stage being a very important period of transformation from a white color to the gradual anthocyanin accumulation in the flesh of this cultivar. The subcellular localizations of 16 out of 19 selected PpHSP20 proteins were in accordance with the corresponding subfamily classification and naming. Additionally, to our knowledge, Prupe.3G034800.1 is the first HSP20 found in plants that has the dual targets of both the endoplasmic reticulum and nucleus. CONCLUSIONS This study provides a comprehensive understanding of PpHSP20s, lays a foundation for future analyses of the unknown function of PpHSP20 family genes in red-fleshed peach fruit and advances our understanding of plant HSP20 genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu Province, China
| | - Ziwen Su
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Hongfeng Song
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Lei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shaolei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Meng Sun
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shenge Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Pollastri S, Velikova V, Castaldini M, Fineschi S, Ghirardo A, Renaut J, Schnitzler JP, Sergeant K, Winkler JB, Zorzan S, Loreto F. Isoprene-Emitting Tobacco Plants Are Less Affected by Moderate Water Deficit under Future Climate Change Scenario and Show Adjustments of Stress-Related Proteins in Actual Climate. PLANTS (BASEL, SWITZERLAND) 2023; 12:333. [PMID: 36679046 PMCID: PMC9862500 DOI: 10.3390/plants12020333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.
Collapse
Affiliation(s)
- Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria
| | - Maurizio Castaldini
- Council for Agricultural Research and Economics, Research Center for Agriculture and Environment, Via di Lanciola 12/A, 50125 Cascine del Riccio, Florence, Italy
| | - Silvia Fineschi
- Institute of Heritage Science-CNR (ISPC), National Research Council of Italy (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jenny Renaut
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kjell Sergeant
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Simone Zorzan
- GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Scienceand Technology (LIST), L-4362 Esch-sur-Alzette, Luxembourg
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Naples, Italy
| |
Collapse
|
6
|
Huang Y, Liu J, Li J, Sun M, Duan Y. The heat shock protein 20 gene editing suppresses mycelial growth of Botryosphaeria dothidea and decreases its pathogenicity to postharvest apple fruits. Front Microbiol 2022; 13:930012. [PMID: 35966691 PMCID: PMC9363843 DOI: 10.3389/fmicb.2022.930012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an essential and prevalent disease in the apple orchard in China. Our previous study demonstrated that dimethyl trisulfide (DT) from Chinese leek (Allium tuberosum) significantly suppressed the mycelial growth of B. dothidea and inhibited the incidence of apple ring rot postharvest. However, the mechanism underlying the inhibitory role of DT against B. dothidea is not fully understood. Comparing the control and the DT-treated B. dothidea mycelial transcriptomes revealed that heat shock protein 20 (Hsp20) strongly responded to DT treatment. This study identified four Hsp20 genes throughout the B. dothidea genome (BdHsp20_1-4). Each BdHsp20 gene had a conserved ACD with a variable N-terminal region and a short C-terminal extension. The segmental duplication event has contributed to the expansion of the BdHsp20 gene family. Compared to the wild-type strain, the CRISPR/Cas9 gene-edited BdHsp20 mutant (ΔBdHsp20) decreased the mycelial growth by 55.95% and reduced the disease symptom in postharvest apple fruit by 96.34%. However, the BdHsp20 complemented strain (ΔBdHsp20_C) significantly restored the growth and pathogenicity, which suggested that the BdHsp20 gene was closely involved in the growth and pathogenicity of B. dothidea. This study would accelerate the exploration of the molecular mechanism of the inhibitory effect of DT against B. dothidea and also provide new insights for the management of apple ring rot disease.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Yonghong Huang
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- Yanxin Duan
| |
Collapse
|
7
|
Hu Y, Zhang T, Liu Y, Li Y, Wang M, Zhu B, Liao D, Yun T, Huang W, Zhang W, Zhou Y. Pumpkin ( Cucurbita moschata) HSP20 Gene Family Identification and Expression Under Heat Stress. Front Genet 2021; 12:753953. [PMID: 34721541 PMCID: PMC8553033 DOI: 10.3389/fgene.2021.753953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop that has strong resistance to abiotic stress. While heat shock protein 20 (HSP20) has been implicated in vegetable response to heat stress, little is known regarding activity of HSP20 family proteins in C. moschata. Here, we performed a comprehensive genome-wide analysis to identify and characterize the functional dynamics of the Cucurbita moschata HSP20 (CmoHSP20) gene family. A total of 33 HSP20 genes distributed across 13 chromosomes were identified from the pumpkin genome. Our phylogenetic analysis determined that the CmoHSP20 proteins fell into nine distinct subfamilies, a division supported by the conserved motif composition and gene structure analyses. Segmental duplication events were shown to play a key role in expansion of the CmoHSP20 gene family. Synteny analysis revealed that 19 and 18 CmoHSP20 genes were collinear with those in the cucumber and melon genomes, respectively. Furthermore, the expression levels of pumpkin HSP20 genes were differentially induced by heat stress. The transcript level of CmoHSP20-16, 24 and 25 were down-regulated by heat stress, while CmoHSP20-7, 13, 18, 22, 26 and 32 were up-regulated by heat stress, which could be used as heat tolerance candidate genes. Overall, these findings contribute to our understanding of vegetable HSP20 family genes and provide valuable information that can be used to breed heat stress resistance in cucurbit vegetable crops.
Collapse
Affiliation(s)
- Yanping Hu
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Ying Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Min Wang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Baibi Zhu
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daolong Liao
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tianhai Yun
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wenfeng Huang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wen Zhang
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
8
|
Jang GJ, Jang JC, Wu SH. Dynamics and Functions of Stress Granules and Processing Bodies in Plants. PLANTS 2020; 9:plants9091122. [PMID: 32872650 PMCID: PMC7570210 DOI: 10.3390/plants9091122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
RNA granules, such as stress granules and processing bodies, can balance the storage, degradation, and translation of mRNAs in diverse eukaryotic organisms. The sessile nature of plants demands highly versatile strategies to respond to environmental fluctuations. In this review, we discuss recent findings of the dynamics and functions of these RNA granules in plants undergoing developmental reprogramming or responding to environmental stresses. Special foci include the dynamic assembly, disassembly, and regulatory roles of these RNA granules in determining the fate of mRNAs.
Collapse
Affiliation(s)
- Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA;
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
- Correspondence: ; Tel.: +886-2-2787-1178
| |
Collapse
|
9
|
Velinov V, Vaseva I, Zehirov G, Zhiponova M, Georgieva M, Vangheluwe N, Beeckman T, Vassileva V. Overexpression of the NMig1 Gene Encoding a NudC Domain Protein Enhances Root Growth and Abiotic Stress Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:815. [PMID: 32595686 PMCID: PMC7301909 DOI: 10.3389/fpls.2020.00815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/20/2020] [Indexed: 05/31/2023]
Abstract
The family of NudC proteins has representatives in all eukaryotes and plays essential evolutionarily conserved roles in many aspects of organismal development and stress response, including nuclear migration, cell division, folding and stabilization of other proteins. This study investigates an undescribed Arabidopsis homolog of the Aspergillus nidulans NudC gene, named NMig1 (for Nuclear Migration 1), which shares high sequence similarity to other plant and mammalian NudC-like genes. Expression of NMig1 was highly upregulated in response to several abiotic stress factors, such as heat shock, drought and high salinity. Constitutive overexpression of NMig1 led to enhanced root growth and lateral root development under optimal and stress conditions. Exposure to abiotic stress resulted in relatively weaker inhibition of root length and branching in NMig1-overexpressing plants, compared to the wild-type Col-0. The expression level of antioxidant enzyme-encoding genes and other stress-associated genes was considerably induced in the transgenic plants. The increased expression of the major antioxidant enzymes and greater antioxidant potential correlated well with the lower levels of reactive oxygen species (ROS) and lower lipid peroxidation. In addition, the overexpression of NMig1 was associated with strong upregulation of genes encoding heat shock proteins and abiotic stress-associated genes. Therefore, our data demonstrate that the NudC homolog NMig1 could be considered as a potentially important target gene for further use, including breeding more resilient crops with improved root architecture under abiotic stress.
Collapse
Affiliation(s)
- Valentin Velinov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irina Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Grigor Zehirov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariana Georgieva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Guo LM, Li J, He J, Liu H, Zhang HM. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci Rep 2020; 10:1383. [PMID: 31992813 PMCID: PMC6987133 DOI: 10.1038/s41598-020-58395-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been thought to function as chaperones, protecting their targets from denaturation and aggregation when organisms are subjected to various biotic and abiotic stresses. We previously reported an sHSP from Oryza sativa (OsHSP20) that homodimerizes and forms granules within the cytoplasm but its function was unclear. We now show that OsHSP20 transcripts were significantly up-regulated by heat shock and high salinity but not by drought. A recombinant protein was purified and shown to inhibit the thermal aggregation of the mitochondrial malate dehydrogenase (MDH) enzyme in vitro, and this molecular chaperone activity suggested that OsHSP20 might be involved in stress resistance. Heterologous expression of OsHSP20 in Escherichia coli or Pichia pastoris cells enhanced heat and salt stress tolerance when compared with the control cultures. Transgenic rice plants constitutively overexpressing OsHSP20 and exposed to heat and salt treatments had longer roots and higher germination rates than those of control plants. A series of assays using its truncated mutants showed that its N-terminal arm plus the ACD domain was crucial for its homodimerization, molecular chaperone activity in vitro, and stress tolerance in vivo. The results supported the viewpoint that OsHSP20 could confer heat and salt tolerance by its molecular chaperone activity in different organisms and also provided a more thorough characterization of HSP20-mediated stress tolerance in O. sativa.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jing Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Han Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Heng-Mu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. .,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Obuchowski I, Piróg A, Stolarska M, Tomiczek B, Liberek K. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates. PLoS Genet 2019; 15:e1008479. [PMID: 31652260 PMCID: PMC6834283 DOI: 10.1371/journal.pgen.1008479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 11/06/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones that bind to aggregation-prone polypeptides at stress conditions. sHsps encage these polypeptides in assemblies, shielding them from further aggregation. To facilitate their subsequent solubilization and refolding by Hsp70 (DnaK) and Hsp100 (ClpB) chaperones, first, sHsps need to dissociate from the assemblies. In most γ-proteobacteria, these functions are fulfilled by a single sHsp (IbpA), but in a subset of Enterobacterales, a two-protein sHsp (IbpA and IbpB) system has evolved. To gain insight into the emergence of complexity within this chaperone system, we reconstructed the phylogeny of γ-proteobacteria and their sHsps. We selected proteins representative of systems comprising either one or two sHsps and analysed their ability to form sHsps-substrate assemblies. All the tested IbpA proteins, but not IbpBs, stably interact with an aggregating substrate. Moreover, in Escherichia coli cells, ibpA but not ibpB suppress the growth defect associated with low DnaK level, which points to the major protective role of IbpA during the breakdown of protein quality control. We also examined how sHsps affect the association of Hsp70 with the assemblies at the initial phase of disaggregation and how they affect protein recovery after stress. Our results suggest that a single gene duplication event has given rise to the sHsp system consisting of a strong canonical binder, IbpA, and its non-canonical paralog IbpB that enhances sHsps dissociation from the assemblies. The cooperation between the sHsps reduces the demand for Hsp70 needed to outcompete them from the assemblies by promoting sHsps dissociation without compromising assembly formation at heat shock. This potentially increases the robustness and elasticity of sHsps protection against irreversible aggregation. Small heat shock proteins (sHsps) are a class of molecular chaperones playing an important role in maintaining cell proteostasis. Their most widespread and evolutionarily conserved function is binding to denaturing polypeptides. Small Hsps shield their substrates from further aggregation until conditions are favourable for their refolding by chaperones from the Hsp70 and Hsp100 families. To exert this function, at stress conditions, oligomeric sHsps dissociate into dimers and scavenge partially unfolded substrates, forming assemblies containing both substrate proteins and sHsps. Substrate proteins in such assemblies are refolding-competent. Later, when a cell recovers from stress, sHsps need to dissociate from the assemblies to make the substrates available for the disaggregating and refolding chaperones. Most bacteria possess one sHsp-encoding gene. However, their single sHsp is burdened with a trade-off: on one hand, it has to rapidly associate with the misfolding proteins, on the other, it needs to dissociate from them to allow effective disaggregation. With phylogenetic and biochemical approaches, we analysed a two-sHsp system distinctive of the Enterobacterales order, unravelling a potential evolutionary advantage granted by functional cooperation between the two sHsps. Our results indicate that after a gene duplication event, one sHsp specialized in tight substrate binding, whereas another sHsp became important for efficient dissociation of both sHsps to enable recovery of proteins trapped in the assemblies.
Collapse
Affiliation(s)
- Igor Obuchowski
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Artur Piróg
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Milena Stolarska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Bartłomiej Tomiczek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
| | - Krzysztof Liberek
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, University of Gdansk, Gdansk, Poland
- * E-mail:
| |
Collapse
|
12
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
13
|
Dang F, Lin J, Xue B, Chen Y, Guan D, Wang Y, He S. CaWRKY27 Negatively Regulates H 2O 2-Mediated Thermotolerance in Pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2018; 9:1633. [PMID: 30510557 PMCID: PMC6252359 DOI: 10.3389/fpls.2018.01633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/19/2018] [Indexed: 05/08/2023]
Abstract
Heat stress, an important and damaging abiotic stress, regulates numerous WRKY transcription factors, but their roles in heat stress responses remain largely unexplored. Here, we show that pepper (Capsicum annuum) CaWRKY27 negatively regulates basal thermotolerance mediated by H2O2 signaling. CaWRKY27 expression increased during heat stress and persisted during recovery. CaWRKY27 overexpression impaired basal thermotolerance in tobacco (Nicotiana tabacum) and Arabidopsis thaliana, CaWRKY27-overexpressing plants had a lower survival rate under heat stress, accompanied by decreased expression of multiple thermotolerance-associated genes. Accordingly, silencing of CaWRKY27 increased basal thermotolerance in pepper plants. Exogenously applied H2O2 induced CaWRKY27 expression, and CaWRKY27 overexpression repressed the scavenging of H2O2 in Arabidopsis, indicating a positive feedback loop between H2O2 accumulation and CaWRKY27 expression. Consistent with this, CaWRKY27 expression was repressed under heat stress in the presence H2O2 scavengers and CaWRKY27 silencing decreased H2O2 accumulation in pepper leaves. These changes may result from changes in levels of reactive oxygen species (ROS)-scavenging enzymes, since the heat stress-challenged CaWRKY27-silenced pepper plants had significantly higher expression of multiple genes encoding ROS-scavenging enzymes, such as CaCAT1, CaAPX1, CaAPX2, CaCSD2, and CaSOD1. Therefore, CaWRKY27 acts as a downstream negative regulator of H2O2-mediated heat stress responses, preventing inappropriate responses during heat stress and recovery.
Collapse
Affiliation(s)
- Fengfeng Dang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhui Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| | - Baoping Xue
- College of Life Science, Yan’an University, Yan’an, China
| | - Yongping Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| | - Yanfeng Wang
- College of Life Science, Yan’an University, Yan’an, China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fuzhou, China
| |
Collapse
|
14
|
Santhanagopalan I, Degiacomi MT, Shepherd DA, Hochberg GKA, Benesch JLP, Vierling E. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate. J Biol Chem 2018; 293:19511-19521. [PMID: 30348902 DOI: 10.1074/jbc.ra118.005421] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
Small heat-shock proteins (sHsps) are ubiquitous molecular chaperones, and sHsp mutations or altered expression are linked to multiple human disease states. sHsp monomers assemble into large oligomers with dimeric substructure, and the dynamics of sHsp oligomers has led to major questions about the form that captures substrate, a critical aspect of their mechanism of action. We show here that substructural dimers of two plant dodecameric sHsps, Ta16.9 and homologous Ps18.1, are functional units in the initial encounter with unfolding substrate. We introduced inter-polypeptide disulfide bonds at the two dodecameric interfaces, dimeric and nondimeric, to restrict how their assemblies can dissociate. When disulfide-bonded at the nondimeric interface, mutants of Ta16.9 and Ps18.1 (TaCT-ACD and PsCT-ACD) were inactive but, when reduced, had WT-like chaperone activity, demonstrating that dissociation at nondimeric interfaces is essential for sHsp activity. Moreover, the size of the TaCT-ACD and PsCT-ACD covalent unit defined a new tetrahedral geometry for these sHsps, different from that observed in the Ta16.9 X-ray structure. Importantly, oxidized Tadimer (disulfide bonded at the dimeric interface) exhibited greatly enhanced ability to protect substrate, indicating that strengthening the dimeric interface increases chaperone efficiency. Temperature-induced size and secondary structure changes revealed that folded sHsp dimers interact with substrate and that dimer stability affects chaperone efficiency. These results yield a model in which sHsp dimers capture substrate before assembly into larger, heterogeneous sHsp-substrate complexes for substrate refolding or degradation, and suggest that tuning the strength of the dimer interface can be used to engineer sHsp chaperone efficiency.
Collapse
Affiliation(s)
- Indu Santhanagopalan
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Matteo T Degiacomi
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and.,Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Dale A Shepherd
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom, and
| | - Elizabeth Vierling
- From the Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003,
| |
Collapse
|
15
|
Karadar M, Neuner G, Kranner I, Holzinger A, Buchner O. Solar irradiation levels during simulated long- and short-term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides. PHYSIOLOGIA PLANTARUM 2018; 163:211-230. [PMID: 29274132 PMCID: PMC6033156 DOI: 10.1111/ppl.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 05/12/2023]
Abstract
In the 20th century, annual mean temperatures in the European Alps rose by almost 1 K and are predicted to rise further, increasing the impact of temperature on alpine plants. The role of light in the heat hardening of plants is still not fully understood. Here, the alpine dwarf shrub Vaccinium gaultherioides was exposed in situ to controlled short-term heat spells (150 min with leaf temperatures 43-49°C) and long-term heat waves (7 days, 30°C) under different irradiation intensities. Lethal leaf temperatures (LT50 ) were calculated. Low solar irradiation [max. 250 photosynthetic photon flux density (PPFD)] during short-term heat treatments mitigated the heat stress, shown by reduced leaf tissue damage and higher Fv /Fm (potential quantum efficiency of photosystem 2) than in darkness. The increase in xanthophyll cycle activity and ascorbate concentration was more pronounced under low light, and free radical scavenging activity increased independent of light conditions. During long-term heat wave exposure, heat tolerance increased from 3.7 to 6.5°C with decreasing mean solar irradiation intensity (585-115 PPFD). Long-term exposure to heat under low light enhanced heat hardening and increased photosynthetic pigment, dehydroascorbate and violaxanthin concentration. In conclusion, V. gaultherioides is able to withstand temperatures of around 50°C, and its heat hardening can be enhanced by low light during both short- and long-term heat treatment. Data showing the specific role of light during short- and long-term heat exposure and the potential risk of lethal damage in alpine shrubs as a result of rising temperature are discussed.
Collapse
Affiliation(s)
- Matthias Karadar
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Gilbert Neuner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Ilse Kranner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Othmar Buchner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| |
Collapse
|
16
|
Hochberg GKA, Shepherd DA, Marklund EG, Santhanagoplan I, Degiacomi MT, Laganowsky A, Allison TM, Basha E, Marty MT, Galpin MR, Struwe WB, Baldwin AJ, Vierling E, Benesch JLP. Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions. Science 2018; 359:930-935. [PMID: 29472485 PMCID: PMC6587588 DOI: 10.1126/science.aam7229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022]
Abstract
Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
Collapse
Affiliation(s)
- Georg K A Hochberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dale A Shepherd
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Erik G Marklund
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Indu Santhanagoplan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Matteo T Degiacomi
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Arthur Laganowsky
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Timothy M Allison
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Eman Basha
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Michael T Marty
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Martin R Galpin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Andrew J Baldwin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
17
|
Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 2018; 19:61. [PMID: 29347912 PMCID: PMC5774091 DOI: 10.1186/s12864-018-4443-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/10/2018] [Indexed: 11/20/2022] Open
Abstract
Background Heat shock proteins (Hsps) are essential components in plant tolerance mechanism under various abiotic stresses. Hsp20 is the major family of heat shock proteins, but little of Hsp20 family is known in potato (Solanum tuberosum), which is an important vegetable crop that is thermosensitive. Results To reveal the mechanisms of potato Hsp20s coping with abiotic stresses, analyses of the potato Hsp20 gene family were conducted using bioinformatics-based methods. In total, 48 putative potato Hsp20 genes (StHsp20s) were identified and named according to their chromosomal locations. A sequence analysis revealed that most StHsp20 genes (89.6%) possessed no, or only one, intron. A phylogenetic analysis indicated that all of the StHsp20 genes, except 10, were grouped into 12 subfamilies. The 48 StHsp20 genes were randomly distributed on 12 chromosomes. Nineteen tandem duplicated StHsp20s and one pair of segmental duplicated genes (StHsp20-15 and StHsp20-48) were identified. A cis-element analysis inferred that StHsp20s, except for StHsp20-41, possessed at least one stress response cis-element. A heatmap of the StHsp20 gene family showed that the genes, except for StHsp20-2 and StHsp20-45, were expressed in various tissues and organs. Real-time quantitative PCR was used to detect the expression level of StHsp20 genes and demonstrated that the genes responded to multiple abiotic stresses, such as heat, salt or drought stress. The relative expression levels of 14 StHsp20 genes (StHsp20-4, 6, 7, 9, 20, 21, 33, 34, 35, 37, 41, 43, 44 and 46) were significantly up-regulated (more than 100-fold) under heat stress. Conclusions These results provide valuable information for clarifying the evolutionary relationship of the StHsp20 family and in aiding functional characterization of StHsp20 genes in further research. Electronic supplementary material The online version of this article (dio: 10.1186/s12864-018-4443-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ruoqiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chenghui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.,Innovation Experimental College, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics 2018. [PMID: 29347912 DOI: 10.1186/s12864-018-4443-1/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) are essential components in plant tolerance mechanism under various abiotic stresses. Hsp20 is the major family of heat shock proteins, but little of Hsp20 family is known in potato (Solanum tuberosum), which is an important vegetable crop that is thermosensitive. RESULTS To reveal the mechanisms of potato Hsp20s coping with abiotic stresses, analyses of the potato Hsp20 gene family were conducted using bioinformatics-based methods. In total, 48 putative potato Hsp20 genes (StHsp20s) were identified and named according to their chromosomal locations. A sequence analysis revealed that most StHsp20 genes (89.6%) possessed no, or only one, intron. A phylogenetic analysis indicated that all of the StHsp20 genes, except 10, were grouped into 12 subfamilies. The 48 StHsp20 genes were randomly distributed on 12 chromosomes. Nineteen tandem duplicated StHsp20s and one pair of segmental duplicated genes (StHsp20-15 and StHsp20-48) were identified. A cis-element analysis inferred that StHsp20s, except for StHsp20-41, possessed at least one stress response cis-element. A heatmap of the StHsp20 gene family showed that the genes, except for StHsp20-2 and StHsp20-45, were expressed in various tissues and organs. Real-time quantitative PCR was used to detect the expression level of StHsp20 genes and demonstrated that the genes responded to multiple abiotic stresses, such as heat, salt or drought stress. The relative expression levels of 14 StHsp20 genes (StHsp20-4, 6, 7, 9, 20, 21, 33, 34, 35, 37, 41, 43, 44 and 46) were significantly up-regulated (more than 100-fold) under heat stress. CONCLUSIONS These results provide valuable information for clarifying the evolutionary relationship of the StHsp20 family and in aiding functional characterization of StHsp20 genes in further research.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ruoqiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chenghui Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Wentao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Innovation Experimental College, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N. Heat in Wheat: Exploit Reverse Genetic Techniques to Discover New Alleles Within the Triticum durum sHsp26 Family. FRONTIERS IN PLANT SCIENCE 2018; 9:1337. [PMID: 30283469 PMCID: PMC6156267 DOI: 10.3389/fpls.2018.01337] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/24/2018] [Indexed: 05/21/2023]
Abstract
Wheat breeding nowadays must address producers and consumers' desire. According to the last FAO report, a dramatic decrease in wheat production is expected in the next decades mainly due to the upcoming climate change. The identification of the processes which are triggered by heat stress and how thermotolerance develops in wheat is an active research topic. Genomic approach may help wheat breeding since it allows direct study on the genotype and relationship with the phenotype. Here the isolation and characterization of four members of the chloroplast-localized small heat shock proteins (sHSP) encoded by the Hsp26 gene family is reported. Furthermore, two high throughput TILLING (Targeting Induced Local Lesions In Genomes) approaches in vivo and in silico were used for the identification of new alleles within this family. Small heat shock proteins are known to prevent the irreversible aggregation of misfolded proteins and contribute to the acquisition of thermotolerance. Chloroplast-localized sHSPs protect the photosynthetic machinery during episodes of high temperature stress. The modulation of the newly discovered genes within the sHsp26 family has been analyzed in vivo and by the ExpVIP platform widening the abiotic stress analysis; and their involvement in the heat stress response has been demonstrated. In addition, in this study a total of 50 TILLING mutant lines have been identified. A set of KASP (Kompetitive Allele Specific PCR) markers was also developed to follow the specific mutations in the ongoing backcrosses, applicable to high throughput genotyping approaches and usable in marker assisted selection breeding programs.
Collapse
Affiliation(s)
- Alessia Comastri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michela Janni
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
- Department of DiTET, CNR, Institute of Materials for Electronics and Magnetism, Parma, Italy
- *Correspondence: Michela Janni
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Domenico Pignone
- Department of DiSBA, CNR, Institute of Bioscience and Bioresources, Bari, Italy
| | - Henry T. Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
20
|
A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice. Sci Rep 2017; 7:11333. [PMID: 28900229 PMCID: PMC5595972 DOI: 10.1038/s41598-017-11882-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/31/2017] [Indexed: 11/08/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases of rice. However, the molecular mechanism underpinning the Xoo resistance of rice is still not fully understood. Here, we report that a class II small heat shock protein gene, OsHsp18.0, whose expression was differentially induced between a resistant and a susceptible variety in response to Xoo infection, plays positive roles in both biotic and abiotic resistance. The molecular chaperone activity of OsHsp18.0 was confirmed by a bacterium-expressed glutathione S-transferase fusion protein. Overexpression of OsHsp18.0 in a susceptible rice variety significantly enhanced its resistance to multiple Xoo strains, whereas silencing of OsHsp18.0 in a resistant variety drastically increased its susceptibility. The enhanced Xoo resistance in OsHsp18.0-overexpressing lines was positively correlated with the sensitized salicylic acid-dependent defense responses. In addition to disease resistance, the OsHsp18.0 overexpressing and silencing lines exhibited enhanced and reduced tolerance, respectively, to heat and salt treatments. The subcellular localization study revealed that the green fluorescent protein-OsHsp18.0 was enriched on the nuclear envelope, suggesting a potential role of OsHsp18.0 in the nucleo-cytoplasmic trafficking. Together, our results reveal that the rice OsHsp18.0 is a positive regulator in both biotic and abiotic defense responses.
Collapse
|
21
|
Panda AK, Chakraborty A, Nandi SK, Kaushik A, Biswas A. The C‐terminal extension of
Mycobacterium tuberculosis
Hsp16.3 regulates its oligomerization, subunit exchange dynamics and chaperone function. FEBS J 2017; 284:277-300. [DOI: 10.1111/febs.13975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Alok Kumar Panda
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Ayon Chakraborty
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Sandip Kumar Nandi
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| | - Abhishek Kaushik
- G. N. Ramachandran Protein Center Council of Scientific and Industrial Research Institute of Microbial Technology Chandigarh India
| | - Ashis Biswas
- School of Basic Sciences Indian Institute of Technology Bhubaneswar India
| |
Collapse
|
22
|
Yang M, Zhang Y, Zhang H, Wang H, Wei T, Che S, Zhang L, Hu B, Long H, Song W, Yu W, Yan G. Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp16.9 in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1761. [PMID: 29163556 PMCID: PMC5672332 DOI: 10.3389/fpls.2017.01761] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Heat shock proteins (Hsps) are common molecular chaperones present in all plants that accumulate in response to abiotic stress. Small heat shock proteins (sHsps) play important roles in alleviating diverse abiotic stresses, especially heat stress. However, very little is known about the MsHsp20 gene family in the wild apple Malus sieversii, a precious germplasm resource with excellent resistance characteristics. In this study, 12 putative M. sieversii Hsp20 genes were identified from RNA-Seq data and analyzed in terms of gene structure and phylogenetic relationships. A new Hsp20 gene, MsHsp16.9, was cloned and its function studied in response to stress. MsHsp16.9 expression was strongly induced by heat, and transgenic Arabidopsis plants overexpressing MsHsp16.9 displayed improved heat resistance, enhanced antioxidant enzyme activity, and decreased peroxide content. Overexpression of MsHsp16.9 did not alter the growth or development under normal conditions, or the hypersensitivity to exogenous ABA. Gene expression analysis indicated that MsHsp16.9 mainly modulates the expression of proteins involved in antioxidant enzyme synthesis, as well as ABA-independent stress signaling in 35S:MsHsp16.9-L11. However, MsHsp16.9 could activate ABA-dependent signaling pathways in all transgenic plants. Additionally, MsHsp16.9 may function alongside AtHsp70 to maintain protein homeostasis and protect against cell damage. Our results suggest that MsHsp16.9 is a protein chaperone that positively regulates antioxidant enzyme activity and ABA-dependent and independent signaling pathway to attenuate plant responses to severe stress. Transgenic plants exhibited luxuriant growth in high temperature environments.
Collapse
Affiliation(s)
- Meiling Yang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Yunxiu Zhang
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Huanhuan Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbin Wang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Tao Wei
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Shiyou Che
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lipeng Zhang
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Baoquan Hu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Hong Long
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Wenqin Song
- Department of Genetics, College of Life Sciences, Nankai University, Tianjin, China
- *Correspondence: Wenqin Song
| | - Weiwei Yu
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Weiwei Yu
| | - Guorong Yan
- Department of Pomology, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
- Guorong Yan
| |
Collapse
|
23
|
Röth S, Mirus O, Bublak D, Scharf KD, Schleiff E. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:31-44. [PMID: 27560701 DOI: 10.1111/tpj.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 05/15/2023]
Abstract
HsfB1 is a central regulator of heat stress (HS) response and functions dually as a transcriptional co-activator of HsfA1a and a general repressor in tomato. HsfB1 is efficiently synthesized during the onset of HS and rapidly removed in the course of attenuation during the recovery phase. Initial results point to a complex regime modulating HsfB1 abundance involving the molecular chaperone Hsp90. However, the molecular determinants affecting HsfB1 stability needed to be established. We provide experimental evidence that DNA-bound HsfB1 is efficiently targeted for degradation when active as a transcriptional repressor. Manipulation of the DNA-binding affinity by mutating the HsfB1 DNA-binding domain directly influences the stability of the transcription factor. During HS, HsfB1 is stabilized, probably due to co-activator complex formation with HsfA1a. The process of HsfB1 degradation involves nuclear localized Hsp90. The molecular determinants of HsfB1 turnover identified in here are so far seemingly unique. A mutational switch of the R/KLFGV repressor motif's arginine and lysine implies that the abundance of other R/KLFGV type Hsfs, if not other transcription factors as well, might be modulated by a comparable mechanism. Thus, we propose a versatile mechanism for strict abundance control of the stress-induced transcription factor HsfB1 for the recovery phase, and this mechanism constitutes a form of transcription factor removal from promoters by degradation inside the nucleus.
Collapse
Affiliation(s)
- Sascha Röth
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Daniela Bublak
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt/Main, Max-von-Laue Str. 9, Frankfurt/Main, Germany
| |
Collapse
|
24
|
Zhou Q, Shi X, Zhang K, Shi C, Huang L, Chang Z. The Function of Ile-X-Ile Motif in the Oligomerization and Chaperone-Like Activity of Small Heat Shock Protein AgsA at Room Temperature. Protein J 2016; 35:401-406. [PMID: 27812886 DOI: 10.1007/s10930-016-9681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small heat shock proteins assemble as large oligomers in vitro and exhibit ATP-independent chaperone activities. Ile-X-Ile motif is essential in both the function and oligomer formation. AgsA of Salmonella enterica serovar Typhimurium has been demonstrated to adopt large oligomeric structure and possess strong chaperone activity. Size exclusion chromatography, non-denaturing pore gradient PAGE, and negatively stain electron microscopic analysis of the various C-terminal truncated mutants were performed to investigate the role of Ile-X-Ile motif in the oligomer assembly of AgsA. By measuring the ability to prevent insulin from aggregating induced by TCEP, the chaperone-like activity of AgsA and the C-terminal truncated mutants at room temperature were determined. We found that the truncated mutants with Ile-X-Ile motif partially or fully deleted lost the ability to form large oligomers. Contrast to wild type AgsA which displayed weak chaperone-like activity, those mutants shown significantly enhanced activities at room temperature. In summary, biochemical experiment, activity assay and electron microscopic analysis suggested that Ile-X-Ile motif is essential in oligomer assembly of AgsA and might take the role of an inhibitor for its chaperone-like activity at room temperature.
Collapse
Affiliation(s)
- Qiuhu Zhou
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Kaiming Zhang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Chao Shi
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Lixin Huang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
25
|
Wang Y, Zhou Z, Gao J, Wu Y, Xia Z, Zhang H, Wu J. The Mechanisms of Maize Resistance to Fusarium verticillioides by Comprehensive Analysis of RNA-seq Data. FRONTIERS IN PLANT SCIENCE 2016; 7:1654. [PMID: 27867390 PMCID: PMC5096342 DOI: 10.3389/fpls.2016.01654] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/20/2016] [Indexed: 05/21/2023]
Abstract
Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieties. However, the molecular mechanisms underlying the infection process remain poorly understood, which hampers the application of quantitative resistance in breeding programs. Here, we reveal the disease-resistance mechanism of the maize inbred line of BT-1 which displays high resistance to ear rot using RNA high throughput sequencing. By analyzing RNA-seq data from the BT-1 kernels before and after F. verticillioides inoculation, we found that transcript levels of genes associated with key pathways are dramatically changed compared with the control treatment. Differential gene expression in ear rot resistant and susceptible maize was confirmed by RNA microarray and qRT-PCR analyses. Further investigation suggests that the small heat shock protein family, some secondary metabolites, and the signaling pathways of abscisic acid, jasmonic acid, or salicylic acids (SA) may be involved in the pathogen-associated molecular pattern-triggered immunity against F. verticillioides. These data will not only provide new insights into the molecular resistant mechanisms against fungi invading, but may also result in the identification of key molecular factors associated with ear rot resistance in maize.
Collapse
Affiliation(s)
| | | | | | | | | | - Huiyong Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural UniversityZhengzhou, China
| | - Jianyu Wu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
26
|
Carmona L, Varela J, Godoy L, Ganga MA. Comparative proteome analysis of Brettanomyces bruxellensis under hydroxycinnamic acid growth. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Paul A, Rao S, Mathur S. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum). FRONTIERS IN PLANT SCIENCE 2016; 7:426. [PMID: 27066058 PMCID: PMC4814718 DOI: 10.3389/fpls.2016.00426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/18/2016] [Indexed: 05/19/2023]
Abstract
The α-crystallin domain (ACD) is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement, and DNA demethylation. An exhaustive in-silico analysis using Hidden Markov Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to four groups, sub-divided further into 18 classes. One of these groups belongs to the small heat shock protein (sHSP) class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity, and oxidative stress) and phytohormones (abscisic acid and salicylic acid) suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root, and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta.
Collapse
|
28
|
Cha JY, Lee SH, Seo KH, Choi YJ, Cheong MS, Son D. N-terminal arm of orchardgrass Hsp17.2 (DgHsp17.2) is essential for both in vitro chaperone activity and in vivo thermotolerance in yeast. Arch Biochem Biophys 2015; 591:18-27. [PMID: 26724757 DOI: 10.1016/j.abb.2015.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Abstract
Small heat shock proteins are well-known to function as chaperone in the protection of proteins and subcellular structures against stress-induced denaturation in many cell compartments. Irrespective of such general functional assignment, a proof of function in a living organism is missing. Here, we used heat-induced orchardgrass small Hsp17.2 (DgHsp17.2). Its function in in vitro chaperone properties has shown in protecting the model substrate, malate dehydrogenase (MDH) and citrate synthase (CS). Overexpression of DgHsp17.2 triggering strong chaperone activity enhanced in vivo thermotolerance of yeast cells. To identify the functional domain on DgHsp17.2 and correlationship between in vitro chaperone property and in vivo thermotolerance, we generated truncation mutants of DgHsp17.2 and showed essentiality of the N-terminal arm of DgHsp17.2 for the chaperone function. In addition, beyond for acquisition of thermotolerance irrespective of sequences are diverse among the small Hsps. However, any truncation mutants of DgHsp17.2 did not exhibit strong interaction with orchardgrass heat shock protein 70 (DgHsp70) different from mature DgHsp17.2, indicating that full-length DgHsp17.2 is necessary for cooperating with Hsp70 protein. Our study indicates that the N-terminal arm of DgHsp17.2 is an important region for chaperone activity and thermotolerance.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Sang-Hoon Lee
- Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 330-801, Republic of Korea.
| | - Kyung Hye Seo
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumsung 3369-873, Republic of Korea.
| | - Young Jin Choi
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Daeyoung Son
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea; Department of Plant Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
29
|
Eisenhardt BD. Small heat shock proteins: recent developments. Biomol Concepts 2015; 4:583-95. [PMID: 25436758 DOI: 10.1515/bmc-2013-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are abundantly present in many different organisms at elevated temperatures. Members of the subgroup of alpha crystallin domain (ACD)-type sHSPs belong to the large family of protein chaperones. They bind non-native proteins in an ATP-independent manner, thereby holding the incorporated clients soluble for subsequent refolding by other molecular chaperoning systems. sHSPs do not actively refold incorporated peptides therefore they are sometimes referred to as holdases. Varying numbers of sHSPs have been documented in the different domains of life and dependent on the analyzed organism. Generally, diverse sHSPs possess more sequence similarities in the conserved ACD, whereas the N- and C-terminal extensions are less conserved. Despite their designation as sHSPs, they are not solely present during heat stress. sHSPs presumably help to protect cells under various stresses, but they were also found during development, e.g., in embryonic development of higher plants which is associated with ongoing seed desiccation. The functional and physiological relevance of several different sHSPs in one organism remains still unclear, especially in plants where several highly similar sHSPs are present in the same compartment. The wide range of biotic and abiotic stresses that induce the expression of multiple sHSP genes makes it challenging to define the physiological relevance of each of these versatile proteins.
Collapse
|
30
|
|
31
|
Guo M, Liu JH, Lu JP, Zhai YF, Wang H, Gong ZH, Wang SB, Lu MH. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26483820 DOI: 10.3389/fpls.2015.00806.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance.
Collapse
Affiliation(s)
- Meng Guo
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Jin-Hong Liu
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Jin-Ping Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Yu-Fei Zhai
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Hu Wang
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Zhen-Hui Gong
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| | - Shu-Bin Wang
- Laboratory for Solanaceous Fruit Vegetable, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Ming-Hui Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F University Yangling, China
| |
Collapse
|
32
|
Guo M, Liu JH, Lu JP, Zhai YF, Wang H, Gong ZH, Wang SB, Lu MH. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. FRONTIERS IN PLANT SCIENCE 2015; 6:806. [PMID: 26483820 PMCID: PMC4589653 DOI: 10.3389/fpls.2015.00806] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
The Hsp20 genes are present in all plant species and play important roles in alleviating heat stress and enhancing plant thermotolerance by preventing the irreversible aggregation of denaturing proteins. However, very little is known about the CaHsp20 gene family in pepper (Capsicum annuum L.), an important vegetable crop with character of temperate but thermosensitive. In this study, a total of 35 putative pepper Hsp20 genes (CaHsp20s) were identified and renamed on the basis of their molecular weight, and then their gene structure, genome location, gene duplication, phylogenetic relationship, and interaction network were also analyzed. The expression patterns of CaHsp20 genes in four different tissues (root, stem, leaf, and flower) from the thermotolerant line R9 under heat stress condition were measured using semi-quantitative RT-PCR. The transcripts of most CaHsp20 genes maintained a low level in all of the four tissues under normal temperature condition, but were highly induced by heat stress, while the expression of CaHsp16.6b, 16.7, and 23.8 were only detected in specific tissues and were not so sensitive to heat stress like other CaHsp20 genes. In addition, compared to those in thermotolerant line R9, the expression peak of most CaHsp20 genes in thermosensitive line B6 under heat stress was hysteretic, and several CaHsp20 genes (CaHsp16.4, 18.2a, 18.7, 21.2, 22.0, 25.8, and 25.9) showed higher expression levels in both line B6 and R9. These data suggest that the CaHsp20 genes may be involved in heat stress and defense responses in pepper, which provides the basis for further functional analyses of CaHsp20s in the formation of pepper acquired thermotoleance.
Collapse
Affiliation(s)
- Meng Guo
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jin-Hong Liu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Jin-Ping Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Yu-Fei Zhai
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Hu Wang
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhen-Hui Gong
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Zhen-Hui Gong and Ming-Hui Lu, Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China ;
| | - Shu-Bin Wang
- Laboratory for Solanaceous Fruit Vegetable, Institute of Vegetable Crops, Jiangsu Academy of Agricultural SciencesNanjing, China
- Shu-Bin Wang, Laboratory for Solanaceous Fruit Vegetable, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ming-Hui Lu
- Department of Vegetable Science, College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Zhen-Hui Gong and Ming-Hui Lu, Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China ;
| |
Collapse
|
33
|
Everything but the ACD, Functional Conservation of the Non-conserved Terminal Regions in sHSPs. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
35
|
Klein RD, Chidawanyika T, Tims HS, Meulia T, Bouchard RA, Pett VB. Chaperone function of two small heat shock proteins from maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:48-58. [PMID: 24656335 DOI: 10.1016/j.plantsci.2014.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that protect cells from the effect of heat and other stresses. Some sHsps are also expressed at specific stages of development. In plants different classes of sHsps are expressed in the various cellular compartments. While the Class I (cytosolic) sHsps in wheat and pea have been studied extensively, there are fewer experimental data on Class II (cytosolic) sHsps, especially in maize. Here we report the expression and purification of two Class II sHsps from Zea mays ssp. mays L. (cv. Oh43). The two proteins have almost identical sequences, with the significant exception of an additional nine-amino-acid intervening sequence near the beginning of the N-terminus in one of them. Both ZmHsp17.0-CII and ZmHsp17.8-CII oligomerize to form dodecamers at temperatures below heat shock, and we were able to visualize these dodecamers with TEM. There are significant differences between the two sHsps during heat shock at 43°C: ZmHsp17.8-CII dissociates into smaller oligomers than ZmHsp17.0-CII, and ZmHsp17.8-CII is a more efficient chaperone with target protein citrate synthase. Together with the previous observation that ZmHsp17.0-CII but not ZmHsp17.8-CII is expressed during development, we propose different roles in the cell for these two sHsps.
Collapse
Affiliation(s)
- Roger D Klein
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| | | | - Hannah S Tims
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Robert A Bouchard
- Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | - Virginia B Pett
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA.
| |
Collapse
|
36
|
Mu C, Zhang S, Yu G, Chen N, Li X, Liu H. Overexpression of small heat shock protein LimHSP16.45 in Arabidopsis enhances tolerance to abiotic stresses. PLoS One 2013; 8:e82264. [PMID: 24349240 PMCID: PMC3862632 DOI: 10.1371/journal.pone.0082264] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Small heat shock proteins (smHSPs) play important and extensive roles in plant defenses against abiotic stresses. We cloned a gene for a smHSP from the David Lily (Lilium davidii (E. H. Wilson) Raffill var. Willmottiae), which we named LimHSP16.45 based on its protein molecular weight. Its expression was induced by many kinds of abiotic stresses in both the lily and transgenic plants of Arabidopsis. Heterologous expression enhanced cell viability of the latter under high temperatures, high salt, and oxidative stress, and heat shock granules (HSGs) formed under heat or salinity treatment. Assays of enzymes showed that LimHSP16.45 overexpression was related to greater activity by superoxide dismutase and catalase in transgenic lines. Therefore, we conclude that heterologous expression can protect plants against abiotic stresses by preventing irreversible protein aggregation, and by scavenging cellular reactive oxygen species.
Collapse
Affiliation(s)
- Changjun Mu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Shijia Zhang
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Guanzhong Yu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ni Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Xiaofeng Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Heng Liu
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- * E-mail:
| |
Collapse
|
37
|
Kim DH, Xu ZY, Hwang I. AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling. PLANT CELL REPORTS 2013; 32:1953-63. [PMID: 24081610 DOI: 10.1007/s00299-013-1506-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/30/2013] [Accepted: 09/01/2013] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE Transgenic Arabidopsis and lettuce plants overexpressing AtHSP17.8 showed ABA-hypersensitive but abiotic stress-resistant phenotypes. ABA treatment caused a dramatic induction of early ABA-responsive genes in AtHSP17.8 -overexpressing transgenic lettuce. Plant small heat shock proteins function as chaperones in protein folding. In addition, they are involved in responses to various abiotic stresses, such as dehydration, heat and high salinity in Arabidopsis. However, it remains elusive how they play a role in the abiotic stress responses at the molecular level. In this study, we provide evidence that Arabidopsis HSP17.8 (AtHSP17.8) positively regulates the abiotic stress responses by modulating abscisic acid (ABA) signaling in Arabidopsis, and also in lettuce, a heterologous plant when ectopically expressed. Overexpression of AtHSP17.8 in both Arabidopsis and lettuce leads to hypersensitivity to ABA and enhanced resistance to dehydration and high salinity stresses. Moreover, early ABA-responsive genes, ABI1, ABI5, NCED3, SNF4 and AREB2, were rapidly induced in AtHSP17.8-overexpressing transgenic Arabidopsis and lettuce. Based on these data, we propose that AtHSP17.8 plays a crucial role in abiotic stress responses by positively modulating ABA-mediated signaling in both Arabidopsis and lettuce. Moreover, our results suggest that stress-tolerant lettuce can be engineered using the genetic and molecular resources of Arabidopsis.
Collapse
Affiliation(s)
- Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | |
Collapse
|
38
|
Quinlan RA, Zhang Y, Lansbury A, Williamson I, Pohl E, Sun F. Changes in the quaternary structure and function of MjHSP16.5 attributable to deletion of the IXI motif and introduction of the substitution, R107G, in the α-crystallin domain. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120327. [PMID: 23530263 PMCID: PMC3638399 DOI: 10.1098/rstb.2012.0327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The archael small heat-shock protein (sHSP), MjHSP16.5, forms a 24-subunit oligomer with octahedral symmetry. Here, we demonstrate that the IXI motif present in the C-terminal domain is necessary for the oligomerization of MjHSP16.5. Removal increased the in vitro chaperone activity with citrate synthase as the client protein. Less predictable were the effects of the R107G substitution in MjHSP16.5 because of the differences in the oligomerization of metazoan and non-metazoan sHSPs. We present the crystal structure for MjHSP16.5 R107G and compare this with an improved (2.5 Å) crystal structure for wild-type (WT) MjHSP16.5. Although no significant structural differences were found in the crystal, using cryo-electron microscopy, we identified two 24mer species with octahedral symmetry for the WT MjHSP16.5 both at room temperature and at 60°C, all showing two major species with the same diameter of 12.4 nm. Similarly, at room temperature, there are also two kinds of 12.4 nm oligomers for R107G MjHSP16.5, but in the 60°C sample, a larger 24mer species with a diameter of 13.6 nm was observed with significant changes in the fourfold symmetry axis and dimer–dimer interface. This highly conserved arginine, therefore, contributes to the quaternary organization of non-metazoan sHSP oligomers. Potentially, the R107G substitution has functional consequences as R107G MjHSP16.5 was far superior to the WT protein in protecting βL-crystallin against heat-induced aggregation.
Collapse
Affiliation(s)
- Roy A Quinlan
- Biophysical Sciences Institute, University of Durham, , South Road, Durham DH1 LE, UK
| | | | | | | | | | | |
Collapse
|
39
|
Moshe A, Gorovits R. Virus-induced aggregates in infected cells. Viruses 2012; 4:2218-32. [PMID: 23202461 PMCID: PMC3497049 DOI: 10.3390/v4102218] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/27/2012] [Accepted: 09/29/2012] [Indexed: 12/21/2022] Open
Abstract
During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | |
Collapse
|
40
|
Bondino HG, Valle EM, Ten Have A. Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. PLANTA 2012; 235:1299-313. [PMID: 22210597 DOI: 10.1007/s00425-011-1575-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/07/2011] [Indexed: 05/03/2023]
Abstract
Small heat shock proteins (sHSPs) are chaperones that play an important role in stress tolerance. They consist of an alpha-crystallin domain (ACD) flanked by N- and C-terminal regions. However, not all proteins that contain an ACD, hereafter referred to as ACD proteins, are sHSPs because certain ACD proteins are known to have different functions. Furthermore, since not all ACD proteins have been identified yet, current classifications are incomplete. A total of 17 complete plant proteomes were screened for the presence of ACD proteins by HMMER profiling and the identified ACD protein sequences were classified by maximum likelihood phylogeny. Differences among and within groups were analysed, and levels of functional constraint were determined. There are 29 different classes of ACD proteins, eight of which contain classical sHSPs and five likely chaperones. The other classes contain proteins with uncharacterised or poorly characterised functions. N- and C-terminal sequences are conserved within the phylogenetic classes. Phylogenetics suggests a single duplication of the CI sHSP ancestor that occurred prior to the speciation of mono- and dicotyledons. This was followed by a number of more recent duplications that resulted in the presence of many paralogues. The results suggest that N- and C-terminal sequences of sHSPs play a role in class-specific functionality and that non-sHSP ACD proteins have conserved but unexplored functions, which are mainly determined by subsequences other than that of the ACD.
Collapse
Affiliation(s)
- Hernán Gabriel Bondino
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas-IIB-CONICET-UNMdP, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|
41
|
Structural Aspects and Chaperone Activity of Human HspB3: Role of the “C-Terminal Extension”. Cell Biochem Biophys 2012; 64:61-72. [DOI: 10.1007/s12013-012-9366-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Song NH, Ahn YJ. DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. N Biotechnol 2011; 28:698-704. [DOI: 10.1016/j.nbt.2011.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
43
|
Kim DH, Xu ZY, Na YJ, Yoo YJ, Lee J, Sohn EJ, Hwang I. Small heat shock protein Hsp17.8 functions as an AKR2A cofactor in the targeting of chloroplast outer membrane proteins in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:132-46. [PMID: 21730198 PMCID: PMC3165864 DOI: 10.1104/pp.111.178681] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/03/2011] [Indexed: 05/20/2023]
Abstract
Plastid proteins that are encoded by the nuclear genome and synthesized in the cytosol undergo posttranslational targeting to plastids. Ankyrin repeat protein 2A (AKR2A) and AKR2B were recently shown to be involved in the targeting of proteins to the plastid outer envelope. However, it remains unknown whether other factors are involved in this process. In this study, we investigated a factor involved in AKR2A-mediated protein targeting to chloroplasts in Arabidopsis (Arabidopsis thaliana). Hsp17.8, a member of the class I (CI) cytosolic small heat shock proteins (sHsps), was identified in interactions with AKR2A. The interaction between Hsp17.8 and AKR2A was further confirmed by coimmunoprecipitation experiments. The carboxyl-terminal ankyrin repeat domain of AKR2A was responsible for AKR2A binding to Hsp17.8. Other CI cytosolic sHsps also interact with AKR2A to varying degrees. Additionally, Hsp17.8 binds to chloroplasts in vitro and enhances AKR2A binding to chloroplasts. HSP17.8 was expressed under normal growth conditions, and its expression increased after heat shock. Hsp17.8 exists as a dimer under normal physiological conditions, and it is converted to high oligomeric complexes, ranging from 240 kD to greater than 480 kD, after heat shock. High levels of Hsp17.8 together with AKR2A resulted in increased plastid targeting of Outer Envelope Protein7 (OEP7), a plastid outer envelope protein expressed as a green fluorescent protein fusion protein. In contrast, artificial microRNA suppression of HSP17.8 and closely related CI cytosolic sHSPs in protoplasts resulted in a reduction of OEP7:green fluorescent protein targeting to plastids. Based on these data, we propose that Hsp17.8 functions as an AKR2A cofactor in targeting membrane proteins to plastid outer membranes under normal physiological conditions.
Collapse
|
44
|
van Ooijen G, Lukasik E, van den Burg HA, Vossen JH, Cornelissen BJC, Takken FLW. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:563-72. [PMID: 20497382 PMCID: PMC2988412 DOI: 10.1111/j.1365-313x.2010.04260.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 05/20/2023]
Abstract
Race-specific disease resistance in plants depends on the presence of resistance (R) genes. Most R genes encode NB-ARC-LRR proteins that carry a C-terminal leucine-rich repeat (LRR). Of the few proteins found to interact with the LRR domain, most have proposed (co)chaperone activity. Here, we report the identification of RSI2 (Required for Stability of I-2) as a protein that interacts with the LRR domain of the tomato R protein I-2. RSI2 belongs to the family of small heat shock proteins (sHSPs or HSP20s). HSP20s are ATP-independent chaperones that form oligomeric complexes with client proteins to prevent unfolding and subsequent aggregation. Silencing of RSI2-related HSP20s in Nicotiana benthamiana compromised the hypersensitive response that is normally induced by auto-active variants of I-2 and Mi-1, a second tomato R protein. As many HSP20s have chaperone properties, the involvement of RSI2 and other R protein (co)chaperones in I-2 and Mi-1 protein stability was examined. RSI2 silencing compromised the accumulation of full-length I-2 in planta, but did not affect Mi-1 levels. Silencing of heat shock protein 90 (HSP90) and SGT1 led to an almost complete loss of full-length I-2 accumulation and a reduction in Mi-1 protein levels. In contrast to SGT1 and HSP90, RSI2 silencing led to accumulation of I-2 breakdown products. This difference suggests that RSI2 and HSP90/SGT1 chaperone the I-2 protein using different molecular mechanisms. We conclude that I-2 protein function requires RSI2, either through direct interaction with, and stabilization of I-2 protein or by affecting signalling components involved in initiation of the hypersensitive response.
Collapse
Affiliation(s)
| | - Ewa Lukasik
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | - Ben J C Cornelissen
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Department of Plant Pathology, Swammerdam Institute for Life Sciences, University of AmsterdamScience Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Lin CH, Lee CN, Lin JW, Tsai WJ, Wang SW, Weng SF, Tseng YH. Characterization of Xanthomonas campestris pv. campestris heat shock protein A (HspA), which possesses an intrinsic ability to reactivate inactivated proteins. Appl Microbiol Biotechnol 2010; 88:699-709. [PMID: 20668846 DOI: 10.1007/s00253-010-2776-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/10/2010] [Accepted: 07/11/2010] [Indexed: 11/26/2022]
Abstract
hspA encodes a small heat shock protein (sHSP) in Xanthomonas campestris pv. campestris, the causative agent of black rot in cruciferous plants. In this study, two-dimensional gel electrophoresis, promoter activity assays, and Northern hybridization results revealed that HspA expression was induced by heat shock but not by other stresses, although low-level expression was detectable by reverse transcription-polymerase chain reaction (RT-PCR) under normal culture conditions. An hspA mutant exhibited reduced tolerance to heat, especially in the presence of MgSO4, but no change in pathogenicity. Results of size-exclusion chromatography indicated that purified HspA(his), containing six C-terminal histidine residues, formed two different size classes of oligomeric complexes--410 and 820 kDa. In contrast, HspA(ter), the unmodified protein translated from the original hspA gene, formed only the 820-kDa complex. These results suggest that the C-terminus of HspA is important for oligomerization. Both HspA820(his) and HspA410(his) were able to partially protect luciferase against heat-induced aggregation. Unlike other reported sHSPs that commonly capture denaturing proteins in refoldable states until refolded by adenosine triphosphate-dependent chaperone systems, HspA(his) alone was capable of reactivating heat-inactivated EcoRI. Thus, Xanthomonas campestris pv. campestris HspA has potential application as a protective agent during the storage of proteins.
Collapse
Affiliation(s)
- Ching-Hsuan Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
46
|
Basha E, Jones C, Wysocki V, Vierling E. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J Biol Chem 2010; 285:11489-97. [PMID: 20145254 PMCID: PMC2857027 DOI: 10.1074/jbc.m109.074088] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/30/2010] [Indexed: 11/06/2022] Open
Abstract
The small heat shock proteins (sHSPs) and alpha-crystallins are highly effective, ATP-independent chaperones that can bind denaturing client proteins to prevent their irreversible aggregation. One model of sHSP function suggests that the oligomeric sHSPs are activated to the client-binding form by dissociation at elevated temperatures to dimers or other sub-oligomeric species. Here we examine this model in a comparison of the oligomeric structure and chaperone activity of two conserved classes of cytosolic sHSPs in plants, the class I (CI) and class II (CII) proteins. Like the CI sHSPs, recombinant CII sHSPs from three divergent plant species, pea, wheat, and Arabidopsis, are dodecamers as determined by nano-electrospray mass spectrometry. While at 35 to 45 degrees C, all three CI sHSPs reversibly dissociate to dimers, the CII sHSPs retain oligomeric structure at high temperature. The CII dodecamers are, however, dynamic and rapidly exchange subunits, but unlike CI sHSPs, the exchange unit appears larger than a dimer. Differences in dodecameric structure are also reflected in the fact that the CII proteins do not hetero-oligomerize with CI sHSPs. Binding of the hydrophobic probe bis-ANS and limited proteolysis demonstrate CII proteins undergo significant, reversible structural changes at high temperature. All three recombinant CII proteins more efficiently protect firefly luciferase from insolubilization during heating than do the CI proteins. The CI and CII proteins behave strictly additively in client protection. In total, the results demonstrate that different sHSPs can achieve effective protection of client proteins by varied mechanisms.
Collapse
Affiliation(s)
- Eman Basha
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Christopher Jones
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Vicki Wysocki
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| | - Elizabeth Vierling
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
47
|
Perez DE, Hoyer JS, Johnson AI, Moody ZR, Lopez J, Kaplinsky NJ. BOBBER1 is a noncanonical Arabidopsis small heat shock protein required for both development and thermotolerance. PLANT PHYSIOLOGY 2009; 151:241-52. [PMID: 19571304 PMCID: PMC2735987 DOI: 10.1104/pp.109.142125] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/29/2009] [Indexed: 05/18/2023]
Abstract
Plants have evolved a range of cellular responses to maintain developmental homeostasis and to survive over a range of temperatures. Here, we describe the in vivo and in vitro functions of BOBBER1 (BOB1), a NudC domain containing Arabidopsis (Arabidopsis thaliana) small heat shock protein. BOB1 is an essential gene required for the normal partitioning and patterning of the apical domain of the Arabidopsis embryo. Because BOB1 loss-of-function mutants are embryo lethal, we used a partial loss-of-function allele (bob1-3) to demonstrate that BOB1 is required for organismal thermotolerance and postembryonic development. Recombinant BOB1 protein functions as a molecular chaperone and prevents the aggregation of a model protein substrate in vitro. In plants, BOB1 is cytoplasmic at basal temperatures, but forms heat shock granules containing canonical small heat shock proteins at high temperatures. In addition to thermotolerance defects, bob1-3 exhibits pleiotropic development defects during all phases of development. bob1-3 phenotypes include decreased rates of shoot and root growth as well as patterning defects in leaves, flowers, and inflorescence meristems. Most eukaryotic chaperones play important roles in protein folding either during protein synthesis or during cellular responses to denaturing stress. Our results provide, to our knowledge, the first evidence of a plant small heat shock protein that has both developmental and thermotolerance functions and may play a role in both of these folding networks.
Collapse
Affiliation(s)
- Dahlia E Perez
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | | | | | | | | | | |
Collapse
|
48
|
ORF-C4 from the early branching eukaryote Giardia lamblia displays characteristics of alpha-crystallin small heat-shock proteins. Biosci Rep 2009; 29:25-34. [PMID: 18680481 DOI: 10.1042/bsr20080101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Giardia lamblia is a medically important protozoan parasite with a basal position in the eukaryotic lineage and is an interesting model to explain the evolution of biochemical events in eukaryotic cells. G. lamblia trophozoites undergo significant changes in order to survive outside the intestine of their host by differentiating into infective cysts. In the present study, we characterize the previously identified Orf-C4 (G. lamblia open reading frame C4) gene, which is considered to be specific to G. lamblia. It encodes a 22 kDa protein that assembles into high-molecular-mass complexes during the entire life cycle of the parasite. ORF-C4 localizes to the cytoplasm of trophozoites and cysts, and forms large spherical aggregates when overexpressed. ORF-C4 overexpression and down-regulation do not affect trophozoite viability; however, differentiation into cysts is slightly delayed when the expression of ORF-C4 is down-regulated. In addition, ORF-C4 protein expression is modified under specific stress-inducing conditions. Neither orthologous proteins nor conserved domains are found in databases by conventional sequence analysis of the predicted protein. However, ORF-C4 contains a region which is similar structurally to the alpha-crystallin domain of sHsps (small heat-shock proteins). In the present study, we show the potential role of ORF-C4 as a small chaperone which is involved in the response to stress (including encystation) in G. lamblia.
Collapse
|
49
|
Tripp J, Mishra SK, Scharf KD. Functional dissection of the cytosolic chaperone network in tomato mesophyll protoplasts. PLANT, CELL & ENVIRONMENT 2009; 32:123-33. [PMID: 19154229 DOI: 10.1111/j.1365-3040.2008.01902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The heat stress response is universal to all organisms. Upon elevated temperatures, heat stress transcription factors (Hsfs) are activated to up-regulate the expression of molecular chaperones to protect cells against heat damages. In higher plants, the phenomenon is unusually complex both at the level of Hsfs and heat stress proteins (Hsps). Over-expression of both Hsfs and Hsps and the use of RNA interference for gene knock-down in a transient system in tomato protoplasts allowed us to dissect the in vivo chaperone functions of essential components of thermotolerance, such as the cytoplasmic sHsp, Hsp70 and Hsp100 chaperone families, and the regulation of their expression. The results point to specific functions of the different components in protection from protein denaturation and in refolding of denatured proteins.
Collapse
Affiliation(s)
- Joanna Tripp
- J. W. Goethe-University, Molecular Cell Biology of Plants, Biocenter N200, 3OG, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
50
|
Weber C, Nover L, Fauth M. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:517-30. [PMID: 18643965 DOI: 10.1111/j.1365-313x.2008.03623.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Similar to the situation in mammalian cells and yeast, messenger ribonucleo protein (mRNP) homeostasis in plant cells depends on rapid transitions between three functional states, i.e. translated mRNPs in polysomes, stored mRNPs and mRNPs under degradation. Studies in mammalian cells showed that whenever the dynamic exchange of the components between these states is disrupted, stalled mRNPs accumulate in cytoplasmic aggregates, such as stress granules (SGs) or processing bodies (PBs). We identified PBs and SGs in plant cells by detection of DCP1, DCP2 and XRN4, as marker proteins for the 5'-->3' mRNA degradation pathway, and eIF4E, as well as the RNA binding proteins RBP47 and UBP1, as marker proteins for stored mRNPs in SGs. Cycloheximide-inhibited translation, stress treatments and mutants defective in mRNP homeostasis were used to study the dynamic transitions of mRNPs between SGs and PBs. SGs and PBs can be clearly discriminated from the previously described heat stress granules (HSGs), which evidently do not contain mRNPs. Thus, the role of HSGs as putative mRNP storage sites must be revised.
Collapse
Affiliation(s)
- Christian Weber
- Department of Molecular Cell Biology, Johann Wolfgang Goethe-University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|