1
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
2
|
Hu Z, Chen S, Wei C, Jin Y, Zhao L, Liu Y, Gao Y, Fang Y, Zhang Y, Yi Z, Wang S, Zhao H. Plastidic glutamine synthetase (GS2) enhances nitrogen assimilation and protein production in duckweed using urea nitrogen source. Int J Biol Macromol 2025:141701. [PMID: 40037443 DOI: 10.1016/j.ijbiomac.2025.141701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Despite urea being the most widely used nitrogen fertilizer, many plants show reduced growth and protein content when urea is the nitrogen source. The underlying causes of nitrogen metabolism imbalance in urea supply remain unclear. In this study, we discovered that plastidic glutamine synthetase (GS2) can improve the physiological traits and protein production of duckweed cultivated with urea. By comparing the urea utilization processes between two duckweed strains, LpZH0104 and Lp9595, which exhibited marked differences under the same urea treatment, we found that GS2 significantly impacts nitrogen metabolism. Overexpressing the GS2 gene in an efficient genetic transformation system of duckweed enhanced nitrogen‑carbon metabolism, leading to a 10 % increase in biomass and a 24 % increase in protein content in the overexpression lines (OE lines). Protein productivity and PPPN (protein production per unit of applied fertilizer N) increased by 47 % and 32 %, respectively. Conversely, silencing the GS2 gene reduced these traits. Additionally, transforming GS2 gene into rice, tobacco, and Arabidopsis also enhanced their biomass and protein content under urea cultivation conditions. This study highlights GS2's role in enhancing nitrogen metabolism and physiological traits in plants cultivated with urea, offering valuable insights for improving biomass and protein production in crops using urea fertilizer.
Collapse
Affiliation(s)
- Zhubin Hu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Chen
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cuicui Wei
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Leyi Zhao
- Pitzer College, California 91711, United States.
| | - Yongqiang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yu Gao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yi Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang Y, Huang W, Li X, Zhang Y. The Deubiquitinating Enzyme AMSH1 Contributes to Plant Immunity Through Regulating the Stability of BDA1. PLANTS (BASEL, SWITZERLAND) 2025; 14:429. [PMID: 39942991 PMCID: PMC11819993 DOI: 10.3390/plants14030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Plants utilize plasma membrane localized receptors like kinases (RLKs) or receptor-like proteins (RLPs) to recognize pathogens and activate pattern-triggered immunity (PTI) responses. A gain-of-function mutation in the Arabidopsis RLP SNC2 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 2) leads to constitutive activation of defense responses in snc2-1D mutant plants. Transcription factors, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), define two parallel pathways downstream of SNC2. The autoimmunity of snc2-1D was partially affected by single mutations in SARD1 or CBP60g but completely suppressed by the sard1 cbp60g double mutant. From a suppressor screen using sard1-1 snc2-1D, we identified a deubiquitinating enzyme ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM 1 (AMSH1) as a key component in SNC2-mediated plant immunity. A loss-of-function mutation in AMSH1 can suppress the autoimmune responses of sard1-1 snc2-1D. In eukaryotes, selective protein degradation often occurs through the ubiquitination/deubiquitination system. The deubiquitinating enzymes that remove ubiquitin from target proteins play essential roles in controlling the level of target protein ubiquitination and degradation. As loss of AMSH1 results in decreased BDA1 abundance and BDA1 is a transmembrane protein required for SNC2-mediated immunity, AMSH1 likely contributes to immunity regulation through controlling BDA1 stability.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.W.); (W.H.)
| |
Collapse
|
4
|
Zainali N, Alizadeh H, Delavault P. Gene silencing in broomrapes and other parasitic plants of the Orobanchaceae family: mechanisms, considerations, and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:243-261. [PMID: 39289888 DOI: 10.1093/jxb/erae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Holoparasites of the Orobanchaceae family are devastating pests causing severe damage to many crop species, and are nearly impossible to control with conventional methods. During the past few decades, RNAi has been seen as a promising approach to control various crop pests. The exchange of small RNAs (sRNAs) between crops and parasitic plants has been documented, indicating potential for the development of methods to protect them via the delivery of the sRNAs to parasites, a method called host-induced gene silencing (HIGS). Here we describe various approaches used for gene silencing in plants and suggest solutions to improve the long-distance movement of the silencing triggers to increase the efficiency of HIGS in parasitic plants. We also investigate the important biological processes during the life cycle of the parasites, with a focus on broomrape species, providing several appropriate target genes that can be used, in particular, in multiplex gene silencing experiments. We also touch on how the application of nanoparticles can improve the stability and delivery of the silencing triggers, highlighting its potential for control of parasitic plants. Finally, suggestions for further research and possible directions for RNAi in parasitic plants are provided.
Collapse
Affiliation(s)
- Nariman Zainali
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Philippe Delavault
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| |
Collapse
|
5
|
Bhanupriya C, Kar S. RNAi-mediated downregulation of endogenous 4-coumarate: CoA ligase activity in Sorghum bicolor to alter the lignin content, which augmented the carbohydrate content and growth. PLANTA 2025; 261:30. [PMID: 39794647 DOI: 10.1007/s00425-024-04603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
MAIN CONCLUSION This study seeks to improve the biomass extractability of Sorghum bicolor by targeting a critical enzyme, 4CL, through metabolic engineering of the lignin biosynthetic pathway at the post-transcriptional level. Sorghum bicolor L., a significant forage crop, offers a potential source of carbohydrate components for biofuel production. The high lignin content in sorghum stems often impedes the extractability of desired carbohydrate components for industrial use. Thus, the present study aimed to develop an improved variety of S. bicolor with reduced lignin through RNA interference of the endogenous 4-coumarate:CoA ligase (4CL) gene involved in the lignin biosynthetic pathway. The S. bicolor gene was isolated, characterized, and used to construct the RNAi-inducing hpRNA gene-silencing construct. Two independent transgenic sorghum lines were produced by introducing an hpRNA-induced gene-silencing cassette of the Sb4CL through Agrobacterium-mediated transformation in the shoot tips of S. bicolor. This was confirmed by PCR amplification of the hygromycin-resistance gene and Southern hybridization. The Sb4CL gene transcript and its enzymatic activity were found to reduce to varying degrees, as shown by northern hybridization and enzyme activity in the independent transgenic samples. Endogenous Sb4CL downregulation in sorghum stem tissue correlates with reduced lignin content to a maximum range of 25%. The transfer of the transgene in the second generation was also analyzed. Decreased lignin content in the transgenic lines was compensated by increased total cell wall carbohydrates such as cellulose (36.56%) and soluble sugars (59.72%) compared to untransformed plants. The study suggests that suppressing the Sb4CL gene effectively develops better sorghum varieties with lower lignin content. This can be useful for industrial purposes, as the enhanced carbohydrate content and favorable alteration of lignin content can lead to economic benefits.
Collapse
Affiliation(s)
- Ch Bhanupriya
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India.
| | - Satarupa Kar
- Advanced Laboratory for Plant Genetic Engineering, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
6
|
Hu T, Wu J, Lin Z, Lin Y, Lin L, Wei W, Wei D. The impact of glutamine synthetase PbgsA on the growth, conidiation and mycophenolic acid production of Penicillium brevicompactum. Fungal Genet Biol 2024; 175:103941. [PMID: 39557113 DOI: 10.1016/j.fgb.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Glutamine synthetase (GS) is a critical enzyme in nitrogen metabolism regulation and plays an essential role in the metabolic pathways involved in microbial growth and development. Penicillium brevicompactum, known for its rich repertoire of secondary metabolites, including mycophenolic acid (MPA), lacks research on the regulatory mechanisms of GS within this species. This study aimed to investigate the influence of GS on the growth, sporulation, and secondary metabolism of P. brevicompactum to elucidate the biological function of GS in this organism. We identified the glutamine synthetase gene (PbgsA) from P. brevicompactum and constructed PbgsA gene-overexpression and gene-silencing transformants. The impact of PbgsA on growth and sporulation was evaluated, revealing that PbgsA gene-overexpression transformants exhibited enhanced growth and significantly increased the expression levels of sporulation pathway genes (brlA, abaA, and wetA). Additionally, PbgsA gene-overexpression transformants produced higher MPA yields, with a maximum of 4.78 g/L, representing a 54.19 % increase compared to the wild type (WT). Conversely, PbgsA gene-silencing transformants showed reduced MPA production, with a minimum yield of 1.13 g/L, a 63.55 % decrease relative to the WT. Transcriptional analysis of the MPA biosynthetic gene cluster indicated that PbgsA exerted regulatory effects on certain biosynthetic pathway genes, such as mpaA and mpaB. This study demostrated the potential positive regulatory role of glutamine synthetase PbgsA in the growth, spore development, and secondary metabolism of P. brevicompactum, which provided a new strategy for genetic regulation in filamentous fungal.
Collapse
Affiliation(s)
- TingTing Hu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jishou Wu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zixuan Lin
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yi Lin
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lin Lin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China; Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
7
|
Yuan J, Jin H, Tian M, Li D, Meng Y, Zhou H, Liu M, Meng D, Wei Y, Feng L, Sang S, Chen C, Ji S, Li J. RNA HELICASE 32 is essential for female gametophyte development in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112183. [PMID: 38972549 DOI: 10.1016/j.plantsci.2024.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The normal progression of mitotic cycles and synchronized development within female reproductive organs are pivotal for sexual reproduction in plants. Nevertheless, our understanding of the genetic regulation governing mitotic cycles during the haploid phase of higher plants remains limited. In this study, we characterized RNA HELICASE 32 (RH32), which plays an essential role in female gametogenesis in Arabidopsis. The rh32 heterozygous mutant was semi-sterile, whereas the homozygous mutant was nonviable. The rh32 mutant allele could be transmitted through the male gametophyte, but not the female gametophyte. Phenotypic analysis revealed impaired mitotic progression, synchronization, and cell specification in rh32 female gametophytes, causing the arrest of embryo sacs. In the delayed pollination test, none of the retarded embryo sacs developed into functional female gametophytes, and the vast majority of rh32 female gametophytes were defective in the formation of the large central vacuole. RH32 is strongly expressed in the embryo sac. Knock-down of RH32 resulted in the accumulation of unprocessed 18 S pre-rRNA, implying that RH32 is involved in ribosome synthesis. Based on these findings, we propose that RH32 plays a role in ribosome synthesis, which is critical for multiple processes in female gametophyte development.
Collapse
Affiliation(s)
- Jinhong Yuan
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huijie Jin
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Munan Tian
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Daiyu Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yao Meng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huihui Zhou
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Meng Liu
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Deqing Meng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yunliang Wei
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan 453007, China
| | - Liuchun Feng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shifei Sang
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Changbin Chen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shengdong Ji
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Junhua Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
Schnabel E, Bashyal S, Corbett C, Kassaw T, Nowak S, Rosales-García RA, Noorai RE, Müller LM, Frugoli J. The Defective in Autoregulation (DAR) gene of Medicago truncatula encodes a protein involved in regulating nodulation and arbuscular mycorrhiza. BMC PLANT BIOLOGY 2024; 24:766. [PMID: 39123119 PMCID: PMC11316349 DOI: 10.1186/s12870-024-05479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Legumes utilize a long-distance signaling feedback pathway, termed Autoregulation of Nodulation (AON), to regulate the establishment and maintenance of their symbiosis with rhizobia. Several proteins key to this pathway have been discovered, but the AON pathway is not completely understood. RESULTS We report a new hypernodulating mutant, defective in autoregulation, with disruption of a gene, DAR (Medtr2g450550/MtrunA17_Chr2g0304631), previously unknown to play a role in AON. The dar-1 mutant produces ten-fold more nodules than wild type, similar to AON mutants with disrupted SUNN gene function. As in sunn mutants, suppression of nodulation by CLE peptides MtCLE12 and MtCLE13 is abolished in dar. Furthermore, dar-1 also shows increased root length colonization by an arbuscular mycorrhizal fungus, suggesting a role for DAR in autoregulation of mycorrhizal symbiosis (AOM). However, unlike SUNN which functions in the shoot to control nodulation, DAR functions in the root. CONCLUSIONS DAR encodes a membrane protein that is a member of a small protein family in M. truncatula. Our results suggest that DAR could be involved in the subcellular transport of signals involved in symbiosis regulation, but it is not upregulated during symbiosis. DAR gene family members are also present in Arabidopsis, lycophytes, mosses, and microalgae, suggesting the AON and AOM may use pathway components common to other plants, even those that do not undergo either symbiosis.
Collapse
Affiliation(s)
- Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Sagar Bashyal
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- School of Biological Sciences, University of California San Diego, San Diego, CA, 92093, USA
| | - Cameron Corbett
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Tessema Kassaw
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Stephen Nowak
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Present addresses: Center for Technology Licensing, Cornell University, Ithaca, NY, 14850, USA
| | - Ramsés Alejandro Rosales-García
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, 29634, USA
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC, 29634, USA
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL, 33124, USA
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
9
|
Saakre M, Jaiswal S, Rathinam M, Raman KV, Tilgam J, Paul K, Sreevathsa R, Pattanayak D. Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications. Mol Biotechnol 2024; 66:1786-1805. [PMID: 37523020 DOI: 10.1007/s12033-023-00833-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Insect-pests infestation greatly affects global agricultural production and is projected to become more severe in upcoming years. There is concern about pesticide application being ineffective due to insect resistance and environmental toxicity. Reduced effectiveness of Bt toxins also made the scientific community shift toward alternative strategies to control devastating agricultural pests. With the advent of host-delivered RNA interference, also known as host-induced gene silencing, targeted insect genes have been suppressed through genetic engineering tools to deliver a novel insect-pest resistance strategy for combating a number of agricultural pests. This review recapitulates the possible mechanism of host-delivered RNA interference (HD-RNAi), in particular, the silencing of target genes of insect-pests. We emphasize the development of the latest strategies against evolving insect targets including designing of artificial microRNAs, vector constructs, and the benefit of using plastid transformation to transform target RNA-interfering genes. Advantages of using HD-RNAi over other small RNA delivery modes and also the supremacy of HD-RNAi over the CRISPR-Cas system particularly for insect resistance have been described. However, the broader application of this technology is restricted due to its several limitations. Using artificial miRNA designs, the host-delivered RNAi + Bt combinatorial approach and chloroplast transformation can overcome limitations of RNAi. With careful design and delivery approaches, RNAi promises to be extremely valuable and effective plant protection strategy to attain durable insect-pest resistance in crops.
Collapse
Affiliation(s)
- Manjesh Saakre
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Sandeep Jaiswal
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
- ICAR-Research Complex for NEH Region, Umiam, Meghalaya- 793103, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - K Venkat Raman
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Jyotsana Tilgam
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Krishnayan Paul
- Division of Molecular Biology and Biotechnology, ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India
| | - Debasis Pattanayak
- ICAR-National Institute for Plant Biotechnology, IARI Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
10
|
Manape TK, Satheesh V, Somasundaram S, Soumia PS, Khade YP, Mainkar P, Mahajan V, Singh M, Anandhan S. RNAi-mediated downregulation of AcCENH3 can induce in vivo haploids in onion (Allium cepa L.). Sci Rep 2024; 14:14481. [PMID: 38914600 PMCID: PMC11196721 DOI: 10.1038/s41598-024-64432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines. Out of five events, only three could produce seeds upon selfing. The progenies showed poor seed set and segregation distortion, and we were unable to recover homozygous knockdown lines. The knockdown lines showed a decrease in accumulation of AcCENH3 transcript and protein in leaf tissue. The decrease in protein content in transgenic plants was correlated with poor seed set. When the heterozygous knockdown lines were crossed with wild-type plants, progenies showed HI by genome elimination of the parental chromosomes from AcCENH3 knockdown lines. The HI efficiency observed was between 0 and 4.63% in the three events, and it was the highest (4.63%) when E1 line was crossed with wildtype. Given the importance of doubled haploids in breeding programmes, the findings from our study are poised to significantly impact onion breeding.
Collapse
Affiliation(s)
- Tushar K Manape
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Viswanathan Satheesh
- ICAR-National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50010, USA
| | - Saravanakumar Somasundaram
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Parakkattu S Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Yogesh P Khade
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Pawan Mainkar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India.
| |
Collapse
|
11
|
Azizi A, Del Río Mendoza LE. Effective Control of Sclerotinia Stem Rot in Canola Plants Through Application of Exogenous Hairpin RNA of Multiple Sclerotinia sclerotiorum Genes. PHYTOPATHOLOGY 2024; 114:1000-1010. [PMID: 38506733 DOI: 10.1094/phyto-10-23-0395-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Sclerotinia stem rot is a globally destructive plant disease caused by Sclerotinia sclerotiorum. Current management of Sclerotinia stem rot primarily relies on chemical fungicides and crop rotation, raising environmental concerns. In this study, we developed an eco-friendly RNA bio-fungicide targeting S. sclerotiorum. Six S. sclerotiorum genes were selected for double-stranded RNA (dsRNA) synthesis. Four genes, a chitin-binding domain, mitogen-activated protein kinase, oxaloacetate acetylhydrolase, and abhydrolase-3, were combined to express hairpin RNA in Escherichia coli HT115. The effect of application of total RNA extracted from E. coli HT115 expressing hairpin RNA on disease progressive and necrosis lesions was evaluated. Gene expression analysis using real-time PCR showed silencing of the target genes using 5 ng/µl of dsRNA in a fungal liquid culture. A detached leaf assay and greenhouse application of dsRNA on canola stem and leaves showed variation in the reduction of necrosis symptoms by dsRNA of different genes, with abhydrolase-3 being the most effective. The dsRNA from a combination of four genes reduced disease severity significantly (P = 0.01). Plants sprayed with hairpin RNA from four genes had lesions that were almost 30% smaller than those of plants treated with abhydrolase-3 alone, in lab and greenhouse assays. The results of this study highlight the potential of RNA interference to manage diseases caused by S. sclerotiorum; however, additional research is necessary to optimize its efficacy.
Collapse
Affiliation(s)
- Abdolbaset Azizi
- Department of Plant Pathology, North Dakota State University, ND, U.S.A
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
12
|
Gajurel G, Hasan R, Medina-Bolivar F. Water-deficit stress induces prenylated stilbenoid production and affects biomass in peanut hairy roots: Exploring the role of stilbenoid prenyltransferase downregulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108596. [PMID: 38579541 DOI: 10.1016/j.plaphy.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The peanut plant is one of the most economically important crops around the world. Abiotic stress, such as drought, causes over five hundred million dollars in losses in peanut production per year. Peanuts are known to produce prenylated stilbenoids to counteract biotic stress. However, their role in abiotic stress tolerance has not been elucidated. To address this issue, hairy roots with the capacity to produce prenylated stilbenoids were established. An RNA-interference (RNAi) molecular construct targeting the stilbenoid-specific prenyltransferase AhR4DT-1 was designed and expressed via Agrobacterium rhizogenes-mediated transformation in hairy roots of peanut cultivar Georgia Green. Two transgenic hairy roots with the RNAi molecular construct were established, and the downregulation of AhR4DT-1 was validated using reverse transcriptase quantitative PCR. To determine the efficacy of the RNAi-approach in modifying the levels of prenylated stilbenoids, the hairy roots were co-treated with methyl jasmonate, hydrogen peroxide, cyclodextrin, and magnesium chloride to induce the production of stilbenoids and then the stilbenoids were analyzed in extracts of the culture medium. Highly reduced levels of prenylated stilbenoids were observed in the RNAi hairy roots. Furthermore, the hairy roots were evaluated in a polyethylene glycol (PEG) assay to assess the role of prenylated stilbenoids on water-deficit stress. Upon PEG treatment, stilbenoids were induced and secreted into the culture medium of RNAi and wild-type hairy roots. Additionally, the biomass of the RNAi hairy roots decreased by a higher amount as compared to the wild-type hairy roots suggesting that prenylated stilbenoids might play a role against water-deficit stress.
Collapse
Affiliation(s)
- Gaurav Gajurel
- Arkansas Bioscience Institute, Arkansas State University, Jonesboro, AR, 72401, USA; Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Rokib Hasan
- Arkansas Bioscience Institute, Arkansas State University, Jonesboro, AR, 72401, USA; Molecular Biosciences Graduate Program, Arkansas State University, Jonesboro, AR, 72401, USA
| | - Fabricio Medina-Bolivar
- Arkansas Bioscience Institute, Arkansas State University, Jonesboro, AR, 72401, USA; Department of Biological Sciences, Arkansas State University, Jonesboro, AR, 72401, USA.
| |
Collapse
|
13
|
Wang F, Liang S, Wang G, Wang Q, Xu Z, Li B, Fu C, Fan Y, Hu T, Alariqi M, Hussain A, Cao J, Li J, Zhang X, Jin S. Comprehensive analysis of MAPK gene family in upland cotton (Gossypium hirsutum) and functional characterization of GhMPK31 in regulating defense response to insect infestation. PLANT CELL REPORTS 2024; 43:102. [PMID: 38499710 PMCID: PMC10948490 DOI: 10.1007/s00299-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jian Li
- The Southern Xinjiang Research Institute of Shihezi University, TuMu ShuKe, Xinjiang, 843900, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Xiao Y, Wei X, Hu C, Hsiang T, Yin J, Li J. Multiple amino acid transporters as carriers load L-valine-phenazine-1-carboxylic acid conjugate into Ricinus sieve tubes for the phloem translocation. Int J Biol Macromol 2024; 257:128730. [PMID: 38081490 DOI: 10.1016/j.ijbiomac.2023.128730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Some transporters play important roles in the uptake and acropetal xylem translocation of vectorized agrochemicals. However, it is poorly understood the basipetally phloem-loading functions of transporters toward vectorized agrochemicals. Here, L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) uptake was demonstrated carrier-mediated. RcAAP2, RcANT7, and RcLHT1 showed a similarly up-regulated expression pattern from 62 transporter coding genes in Ricinus at 1 h after L-Val or L-Val-PCA treatment. Subcellular localization revealed that fusion RcAAP2-eGFP, RcANT7-eGFP and RcLHT1-eGFP proteins were expressed in the plasma membrane of mesophyll and phloem cells. Yeast assays found that RcAAP2, RcANT7, and RcLHT1 facilitated L-Val-PCA uptake. To further demonstrate the phloem-loading functions, using vacuum infiltration strategy, an Agrobacterium-mediated RNA interference (RNAi) protocol was constructed in seedlings. HPLC detection indicated that L-Val-PCA phloem sap concentrations were significantly decreased 54.5 %, 27.6 %, and 41.6 % after silencing for 72 h and increased 48.3 %, 52.6 %, and 52.4 % after overexpression, respectively. In conclusion, the plasma membrane-located RcAAP2, RcANT7, and RcLHT1 can loaded L-Val-PCA into Ricinus sieve tubes for the phloem translocation, which may aid in the utilization of transporters and molecular design of phloem-mobile fungicides target root or vascular pathogens.
Collapse
Affiliation(s)
- Yongxin Xiao
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xuehua Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ciyin Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
15
|
Zhang Y, Chai M, Cheng X, Xu K. Transiently Induce RNA Silencing in Plants Using a Tobacco Necrosis Virus A (TNV-A)-Based dsRNA Production System. Methods Mol Biol 2024; 2771:83-89. [PMID: 38285394 DOI: 10.1007/978-1-0716-3702-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Transgenic expression of hairpin RNA or artificial microRNA is widely used for genetic studies in plant science. However, induction of RNA silencing by transgenic method may have a problem when studying essential genes. Here, we provide an in planta transient double-stranded RNA (dsRNA) producing system using a tobacco necrosis virus A (TNV-A)-based replicon for efficiently inducing RNA silencing in plants. In this system, the target sequence is placed between the cauliflower mosaic virus 35S promoter and the 3'-terminal part of viral genomic RNA, while the C-terminal part of TNV-A RNA-dependent RNA polymerase (p82C) is expressed by a different promoter. The endogenous RNA polymerase-synthesized target sequence is recruited by p82C to produce dsRNA to induce RNA silencing.
Collapse
Affiliation(s)
- Yuanming Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengzhu Chai
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
16
|
Bellin L, Melzer M, Hilo A, Garza Amaya DL, Keller I, Meurer J, Möhlmann T. Nucleotide Limitation Results in Impaired Photosynthesis, Reduced Growth and Seed Yield Together with Massively Altered Gene Expression. PLANT & CELL PHYSIOLOGY 2023; 64:1494-1510. [PMID: 37329302 DOI: 10.1093/pcp/pcad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.
Collapse
Affiliation(s)
- Leo Bellin
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Michael Melzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Alexander Hilo
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Diana Laura Garza Amaya
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Isabel Keller
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Jörg Meurer
- Plant Sciences, Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, Planegg-Martinsried 82152, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| |
Collapse
|
17
|
Konda AR, Gelli M, Pedersen C, Cahoon RE, Zhang C, Obata T, Cahoon EB. Vitamin E biofortification: Maximizing oilseed tocotrienol and total vitamin E tocochromanol production by use of metabolic bypass combinations. Metab Eng 2023; 79:66-77. [PMID: 37429412 DOI: 10.1016/j.ymben.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Vitamin E tocochromanols are generated in plants by prenylation of homogentisate using geranylgeranyl diphosphate (GGDP) for tocotrienol biosynthesis and phytyl diphosphate (PDP) for tocopherol biosynthesis. Homogentisate geranylgeranyl transferase (HGGT), which uses GGDP for prenylation, is a proven target for oilseed tocochromanol biofortification that effectively bypasses the chlorophyll-linked pathway that limits PDP for vitamin E biosynthesis. In this report, we explored the feasibility of maximizing tocochromanol production in the oilseed crop camelina (Camelina sativa) by combining seed-specific HGGT expression with increased biosynthesis and/or reduced homogentisate catabolism. Plastid-targeted Escherichia coli TyrA-encoded chorismate mutase/prephenate dehydrogenase and Arabidopsis hydroxyphenylpyruvate dioxygenase (HPPD) cDNA were co-expressed in seeds to bypass feedback-regulated steps and increase flux into homogentisate biosynthesis. Homogentisate catabolism was also suppressed by seed-specific RNAi of the gene for homogentisate oxygenase (HGO), which initiates homogentisate degradation. In the absence of HGGT expression, tocochromanols were increased by ∼2.5-fold with HPPD/TyrA co-expression, and ∼1.4-fold with HGO suppression compared to levels in non-transformed seeds. No further increase in tocochromanols was observed in HPPD/TyrA lines with the addition of HGO RNAi. HGGT expression alone increased tocochromanol concentrations in seeds by ∼four-fold to ≤1400 μg/g seed weight. When combined with HPPD/TyrA co-expression, we obtained an additional three-fold increase in tocochromanol concentrations indicating that homogentisate concentrations limit HGGT's capacity for maximal tocochromanol production. The addition of HGO RNAi further increased tocochromanol concentrations to 5000 μg/g seed weight, an unprecedented tocochromanol concentration in an engineered oilseed. Metabolomic data obtained from engineered seeds provide insights into phenotypic changes associated with "extreme" tocochromanol production.
Collapse
Affiliation(s)
- Anji Reddy Konda
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Malleswari Gelli
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Connor Pedersen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Toshihiro Obata
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA; USA.
| |
Collapse
|
18
|
Magome H, Arai M, Oyama K, Nishiguchi R, Takakura Y. Multiple loss-of-function mutations of carotenoid cleavage dioxygenase 4 reveal its major role in both carotenoid level and apocarotenoid composition in flue-cured mature tobacco leaves. Sci Rep 2023; 13:12992. [PMID: 37563246 PMCID: PMC10415294 DOI: 10.1038/s41598-023-39692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Apocarotenoid volatiles contribute to the flavor of many agricultural products. In many flowering plants, carotenoid cleavage dioxygenase 4 (CCD4) is involved in the decomposition of carotenoids and resultant production of C13-apocarotenoids, such as β-ionone derived from β-carotene. To understand the possible role of tobacco CCD4 genes (NtCCD4-S, NtCCD4-T1 and NtCCD4-T2) in these processes, we analyzed loss-of-function phenotypes. RNA interference transgenic plants showed yellow color in mature (senescent) leaves. Mature leaves of chemically induced double-mutant plants showed a stronger yellow color, and those of triple-mutant plants showed a pronounced yellow color. Carotenoid analysis of the leaves from mutants showed that lutein and β-carotene increased in line with the degree of color change compared to wild type, whereas there was little change in green color in their young leaves. This result indicates that CCD4s are important for the decomposition of carotenoids in the tobacco leaf maturation process. Analysis of apocarotenoids in flue-cured leaves of the multiple-mutant plants showed that many compounds, including megastigmatrienones, were decreased in comparison to wild type, whereas intriguingly β-ionone and dihydroactinidiolide were increased. Our results suggest that CCD4s play a key role in both carotenoid level and apocarotenoid composition in flue-cured mature tobacco leaves.
Collapse
Affiliation(s)
- Hiroshi Magome
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan.
| | - Masao Arai
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Kiyoshi Oyama
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Ryo Nishiguchi
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Yoshimitsu Takakura
- Leaf Tobacco Research Center, Japan Tobacco, Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| |
Collapse
|
19
|
Zhai S, Liu H, Xia X, Li H, Cao X, He Z, Ma W, Liu C, Song J, Liu A, Zhang J, Liu J. Functional analysis of polyphenol oxidase 1 gene in common wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1171839. [PMID: 37583591 PMCID: PMC10424926 DOI: 10.3389/fpls.2023.1171839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
Polyphenol oxidase (PPO) activity is a major cause of the undesirable brown color of wheat-based products. Ppo1, a major gene for PPO activity, was cloned based on sequence homology in previous studies; however, its function and regulation mechanism remain unclear. In this study, the function and genetic regulation of Ppo1 were analyzed using RNA interference (RNAi) and Targeting Induced Local Lesions IN Genomes (TILLING) technology, and superior mutants were identified. Compared with the control, the level of Ppo1 transcript in RNAi transgenic lines was drastically decreased by 15.5%-60.9% during grain development, and PPO activity was significantly reduced by 12.9%-20.4%, confirming the role of Ppo1 in PPO activity. Thirty-two Ppo1 mutants were identified in the ethyl methanesulfonate (EMS)-mutagenized population, including eight missense mutations, 16 synonymous mutations, and eight intron mutations. The expression of Ppo1 was reduced significantly by 6.7%-37.1% and 10.1%-54.4% in mutants M092141 (G311S) and M091098 (G299R), respectively, in which PPO activity was decreased by 29.7% and 28.8%, respectively, indicating that mutation sites of two mutants have important effects on PPO1 function. Sequence and structure analysis revealed that the two sites were highly conserved among 74 plant species, where the frequency of glycine was 94.6% and 100%, respectively, and adjacent to the entrance of the hydrophobic pocket of the active site. The M092141 and M091098 mutants can be used as important germplasms to develop wheat cultivars with low grain PPO activity. This study provided important insights into the molecular mechanism of Ppo1 and the genetic improvement of wheat PPO activity.
Collapse
Affiliation(s)
- Shengnan Zhai
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hang Liu
- Australian-China Joint Centre for Wheat Improvement, Western Australian State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haosheng Li
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyou Cao
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wujun Ma
- Australian-China Joint Centre for Wheat Improvement, Western Australian State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Cheng Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianmin Song
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aifeng Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jingjuan Zhang
- Australian-China Joint Centre for Wheat Improvement, Western Australian State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianjun Liu
- National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
20
|
Ershova N, Kamarova K, Sheshukova E, Antimonova A, Komarova T. A novel cellular factor of Nicotiana benthamiana susceptibility to tobamovirus infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1224958. [PMID: 37534286 PMCID: PMC10390835 DOI: 10.3389/fpls.2023.1224958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Viral infection, which entails synthesis of viral proteins and active reproduction of the viral genome, effects significant changes in the functions of many intracellular systems in plants. Along with these processes, a virus has to suppress cellular defense to create favorable conditions for its successful systemic spread in a plant. The virus exploits various cellular factors of a permissive host modulating its metabolism as well as local and systemic transport of macromolecules and photoassimilates. The Nicotiana benthamiana stress-induced gene encoding Kunitz peptidase inhibitor-like protein (KPILP) has recently been shown to be involved in chloroplast retrograde signaling regulation and stimulation of intercellular transport of macromolecules. In this paper we demonstrate the key role of KPILP in the development of tobamovius infection. Systemic infection of N. benthamiana plants with tobacco mosaic virus (TMV) or the closely related crucifer-infecting tobamovirus (crTMV) induces a drastic increase in KPILP mRNA accumulation. KPILP knockdown significantly reduces the efficiency of TMV and crTMV intercellular transport and reproduction. Plants with KPILP silencing become partially resistant to tobamovirus infection. Therefore, KPILP could be regarded as a novel proviral factor in the development of TMV and crTMV infection in N. benthamiana plants.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Antimonova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Zhang B, Huang S, Meng Y, Chen W. Gold nanoparticles (AuNPs) can rapidly deliver artificial microRNA (AmiRNA)-ATG6 to silence ATG6 expression in Arabidopsis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03026-5. [PMID: 37160448 DOI: 10.1007/s00299-023-03026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/29/2023] [Indexed: 05/11/2023]
Abstract
KEY MESSAGE We establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality. In plants, the generation of loss-of-function mutants is crucial for studying gene function. Artificial microRNA (AmiRNA) technology is a more targeted and effective tool for gene silencing. Gold nanoparticles (AuNPs) can bind nucleic acids and deliver them into animal cells. Here, AuNPs are used in combination with AmiRNA technology in plants. We found that AmiRNA-autophagy-related proteins (ATG6) can be delivered to cells by AuNPs to achieve the effect of ATG6 silencing. It is worth noting that on the 10th day there is still a silencing effect. Similar to the atg5 lines, silencing of ATG6 significantly reduced plant resistance to Pseudomonas syringae pv.maculicola (Psm) ES4326/AvrRpt2. Interestingly, ATG6 silencing and ATG5 mutation in NPR1-GFP (nonexpressor of pathogenesis-related genes) lines significantly reduced plant resistance to Psm ES4326/AvrRpt2, suggesting that autophagy is also involved in NPR1-regulated plant immune responses. In summary, we establish a fast and efficient transient silencing system that facilitates functional studies of some genes, whose knockout leads to plant lethality.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
22
|
Yeo IC, de Azevedo Manhaes AME, Liu J, Avila J, He P, Devarenne TP. An unexpected role for tomato threonine deaminase 2 in host defense against bacterial infection. PLANT PHYSIOLOGY 2023; 192:527-545. [PMID: 36530164 PMCID: PMC10152684 DOI: 10.1093/plphys/kiac584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/03/2023]
Abstract
The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA-Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA-Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
23
|
Vinodhini J, Rajendran L, Karthikeyan G. Engineering resistance against Cucumber mosaic virus in Nicotiana tabacum through virus derived transgene expressing hairpin RNA. 3 Biotech 2023; 13:143. [PMID: 37124993 PMCID: PMC10140202 DOI: 10.1007/s13205-023-03576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
Cucumber mosaic virus (CMV) is the one of notorious virus known for its ubiquitous nature and causes substantial yield loss worldwide. The resistance against the Cucumber mosaic virus (CMV) was envisaged in Nicotiana tabacum transgenic lines by introducing viral gene fragments. The chimeric hairpin RNA constructs incorporating 401 bp of coat protein, 411 bp of replicase protein and 361 bp of 2b gene were developed respectively and transformed into N. tabacum. The regenerated transgenic lines introduced with inverted repeats of CMV gene fragments exhibited enhanced resistance against CMV. The preliminary molecular screening and qPCR confirmed the integration of transgene in the transgenic lines. The spectrum of resistance in transgenic lines was evaluated by challenge inoculation with CMV and the resistance was determined through DAC-ELISA. The complete resistance was achieved in the hpRNA-CP transformant with a very low titre (0.029) of CMV followed by hpRNA-REP (0.099) with no symptoms. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03576-1.
Collapse
Affiliation(s)
- J. Vinodhini
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - L. Rajendran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003 India
| |
Collapse
|
24
|
Li Y, Xing M, Yang Q, Wang Y, Jiang J, Zhao Y, Zhao X, Shen A, Feng Y, Zhao X, Zhao Q, Hu C, Wang Y, Zhang B, Zhou S, Gu H, Huang J, Zhang Y. SmCIP7, a COP1 interactive protein, positively regulates anthocyanin accumulation and fruit size in eggplant. Int J Biol Macromol 2023; 234:123729. [PMID: 36801296 DOI: 10.1016/j.ijbiomac.2023.123729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
In higher plants, COP1 (Constitutively Photomorphogenic 1) acts as a central regulator of light-signaling networks and globally conditions the target proteins via the ubiquitin-proteasome pathway. However, the function of COP1-interacting proteins in light-regulated fruit coloration and development remains unknown in Solanaceous plants. Here, a COP1-interacting protein-encoding gene, SmCIP7, expressed specifically in the eggplant (Solanum melongena L.) fruit, was isolated. Gene-specific silencing of SmCIP7 using RNA interference (RNAi) significantly altered fruit coloration, fruit size, flesh browning, and seed yield. SmCIP7-RNAi fruits showed evident repression of the accumulation of anthocyanins and chlorophyll, indicating functional similarities between SmCIP7 and AtCIP7. However, the reduced fruit size and seed yield indicated SmCIP7 had evolved a distinctly new function. With the comprehensive application of HPLC-MS, RNA-seq, qRT-PCR, Y2H, BiFC, LCI, and dual-luciferase reporter system (DLR™), it was found that SmCIP7, a COP1 interactive protein in light signaling promoted anthocyanin accumulation, probably by regulating the transcription of SmTT8. Additionally, the drastic up-regulation of SmYABBY1, a homologous gene of SlFAS, might account for the strongly retarded fruit growth in SmCIP7-RNAi eggplant. Altogether, this study proved that SmCIP7 is an essential regulatory gene to modulate fruit coloration and development, serving as a key gene locus in eggplant molecular breeding.
Collapse
Affiliation(s)
- Yan Li
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Minghui Xing
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China; State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475001, Kaifeng, China
| | - Qiu Yang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yong Wang
- Henan Engineering Technology Research Center of New Germplasm Creation and Utilization for Solanaceous Vegetable Crops, Zhumadian Academy of Agricultural Sciences, Fuqiang Road 51, Zhumadian 463000, China
| | - Jun Jiang
- Henan Engineering Technology Research Center of New Germplasm Creation and Utilization for Solanaceous Vegetable Crops, Zhumadian Academy of Agricultural Sciences, Fuqiang Road 51, Zhumadian 463000, China
| | - Yingkai Zhao
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Xiangmei Zhao
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Aimin Shen
- Zhengzhou Institute of Vegetable Research, Zhengzhou 450015, China
| | - Youwei Feng
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Xuejie Zhao
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Qing Zhao
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Chunhua Hu
- Henan Youmei Agricultural Technology Co., Ltd, Zhoukou 466100, China
| | - Yunxing Wang
- Henan Youmei Agricultural Technology Co., Ltd, Zhoukou 466100, China
| | - Bing Zhang
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Shifeng Zhou
- Henan Vocational College of Agriculture, Zhengzhou, China
| | - Huihui Gu
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| | - Yanjie Zhang
- School of Agricultural Sciences, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.
| |
Collapse
|
25
|
Zhao JH, Huang YY, Wang H, Yang XM, Li Y, Pu M, Zhou SX, Zhang JW, Zhao ZX, Li GB, Hassan B, Hu XH, Chen X, Xiao S, Wu XJ, Fan J, Wang WM. Golovinomyces cichoracearum effector-associated nuclear localization of RPW8.2 amplifies its expression to boost immunity in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:367-382. [PMID: 36522832 DOI: 10.1111/nph.18682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.
Collapse
Affiliation(s)
- Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Beenish Hassan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20850, USA
| | - Xian-Jun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China and Rice Research Institute, Sichuan Agricultural University, Chengdu, 611131, China
| |
Collapse
|
26
|
Deng L, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li CB, Zhong S, Li C. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. THE PLANT CELL 2023; 35:1038-1057. [PMID: 36471914 PMCID: PMC10015170 DOI: 10.1093/plcell/koac349] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Akbarimotlagh M, Azizi A, Shams-Bakhsh M, Jafari M, Ghasemzadeh A, Palukaitis P. Critical points for the design and application of RNA silencing constructs for plant virus resistance. Adv Virus Res 2023; 115:159-203. [PMID: 37173065 DOI: 10.1016/bs.aivir.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Control of plant virus diseases is a big challenge in agriculture as is resistance in plant lines to infection by viruses. Recent progress using advanced technologies has provided fast and durable alternatives. One of the most promising techniques against plant viruses that is cost-effective and environmentally safe is RNA silencing or RNA interference (RNAi), a technology that could be used alone or along with other control methods. To achieve the goals of fast and durable resistance, the expressed and target RNAs have been examined in many studies, with regard to the variability in silencing efficiency, which is regulated by various factors such as target sequences, target accessibility, RNA secondary structures, sequence variation in matching positions, and other intrinsic characteristics of various small RNAs. Developing a comprehensive and applicable toolbox for the prediction and construction of RNAi helps researchers to achieve the acceptable performance level of silencing elements. Although the attainment of complete prediction of RNAi robustness is not possible, as it also depends on the cellular genetic background and the nature of the target sequences, some important critical points have been discerned. Thus, the efficiency and robustness of RNA silencing against viruses can be improved by considering the various parameters of the target sequence and the construct design. In this review, we provide a comprehensive treatise regarding past, present and future prospective developments toward designing and applying RNAi constructs for resistance to plant viruses.
Collapse
Affiliation(s)
- Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, Saravan, Iran
| | - Aysan Ghasemzadeh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Rafique A, Afroz A, Zeeshan N, Rashid U, Khan MAU, Irfan M, Chatha W, Khan MR, Rehman N. Production of Sitobion avenae-resistant Triticum aestivum cvs using laccase as RNAi target and its systemic movement in wheat post dsRNA spray. PLoS One 2023; 18:e0284888. [PMID: 37163535 PMCID: PMC10171587 DOI: 10.1371/journal.pone.0284888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Among the wheat biotic stresses, Sitobion avenae is one of the main factors devastating the wheat yield per hectare. The study's objective was to find out the laccase (lac) efficacy; as a potential RNAi target against grain aphids. The Sitobion avenae lac (Salac) was confirmed by Reverse Transcriptase-PCR. Gene was sequenced and accession number "ON703252" was allotted by GenBank. ERNAi tool was used to design 143 siRNA and one dsRNA target. 69% mortality and 61% reduction in lac expression were observed 8D-post lac DsRNA feeding. Phylogenetic analysis displayed the homology of grain aphid lac gene with peach potato, pea, and Russian wheat aphids. While Salac protein was found similar to the Russian grain, soybean, pea, and cedar bark aphid lac protein multi-copper oxidase. The dsRNAlac spray-induced silencing shows systematic translocation from leaf to root; with maximum lac expression found in the root, followed by stem and leaf 9-13D post-spray; comparison to control. RNAi-GG provides the Golden Gate cloning strategy with a single restriction ligation reaction used to achieve lac silencing. Agrobacterium tumefaciens mediated in planta and in-vitro transformation was used in the study. In vitro transformation, Galaxy 2012 yielded a maximum transformation efficiency (1.5%), followed by Anaj 2017 (0.8%), and Punjab (0.2%). In planta transformation provides better transformation efficiencies with a maximum in Galaxy 2012 (16%), and a minimum for Punjab (5%). Maximum transformation efficiency was achieved for all cultivars with 250 μM acetosyringone and 3h co-cultivation. Galaxy 2012 exhibited maximum transformation efficiency, and aphid mortality post-feeding transgenic wheat.
Collapse
Affiliation(s)
- Asma Rafique
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Umer Rashid
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | | | - Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Waheed Chatha
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Islamabad, Pakistan
| |
Collapse
|
29
|
Cui X, Zhang P, Chen C, Zhang J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. PLANT CELL REPORTS 2023; 42:181-196. [PMID: 36318328 DOI: 10.1007/s00299-022-02943-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
VyUSPA3 from the Chinese wild grape Vitis yeshanensis interacts with ERF105, PUB24 and NF-YB3, and overexpression of the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' confers drought tolerance. Drought is a major abiotic stress factor that seriously affects the growth and yield of grapevine. Although many drought-related genes have been identified in Arabidopsis and other plants, the functions of only a few of their counterparts have been revealed in grape. Here, a universal stress protein (USP) A from the Chinese wild grape Vitis yeshanensis, VyUSPA3, was identified and its function was subsequently characterized by overexpressing or silencing the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' via Agrobacterium-mediated genetic transformation. After 21 d of the drought treatment, most leaves of the untransformed (UT) 'Thompson Seedless' lines wilted, yet UT lines were less damaged compared to the RNAi-VyUSPA3 lines, nonetheless, the OE-VyUSPA3 lines were mostly unaffected. Meanwhile, OE-VyUSPA3 lines showed smaller stomatal aperture, more developed roots, higher leaf relative water content, proline content, and antioxidant enzyme activities, as well as lower malondialdehyde, H2O2 and O2•- accumulation than UT lines, but this response pattern was reversed in the RNAi-VyUSPA3 lines. Besides, the transcript levels of four drought-related genes (RD22, RD29B, DREB2A, and NCED1) in OE-VyUSPA3 lines were greater than those in the RNAi-VyUSPA3 and UT lines. In addition, a yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VyUSPA3 interacted with ERF105, PUB24, and NF-YB3, respectively. This study revealed that VyUSPA3 improved drought tolerance in transgenic grapevines possibly through interaction with the hormone signaling, ubiquitination system, ethylene-responsive element binding factor and nuclear factors.
Collapse
Affiliation(s)
- Xiaoyue Cui
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Pingying Zhang
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Chengcheng Chen
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Shaanxi, 712100, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Shaanxi, 712100, Yangling, China.
| |
Collapse
|
30
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
31
|
Joshi I, Kumar A, Kohli D, Bhattacharya R, Sirohi A, Chaudhury A, Jain PK. Gall-specific promoter, an alternative to the constitutive CaMV35S promoter, drives host-derived RNA interference targeting Mi-msp2 gene to confer effective nematode resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1007322. [PMID: 36426141 PMCID: PMC9679145 DOI: 10.3389/fpls.2022.1007322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
One of the major obligate plant parasites causing massive economic crop losses belongs to the class of root-knot nematodes (RKNs). Targeting of major nematode parasitism genes via Host Delivered-RNAi (HD-RNAi) to confer silencing is established as one of the most effective approaches to curb nematode infection. Utilizing nematode-responsive root-specific (NRRS) promoters to design a dsRNA molecule targeting approach to hamper nematode parasitism. Here, a previously validated peroxidase gall specific promoter, pAt2g18140, from Arabidopsis was employed to express the dsRNA construct of the nematode effector gene Mi-msp2 from Meloidogyne incognita. Arabidopsis RNAi lines of CaMV35S::Mi-msp2-RNAi and pAt2g18140::Mi-msp2-RNAi were compared with control plants to assess the decrease in plant nematode infection. When subjected to infection, the maximum reductions in the numbers of galls, females and egg masses in the CaMV35S::Mi-msp2-RNAi lines were 61%, 66% and 95%, respectively, whereas for the pAt2g18140::Mi-msp2-RNAi lines, they were 63%, 68% and 100%, respectively. The reduction in transcript level ranged from 79%-82% for CaMV35S::Mi-msp2-RNAi and 72%-79% for the pAt2g18140::Mi-msp2-RNAi lines. Additionally, a reduction in female size and a subsequent reduction in next-generation fecundity demonstrate the efficacy and potential of the gall specific promoter pAt2g18140 for utilization in the development of HD-RNAi constructs against RKN, as an excellent alternative to the CaMV35S promoter.
Collapse
Affiliation(s)
- Ila Joshi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Anil Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Pradeep K. Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
32
|
Deng J, Sun W, Zhang B, Sun S, Xia L, Miao Y, He L, Lindsey K, Yang X, Zhang X. GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton. THE PLANT CELL 2022; 34:4554-4568. [PMID: 35972347 PMCID: PMC9614502 DOI: 10.1093/plcell/koac252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.
Collapse
Affiliation(s)
| | | | - Boyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangrong He
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | | | - Xiyan Yang
- Authors for correspondence: (X.Y.), (L.K.), (L.H.)
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Kumar M, Tripathi PK, Ayzenshtat D, Marko A, Forotan Z, Bocobza SE. Increased rates of gene-editing events using a simplified RNAi configuration designed to reduce gene silencing. PLANT CELL REPORTS 2022; 41:1987-2003. [PMID: 35849200 DOI: 10.1007/s00299-022-02903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
An optimal RNAi configuration that could restrict gene expression most efficiently was determined. This approach was also used to target PTGS and yielded higher rates of gene-editing events. Although it was characterized long ago, transgene silencing still strongly impairs transgene overexpression, and thus is a major barrier to plant crop gene-editing. The development of strategies that could prevent transgene silencing is therefore essential to the success of gene editing assays. Transgene silencing occurs via the RNA silencing process, which regulates the expression of essential genes and protects the plant from viral infections. The RNA silencing machinery thereby controls central biological processes such as growth, development, genome integrity, and stress resistance. RNA silencing is typically induced by aberrant RNA, that may lack 5' or 3' processing, or may consist in double-stranded or hairpin RNA, and involves DICER and ARGONAUTE family proteins. In this study, RNAi inducing constructs were designed in eleven different configurations and were evaluated for their capacity to induce silencing in Nicotiana spp. using transient and stable transformation assays. Using reporter genes, it was found that the overexpression of a hairpin consisting of a forward tandem inverted repeat that started with an ATG and that was not followed downstream by a transcription terminator, could downregulate gene expression most potently. Furthermore, using this method, the downregulation of the NtSGS3 gene caused a significant increase in transgene expression both in transient and stable transformation assays. This SGS3 silencing approach was also employed in gene-editing assays and caused higher rates of gene-editing events. Taken together, these findings suggested the optimal genetic configuration to cause RNA silencing and showed that this strategy may be used to restrict PTGS during gene-editing experiments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Pankaj Kumar Tripathi
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Zohar Forotan
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel
| | - Samuel E Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Beit Dagan, Israel.
| |
Collapse
|
34
|
Wang X, Rehmani MS, Chen Q, Yan J, Zhao P, Li C, Zhai Z, Zhou N, Yang B, Jiang YQ. Rapeseed NAM transcription factor positively regulates leaf senescence via controlling senescence-associated gene expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111373. [PMID: 35817290 DOI: 10.1016/j.plantsci.2022.111373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is one of the most visible forms of programmed cell death in plants. It can be a seasonal adaptation in trees or the final stage in crops ensuring efficient translocation of nutrients to seeds. Along with developmental cues, various environmental factors could also trigger the onset of senescence through transcriptional cascades. Rapeseed (Brassica napus L.) is an important oil crop with its yielding affected by significant falling leaves as a result of leaf senescence, compared to many other crops. Therefore, a better understanding of leaf senescence and developing strategies controlling the progress of leaf senescence in rapeseed is necessary for warranting vegetable oil security. Here we functionally characterized the gene BnaNAM encoding No Apical Meristem (NAM) homologue to identify transcriptional regulation of leaf senescence in rapeseed. A combination of transient and stable expression techniques revealed overexpression of BnaNAM induced ROS production and leaf chlorosis. Quantitative evaluation of up-regulated genes in BnaNAM overexpression lines identified genes related to ROS production (RbohD, RbohF), proteases (βVPE, γVPE, SAG12, SAG15), chlorophyll catabolism (PaO, PPH) and nucleic acid degradation (BFN1) as the putative downstream targets. A dual luciferase-based transcriptional activation assay of selected promoters further confirmed BnaNAM mediated transactivation of promoters of the downstream genes. Finally, an electrophoretic mobility shift assay further confirmed direct binding of BnaNAM to promoters of βVPE, γVPE, SAG12, SAG15 and BFN1. Our results therefore demonstrate a novel role of BnaNAM in leaf senescence.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Muhammad Saad Rehmani
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qinqin Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jingli Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan province, China
| | - Peiyu Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chun Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zengkang Zhai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na Zhou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Bo Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
36
|
Kiełbowicz-Matuk A, Grądzka K, Biegańska M, Talar U, Czarnecka J, Rorat T. The StBBX24 protein affects the floral induction and mediates salt tolerance in Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2022; 13:965098. [PMID: 36160990 PMCID: PMC9490078 DOI: 10.3389/fpls.2022.965098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The transition from vegetative growth to reproductive development is a critical developmental switch in flowering plants to ensure a successful life cycle. However, while the genes controlling flowering are well-known in model plants, they are less well-understood in crops. In this work, we generated potato lines both silenced and overexpressed for the expression of StBBX24, a clock-controlled gene encoding a B-box protein located in the cytosol and nuclear chromatin fraction. We revealed that Solanum tuberosum lines silenced for StBBX24 expression displayed much earlier flowering than wild-type plants. Conversely, plants overexpressing StBBX24 mostly did not produce flower buds other than wild-type plants. In addition, RT-qPCR analyses of transgenic silenced lines revealed substantial modifications in the expression of genes functioning in flowering. Furthermore, S. tuberosum lines silenced for StBBX24 expression displayed susceptibility to high salinity with a lower capacity of the antioxidant system and strongly decreased expression of genes encoding Na+ transporters that mediate salt tolerance, contrary to the plants with StBBX24 overexpression. Altogether, these data reveal that StBBX24 participates in potato flowering repression and is involved in salt stress response.
Collapse
Affiliation(s)
- Agnieszka Kiełbowicz-Matuk
- Department of Regulation of Gene Expression, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
37
|
Wang B, Teng D, Yu C, Yao L, Ma X, Wu T. Increased sulfur-containing amino acid content and altered conformational characteristics of soybean proteins by rebalancing 11S and 7S compositions. FRONTIERS IN PLANT SCIENCE 2022; 13:828153. [PMID: 36119623 PMCID: PMC9478179 DOI: 10.3389/fpls.2022.828153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Soybean proteins are limited by their low contents of methionine and cysteine. Herein, 7S globulin accumulation was reduced using RNA interference to silence CG-β-1 expression, and the content of the A2B1a subunit was largely increased under the soybean seed-specific oleosin8 promoter. The results showed that the sulfur-containing amino acid content in soybean seeds drastically improved, reaching 79.194 nmol/mg, and the 11S/7S ratio had a 1.89-fold increase compared to the wild-type acceptor. The secondary structures of 11S globulin were also altered, and the β-sheet content increased with decreasing β-turn content, which was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and circular dichroism analysis. Our findings suggested that raising the accumulation of 11S glycinin at the expense of reducing the content of 7S globulin is an attractive and precise engineering strategy to increase the amount of sulfur-containing amino acids, and soybean proteins with A2B1a subunits of 11S isolates improved, and β-subunits of 7S fractions reduced simultaneously might be an effective new material for food production.
Collapse
Affiliation(s)
- Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, China
| | - Da Teng
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Cunhao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, China
| | - Xiaohong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlong Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Zand Karimi H, Innes RW. Molecular mechanisms underlying host-induced gene silencing. THE PLANT CELL 2022; 34:3183-3199. [PMID: 35666177 PMCID: PMC9421479 DOI: 10.1093/plcell/koac165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/08/2022] [Indexed: 05/05/2023]
Abstract
Host-induced gene silencing (HIGS) refers to the silencing of genes in pathogens and pests by expressing homologous double-stranded RNAs (dsRNA) or artificial microRNAs (amiRNAs) in the host plant. The discovery of such trans-kingdom RNA silencing has enabled the development of RNA interference-based approaches for controlling diverse crop pathogens and pests. Although HIGS is a promising strategy, the mechanisms by which these regulatory RNAs translocate from plants to pathogens, and how they induce gene silencing in pathogens, are poorly understood. This lack of understanding has led to large variability in the efficacy of various HIGS treatments. This variability is likely due to multiple factors, such as the ability of the target pathogen or pest to take up and/or process RNA from the host, the specific genes and target sequences selected in the pathogen or pest for silencing, and where, when, and how the dsRNAs or amiRNAs are produced and translocated. In this review, we summarize what is currently known about the molecular mechanisms underlying HIGS, identify key unanswered questions, and explore strategies for improving the efficacy and reproducibility of HIGS treatments in the control of crop diseases.
Collapse
Affiliation(s)
- Hana Zand Karimi
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
39
|
Li X, Liu X, Lu W, Yin X, An S. Application progress of plant-mediated RNAi in pest control. Front Bioeng Biotechnol 2022; 10:963026. [PMID: 36003536 PMCID: PMC9393288 DOI: 10.3389/fbioe.2022.963026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
RNA interference (RNAi)-based biopesticides are novel biologic products, developed using RNAi principles. They are engineered to target genes of agricultural diseases, insects, and weeds, interfering with their target gene expression so as to hinder their growth and alleviate their damaging effects on crops. RNAi-based biopesticides are broadly classified into resistant plant-based plant-incorporated protectants (PIPs) and non-plant-incorporated protectants. PIP RNAi-based biopesticides are novel biopesticides that combine the advantages of RNAi and resistant transgenic crops. Such RNAi-based biopesticides are developed through nuclear or plastid transformation to breed resistant plants, i.e., dsRNA-expressing transgenic plants. The dsRNA of target genes is expressed in the plant cell, with pest and disease control being achieved through plant-target organism interactions. Here, we review the action mechanism and strategies of RNAi for pest management, the development of RNAi-based transgenic plant, and the current status and advantages of deploying these products for pest control, as well as the future research directions and problems in production and commercialization. Overall, this study aims to elucidate the current development status of RNAi-based biopesticides and provide guidelines for future research.
Collapse
|
40
|
Chen R, Yang M, Tu Z, Xie F, Chen J, Luo T, Hu X, Nie B, He C. Eukaryotic translation initiation factor 4E family member nCBP facilitates the accumulation of TGB-encoding viruses by recognizing the viral coat protein in potato and tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:946873. [PMID: 36003826 PMCID: PMC9393630 DOI: 10.3389/fpls.2022.946873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to their limited coding capacity, plant viruses have to depend on various host factors for successful infection of the host. Loss of function of these host factors will result in recessively inherited resistance, and therefore, these host factors are also described as susceptibility genes or recessive resistance genes. Most of the identified recessive resistance genes are members of the eukaryotic translation initiation factors 4E family (eIF4E) and its isoforms. Recently, an eIF4E-type gene, novel cap-binding protein (nCBP), was reported to be associated with the infection of several viruses encoding triple gene block proteins (TGBps) in Arabidopsis. Here, we, for the first time, report that the knockdown of nCBP in potato (StnCBP) compromises the accumulation of potato virus S (PVS) but not that of potato virus M (PVM) and potato virus X (PVX), which are three potato viruses encoding TGBps. Further assays demonstrated that StnCBP interacts with the coat proteins (CPs) of PVS and PVM but not with that of PVX, and substitution of PVS CP in the PVS infectious clone by PVM CP recovered the virus infection in StnCBP-silenced transgenic plants, suggesting that the recognition of PVS CP is crucial for StnCBP-mediated recessive resistance to PVS. Moreover, the knockdown of nCBP in Nicotiana benthamiana (NbnCBP) by virus-induced gene silencing suppressed PVX accumulation but not PVM, while NbnCBP interacted with the CPs of both PVX and PVM. Our results indicate that the nCBP orthologues in potato and tobacco have conserved function as in Arabidopsis in terms of recessive resistance against TGB-encoding viruses, and the interaction between nCBP and the CP of TGB-encoding virus is necessary but not sufficient to determine the function of nCBP as a susceptibility gene.
Collapse
Affiliation(s)
- Ruhao Chen
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Manhua Yang
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fangru Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiaru Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tao Luo
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinxi Hu
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| |
Collapse
|
41
|
Zhao Z, Liu Z, Zhou Y, Wang J, Zhang Y, Yu X, Wu R, Guo C, Qin A, Bawa G, Sun X. Creation of cotton mutant library based on linear electron accelerator radiation mutation. Biochem Biophys Rep 2022; 30:101228. [PMID: 35243011 PMCID: PMC8867050 DOI: 10.1016/j.bbrep.2022.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Cotton (Gossypium spp.) is one of the most important cash crops worldwide. At present, new cotton varieties are mainly produced through conventional cross breeding, which is limited by available germplasm. Although the genome of cotton has been fully sequenced, research on the function of specific genes lags behind due to the lack of sufficient genetic material. Therefore, it is very important to create a cotton mutant library to create new, higher-quality varieties and identify genes associated with the regulation of key traits. Traditional mutagenic strategies, such as physical, chemical, and site-directed mutagenesis, are relatively costly, inefficient, and difficult to perform. In this study, we used a radiation mutation method based on linear electron acceleration to mutate cotton variety 'TM-1', for which a whole-genome sequence has previously been performed, to create a high throughput cotton mutant library. Abundant phenotypic variation was observed in the progeny population for three consecutive generations, including cotton fiber color variation, plant dwarfing, significant improvement of yield traits, and increased sensitivity to Verticillium wilt. These results show that radiation mutagenesis is an effective and feasible method to create plant mutant libraries.
Collapse
Affiliation(s)
| | | | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jiajing Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yixin Zhang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - George Bawa
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
42
|
Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. THE PLANT CELL 2022; 34:2343-2363. [PMID: 35262740 PMCID: PMC9134091 DOI: 10.1093/plcell/koac082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lihua Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Patrick Schäfer
- Institute of Molecular Botany, Ulm University, Ulm 89069, Germany
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
43
|
Castañeda L, Giménez E, Pineda B, García‐Sogo B, Ortiz‐Atienza A, Micol‐Ponce R, Angosto T, Capel J, Moreno V, Yuste‐Lisbona FJ, Lozano R. Tomato CRABS CLAW paralogues interact with chromatin remodelling factors to mediate carpel development and floral determinacy. THE NEW PHYTOLOGIST 2022; 234:1059-1074. [PMID: 35170044 PMCID: PMC9314824 DOI: 10.1111/nph.18034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
CRABS CLAW (CRC) orthologues play a crucial role in floral meristem (FM) determinacy and gynoecium formation across angiosperms, the key developmental processes for ensuring successful plant reproduction and crop production. However, the mechanisms behind CRC mediated FM termination are far from fully understood. Here, we addressed the functional characterization of tomato (Solanum lycopersicum) paralogous CRC genes. Using mapping-by-sequencing, RNA interference and CRISPR/Cas9 techniques, expression analyses, protein-protein interaction assays and Arabidopsis complementation experiments, we examined their potential roles in FM determinacy and carpel formation. We revealed that the incomplete penetrance and variable expressivity of the indeterminate carpel-inside-carpel phenotype observed in fruit iterative growth (fig) mutant plants are due to the lack of function of the S. lycopersicum CRC homologue SlCRCa. Furthermore, a detailed functional analysis of tomato CRC paralogues, SlCRCa and SlCRCb, allowed us to propose that they operate as positive regulators of FM determinacy by acting in a compensatory and partially redundant manner to safeguard the proper formation of flowers and fruits. Our results uncover for the first time the physical interaction of putative CRC orthologues with members of the chromatin remodelling complex that epigenetically represses WUSCHEL expression through histone deacetylation to ensure the proper termination of floral stem cell activity.
Collapse
Affiliation(s)
- Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de Valencia46022ValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de Valencia46022ValenciaSpain
| | - Ana Ortiz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Rosa Micol‐Ponce
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de Valencia46022ValenciaSpain
| | - Fernando J. Yuste‐Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL)Universidad de AlmeríaAlmería04120Spain
| |
Collapse
|
44
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
45
|
Fliege CE, Ward RA, Vogel P, Nguyen H, Quach T, Guo M, Viana JPG, dos Santos LB, Specht JE, Clemente TE, Hudson ME, Diers BW. Fine mapping and cloning of the major seed protein quantitative trait loci on soybean chromosome 20. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:114-128. [PMID: 34978122 PMCID: PMC9303569 DOI: 10.1111/tpj.15658] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/28/2021] [Indexed: 05/13/2023]
Abstract
Soybean is the most important source of protein meal worldwide and the quantitative trait loci (QTL) cqSeed protein‐003 on chromosome 20 exerts the greatest additive effect of any protein QTL mapped in the crop. Through genetic mapping and candidate gene downregulation, we identified that an insertion/deletion variant in Glyma.20G85100 is the likely gene that underlies this important QTL.
Collapse
Affiliation(s)
- Christina E. Fliege
- Department of Crop SciencesUniversity of Illinois1101 W. Peabody Dr.UrbanaIL61801USA
| | - Russell A. Ward
- Department of Crop SciencesUniversity of Illinois1101 W. Peabody Dr.UrbanaIL61801USA
- Syngenta Seeds Inc.AuroraSD57002USA
| | - Pamela Vogel
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
- Pairwise CompanyDurhamNC27701USA
| | - Hanh Nguyen
- Center for Plant Science InnovationUniversity of Nebrasaka‐LincolnLincolnNE68583USA
| | - Truyen Quach
- Center for Plant Science InnovationUniversity of Nebrasaka‐LincolnLincolnNE68583USA
| | - Ming Guo
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| | | | | | - James E. Specht
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Tom E. Clemente
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNE68583USA
| | - Matthew E. Hudson
- Department of Crop SciencesUniversity of Illinois1101 W. Peabody Dr.UrbanaIL61801USA
| | - Brian W. Diers
- Department of Crop SciencesUniversity of Illinois1101 W. Peabody Dr.UrbanaIL61801USA
| |
Collapse
|
46
|
Zhang BZ, Hu GL, Lu LY, Chen XL, Gao XW. Silencing of CYP6AS160 in Solenopsis invicta Buren by RNA interference enhances worker susceptibility to fipronil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:171-178. [PMID: 34365981 DOI: 10.1017/s0007485321000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 monooxygenases play a key role in pest resistance to insecticides by detoxification. Four new P450 genes, CYP6AS160, CYP6AS161, CYP4AB73 and CYP4G232 were identified from Solenopsis invicta. CYP6AS160 was highly expressed in the abdomen and its expression could be induced significantly with exposure to fipronil, whereas CYP4AB73 was not highly expressed in the abdomen and its expression could not be significantly induced following exposure to fipronil. Expression levels of CYP6AS160 and CYP4AB73 in workers were significantly higher than that in queens. RNA interference-mediated gene silencing by feeding on double-stranded RNA (dsRNA) found that the levels of this transcript decreased (by maximum to 64.6%) when they fed on CYP6AS160-specific dsRNA. Workers fed dsCYP6AS160 had significantly higher mortality after 24 h of exposure to fipronil compared to controls. Workers fed dsCYP6AS160 had reduced total P450 activity of microsomal preparations toward model substrates p-nitroanisole. However, the knockdown of a non-overexpressed P450 gene, CYP4AB73 did not lead to an increase of mortality or a decrease of total P450 activity. The knockdown effects of CYP6AS160 on worker susceptibility to fipronil, combined with our other findings, indicate that CYP6AS160 is responsible for detoxification of fipronil. Feeding insects dsRNA may be a general strategy to trigger RNA interference and may find applications in entomological research and in the control of insect pests in the field.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| |
Collapse
|
47
|
Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. PLANT PHYSIOLOGY 2022; 188:2146-2165. [PMID: 35043961 PMCID: PMC8968321 DOI: 10.1093/plphys/kiac014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The biosynthetic pathway of volatile phenylpropanoids, including 4-allyl-2-methoxyphenol (eugenol), has been investigated in petunia (Petunia hybrida). However, the regulatory network for eugenol accumulation in strawberry (Fragaria × ananassa Duch.) fruit remains unclear. Here, an R2R3-type MYB transcription factor (TF; FaMYB63) was isolated from strawberry by yeast one-hybrid (Y1H) screening using the promoter of the FaEGS1 (eugenol synthase 1 [EGS 1]) gene, which encodes the enzyme responsible for the last step in eugenol biosynthesis. FaMYB63 is phylogenetically distinct from other R2R3-MYB TFs, including FaEOBІІ (EMISSION OF BENZENOID II [EOBII]), which also participates in regulating eugenol biosynthesis in strawberry receptacles. Reverse transcription quantitative PCR (RT-qPCR) assays showed that the expression of FaMYB63 was tissue-specific and consistent with eugenol content through strawberry fruit development, was repressed by abscisic acid, and was activated by auxins (indole-3-acetic acid). Overexpression and RNA interference-mediated silencing of FaMYB63 resulted in marked changes in the transcript levels of the biosynthetic genes FaEGS1, FaEGS2, and FaCAD1 (cinnamyl alcohol dehydrogenase 1 [CAD1]) and, thereby, the accumulation of eugenol. Electrophoretic mobility shift, Y1H, GUS activity, and dual-luciferase activity assays demonstrated that the transcript levels of FaEOBІІ and FaMYB10 were regulated by FaMYB63, but not the other way around. Together, these results demonstrate that FaMYB63 directly activates FaEGS1, FaEGS2, FaCAD1, FaEOBІІ, and FaMYB10 to induce eugenol biosynthesis during strawberry fruit development. These findings deepen the understanding of the regulatory network that influences eugenol metabolism in an edible fruit crop.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Mengyun Shi
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhifei Pan
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Linzhong Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Huan Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Xue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | | | | |
Collapse
|
48
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
49
|
Aznar-Moreno JA, Mukherjee T, Morley SA, Duressa D, Kambhampati S, Chu KL, Koley S, Allen DK, Durrett TP. Suppression of SDP1 Improves Soybean Seed Composition by Increasing Oil and Reducing Undigestible Oligosaccharides. FRONTIERS IN PLANT SCIENCE 2022; 13:863254. [PMID: 35401590 PMCID: PMC8983916 DOI: 10.3389/fpls.2022.863254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 06/01/2023]
Abstract
In developing soybean seeds, carbon is partitioned between oil, protein and carbohydrates. Here, we demonstrate that suppression of lipase-mediated turnover of triacylglycerols (TAG) during late seed development increases fatty acid content and decreases the presence of undigestible oligosaccharides. During late stages of embryo development, the fatty acid content of soybean seed decreases while the levels of the oligosaccharides raffinose and stachyose increase. Three soybean genes orthologous to the Arabidopsis lipase gene SUGAR-DEPENDENT1 (SDP1) are upregulated at this time. Suppression of these genes resulted in higher oil levels, with lipid levels in the best lines exceeding 24% of seed weight. In addition, lipase-suppressed lines produced larger seeds compared to wild-type plants, resulting in increases of over 20% in total lipid per seed. Levels of raffinose and stachyose were lower in the transgenic lines, with average reductions of 15% in total raffinose family oligosaccharides observed. Despite the increase in oil, protein content was not negatively impacted and trended higher in the transgenic lines. These results are consistent with a role for SDP1 in turning over TAG to supply carbon for other needs, including the synthesis of oligosaccharides, and offer new strategies to further improve the composition of soybean seeds.
Collapse
Affiliation(s)
- Jose A. Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Thiya Mukherjee
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Stewart A. Morley
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, United States
| | - Dechassa Duressa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | | | - Kevin L. Chu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, United States
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- United States Department of Agriculture, Agricultural Research Service, St. Louis, MO, United States
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
50
|
Gao Z, Zhang D, Wang X, Zhang X, Wen Z, Zhang Q, Li D, Dinesh-Kumar SP, Zhang Y. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nat Commun 2022; 13:716. [PMID: 35132090 PMCID: PMC8821596 DOI: 10.1038/s41467-022-28395-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.
Collapse
Affiliation(s)
- Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qianshen Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|