1
|
Yu R, Hou Q, Deng H, Xiao L, Liu K, Wu Y, Qiao G. Molecular identification and expression patterns of sweet cherry HIPPs and functional analysis of PavHIPP16 in cold stress. PLANTA 2024; 260:134. [PMID: 39505755 DOI: 10.1007/s00425-024-04567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION The HIPP proteins are involved in low-temperature stress, the growth of sweet cherry, and may be potential targets for genetic improvement. PavHIPP16 improved cold resistance in Arabidopsis. In response to abiotic stressors, the heavy metal-associated isoprenylated plant protein (HIPP) proteins play a crucial regulatory role. Although the function of HIPP has been identified in some plants, there have been fewer systematic studies conducted on sweet cherry (Prunus avium L.). Therefore, we performed a comprehensive analysis and expression profiling of PavHIPPs using bioinformatics, RT-PCR, and qRT-PCR techniques. Our findings revealed that 28 PavHIPP genes were unevenly distributed across eight chromosomes. We predicted nine motifs in PavHIPP proteins and observed similar gene structures among highly homologous proteins. The promoter sequences of PavHIPPs contained numerous regulatory elements associated with an adversity of stress. The expression levels of some members showed varying degrees of change under low-temperature treatment. These genes were differentially expressed during flower and fruit development. Arabidopsis overexpressing the PavHIPP16 (OE) gene showed significantly lower relative conductivity and malondialdehyde (MDA) content compared with the wild-type (WT) plants under cold environment. Conversely, peroxidase (POD) activity, superoxide dismutase (SOD) activity, and proline content were significantly higher in OE Arabidopsis than in WT plants. Overall, our results suggest that PavHIPP16 OE Arabidopsis thaliana exhibited enhanced adaptability compared to WT plants under cold conditions. This study provides a foundation for future investigations of the pathways regulating sweet cherry growth and development mediated by the HIPP genes.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ke Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Yawei Wu
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, People's Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Li S, He Z, Qiu W, Yu M, Wu L, Han X, Zhuo R. SpCTP3 from the hyperaccumulator Sedum plumbizincicola positively regulates cadmium tolerance by interacting with SpMDH1. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134517. [PMID: 38739960 DOI: 10.1016/j.jhazmat.2024.134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Cadmium (Cd) is a heavy metal pollutant mainly originating from the discharge of industrial sewage, irrigation with contaminated water, and the use of fertilizers. The phytoremediation of Cd polluted soil depends on the identification of the associated genes in hyperaccumulators. Here, a novel Cd tolerance gene (SpCTP3) was identified in hyperaccumulator Sedum plumbizincicola. The results of Cd2+ binding and thermodynamic analyses, revealed the CXXC motif in SpCTP3 functions is a Cd2+ binding site. A mutated CXXC motif decreased binding to Cd by 59.93%. The subcellular localization analysis suggested that SpCTP3 is primarily a cytoplasmic protein. Additionally, the SpCTP3-overexpressing (OE) plants were more tolerant to Cd and accumulated more Cd than wild-type Sedum alfredii (NHE-WT). The Cd concentrations in the cytoplasm of root and leaf cells were significantly higher (53.75% and 71.87%, respectively) in SpCTP3-OE plants than in NHE-WT. Furthermore, malic acid levels increased and decreased in SpCTP3-OE and SpCTP3-RNAi plants, respectively. Moreover, SpCTP3 interacted with malate dehydrogenase 1 (MDH1). Thus, SpCTP3 helps regulate the subcellular distribution of Cd and increases Cd accumulation when it is overexpressed in plants, ultimately Cd tolerance through its interaction with SpMDH1. This study provides new insights relevant to improving the Cd uptake by Sedum plumbizincicola.
Collapse
Affiliation(s)
- Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China; Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, China Three Gorges University, Yichang 443002, Hubei, PR China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, the Research Institute of Subtropical Forestry Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, PR China.
| |
Collapse
|
3
|
Hu Y, Li P, Yao X, He Y, Tang H, Zhao Q, Lu L. Zinc Treatment of Tea Plants Improves the Synthesis of Trihydroxylated Catechins via Regulation of the Zinc-Sensitive Protein CsHIPP3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14887-14898. [PMID: 38886187 DOI: 10.1021/acs.jafc.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The tea plant (Camellia sinensis [L.] O. Kussntze) is a global economic crop. Zinc treatment of tea plants can enhance catechin biosynthesis. However, the underlying molecular mechanism behind catechin formation through zinc regulation remains unclear. This study identified a zinc-responsive protein, C. sinensis heavy metal-associated isoprenylated plant protein 3 (CsHIPP3), from zinc-treated tea seedlings. CsHIPP3 expression was positively correlated with trihydroxylated catechin (TRIC) content. CsF3'5'H1 is a crucial regulator of the TRIC synthesis pathway. The interaction between CsHIPP3 and CsF3'5'H1 was assessed using bimolecular fluorescence complementation, firefly luciferase complementation imaging, and pulldown experiments. CsHIPP3 knockdown using virus-induced gene silencing technology decreased the content of each component of TRICs. Compared with the control, the relative catechin content was reduced by 40.12-55.39%. Co-overexpression of CsHIPP3 and CsF3'5'H1 significantly elevated the TRIC content in tea leaves and calli. Moreover, the TRIC content in transient co-overexpression leaves was 1.44-fold higher than that of the control group, and tea callus was 50.83% higher in transient co-overexpression than in the wild type. Thus, zinc-regulated TRIC synthesis in a zinc-rich environment was mediated by binding CsHIPP3 with CsF3'5'H1 to promote TRIC synthesis and accumulation.
Collapse
Affiliation(s)
- Yilan Hu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Pingping Li
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| | - Qi Zhao
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Litang Lu
- College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- College of Tea Sciences, Institute of Plant Health & Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Xiao T, Qiang J, Sun H, Luo F, Li X, Yan Y. Overexpression of Wheat Selenium-Binding Protein Gene TaSBP-A Enhances Plant Growth and Grain Selenium Accumulation under Spraying Sodium Selenite. Int J Mol Sci 2024; 25:7007. [PMID: 39000115 PMCID: PMC11240915 DOI: 10.3390/ijms25137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Selenium (Se) is an essential trace element for humans. Low concentrations of Se can promote plant growth and development. Enhancing grain yield and crop Se content is significant, as major food crops generally have low Se content. Studies have shown that Se biofortification can significantly increase Se content in plant tissues. In this study, the genetic transformation of wheat was conducted to evaluate the agronomic traits of non-transgenic control and transgenic wheat before and after Se application. Se content, speciation, and transfer coefficients in wheat grains were detected. Molecular docking simulations and transcriptome data were utilized to explore the effects of selenium-binding protein-A TaSBP-A on wheat growth and grain Se accumulation and transport. The results showed that TaSBP-A gene overexpression significantly increased plant height (by 18.50%), number of spikelets (by 11.74%), and number of grains in a spike (by 35.66%) in wheat. Under normal growth conditions, Se content in transgenic wheat grains did not change significantly, but after applying sodium selenite, Se content in transgenic wheat grains significantly increased. Analysis of Se speciation revealed that organic forms of selenomethionine (SeMet) and selenocysteine (SeCys) predominated in both W48 and transgenic wheat grains. Moreover, TaSBP-A significantly increased the transfer coefficients of Se from solution to roots and from flag leaves to grains. Additionally, it was found that with the increase in TaSBP-A gene overexpression levels in transgenic wheat, the transfer coefficient of Se from flag leaves to grains also increased.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
5
|
Yu R, Hou Q, Deng H, Xiao L, Cai X, Shang C, Qiao G. Overexpression of PavHIPP16 from Prunus avium enhances cold stress tolerance in transgenic tobacco. BMC PLANT BIOLOGY 2024; 24:536. [PMID: 38862890 PMCID: PMC11167810 DOI: 10.1186/s12870-024-05267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.
Collapse
Affiliation(s)
- Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Chunqiong Shang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
7
|
Huang G, Hu Y, Li F, Zuo X, Wang X, Li F, Li R. Genome-wide characterization of heavy metal-associated isoprenylated plant protein gene family from Citrus sinensis in response to huanglongbing. FRONTIERS IN PLANT SCIENCE 2024; 15:1369883. [PMID: 38601304 PMCID: PMC11004388 DOI: 10.3389/fpls.2024.1369883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Introduction Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fuxuan Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiru Zuo
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fengyao Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
8
|
Moy A, Czajka K, Michael P, Nkongolo K. Gene expression profiling of Jack Pine (Pinus banksiana) under copper stress: Identification of genes associated with copper resistance. PLoS One 2024; 19:e0296027. [PMID: 38452110 PMCID: PMC10919686 DOI: 10.1371/journal.pone.0296027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic response of plants to copper stress is a necessary step to improving the utility of plants for environmental remediation and restoration. The objectives of this study were to: 1) characterize the transcriptome of Jack Pine (Pinus banksiana) under copper stress, 2) analyze the gene expression profile shifts of genotypes exposed to copper ion toxicity, and 3) identify genes associated with copper resistance. Pinus banksiana seedlings were treated with 10 mmoles of copper and screened in a growth chamber. There were 6,213 upregulated and 29,038 downregulated genes expressed in the copper resistant genotypes compared to the susceptible genotypes at a high stringency based on the false discovery rate (FDR). Overall, 25,552 transcripts were assigned gene ontology. Among the top upregulated genes, the response to stress, the biosynthetic process, and the response to chemical stimuli terms represented the highest proportion of gene expression for the biological processes. For the molecular function category, the majority of expressed genes were associated with nucleotide binding followed by transporter activity, and kinase activity. The majority of upregulated genes were located in the plasma membrane while half of the total downregulated genes were associated with the extracellular region. Two candidate genes associated with copper resistance were identified including genes encoding for heavy metal-associated isoprenylated plant proteins (AtHIP20 and AtHIP26) and a gene encoding the pleiotropic drug resistance protein 1 (NtPDR1). This study represents the first report of transcriptomic responses of a conifer species to copper ions.
Collapse
Affiliation(s)
- Alistar Moy
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Karolina Czajka
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Paul Michael
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
9
|
Yang L, Ma X, Guo Y, He Y, Yang Y, Wang W, Xu Z, Zuo Z, Xue Y, Yang R, Han B, Sun J. Acetylcholine (ACh) enhances Cd tolerance through transporting ACh in vesicles and modifying Cd absorption in duckweed (Lemna turionifera 5511). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122305. [PMID: 37580008 DOI: 10.1016/j.envpol.2023.122305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/20/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Acetylcholine (ACh), an important neurotransmitter, plays a role in resistance to abiotic stress. However, the role of ACh during cadmium (Cd) resistance in duckweed (Lemna turionifera 5511) remains uncharacterized. In this study, the changes of endogenous ACh in duckweed under Cd stress has been investigated. Also, how exogenous ACh affects duckweed's ability to withstand Cd stress was studied. The ACh sensor transgenic duckweed (ACh 3.0) showed the ACh signal response under Cd stress. And ACh was wrapped and released in vesicles. Cd stress promoted ACh content in duckweed. The gene expression analysis showed an improved fatty acid metabolism and choline transport. Moreover, exogenous ACh addition enhanced Cd tolerance and decreased Cd accumulation in duckweed. ACh supplement reduced the root abscission rate, alleviated leaf etiolation, and improved chlorophyll fluorescence parameters under Cd stress. A modified calcium (Ca2+) flux and improved Cd2+ absorption were present in conjunction with it. Thus, we speculate that ACh could improve Cd resistance by promoting the uptake and accumulation of Cd, as well as the response of the Ca2+ signaling pathway. Also, plant-derived extracellular vesicles (PDEVs) were extracted during Cd stress. Therefore, these results provide new insights into the response of ACh during Cd stress.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yuhan Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Yunwen Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Ziyi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China
| | - Ying Xue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Rui Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Bing Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 300387, Tianjin, China.
| |
Collapse
|
10
|
Zhou L, Ye L, Pang B, Hou Y, Yu J, Du X, Gu L, Wang H, Zhu B. Overexpression of ApHIPP26 from the Hyperaccumulator Arabis paniculata Confers Enhanced Cadmium Tolerance and Accumulation to Arabidopsis thaliana. Int J Mol Sci 2023; 24:15052. [PMID: 37894733 PMCID: PMC10606507 DOI: 10.3390/ijms242015052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure. This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata. Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both aboveground and underground. Under Cd stress, the expression of genes related to the absorption and transport of heavy metals underwent different changes in parallel, which were involved in the accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition, the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress and regulating plant hormones, which provides a basis for understanding the molecular mechanism of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| |
Collapse
|
11
|
Barr ZK, Werner T, Tilsner J. Heavy Metal-Associated Isoprenylated Plant Proteins (HIPPs) at Plasmodesmata: Exploring the Link between Localization and Function. PLANTS (BASEL, SWITZERLAND) 2023; 12:3015. [PMID: 37631227 PMCID: PMC10459601 DOI: 10.3390/plants12163015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.
Collapse
Affiliation(s)
- Zoe Kathleen Barr
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Tomáš Werner
- Department of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, BMS Building, North Haugh, St Andrews, Fife KY16 9ST, UK;
- Cell & Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
12
|
Shi Y, Jiang W, Li M, Jiang N, Huang Y, Wang M, Du Z, Chen J, Li J, Wu L, Zhong M, Yang J, Huang J. Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.). Int J Biol Macromol 2023; 245:125607. [PMID: 37390996 DOI: 10.1016/j.ijbiomac.2023.125607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/03/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in regulating heavy metal responding activities in plants. Yet only a handful of studies have characterized the functions of HIPPs. In this study, a novel HIPP member OsHIPP17 was functionally characterized, which was involved in the tolerance of yeast and plants to cadmium (Cd). The Cd accumulation in yeast cells was increased due to the overexpression of OsHIPP17. Nevertheless, the overexpression of OsHIPP17 in Arabidopsis thaliana resulted in compromised growth under Cd stress. Meanwhile, the mutation of OsHIPP17 resulted in 38.9-40.9 % increase of Cd concentration in rice roots as well as 14.3-20.0 % decrease of Cd translocation factor. Further investigation of the genes responsible for Cd absorption and transporter indicated that the expression levels of these genes were also perturbed. In addition, two OsHIPP17-interacting proteins, OsHIPP24 and OsLOL3 were identified in a yeast two hybrid assay. Further analysis of their functions revealed that OsHIPP24 or OsLOL3 may be involved in the regulation of Cd tolerance by OsHIPP17 in rice. All above results implied that OsHIPP17 may affect Cd resistance by regulating the absorption and translocation of Cd in rice.
Collapse
Affiliation(s)
- Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingyu Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Nan Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan 611130, China
| | - Mengting Wang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Zhiye Du
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan 611130, China
| | - Jiahao Li
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Min Zhong
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Ju Yang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China.
| |
Collapse
|
13
|
Xiong S, Kong X, Chen G, Tian L, Qian D, Zhu Z, Qu LQ. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1946-1961. [PMID: 36850039 DOI: 10.1111/pce.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.
Collapse
Affiliation(s)
- Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Wei Y, Peng X, Wang X, Wang C. The heavy metal-associated isoprenylated plant protein (HIPP) gene family plays a crucial role in cadmium resistance and accumulation in the tea plant (Camellia sinensis L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115077. [PMID: 37257351 DOI: 10.1016/j.ecoenv.2023.115077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Heavy metal-associated isoprenylated plant proteins (HIPPs) are only distributed in vascular plants, and are essential for the detoxification and vascular transport of heavy metals in plants. However, the HIPP gene family has not been thoroughly explored in the tea plant (Camellia sinensis). In this study, we systematically identified 56C. sinensis CsHIPP genes from five groups and characterized their phylogeny, structures, and the features of the encoded proteins. The expression patterns of CsHIPP genes in various tissues of C. sinensis were investigated based on a previous RNA-seq data analysis. The expression patterns of CsHIPP genes were explored in cadmium (Cd)-treated C. sinensis roots using our RNA-seq data. Three CsHIPP genes (CsHIPP22, CsHIPP24, and CsHIPP36) with high expression levels in Cd-treated C. sinensis roots were selected as candidate genes associated with Cd tolerance. Overexpression of CsHIPP22, CsHIPP24, and CsHIPP36 in a yeast mutant (ycf1) rescued Cd-sensitive ycf1 yeast and increased the yeast resistance to Cd stress, implying that these three CsHIPPs might be involved in Cd tolerance. These findings will enable the roles of HIPPs in Cd absorption and detoxification to be better understood as well as improving our understanding of the Cd-resistance and Cd-accumulation mechanisms in tea plant.
Collapse
Affiliation(s)
- Yunfeng Wei
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xuqian Peng
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiaojing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| | - Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Scienceand Technology, Hubei EngineeringUniversity, Xiaogan 432000, China.
| |
Collapse
|
15
|
Barati E, Moore RET, Ullah I, Kreissig K, Coles BJ, Dunwell JM, Rehkämper M. An investigation of zinc isotope fractionation in cacao (Theobroma cacao L.) and comparison of zinc and cadmium isotope compositions in hydroponic plant systems under high cadmium stress. Sci Rep 2023; 13:4682. [PMID: 36949227 PMCID: PMC10033898 DOI: 10.1038/s41598-023-30899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
This study aims to establish whether zinc (Zn) and cadmium (Cd) share similar physiological mechanisms for uptake and translocation in cacao plants (Theobroma cacao L.). Multiple-collector ICP-MS was used to determine the Zn stable isotope compositions in the roots, stems and leaves of 19 diverse cacao genotypes grown in hydroponics with 20 µmol L-1 CdCl2. Additional plants of one genotype were grown in hydroponic solutions containing lower Cd concentrations (0 and 5 µmol L-1 added CdCl2). Regardless of the Cd concentration used in the exposures, the Zn stable isotope compositions show the same systematic patterns in plant organs, with δ66Znroot > δ66Znstem > δ66Znleaf (δ66Zn denotes relative differences in 66Zn/64Zn ratios in parts per thousand). The mean Zn stable isotope fractionation between the plants and the hydroponic solutions was ε66Znuptake = -1.15 ± 0.36‰ (2SD), indicating preferential uptake of isotopically light Zn by plants from the hydroponic solution. The mean stable isotope fractionation factor associated with translocation of Zn from roots to shoots, ε66Znseq-mob = + 0.52 ± 0.36‰ (2SD), shows that isotopically heavy Zn is preferentially sequestered in the cacao roots, whilst isotopically light Zn is mobilised to the leaves. A comparison with the Cd stable isotope compositions of the same plants shows that both isotopically light Zn and Cd are preferentially taken up by cacao plants. In contrast to Zn, however, the cacao roots retain isotopically light Cd and transfer isotopically heavy Cd to the leaves.
Collapse
Affiliation(s)
- Elnaz Barati
- Department of Earth Science and Engineering, Imperial College London, London, UK.
| | - Rebekah E T Moore
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Katharina Kreissig
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Barry J Coles
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Mark Rehkämper
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
16
|
Luo F, Zhu D, Sun H, Zou R, Duan W, Liu J, Yan Y. Wheat Selenium-binding protein TaSBP-A enhances cadmium tolerance by decreasing free Cd 2+ and alleviating the oxidative damage and photosynthesis impairment. FRONTIERS IN PLANT SCIENCE 2023; 14:1103241. [PMID: 36824198 PMCID: PMC9941557 DOI: 10.3389/fpls.2023.1103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cadmium, one of the toxic heavy metals, robustly impact crop growth and development and food safety. In this study, the mechanisms of wheat (Triticum aestivum L.) selenium-binding protein-A (TaSBP-A) involved in response to Cd stress was fully investigated by overexpression in Arabidopsis and wheat. As a cytoplasm protein, TaSBP-A showed a high expression in plant roots and its expression levels were highly induced by Cd treatment. The overexpression of TaSBP-A enhanced Cd-toleration in yeast, Arabidopsis and wheat. Meanwhile, transgenic Arabidopsis under Cd stress showed a lower H2O2 and malondialdehyde content and a higher photochemical efficiency in the leaf and a reduction of free Cd2+ in the root. Transgenic wheat seedlings of TaSBP exhibited an increment of Cd content in the root, and a reduction Cd content in the leaf under Cd2+ stress. Cd2+ binding assay combined with a thermodynamics survey and secondary structure analysis indicated that the unique CXXC motif in TaSBP was a major Cd-binding site participating in the Cd detoxification. These results suggested that TaSBP-A can enhance the sequestration of free Cd2+ in root and inhibit the Cd transfer from root to leaf, ultimately conferring plant Cd-tolerance via alleviating the oxidative stress and photosynthesis impairment triggered by Cd stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
17
|
Wu C, Xiao S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Song G. Genome-wide analysis elucidates the roles of GhHMA genes in different abiotic stresses and fiber development in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:281-301. [PMID: 36442360 DOI: 10.1016/j.plaphy.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The heavy metal-binding domain is involved in heavy metal transporting and plays a significant role in plant detoxification. However, the functions of HMAs are less well known in cotton. In this study, a total of 143 GhHMAs (heavy metal-binding domain) were detected by genome-wide identification in G. hirsutum L. All the GhHMAs were classified into four groups via phylogenetic analysis. The exon/intron structure and protein motifs indicated that each branch of the GhHMA genes was highly conserved. 212 paralogous GhHMA gene pairs were identified, and the segmental duplications were the main role to the expansion of GhHMAs. The Ka/Ks values suggested that the GhHMA gene family has undergone purifying selection during the long-term evolutionary process. GhHMA3 and GhHMA75 were located in the plasma membrane, while GhHMA26, GhHMA117 and GhHMA121 were located in the nucleus, respectively. Transcriptomic data and qRT-PCR showed that GhHMA26 exhibited different expression patterns in each tissue and during fiber development or under different abiotic stresses. Overexpressing GhHMA26 significantly promoted the elongation of leaf trichomes and also improved the tolerance to salt stress. Therefore, GhHMA26 may positively regulate fiber elongation and abiotic stress. Yeast two-hybrid assays indicated that GhHMA26 and GhHMA75 participated in multiple biological functions. Our results suggest some genes in the GhHMAs might be associated with fiber development and the abiotic stress response, which could promote further research involving functional analysis of GhHMA genes in cotton.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Shanxi Agricultural University, Yuncheng, 044000, China
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Cotton Research Institute of Jiangxi Province, Jiujiang, 332105, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
18
|
Ye X, Liu C, Yan H, Wan Y, Wu Q, Wu X, Zhao G, Zou L, Xiang D. Genome-wide identification and transcriptome analysis of the heavy metal-associated (HMA) gene family in Tartary buckwheat and their regulatory roles under cadmium stress. Gene 2022; 847:146884. [PMID: 36103913 DOI: 10.1016/j.gene.2022.146884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal-associated (HMA) genes are those related to heavy metal transport and detoxification in plants. HMA genes have not been reported in Tartary buckwheat so far. In this study, we accessed the HMA genes of Tartary buckwheat by genome-wide identification for the first time. A total of 56 HMA genes were identified, including 36 ATX1 (antioxidant protein1) genes, 13 HIPP (heavy metal-associated isoprenylated plant protein) genes, and 7 P1B-ATPase (P1B-type adenosine triphosphatase) genes. These gene structures, motif compositions, chromosomal distribution, phylogenetic relationship, duplication events, interaction networks, cis-acting elements, and transcriptional expression under cadmium (Cd) stress were investigated. Among them, genes in HIPP and ATX1 subfamilies were more closely related. The 56 HMA genes were involved in the regulation of metal ion transport and homeostasis by binding metal ions, likely triggered by signals transducted by plant hormones. Fifteen of these HMA genes played regulatory roles under Cd stress. FtP1bA1 was identified to be a core gene involved in the defense regulation of Cd stress. Our results provide not only the first overview and characteristics of HMA genes in the whole genome of Tartary buckwheat but also a valuable reference for the functional analysis of HMA genes under Cd stress. Understanding changes in gene regulation induced by Cd stress lays the foundation for breeding resistant varieties.
Collapse
Affiliation(s)
- Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
19
|
Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Relieving Cadmium Stress in Wheat. Antioxidants (Basel) 2022; 11:antiox11122390. [PMID: 36552597 PMCID: PMC9774571 DOI: 10.3390/antiox11122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) can improve plant cadmium (Cd) tolerance, but the tolerance mechanism in wheat is not fully understood. This study aimed to examine the physiological properties and transcriptome changes in wheat inoculated with or without Glomus mosseae (GM) under Cd stress (0, 5, and 10 mg·kg-1 CdCl2) to understand its role in wheat Cd tolerance. The results showed that the Cd content in shoots decreased while the Cd accumulation in roots increased under AMF symbiosis compared to the non-inoculation group and that AMF significantly promoted the growth of wheat seedlings and reduced Cd-induced oxidative damage. This alleviative effect of AMF on wheat under Cd stress was mainly attributed to the fact that AMF accelerated the ascorbate-glutathione (AsA-GSH) cycle, promoted the production of GSH and metallothionein (MTs), improved the degradation of methylglyoxal (MG), and induced GRSP (glomalin-related soil protein) secretion. Furthermore, a comparative analysis of the transcriptomes of the symbiotic group and the non-symbiotic group revealed multiple differentially expressed genes (DEGs) in the 'metal ion transport', 'glutathione metabolism', 'cysteine and methionine metabolism', and 'plant hormone signal transduction' terms. The expression changes of these DEGs were basically consistent with the changes in physio-biochemical characteristics. Overall, AMF alleviated Cd stress in wheat mainly by promoting immobilization and sequestration of Cd, reducing ROS production and accelerating their scavenging, in which the rapid metabolism of GSH may play an important role.
Collapse
|
20
|
Cao HW, Zhao YN, Liu XS, Rono JK, Yang ZM. A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120058. [PMID: 36041567 DOI: 10.1016/j.envpol.2022.120058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is an environmentally polluted toxic heavy metal and seriously risks food safety and human health through food chain. Mining genetic potentials of plants is a crucial step for limiting Cd accumulation in rice crops and improving environmental quality. This study characterized a novel locus in rice genome encoding a Cd-binding protein named OsHIPP16, which resides in the nucleus and near plasma membrane. OsHIPP16 was strongly induced by Cd stress. Histochemical analysis with pHIPP16::GUS reveals that OsHIPP16 is primarily expressed in root and leaf vascular tissues. Expression of OsHIPP16 in the yeast mutant strain ycf1 sensitive to Cd conferred cellular tolerance. Transgenic rice overexpressing OsHIPP16 (OE) improved rice growth with increased plant height, biomass, and chlorophyll content but with a lower degree of oxidative injury and Cd accumulation, whereas knocking out OsHIPP16 by CRISPR-Cas9 compromised the growth and physiological response. A lifelong trial with Cd-polluted soil shows that the OE plants accumulated much less Cd, particularly in brown rice where the Cd concentrations declined by 11.76-34.64%. Conversely, the knockout oshipp16 mutants had higher levels of Cd with the concentration in leaves being increased by 26.36-35.23% over the wild-type. These results suggest that adequate expression of OsHIPP16 would profoundly contribute to Cd detoxification by regulating Cd accumulation in rice, suggesting that both OE and oshipp16 mutant plants have great potentials for restricting Cd acquisition in the rice crop and phytoremediation of Cd-contaminated wetland soils.
Collapse
Affiliation(s)
- Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Song Liu
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
22
|
Liu D, Gao Z, Li J, Yao Q, Tan W, Xing W, Lu Z. Effects of cadmium stress on the morphology, physiology, cellular ultrastructure, and BvHIPP24 gene expression of sugar beet ( Beta vulgaris L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:455-465. [PMID: 35771710 DOI: 10.1080/15226514.2022.2090496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To clarify the mechanism of the response of sugar beet (Beta vulgaris L.) to cadmium (Cd) stress, this study investigated changes in the phenotype, physiological indexes, and subcellular structure of B. vulgaris under Cd treatment and the transcriptional pattern of the BvHIPP24 gene (a heavy metal-associated isoprenylated plant protein involved in heavy metal detoxification). The plant height and shoot and root growth of B. vulgaris seedlings were inhibited to some extent under 0.5 and 1 mM Cd, with gradually wilting and yellowing of leaves and dark brown roots. When the Cd concentration was increased, malondialdehyde content and the activities of peroxidase, superoxide dismutase, and glutathione S-transferase increased differentially. qPCR indicated that the expression of BvHIPP24 was induced by different concentrations of Cd. Although transmission electron microscopy revealed damage to nuclei, mitochondria, and chloroplasts, B. vulgaris exhibited strong adaptability to 0.5 mM Cd according to a comprehensive analysis using the membership function. The results showed that B. vulgaris may reduce cell damage and improve its Cd tolerance by regulating functional gene expression and antioxidant enzymes. This study increases our understanding of the Cd-tolerance mechanism of B. vulgaris and provides insights into the use of B. vulgaris in Cd bioremediation.
Collapse
Affiliation(s)
- Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zhuo Gao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qi Yao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Molecular Biology, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zhenqiang Lu
- Key Laboratory of Molecular Biology, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
23
|
Rono JK, Sun D, Yang ZM. Metallochaperones: A critical regulator of metal homeostasis and beyond. Gene 2022; 822:146352. [PMID: 35183685 DOI: 10.1016/j.gene.2022.146352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Metallochaperones are a class of unique protein families that was originally found to interact with cellular metal ions by metal delivery to specific target proteins such as metal enzymes. Recently, some members of metallochaperones receive much attention owning to their multi-biological functions in mediating plant growth, development and biotic or abiotic stress responses, particularly in the aspects of metal transport and accumulation in plants. For example, some non-essential toxic heavy metals (e.g. cadmium and mercury) accumulating in farmland due to the industrial and agronomic activities, are a constant threat to crop production, food safety and human health. Digging genetic resources and functional genes like metallochaperones is critical for understanding the metal detoxification in plants, and may help develop cleaner crops with minimal toxic metals in leafy vegetables and grains, or plants for metal-polluted soil phytoremediation. In this review, we highlight the current advancement of the research on functions of metallochaperones in metal accumulation, detoxification and homeostasis. We also summarize the recent progress of the research on the critical roles of the metal-binding proteins in regulating plant responses to some other biological processes including plant growth, development, pathogen stresses, and abiotic stresses such salt, drought, cold and light. Finally, an additional capacity of some members of metallochaperones involved in the resistance to the pathogen attack and possibly regulatory roles was reviewed.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Sun
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
|
25
|
Feng SJ, Liu XS, Cao HW, Yang ZM. Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117837. [PMID: 34329044 DOI: 10.1016/j.envpol.2021.117837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
Collapse
Affiliation(s)
- Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China; The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Guo T, Weber H, Niemann MCE, Theisl L, Leonte G, Novák O, Werner T. Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. MOLECULAR PLANT 2021; 14:1918-1934. [PMID: 34314894 DOI: 10.1016/j.molp.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Eukaryotic organisms are equipped with quality-control mechanisms that survey protein folding in the endoplasmic reticulum (ER) and remove non-native proteins by ER-associated degradation (ERAD). Recent research has shown that cytokinin-degrading CKX proteins are subjected to ERAD during plant development. The mechanisms of plant ERAD, including the export of substrate proteins from the ER, are not fully understood, and the molecular components involved in the ERAD of CKX are unknown. Here, we show that heavy metal-associated isoprenylated plant proteins (HIPPs) interact specifically with CKX proteins synthesized in the ER and processed by ERAD. CKX-HIPP protein complexes were detected at the ER as well as in the cytosol, suggesting that the complexes involve retrotranslocated CKX protein species. Altered CKX levels in HIPP-overexpressing and higher-order hipp mutant plants suggest that the studied HIPPs control the ERAD of CKX. Deregulation of CKX proteins caused corresponding changes in the cytokinin signaling activity and triggered typical morphological cytokinin responses. Notably, transcriptional repression of HIPP genes by cytokinin indicates a feedback regulatory mechanism of cytokinin homeostasis and signaling responses. Moreover, loss of function of HIPP genes constitutively activates the unfolded protein response and compromises the ER stress tolerance. Collectively, these results suggests that HIPPs represent novel functional components of plant ERAD.
Collapse
Affiliation(s)
- Tianqi Guo
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany; Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, 514015 Mei Zhou, China
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Lisa Theisl
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Tomáš Werner
- Institute of Biology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| |
Collapse
|
27
|
Kabir AH, Das U, Rahman MA, Lee KW. Silicon induces metallochaperone-driven cadmium binding to the cell wall and restores redox status through elevated glutathione in Cd-stressed sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:352-368. [PMID: 33848008 DOI: 10.1111/ppl.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is toxic; however, whether silicon (Si) alleviates Cd toxicity was never studied in sugar beet. The study was conducted on 2-week-old sugar beet cultivated in the presence or absence of Cd (10 μM CdSO4 ) and Si (1 mM Na2 SiO3 ) in hydroponic conditions. The morphological impairment and cellular damages observed in sugar beet upon Cd toxicity were entirely reversed due to Si. Si substantially restored the energy-providing ability, absorbed energy flux, and electron transport toward PSII, which might be correlated with the upregulation of BvIRT1 and ferric chelate reductase activity leading to the restoration of Fe status in Cd-stressed sugar beet. Although Si caused a reduction of shoot Cd, the root Cd substantially increased under Cd stress, a significant part of which was retained in the cell wall rather than in the root vacuole. While the concentration of phytochelatin and the expression of BvPCS3 (PHYTOCHELATIN SYNTHASE 3) showed no changes upon Si exposure, Si induced the expression of BvHIPP32 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 32) in the Cd-exposed root. The BvHIPP32 and AtHIPP32 metallochaperone proteins are localized in the cell wall and they share similar sequence alignment, physiochemical properties, secondary structure, cellular localization, motif locations, domain association, and metal-binding site (cd00371) linked to the metallochaperone-like protein. It suggests that Si reduces the Cd level in shoot by retaining the excess Cd in the cell wall of roots due to the induction of BvHIPP32 gene. Also, Si stimulates glutathione-related antioxidants along with the BvGST23 expression, inferring an ascorbate-glutathione ROS detoxification pathway in Cd-exposed plants.
Collapse
Affiliation(s)
- Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Urmi Das
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Ki-Won Lee
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| |
Collapse
|
28
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|
29
|
Ozyigit II, Arda L, Yalcin B, Yalcin IE, Ucar B, Hocaoglu-Ozyigit A. Lemna minor, a hyperaccumulator shows elevated levels of Cd accumulation and genomic template stability in binary application of Cd and Ni: a physiological and genetic approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1255-1269. [PMID: 33662215 DOI: 10.1080/15226514.2021.1892586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, to determine whether having potential to be used as hyperaccumulator for Cd and Ni, numerous experiments were designed for conducting assessments for physiological and genotoxic changes along with defining possible alterations on mineral nutrient status of Lemna minor L. by applying Cd-Ni binary treatments (0, 100, 200 and 400 µM). Our study revealed that there were increases in the concentrations of B, Cr, Fe, K, Mg, and Mn whereas decreases were noticed in the concentrations of Na and Zn and the levels of Ca were inversely proportional to Cd-Ni applications showing tendency to increase at the low concentration and to decrease at the high concentration. Randomly Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) analyses revealed that rather than band losses and new band formations, mostly intensity changes in the band profiles, and low polymorphism and high genomic template stability (GTS) were observed. Although, to date, L. minor was defined as an efficient hyperaccumulator/potential accumulator or competent phytoremedial agent by researchers. Our research revealed that L. minor showing high accumulation capability for Cd and having low polymorphism rate and high genomic template stability is a versatile hyperaccumulator, especially for Cd; therefore, highly recommended by us for decontamination of water polluted with Cd. NOVELTY STATEMENTMany studies have been focused on the effects of individual metal ions. However, heavy metal contaminants usually exist as their mixtures in natural aquatic environments. Especially, Cd and Ni coexist in industrial wastes.In this study, the accumulation properties of Lemna minor for both Cd and Ni were investigated and the effects of Cd and Ni on the bioaccumulation of B, Ca, Cu, Fe, Mg, K, Mn, Na, Pb and Zn in L. minor were also determined. This study furthermore aimed to assess the genotoxic effects of Cd and Ni found in being extended concentrations on DNA using the Randomly Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) method.
Collapse
Affiliation(s)
- Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
- Department of Biology, Faculty of Sciences, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Lutfi Arda
- Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bestenur Yalcin
- Program of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Besiktas, Turkey
| | - Bihter Ucar
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Arts & Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
30
|
da Silva MF, Gonçalves MC, Brito MDS, Medeiros CN, Harakava R, Landell MGDA, Pinto LR. Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes. PLoS One 2020; 15:e0241493. [PMID: 33166323 PMCID: PMC7652275 DOI: 10.1371/journal.pone.0241493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inoculated plants from two sugarcane cultivars with contrasting responses to SMD. In this study, the identification of unexplored DTFs was continued while the same leaf samples were used to evaluate SCMV-mediated changes in the cytosine methylation pattern by using methylation-sensitive amplification polymorphism. This analysis revealed minor changes in cytosine methylation in response to SCMV infection, but distinct changes between the cultivars with contrasting responses to SMD, with higher hypomethylation events 24 and 72 h post-inoculation in the resistant cultivar. The differentially methylated fragments (DMFs) aligned with transcripts, putative promoters, and genomic regions, with a preponderant distribution within CpG islands. The transcripts found were associated with plant immunity and other stress responses, epigenetic changes, and transposable elements. The DTFs aligned with transcripts assigned to stress responses, epigenetic changes, photosynthesis, lipid transport, and oxidoreductases, in which the transcriptional start site is located in proximity with CpG islands and tandem repeats. Real-time quantitative polymerase chain reaction results revealed significant upregulation in the resistant cultivar of aspartyl protease and VQ protein, respectively, selected from DMF and DTF alignments, suggesting their roles in genetic resistance to SMD and supporting the influence of cytosine methylation in gene expression. Thus, we identified new candidate genes for further validation and showed that the changes in cytosine methylation may regulate important mechanisms underlying the genetic resistance to SMD.
Collapse
Affiliation(s)
- Marcel Fernando da Silva
- Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias (FCAV) Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, São Paulo, Brazil
| | | | - Michael dos Santos Brito
- Departamento de Ciência e Tecnologia, Instituto de Ciência e Tecnologia da Universidade Federal de São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Ricardo Harakava
- Crop Protection Research Centre, Instituto Biológico, São Paulo, Brazil
| | | | | |
Collapse
|
31
|
Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein ( HIPP) Gene Family from Triticeae Species. Int J Mol Sci 2020; 21:E6191. [PMID: 32867204 PMCID: PMC7504674 DOI: 10.3390/ijms21176191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy-metal-associated (HMA) isoprenylated plant proteins (HIPPs) only exist in vascular plants. They play important roles in responses to biotic/abiotic stresses, heavy-metal homeostasis, and detoxification. However, research on the distribution, diversification, and function of HIPPs in Triticeae species is limited. In this study, a total of 278 HIPPs were identified from a database from five Triticeae species, and 13 were cloned from Haynaldia villosa. These genes were classified into five groups by phylogenetic analysis. Most HIPPs had one HMA domain, while 51 from Clade I had two, and all HIPPs had good collinear relationships between species or subgenomes. In silico expression profiling revealed that 44 of the 114 wheat HIPPs were dominantly expressed in roots, 43 were upregulated under biotic stresses, and 29 were upregulated upon drought or heat treatment. Subcellular localization analysis of the cloned HIPPs from H. villosa showed that they were expressed on the plasma membrane. HIPP1-V was upregulated in H. villosa after Cd treatment, and transgenic wheat plants overexpressing HIPP1-V showed enhanced Cd tolerance, as shown by the recovery of seed-germination and root-growth inhibition by supplementary Cd. This research provides a genome-wide overview of the Triticeae HIPP genes and proved that HIPP1-V positively regulates Cd tolerance in common wheat.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yongli Hao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| |
Collapse
|
32
|
Li J, Zhang M, Sun J, Mao X, Wang J, Liu H, Zheng H, Li X, Zhao H, Zou D. Heavy Metal Stress-Associated Proteins in Rice and Arabidopsis: Genome-Wide Identification, Phylogenetics, Duplication, and Expression Profiles Analysis. Front Genet 2020; 11:477. [PMID: 32457808 PMCID: PMC7225358 DOI: 10.3389/fgene.2020.00477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022] Open
Abstract
Heavy metal exposure is a serious environmental stress in plants. However, plants have evolved several strategies to improve their heavy metal tolerance. Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Here, we identified 46 and 55 HMPs in rice and Arabidopsis, respectively, and named them OsHMP 1–46 and AtHMP 1–55 according to their chromosomal locations. The HMPs from both plants were divided into six clades based on the characteristics of their heavy metal-associated domains (HMA). The HMP gene structures and motifs varied greatly among the different classifications. The HMPs had high collinearity and were segmentally duplicated. A cis-element analysis revealed that the HMPs may be regulated by different transcription factors. An expression profile analysis disclosed that only eight OsHMPs were constitutive in rice tissues. Of these, the expression of OsHMP37 was far higher than that of the other seven genes while OsHMP28 was expressed exclusively in the roots. For Arabidopsis, nine AtHMPs presented with very high transcript levels in all organs. Most of the selected OsHMPs were differentially expressed in various tissues under different heavy metal stresses. Only OsHMP09, OsHMP18, and OsHMP22 showed higher expression levels in all tissues under different heavy metal stresses. In contrast, most of the selected AtHMPs had nearly constant expression levels in different tissues under various heavy metal stresses. The AtHMP20, AtHMP23, AtHMP25, AtHMP31, AtHMP35, AtHMP46 expression levels under different heavy metal stresses were higher in the leaves and roots. The foregoing discoveries elucidated HMP evolution in monocotyledonous and dicotyledonous plants and may helpful functionally characterize HMPs in the future.
Collapse
Affiliation(s)
- Jiaming Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinrui Mao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianwei Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Zhang BQ, Liu XS, Feng SJ, Zhao YN, Wang LL, Rono JK, Li H, Yang ZM. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. CHEMOSPHERE 2020; 247:125958. [PMID: 32069726 DOI: 10.1016/j.chemosphere.2020.125958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Widespread contamination of agricultural soil with toxic metals such as cadmium (Cd) is a major threat to crop production and human health. Metallochaperones are a unique class of proteins that play pivotal roles in detoxifying metallic ions inside cells. In this study, we investigated the biological function of an uncharacterized metallochaperone termed OsHIPP29 in rice plants and showed that OsHIPP29 resides in the plasma membrane and nucleus and detoxifies excess Cd and Zn. OsHIPP29 was primarily expressed in shoots during the vegetative stage and in leaf sheath and spikelet at the flowering stage. It can be differentially induced by excess Cd, Zn, Cu, Fe and Mn. To identify the function of OsHIPP29 in mediating rice response to Cd stress, we examined a pair of OsHIPP29 mutants, RNAi lines and transgenic rice overexpressing OsHIPP29 (OX) under Cd stress. Both mutant and RNAi lines are sensitive to Cd in growth as reflected in decreased plant height and dry biomass. In contrast, the OX lines showed better growth under Cd exposure. Consistent with the phenotype, the OX lines accumulated less Cd in both root and shoot tissues, whereas OsHIPP29 knockout led to higher accumulation of Cd. These results point out that expression of OsHIPP29 is able to contribute to Cd detoxification by reducing Cd accumulation in rice plants. Our work highlights the significance of OsHIPP29-mediated reduced Cd in rice plants, with important implications for further developing genotypes that will minimize Cd accumulation in rice and environmental risks to human health.
Collapse
Affiliation(s)
- Bai Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
34
|
Hála M, Žárský V. Protein Prenylation in Plant Stress Responses. Molecules 2019; 24:molecules24213906. [PMID: 31671559 PMCID: PMC6866125 DOI: 10.3390/molecules24213906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
Protein prenylation is one of the most important posttranslational modifications of proteins. Prenylated proteins play important roles in different developmental processes as well as stress responses in plants as the addition of hydrophobic prenyl chains (mostly farnesyl or geranyl) allow otherwise hydrophilic proteins to operate as peripheral lipid membrane proteins. This review focuses on selected aspects connecting protein prenylation with plant responses to both abiotic and biotic stresses. It summarizes how changes in protein prenylation impact plant growth, deals with several families of proteins involved in stress response and highlights prominent regulatory importance of prenylated small GTPases and chaperons. Potential possibilities of these proteins to be applicable for biotechnologies are discussed.
Collapse
Affiliation(s)
- Michal Hála
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| |
Collapse
|
35
|
Khan IU, Rono JK, Zhang BQ, Liu XS, Wang MQ, Wang LL, Wu XC, Chen X, Cao HW, Yang ZM. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:8-18. [PMID: 30878662 DOI: 10.1016/j.ecoenv.2019.03.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 05/27/2023]
Abstract
HPP (heavy metal associated plant protein) and HIPP (heavy metal associated isoprenylated plant protein) are a group of metal-binding metallochaperones playing crucial roles in metal homeostasis and detoxification. Up to now, only few of them have been functionally identified in plants. Here, we identified 54 HPP and HIPP genes in rice genome. Analysis of the transcriptome datasets of the rice genome exposed to cadmium (Cd) revealed 17 HPP/HIPP genes differentially expressed, with 11 being upregulated (>2 fold change, p < 0.05). Comprehensive analysis of transcripts by qRT-PCR showed that both types of genes displayed diverse expression pattern in rice under excess manganese (Mn), copper (Cu) and Cd stress. Multiple genomic analyses of HPPs/HIPPs including phylogenesis, conserved domains and motifs, genomic arrangement and genomic and tandem duplication were performed. To identify the role of the genes, OsHIPP16, OsHIPP34 and OsHIPP60 were randomly selected to express in yeast (Saccharomyces cerevisiae) mutants pmrl, cup2, ycf1 and zrc1, exhibiting sensitivity to Mn, Cu, Cd and Zn toxicity, respectively. Complementation test showed that the transformed cells accumulated more metals in the cells, but their growth status was improved. To confirm the functional role, two mutant oshipp42 lines defective in OsHIPP42 expression were identified under metal stress. Under normal condition, no difference of growth between the oshipp42 mutant and wild-type plants was observed. Upon excess Cu, Zn, Cd and Mn, the oshipp42 lines grew weaker than the wild-type. Our work provided a novel source of heavy metal-binding genes in rice that can be potentially used to develop engineered plants for phytoremediation in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Justice Kipkoir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bai Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Chun Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
36
|
Cheng D, Tan M, Yu H, Li L, Zhu D, Chen Y, Jiang M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics 2018; 19:709. [PMID: 30257650 PMCID: PMC6158873 DOI: 10.1186/s12864-018-5109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Metal tolerance is often an integrative result of metal uptake and distribution, which are fine-tuned by a network of signaling cascades and metal transporters. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, comparative RNAseq-based transcriptome analysis was conducted to dissect differentially expressed genes (DEGs) in maize roots exposed to cadmium (Cd) stress. Results To unveil conserved Cd-responsive genes in cereal plants, the obtained 5166 maize DEGs were compared with 2567 Cd-regulated orthologs in rice roots, and this comparison generated 880 universal Cd-responsive orthologs groups composed of 1074 maize DEGs and 981 rice counterparts. More importantly, most of the orthologous DEGs showed coordinated expression pattern between Cd-treated maize and rice, and these include one large orthologs group of pleiotropic drug resistance (PDR)-type ABC transporters, two clusters of amino acid transporters, and 3 blocks of multidrug and toxic compound extrusion (MATE) efflux family transporters, and 3 clusters of heavy metal-associated domain (HMAD) isoprenylated plant proteins (HIPPs), as well as all 4 groups of zinc/iron regulated transporter protein (ZIPs). Additionally, several blocks of tandem maize paralogs, such as germin-like proteins (GLPs), phenylalanine ammonia-lyases (PALs) and several enzymes involved in JA biosynthesis, displayed consistent co-expression pattern under Cd stress. Out of the 1074 maize DEGs, approximately 30 maize Cd-responsive genes such as ZmHIPP27, stress-responsive NAC transcription factor (ZmSNAC1) and 9-cis-epoxycarotenoid dioxygenase (NCED, vp14) were also common stress-responsive genes reported to be uniformly regulated by multiple abiotic stresses. Moreover, the aforementioned three promising Cd-upregulated genes with rice counterparts were identified to be novel Cd-responsive genes in maize. Meanwhile, one maize glutamate decarboxylase (ZmGAD1) with Cd co-modulated rice ortholog was selected for further analysis of Cd tolerance via heterologous expression, and the results suggest that ZmGAD1 can confer Cd tolerance in yeast and tobacco leaves. Conclusions These novel findings revealed the conserved function of Cd-responsive orthologs and paralogs, which would be valuable for elucidating the genetic basis of the plant response to Cd stress and unraveling Cd tolerance genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Haijuan Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Gu C, Liu L, Song A, Liu Z, Zhang Y, Huang S. Iris lactea var. chinensis (Fisch.) cysteine-rich gene llCDT1 enhances cadmium tolerance in yeast cells and Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:67-72. [PMID: 29605645 DOI: 10.1016/j.ecoenv.2018.03.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED IlCDT1, a cysteine-rich protein, was isolated from Iris lactea var. chinensis (Fisch.) (I. lactea var. chinensis). Its transcription was up-regulated by the exogenous application of Cd. The truncated IlCDT1 (25-54) containing 14 Cys residues confers Cd tolerance to yeast as the intact IlCDT1, indicating that Cys residues are required for Cd tolerance presumably by chelating Cd. When the gene was constitutively expressed in A. thaliana, root length of transgenic lines was longer than that of wild-type under 100 μM or 200 μM Cd stress. However, Cd absorption in wild-type was more than in two trangenic lines under 100 μM Cd exposure. IlCDT1 may directly bind Cd, through chelating Cd and avoiding the Cd uptake into the cells. Together, IlCDT1 may be a promising gene for the Cd tolerance improvement. SUMMARY Cysteine-rich gene llCDT1 enhances cadmium tolerance in yeast cells and Arabidopsis thaliana.
Collapse
Affiliation(s)
- Chunsun Gu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Liangqin Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Zhaolei Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210014, China
| | - Yongxia Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Suzhen Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
38
|
Zhu Y, Liu L, Shen L, Yu H. NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. NATURE PLANTS 2016; 2:16075. [PMID: 27255839 DOI: 10.1038/nplants.2016.75] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/26/2016] [Indexed: 05/03/2023]
Abstract
Flowering plants perceive photoperiodic signals in leaves to generate mobile stimuli required for the induction of flower formation at shoot apices. Although FLOWERING LOCUS T (FT) has been identified as part of the mobile floral stimuli in Arabidopsis thaliana, the mechanisms underlying long-distance movement of FT from leaves to shoot apices remain largely unclear. Here we show that a heavy-metal-associated (HMA) domain-containing protein, SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1), is activated by CONSTANS (CO) under long-day conditions and regulates long-distance movement of FT in Arabidopsis. Loss of function of NaKR1 compromises FT transport to shoot apices through sieve elements, causing late flowering under long-day conditions. NaKR1 and FT share similar expression patterns and subcellular localization, and interact with each other in vivo. Grafting experiments demonstrate that NaKR1 promotes flowering through mediating FT translocation from leaves to shoot apices. Thus, photoperiodic control of floral induction requires NaKR1-mediated long-distance delivery of florigenic signals.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Lisha Shen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
39
|
Ahmad P, Abdel Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). FRONTIERS IN PLANT SCIENCE 2016; 7:513. [PMID: 27200003 PMCID: PMC4847423 DOI: 10.3389/fpls.2016.00513] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/01/2016] [Indexed: 05/18/2023]
Abstract
This work examined the role of exogenously applied calcium (Ca; 50 mM) and potassium (K; 10 mM) (alone and in combination) in alleviating the negative effects of cadmium (Cd; 200 μM) on growth, biochemical attributes, secondary metabolites and yield of chickpea (Cicer arietinum L.). Cd stress significantly decreased the length and weight (fresh and dry) of shoot and root and yield attributes in terms of number of pods and seed yield (vs. control). Exhibition of decreases in chlorophyll (Chl) a, Chl b, and total Chl was also observed with Cd-exposure when compared to control. However, Cd-exposure led to an increase in the content of carotenoids. In contrast, the exogenous application of Ca and K individually as well as in combination minimized the extent of Cd-impact on previous traits. C. arietinum seedlings subjected to Cd treatment exhibited increased contents of organic solute (proline, Pro) and total protein; whereas, Ca and K-supplementation further enhanced the Pro and total protein content. Additionally, compared to control, Cd-exposure also caused elevation in the contents of oxidative stress markers (hydrogen peroxidase, H2O2; malondialdehyde, MDA) and in the activity of antioxidant defense enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX; glutathione reductase, GR). Ca, K, and Ca + K supplementation caused further enhancements in the activity of these enzymes but significantly decreased contents of H2O2 and MDA, also that of Cd accumulation in shoot and root. The contents of total phenol, flavonoid and mineral elements (S, Mn, Mg, Ca and K) that were also suppressed in Cd stressed plants in both shoot and root were restored to appreciable levels with Ca- and K-supplementation. However, the combination of Ca + K supplementation was more effective in bringing the positive response as compared to individual effect of Ca and K on Cd-exposed C. arietinum. Overall, this investigation suggests that application of Ca and/or K can efficiently minimize Cd-toxicity and eventually improve health and yield in C. arietinum by the cumulative outcome of the enhanced contents of organic solute, secondary metabolites, mineral elements, and activity of antioxidant defense enzymes.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Department of Botany, Sri Pratap CollegeSrinagar, India
- *Correspondence: Parvaiz Ahmad
| | - Arafat A. Abdel Latef
- Botany Department, Faculty of Science, South Valley UniversityQena, Egypt
- Biology Department, College of Applied Medical Sciences, Taif UniversityTaif, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Department of Plant Production, Faculty of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Abeer Hashem
- Department of Botany and Microbiology, Faculty of Science, King Saud UniversityRiyadh, Saudi Arabia
- Mycology and Plant Disease Survey Department, Agriculture Research Center, Plant Pathology Research InstituteGiza, Egypt
| | - Maryam Sarwat
- Pharmaceutical Biotechnology, Amity Institute of Pharmacy, Amity UniversityUttar Pradesh, India
| | - Naser A. Anjum
- Department of Chemistry, Centre for Environmental and Marine Studies, University of AveiroAveiro, Portugal
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityLefkosa, Cyprus
| |
Collapse
|
40
|
Dutilleul C, Ribeiro I, Blanc N, Nezames CD, Deng XW, Zglobicki P, Palacio Barrera AM, Atehortùa L, Courtois M, Labas V, Giglioli-Guivarc'h N, Ducos E. ASG2 is a farnesylated DWD protein that acts as ABA negative regulator in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:185-98. [PMID: 26147561 DOI: 10.1111/pce.12605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 05/12/2023]
Abstract
The tagging-via-substrate approach designed for the capture of mammal prenylated proteins was adapted to Arabidopsis cell culture. In this way, proteins are in vivo tagged with an azide-modified farnesyl moiety and captured thanks to biotin alkyne Click-iT® chemistry with further streptavidin-affinity chromatography. Mass spectrometry analyses identified four small GTPases and ASG2 (ALTERED SEED GERMINATION 2), a protein previously associated to the seed germination gene network. ASG2 is a conserved protein in plants and displays a unique feature that associates WD40 domains and tetratricopeptide repeats. Additionally, we show that ASG2 has a C-terminal CaaX-box that is farnesylated in vitro. Protoplast transfections using CaaX prenyltransferase mutants show that farnesylation provokes ASG2 nucleus exclusion. Moreover, ASG2 interacts with DDB1 (DAMAGE DNA BINDING protein 1), and the subcellular localization of this complex depends on ASG2 farnesylation status. Finally, germination and root elongation experiments reveal that asg2 and the farnesyltransferase mutant era1 (ENHANCED RESPONSE TO ABSCISIC ACID (ABA) 1) behave in similar manners when exposed to ABA or salt stress. To our knowledge, ASG2 is the first farnesylated DWD (DDB1 binding WD40) protein related to ABA response in Arabidopsis that may be linked to era1 phenotypes.
Collapse
Affiliation(s)
- Christelle Dutilleul
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Iliana Ribeiro
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Nathalie Blanc
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Cynthia D Nezames
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520-8104, USA
| | - Piotr Zglobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Ana María Palacio Barrera
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Lucia Atehortùa
- Universidad de Antioquia, Laboratorio de Biotecnología, Sede de Investigación Universitaria, Medellín, Colombia
| | - Martine Courtois
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, UMR CNRS 7247, UFR, IFC, Plate-forme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, Nouzilly, F-37380, France
| | - Nathalie Giglioli-Guivarc'h
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| | - Eric Ducos
- EA2106 'Biomolécules et Biotechnologies Végétales', UFR des Sciences et Techniques, Université François Rabelais de Tours, Tours, F-37200, France
| |
Collapse
|
41
|
Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z. Isolation and characterisation of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1176-86. [PMID: 25951496 DOI: 10.1111/plb.12344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/01/2015] [Indexed: 05/03/2023]
Abstract
In cells, metallochaperones are important proteins that safely transport metal ions. Heavy metal-associated isoprenylated plant proteins (HIPPs) are metallochaperones that contain a metal binding domain and a CaaX isoprenylation motif at the carboxy-terminal end. To investigate the roles of wheat heavy metal-associated isoprenylated plant protein (TaHIPP) genes in plant development and in stress responses, we isolated cDNA encoding the wheat TaHIPP1 gene, which contains a heavy metal-associated domain, nuclear localisation signals and an isoprenylation motif (CaaX motif). Quantitative real-time PCR analysis indicated that the TaHIPP1 gene was differentially expressed under biotic and abiotic stresses. Specifically, TaHIPP1 expression was up-regulated by ABA exposure or wounding. Additionally, TaHIPP1 over-expression in yeast (Schizosaccharomyces pombe) significantly increased the cell growth rate under Cu(2+) and high salinity stresses. The nuclear localisation of the protein was confirmed with confocal laser scanning microscopy of epidermal onion cells after particle bombardment with chimeric TaHIPP1-GFP constructs. In addition, TaHIPP1 was shown to enhance the susceptibility of wheat to Pst as determined by virus-induced gene silencing. These data indicate that TaHIPP1 is an important component in defence signalling pathways and may play a crucial role in the defence response of wheat to biotic and certain abiotic stresses.
Collapse
Affiliation(s)
- X Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - H Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - C Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - H Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Q Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - G Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - L Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
42
|
Khan A, Khan S, Khan MA, Qamar Z, Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13772-99. [PMID: 26194234 DOI: 10.1007/s11356-015-4881-0] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/11/2015] [Indexed: 05/23/2023]
Abstract
Heavy metal contamination is a globally recognized environmental issue, threatening human life very seriously. Increasing population and high demand for food resulted in release of various contaminants into environment that finally contaminate the food chain. Edible plants are the major source of diet, and their contamination with toxic metals may result in catastrophic health hazards. Heavy metals affect the human health directly and/or indirectly; one of the indirect effects is the change in plant nutritional values. Previously, a number of review papers have been published on different aspects of heavy metal contamination. However, no related information is available about the effects of heavy metals on the nutritional status of food plants. This review paper is focused upon heavy metal sources, accumulation, transfer, health risk, and effects on protein, amino acids, carbohydrates, fats, and vitamins in plants. The literature about heavy metals in food plants shows that both leafy and nonleafy vegetables are good accumulators of heavy metals. In nonleafy vegetables, the bioaccumulation pattern was leaf > root ≈ stem > tuber. Heavy metals have strong influence on nutritional values; therefore, plants grown on metal-contaminated soil were nutrient deficient and consumption of such vegetables may lead to nutritional deficiency in the population particularly living in developing countries which are already facing the malnutrition problems.
Collapse
Affiliation(s)
- Anwarzeb Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | | | | | | | | |
Collapse
|
43
|
Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:1084-1096. [PMID: 25913773 DOI: 10.1111/nph.13419] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Biotic and abiotic stress responses of plants are linked to developmental programs. Proteins involved in different signaling pathways are the molecular basis of this concerted interplay. In our study, we show that Arabidopsis thaliana HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN3 (HIPP3; At5g60800) acts as an upstream regulator of stress- and development-related regulatory networks. Localization, metal-binding and stress-responsive gene expression of HIPP3 were analyzed via microscopy, protein and inductively coupled plasma (ICP)-MS analyses and quantitative real-time PCR. In addition, transcriptome and phenotype analyses of plants overexpressing HIPP3 were used to unravel its function. Our data show that HIPP3 is a nuclear, zinc-binding protein. It is repressed during drought stress and abscisic acid (ABA) treatment and, similar to other pathogen-related genes, is induced after infection with Pseudomonas syringae pv. tomato. HIPP3 overexpression affects the regulation of > 400 genes. Strikingly, most of these genes are involved in pathogen response, especially in the salicylate pathway. In addition, many genes of abiotic stress responses and seed and flower development are affected by HIPP3 overexpression. Plants overexpressing HIPP3 show delayed flowering. We conclude that HIPP3 acts via its bound zinc as an upstream regulator of the salicylate-dependent pathway of pathogen response and is also involved in abiotic stress responses and seed and flower development.
Collapse
Affiliation(s)
- Wiebke Zschiesche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Olaf Barth
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Katharina Daniel
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Sandra Böhme
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Juliane Rausche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| |
Collapse
|
44
|
Zlobin IE, Kholodova VP, Rakhmankulova ZF, Kuznetsov VV. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization. PHOTOSYNTHESIS RESEARCH 2015; 125:141-50. [PMID: 25361533 DOI: 10.1007/s11120-014-0054-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.
Collapse
Affiliation(s)
- I E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, 127276, Moscow, Russia
| | | | | | | |
Collapse
|
45
|
Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G, Zubieta C, Jourdain A, Dumas R, Forge V, Testemale D, Bourguignon J, Hugouvieux V. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J Biol Chem 2014; 289:31765-31776. [PMID: 25274629 PMCID: PMC4231655 DOI: 10.1074/jbc.m114.571208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.
Collapse
Affiliation(s)
- Florie Schild
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Sylvie Kieffer-Jaquinod
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, CEA, INSERM, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Andrés Palencia
- European Molecular Biology Laboratory Outstation, 71 avenue des Martyrs, F-38042 Grenoble, France and Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - David Cobessi
- Université Grenoble Alpes, CEA, CNRS, Direction des Sciences du Vivant, Institut de Biologie Structurale, 6 rue Jules Horowitz, F-38044 Grenoble, France
| | - Géraldine Sarret
- Université Grenoble Alpes, CNRS & IRD, ISTerre, BP 53, F-38041 Grenoble, France
| | - Chloé Zubieta
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Agnès Jourdain
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Renaud Dumas
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA, CNRS, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 rue des Martyrs, F-38000 Grenoble, France, and
| | - Denis Testemale
- Université Grenoble Alpes, CNRS, Institut NEEL, 25 rue des Martyrs, F-38042 Grenoble, France
| | - Jacques Bourguignon
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Véronique Hugouvieux
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359,.
| |
Collapse
|
46
|
Sun XH, Yu G, Li JT, Jia P, Zhang JC, Jia CG, Zhang YH, Pan HY. A heavy metal-associated protein (AcHMA1) from the halophyte, Atriplex canescens (Pursh) Nutt., confers tolerance to iron and other abiotic stresses when expressed in Saccharomyces cerevisiae. Int J Mol Sci 2014; 15:14891-906. [PMID: 25153638 PMCID: PMC4159888 DOI: 10.3390/ijms150814891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/16/2022] Open
Abstract
Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb), PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.
Collapse
Affiliation(s)
- Xin-Hua Sun
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Gang Yu
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Jing-Tao Li
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Pan Jia
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Ji-Chao Zhang
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Cheng-Guo Jia
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Yan-Hua Zhang
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| | - Hong-Yu Pan
- College of Plant Science, Jilin University, Changchun130062, Jilin, China.
| |
Collapse
|
47
|
Molins H, Michelet L, Lanquar V, Agorio A, Giraudat J, Roach T, Krieger-Liszkay A, Thomine S. Mutants impaired in vacuolar metal mobilization identify chloroplasts as a target for cadmium hypersensitivity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:804-17. [PMID: 22998565 DOI: 10.1111/pce.12016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1-3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1-3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1-3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.
Collapse
Affiliation(s)
- Hélène Molins
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette 91198, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LFV, Zanettini MHB, Margis-Pinheiro M. Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 2013; 280:1604-16. [PMID: 23368984 DOI: 10.1111/febs.12159] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/15/2012] [Accepted: 01/29/2013] [Indexed: 11/29/2022]
Abstract
Metallochaperones are key proteins for the safe transport of metallic ions inside the cell. HIPPs (heavy metal-associated isoprenylated plant proteins) are metallochaperones that contain a metal binding domain (HMA) and a C-terminal isoprenylation motif. In this study, we provide evidence that proteins of this family are found only in vascular plants and may be separated into five distinct clusters. HIPPs may be involved in (a) heavy metal homeostasis and detoxification mechanisms, especially those involved in cadmium tolerance, (b) transcriptional responses to cold and drought, and (c) plant-pathogen interactions. In particular, our results show that the rice (Oryza sativa) HIPP OsHIPP41 gene is highly expressed in response to cold and drought stresses, and its product is localized in the cytosol and the nucleus. The results suggest that HIPPs play an important role in the development of vascular plants and in plant responses to environmental changes.
Collapse
Affiliation(s)
- João Braga de Abreu-Neto
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
49
|
Kulaeva OA, Tsyganov VE. Molecular-genetic basis of cadmium tolerance and accumulation in higher plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s2079059711050108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Tian H, Baxter IR, Lahner B, Reinders A, Salt DE, Ward JM. Arabidopsis NPCC6/NaKR1 is a phloem mobile metal binding protein necessary for phloem function and root meristem maintenance. THE PLANT CELL 2010; 22:3963-79. [PMID: 21193571 PMCID: PMC3027173 DOI: 10.1105/tpc.110.080010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/28/2010] [Accepted: 12/11/2010] [Indexed: 05/18/2023]
Abstract
SODIUM POTASSIUM ROOT DEFECTIVE1 (NaKR1; previously called NPCC6) encodes a soluble metal binding protein that is specifically expressed in companion cells of the phloem. The nakr1-1 mutant phenotype includes high Na(+), K(+), Rb(+), and starch accumulation in leaves, short roots, late flowering, and decreased long-distance transport of sucrose. Using traditional and DNA microarray-based deletion mapping, a 7-bp deletion was found in an exon of NaKR1 that introduced a premature stop codon. The mutant phenotypes were complemented by transformation with the native gene or NaKR1-GFP (green fluorescent protein) and NaKR1-β-glucuronidase fusions driven by the native promoter. NAKR1-GFP was mobile in the phloem; it moved from companion cells into sieve elements and into a previously undiscovered symplasmic domain in the root meristem. Grafting experiments revealed that the high Na(+) accumulation was due mainly to loss of NaKR1 function in the leaves. This supports a role for the phloem in recirculating Na(+) to the roots to limit Na(+) accumulation in leaves. The onset of root phenotypes coincided with NaKR1 expression after germination. The nakr1-1 short root phenotype was due primarily to a decreased cell division rate in the root meristem, indicating a role in root meristem maintenance for NaKR1 expression in the phloem.
Collapse
Affiliation(s)
- Hui Tian
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Ivan R. Baxter
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| | - Brett Lahner
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Anke Reinders
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - David E. Salt
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - John M. Ward
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
- Address correspondence to
| |
Collapse
|