1
|
He Z, Zhou M, Feng X, Di Q, Meng D, Yu X, Yan Y, Sun M, Li Y. The Role of Brassinosteroids in Plant Cold Stress Response. Life (Basel) 2024; 14:1015. [PMID: 39202757 PMCID: PMC11355907 DOI: 10.3390/life14081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Temperature affects plant growth and geographical distribution. Cold stress occurs when temperatures fall below the physiologically optimal range for plants, causing permanent and irreversible damage to plant growth, development, and production. Brassinosteroids (BRs) are steroid hormones that play an important role in plant growth and various stress responses. Recent studies have shown that low temperatures affect BR biosynthesis in many plant species and that BR signaling is involved in the regulation of plant tolerance to low temperatures, both in the CBF-dependent and CBF-independent pathways. These two regulatory pathways correspond to transient and acclimation responses of low temperature, respectively. The crosstalk between BRs and other hormones is a significant factor in low-temperature tolerance. We provide an overview of recent developments in our knowledge of BRs' function in plant responses to cold stress and how they interact with other plant hormones in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mintao Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| | - Yansu Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.H.); (M.Z.); (X.F.); (Q.D.); (D.M.); (X.Y.); (Y.Y.)
| |
Collapse
|
2
|
Niu Y, Matsubara S, Nedbal L, Lazár D. Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light. PLANT, CELL & ENVIRONMENT 2024; 47:2240-2257. [PMID: 38482712 DOI: 10.1111/pce.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/28/2024] [Indexed: 04/30/2024]
Abstract
Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Shikanai T. Molecular Genetic Dissection of the Regulatory Network of Proton Motive Force in Chloroplasts. PLANT & CELL PHYSIOLOGY 2024; 65:537-550. [PMID: 38150384 DOI: 10.1093/pcp/pcad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The proton motive force (pmf) generated across the thylakoid membrane rotates the Fo-ring of ATP synthase in chloroplasts. The pmf comprises two components: membrane potential (∆Ψ) and proton concentration gradient (∆pH). Acidification of the thylakoid lumen resulting from ∆pH downregulates electron transport in the cytochrome b6f complex. This process, known as photosynthetic control, is crucial for protecting photosystem I (PSI) from photodamage in response to fluctuating light. To optimize the balance between efficient photosynthesis and photoprotection, it is necessary to regulate pmf. Cyclic electron transport around PSI and pseudo-cyclic electron transport involving flavodiiron proteins contribute to the modulation of pmf magnitude. By manipulating the ratio between the two components of pmf, it is possible to modify the extent of photosynthetic control without affecting the pmf size. This adjustment can be achieved by regulating the movement of ions (such as K+ and Cl-) across the thylakoid membrane. Since ATP synthase is the primary consumer of pmf in chloroplasts, its activity must be precisely regulated to accommodate other mechanisms involved in pmf optimization. Although fragments of information about each regulatory process have been accumulated, a comprehensive understanding of their interactions is lacking. Here, I summarize current knowledge of the network for pmf regulation, mainly based on genetic studies.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
4
|
Maekawa S, Ohnishi M, Wada S, Ifuku K, Miyake C. Enhanced Reduction of Ferredoxin in PGR5-Deficient Mutant of Arabidopsis thaliana Stimulated Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int J Mol Sci 2024; 25:2677. [PMID: 38473924 DOI: 10.3390/ijms25052677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The molecular entity responsible for catalyzing ferredoxin (Fd)-dependent cyclic electron flow around photosystem I (Fd-CEF) remains unidentified. To reveal the in vivo molecular mechanism of Fd-CEF, evaluating ferredoxin reduction-oxidation kinetics proves to be a reliable indicator of Fd-CEF activity. Recent research has demonstrated that the expression of Fd-CEF activity is contingent upon the oxidation of plastoquinone. Moreover, chloroplast NAD(P)H dehydrogenase does not catalyze Fd-CEF in Arabidopsis thaliana. In this study, we analyzed the impact of reduced Fd on Fd-CEF activity by comparing wild-type and pgr5-deficient mutants (pgr5hope1). PGR5 has been proposed as the mediator of Fd-CEF, and pgr5hope1 exhibited a comparable CO2 assimilation rate and the same reduction-oxidation level of PQ as the wild type. However, P700 oxidation was suppressed with highly reduced Fd in pgr5hope1, unlike in the wild type. As anticipated, the Fd-CEF activity was enhanced in pgr5hope1 compared to the wild type, and its activity further increased with the oxidation of PQ due to the elevated CO2 assimilation rate. This in vivo research clearly demonstrates that the expression of Fd-CEF activity requires not only reduced Fd but also oxidized PQ. Importantly, PGR5 was found to not catalyze Fd-CEF, challenging previous assumptions about its role in this process.
Collapse
Affiliation(s)
- Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Miho Ohnishi
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Okegawa Y, Sato N, Nakakura R, Murai R, Sakamoto W, Motohashi K. x- and y-type thioredoxins maintain redox homeostasis on photosystem I acceptor side under fluctuating light. PLANT PHYSIOLOGY 2023; 193:2498-2512. [PMID: 37606239 PMCID: PMC10663110 DOI: 10.1093/plphys/kiad466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Plants cope with sudden increases in light intensity through various photoprotective mechanisms. Redox regulation by thioredoxin (Trx) systems also contributes to this process. Whereas the functions of f- and m-type Trxs in response to such fluctuating light conditions have been extensively investigated, those of x- and y-type Trxs are largely unknown. Here, we analyzed the trx x single, trx y1 trx y2 double, and trx x trx y1 trx y2 triple mutants in Arabidopsis (Arabidopsis thaliana). A detailed analysis of photosynthesis revealed changes in photosystem I (PSI) parameters under low light in trx x and trx x trx y1 trx y2. The electron acceptor side of PSI was more reduced in these mutants than in the wild type. This mutant phenotype was more pronounced under fluctuating light conditions. During both low- and high-light phases, the PSI acceptor side was largely limited in trx x and trx x trx y1 trx y2. After fluctuating light treatment, we observed more severe PSI photoinhibition in trx x and trx x trx y1 trx y2 than in the wild type. Furthermore, when grown under fluctuating light conditions, trx x and trx x trx y1 trx y2 plants showed impaired growth and decreased level of PSI subunits. These results suggest that Trx x and Trx y prevent redox imbalance on the PSI acceptor side, which is required to protect PSI from photoinhibition, especially under fluctuating light. We also propose that Trx x and Trx y contribute to maintaining the redox balance even under constant low-light conditions to prepare for sudden increases in light intensity.
Collapse
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Nozomi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| | - Rino Nakakura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| | - Ryota Murai
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ken Motohashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8047, Japan
| |
Collapse
|
6
|
Kharabian-Masouleh A, Furtado A, Alsubaie B, Al-Dossary O, Wu A, Al-Mssalem I, Henry R. Loss of plastid ndh genes in an autotrophic desert plant. Comput Struct Biotechnol J 2023; 21:5016-5027. [PMID: 37867970 PMCID: PMC10589726 DOI: 10.1016/j.csbj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Plant plastid genomes are highly conserved with most flowering plants having the same complement of essential plastid genes. Here, we report the loss of five of the eleven NADH dehydrogenase subunit genes (ndh) in the plastid of a desert plant jojoba (Simmondsia chinensis). The plastid genome of jojoba was 156,496 bp with one large single copy region (LSC), a very small single copy region (SSC) and two expanded inverted repeats (IRA + IRB). The NADH dehydrogenase (NDH) complex is comprised of several protein subunits, encoded by the ndh genes of the plastome and the nucleus. The ndh genes are critical to the proper functioning of the photosynthetic electron transport chain and protection of plants from oxidative stress. Most plants are known to contain all eleven ndh genes. Plants with missing or defective ndh genes are often heterotrophs either due to their complete or holo- or myco- parasitic nature. Plants with a defective NDH complex, caused by the deletion/pseudogenisation of some or all the ndh genes, survive in milder climates suggesting the likely extinction of plant lineages lacking these genes under harsh climates. Interestingly, some autotrophic plants do exist without ndh gene/s and can cope with high or low light. This implies that these plants are protected from oxidative stress by mechanisms excluding ndh genes. Jojoba has evolved mechanisms to cope with a non-functioning NDH complex and survives in extreme desert conditions with abundant sunlight and limited water.
Collapse
Affiliation(s)
- Ardashir Kharabian-Masouleh
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Othman Al-Dossary
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Alex Wu
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Ibrahim Al-Mssalem
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Robert Henry
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
8
|
Ohnishi M, Maekawa S, Wada S, Ifuku K, Miyake C. Evaluating the Oxidation Rate of Reduced Ferredoxin in Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow: Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I. Int J Mol Sci 2023; 24:12145. [PMID: 37569521 PMCID: PMC10419245 DOI: 10.3390/ijms241512145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The activity of ferredoxin (Fd)-dependent cyclic electron flow (Fd-CEF) around photosystem I (PSI) was determined in intact leaves of Arabidopsis thaliana. The oxidation rate of Fd reduced by PSI (vFd) and photosynthetic linear electron flow activity are simultaneously measured under actinic light illumination. The vFd showed a curved response to the photosynthetic linear electron flow activity. In the lower range of photosynthetic linear flow activity with plastoquinone (PQ) in a highly reduced state, vFd clearly showed a linear relationship with photosynthetic linear electron flow activity. On the other hand, vFd increased sharply when photosynthetic linear electron flow activity became saturated with oxidized PQ as the net CO2 assimilation rate increased. That is, under higher photosynthesis conditions, we observed excess vFd resulting in electron flow over photosynthetic linear electron flow. The situation in which excess vFd was observed was consistent with the previous Fd-CEF model. Thus, excess vFd could be attributed to the in vivo activity of Fd-CEF. Furthermore, the excess vFd was also observed in NAD(P)H dehydrogenase-deficient mutants localized in the thylakoid membrane. The physiological significance of the excessive vFd was discussed.
Collapse
Affiliation(s)
- Miho Ohnishi
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| |
Collapse
|
9
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
10
|
Boyd RD, Hayes ML. A ribonuclease activity linked to DYW1 in vitro is inhibited by RIP/MORF proteins. Sci Rep 2023; 13:10723. [PMID: 37400527 PMCID: PMC10318007 DOI: 10.1038/s41598-023-36969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Organellar C-to-U RNA editing in plants occurs in complexes composed of various classes of nuclear-encoded proteins. DYW-deaminases are zinc metalloenzymes that catalyze hydrolytic deamination required for C-to-U modification editing. Solved crystal structures for DYW-deaminase domains display all structural features consistent with a canonical cytidine deamination mechanism. However, some recombinant DYW-deaminases from plants have been associated with ribonuclease activity in vitro. Direct ribonuclease activity by an editing factor is confounding since it is not required for deamination of cytosine, theoretically would be inimical for mRNA editing, and does not have a clear physiological function in vivo. His-tagged recombinant DYW1 from Arabidopsis thaliana (rAtDYW1) was expressed and purified using immobilized metal affinity chromatography (IMAC). Fluorescently labeled RNA oligonucleotides were incubated with recombinant AtDYW1 under different conditions. Percent relative cleavage of RNA probes was recorded at multiple time points from triplicate reactions. The effects of treatment with zinc chelators EDTA and 1, 10-phenanthroline were examined for rAtDYW1. Recombinant His-tagged RNA editing factors AtRIP2, ZmRIP9, AtRIP9, AtOZ1, AtCRR4, and AtORRM1 were expressed in E. coli and purified. Ribonuclease activity was assayed for rAtDYW1 in the presence of different editing factors. Lastly, the effects on nuclease activity in the presence of nucleotides and modified nucleosides were investigated. RNA cleavage observed in this study was linked to the recombinant editing factor rAtDYW1 in vitro. The cleavage reaction is sensitive to high concentrations of zinc chelators, indicating a role for zinc ions for activity. The addition of equal molar concentrations of recombinant RIP/MORF proteins reduced cleavage activity associated with rAtDYW1. However, addition of equal molar concentrations of purified recombinant editing complex proteins AtCRR4, AtORRM1, and AtOZ1 did not strongly inhibit ribonuclease activity on RNAs lacking an AtCRR4 cis-element. Though AtCRR4 inhibited AtDYW1 activity for oligonucleotides with a cognate cis-element. The observation that editing factors limit ribonuclease activity of rAtDYW1 in vitro, suggests that nuclease activities are limited to RNAs in absence of native editing complex partners. Purified rAtDYW1 was associated with the hydrolysis of RNA in vitro, and activity was specifically inhibited by RNA editing factors.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA, 90032, USA.
| |
Collapse
|
11
|
Yamamoto H, Cheuk A, Shearman J, Nixon PJ, Meier T, Shikanai T. Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts. PLANT PHYSIOLOGY 2023; 192:1221-1233. [PMID: 36703219 PMCID: PMC10231360 DOI: 10.1093/plphys/kiad043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/01/2023]
Abstract
The chloroplast ATP synthase produces the ATP needed for photosynthesis and plant growth. The trans-membrane flow of protons through the ATP synthase rotates an oligomeric assembly of c subunits, the c-ring. The ion-to-ATP ratio in rotary F1F0-ATP synthases is defined by the number of c-subunits in the rotor c-ring. Engineering the c-ring stoichiometry is, therefore, a possible route to manipulate ATP synthesis by the ATP synthase and hence photosynthetic efficiency in plants. Here, we describe the construction of a tobacco (Nicotiana tabacum) chloroplast atpH (chloroplastic ATP synthase subunit c gene) mutant in which the c-ring stoichiometry was increased from 14 to 15 c-subunits. Although the abundance of the ATP synthase was decreased to 25% of wild-type (WT) levels, the mutant lines grew as well as WT plants and photosynthetic electron transport remained unaffected. To synthesize the necessary ATP for growth, we found that the contribution of the membrane potential to the proton motive force was enhanced to ensure a higher proton flux via the c15-ring without unwanted low pH-induced feedback inhibition of electron transport. Our work opens avenues to manipulate plant ion-to-ATP ratios with potentially beneficial consequences for photosynthesis.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Anthony Cheuk
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Julia Shearman
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Thomas Meier
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, S. Kensington Campus, London SW7 2AZ, UK
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
13
|
Zhou Q, Yamamoto H, Shikanai T. Distinct contribution of two cyclic electron transport pathways to P700 oxidation. PLANT PHYSIOLOGY 2023; 192:326-341. [PMID: 36477622 PMCID: PMC10152692 DOI: 10.1093/plphys/kiac557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
Cyclic electron transport (CET) around Photosystem I (PSI) acidifies the thylakoid lumen and downregulates electron transport at the cytochrome b6f complex. This photosynthetic control is essential for oxidizing special pair chlorophylls (P700) of PSI for PSI photoprotection. In addition, CET depending on the PROTON GRADIENT REGULATION 5 (PGR5) protein oxidizes P700 by moving a pool of electrons from the acceptor side of PSI to the plastoquinone pool. This model of the acceptor-side regulation was proposed on the basis of the phenotype of the Arabidopsis (Arabidopsis thaliana) pgr5-1 mutant expressing Chlamydomonas (Chlamydomonas reinhardtii) plastid terminal oxidase (CrPTOX2). In this study, we extended the research including the Arabidopsis chlororespiratory reduction 2-2 (crr2-2) mutant defective in another CET pathway depending on the chloroplast NADH dehydrogenase-like (NDH) complex. Although the introduction of CrPTOX2 did not complement the defect in the acceptor-side regulation by PGR5, the function of the NDH complex was complemented except for its reverse reaction during the induction of photosynthesis. We evaluated the impact of CrPTOX2 under fluctuating light intensity in the wild-type, pgr5-1 and crr2-2 backgrounds. In the high-light period, both PGR5- and NDH-dependent CET were involved in the induction of photosynthetic control, whereas PGR5-dependent CET preferentially contributed to the acceptor-side regulation. On the contrary, the NDH complex probably contributed to the acceptor-side regulation in the low-light period but not in the high-light period. We evaluated the sensitivity of PSI to fluctuating light and clarified that acceptor-side regulation was necessary for PSI photoprotection by oxidizing P700 under high light.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-Dependent sRNA Sequence Supports Papillomavirus Vaccine Expression in Tobacco Chloroplasts. Metabolites 2023; 13:metabo13030315. [PMID: 36984756 PMCID: PMC10054877 DOI: 10.3390/metabo13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Human papillomavirus (HPV) infection is the leading cause of cervical cancer, and vaccination with HPV L1 capsid proteins has been successful in controlling it. However, vaccination coverage is not universal, particularly in developing countries, where 80% of all cervical cancer cases occur. Cost-effective vaccination could be achieved by expressing the L1 protein in plants. Various efforts have been made to produce the L1 protein in plants, including attempts to express it in chloroplasts for high-yield performance. However, manipulating chloroplast gene expression requires complex and difficult-to-control expression elements. In recent years, a family of nuclear-encoded, chloroplast-targeted RNA-binding proteins, the pentatricopeptide repeat (PPR) proteins, were described as key regulators of chloroplast gene expression. For example, PPR proteins are used by plants to stabilize and translate chloroplast mRNAs. Objectives: To demonstrate that a PPR target site can be used to drive HPV L1 expression in chloroplasts. Methods: To test our hypothesis, we used biolistic chloroplast transformation to establish tobacco lines that express two variants of the HPV L1 protein under the control of the target site of the PPR protein CHLORORESPIRATORY REDUCTION2 (CRR2). The transgenes were inserted into a dicistronic operon driven by the plastid rRNA promoter. To determine the effectiveness of the PPR target site for the expression of the HPV L1 protein in the chloroplasts, we analyzed the accumulation of the transgenic mRNA and its processing, as well as the accumulation of the L1 protein in the transgenic lines. Results: We established homoplastomic lines carrying either the HPV18 L1 protein or an HPV16B Enterotoxin::L1 fusion protein. The latter line showed severe growth retardation and pigment loss, suggesting that the fusion protein is toxic to the chloroplasts. Despite the presence of dicistronic mRNAs, we observed very little accumulation of monocistronic transgenic mRNA and no significant increase in CRR2-associated small RNAs. Although both lines expressed the L1 protein, quantification using an external standard suggested that the amounts were low. Conclusions: Our results suggest that PPR binding sites can be used to drive vaccine expression in plant chloroplasts; however, the factors that modulate the effectiveness of target gene expression remain unclear. The identification of dozens of PPR binding sites through small RNA sequencing expands the set of expression elements available for high-value protein production in chloroplasts.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Sara Dühnen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Anton Gauert
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Götz
- BioEnergy GmbH, Dietersberg 1, 92334 Berching, Germany
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-20-2093-49700
| |
Collapse
|
15
|
Chen Q, Lan Y, Li Q, Kong M, Mi H. Inactivation of photosynthetic cyclic electron transports upregulates photorespiration for compensation of efficient photosynthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1061434. [PMID: 37123850 PMCID: PMC10130413 DOI: 10.3389/fpls.2023.1061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Plants have multiple mechanisms to maintain efficient photosynthesis. Photosynthetic cyclic electron transports around photosystem I (CET), which includes the PGR5/PGRL1 and NDH pathways, and photorespiration play a crucial role in photosynthetic efficiency. However, how these two mechanisms are functionally linked is not clear. In this study, we revealed that photorespiration could compensate for the function of CET in efficient photosynthesis by comparison of the growth phenotypes, photosynthetic properties monitored with chlorophyll fluorescence parameters and photosynthetic oxygen evolution in leaves and photorespiratory activity monitored with the difference of photosynthetic oxygen evolution rate under high and low concentration of oxygen conditions between the deleted mutant PGR5 or PGRL1 under NDH defective background (pgr5 crr2 or pgrl1a1b crr2). Both CET mutants pgr5 crr2 and pgrl1a1b crr2 displayed similar suppression effects on photosynthetic capacities of light reaction and growth phenotypes under low light conditions. However, the total CET activity and photosynthetic oxygen evolution of pgr5 crr2 were evidently lower than those of pgrl1a1b crr2, accompanied by the upregulation of photorespiratory activity under low light conditions, resulting in severe suppression of photosynthetic capacities of light reaction and finally photodamaged phenotype under high light or fluctuating light conditions. Based on these findings, we suggest that photorespiration compensates for the loss of CET functions in the regulation of photosynthesis and that coordination of both mechanisms is essential for maintaining the efficient operation of photosynthesis, especially under stressed conditions.
Collapse
|
16
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
17
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
18
|
Okegawa Y, Sakamoto W, Motohashi K. Functional division of f-type and m-type thioredoxins to regulate the Calvin cycle and cyclic electron transport around photosystem I. JOURNAL OF PLANT RESEARCH 2022; 135:543-553. [PMID: 35325335 DOI: 10.1007/s10265-022-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Redox regulation of chloroplast proteins is necessary to adjust photosynthetic performance with changes in light. The thioredoxin (Trx) system plays a central role in this process. Chloroplast-localized classical Trx is a small redox-active protein that regulates many target proteins by reducing their disulfide bonds in a light-dependent manner. Arabidopsis thaliana mutants lacking f-type Trx (trx f1f2) or m-type Trx (trx m124-2) have been reported to show delayed reduction of Calvin cycle enzymes. As a result, the trx m124-2 mutant exhibits growth defects. Here, we characterized a quintuple mutant lacking both Trx f and Trx m to investigate the functional complementarity of Trx f and Trx m. The trx f1f2 m124-2 quintuple mutant was newly obtained by crossing, and is analyzed here for the first time. The growth defects of the trx m124-2 mutant were not enhanced by the lack of Trx f. In contrast, deficiencies of both Trxs additively suppressed the reduction of Calvin cycle enzymes, resulting in a further delay in the initiation of photosynthesis. Trx f appeared to be necessary for the rapid activation of the Calvin cycle during the early induction of photosynthesis. To perform effective photosynthesis, plants seem to use both Trxs in a coordinated manner to activate carbon fixation reactions. In contrast, the PROTON GRADIENT REGULATION 5 (PGR5)-dependent cyclic electron transport around photosystem I was regulated by Trx m, but not by Trx f. Lack of Trx f did not affect the activity and regulation of the PGR5-dependent pathway. Trx f may have a higher specificity for target proteins, whereas Trx m has a variety of target proteins to regulate overall photosynthesis and other metabolic reactions in the chloroplasts.
Collapse
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047, Japan.
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Ken Motohashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047, Japan
| |
Collapse
|
19
|
Suzuki R, Sugita C, Aoki S, Sugita M. Physcomitrium patens pentatricopeptide repeat protein PpPPR_32 is involved in the accumulation of psaC mRNA encoding the iron sulfur protein of photosystem I. Genes Cells 2022; 27:293-304. [PMID: 35194890 DOI: 10.1111/gtc.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in RNA metabolism and also play a role in posttranscriptional regulation during plant organellar gene expression. Although a hundred of PPR proteins exist in the moss Physcomitrium patens, their functions are not fully understood. Here, we report the function of P-class PPR protein PpPPR_32 in P. patens. A transient expression assay using green fluorescent protein demonstrated that the N-terminal region of PpPPR_32 functions as a chloroplast-targeting transit peptide, indicating that PpPPR_32 is localized in chloroplasts. PpPPR_32 knockout (KO) mutants grew autotrophically but with reduced protonema growth and the poor formation of photosystem I (PSI) complexes. Quantitative real-time reverse transcription-polymerase chain reaction and RNA gel blot hybridization analyses revealed a significant reduction in the transcript level of the psaC gene encoding the iron sulfur protein of PSI but no alteration to the transcript levels of other PSI genes. This suggests that PpPPR_32 is specifically involved in the expression level of the psaC gene. Our results indicate that PpPPR_32 is essential for the accumulation of psaC transcript and PSI complexes.
Collapse
Affiliation(s)
- Ryo Suzuki
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| |
Collapse
|
20
|
Zhou Q, Wang C, Yamamoto H, Shikanai T. PTOX-dependent safety valve does not oxidize P700 during photosynthetic induction in the Arabidopsis pgr5 mutant. PLANT PHYSIOLOGY 2022; 188:1264-1276. [PMID: 34792607 PMCID: PMC8825263 DOI: 10.1093/plphys/kiab541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 05/19/2023]
Abstract
Plastid terminal oxidase (PTOX) accepts electrons from plastoquinol to reduce molecular oxygen to water. We introduced the gene encoding Chlamydomonas reinhardtii (Cr)PTOX2 into the Arabidopsis (Arabidopsis thaliana) wild-type (WT) and proton gradient regulation5 (pgr5) mutant defective in cyclic electron transport around photosystem I (PSI). The accumulation of CrPTOX2 only mildly affected photosynthetic electron transport in the WT background during steady-state photosynthesis but partly complemented the induction of nonphotochemical quenching (NPQ) in the pgr5 background. During the induction of photosynthesis by actinic light (AL) of 130 µmol photons m-2 s-1, the high level of PSII yield (Y(II)) was induced immediately after the onset of AL in WT plants accumulating CrPTOX2. NPQ was more rapidly induced in the transgenic plants than in WT plants. P700 was also oxidized immediately after the onset of AL. Although CrPTOX2 does not directly induce a proton concentration gradient (ΔpH) across the thylakoid membrane, the coupled reaction of PSII generated ΔpH to induce NPQ and the downregulation of the cytochrome b6f complex. Rapid induction of Y(II) and NPQ was also observed in the pgr5 plants accumulating CrPTOX2. In contrast to the WT background, P700 was not oxidized in the pgr5 background. Although the thylakoid lumen was acidified by CrPTOX2, PGR5 was essential for oxidizing P700. In addition to acidification of the thylakoid lumen to downregulate the cytochrome b6f complex (donor-side regulation), PGR5 may be required for draining electrons from PSI by transferring them to the plastoquinone pool. We propose a reevaluation of the contribution of this acceptor-side regulation by PGR5 in the photoprotection of PSI.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Caijuan Wang
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Author for communication:
| |
Collapse
|
21
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
22
|
Okegawa Y, Tsuda N, Sakamoto W, Motohashi K. Maintaining the Chloroplast Redox Balance through the PGR5-Dependent Pathway and the Trx System Is Required for Light-Dependent Activation of Photosynthetic Reactions. PLANT & CELL PHYSIOLOGY 2022; 63:92-103. [PMID: 34623443 DOI: 10.1093/pcp/pcab148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Light-dependent activation of chloroplast enzymes is required for the rapid induction of photosynthesis after a shift from dark to light. The thioredoxin (Trx) system plays a central role in this process. In chloroplasts, the Trx system consists of two pathways: the ferredoxin (Fd)/Trx pathway and the nicotinamide adenine dinucleotide phosphate (NADPH)-Trx reductase C (NTRC) pathway. In Arabidopsis (Arabidopsis thaliana) mutants defective in either pathway, the photoreduction of thiol enzymes was impaired, resulting in decreased carbon fixation. The close relationship between the Fd/Trx pathway and proton gradient regulation 5 (PGR5)-dependent photosystem I cyclic electron transport (PSI CET) in the induction of photosynthesis was recently elucidated. However, how the PGR5-dependent pathway is involved in the NTRC pathway is unclear, although NTRC has been suggested to physically interact with PGR5. In this study, we analyzed Arabidopsis mutants lacking either the PGR5 or the chloroplast NADH dehydrogenase-like complex (NDH)-dependent PSI CET pathway in the ntrc mutant background. The ntrc pgr5 double mutant suppressed both the growth defects and the high non-photochemical quenching phenotype of the ntrc mutant when grown under long-day conditions. By contrast, the inactivation of NDH activity with the chlororespiratory reduction 2-2 mutant failed to suppress either phenotype. We discovered that the phenotypic rescue of ntrc by pgr5 is caused by the partial restoration of Trx-dependent reduction of thiol enzymes. These results suggest that electron partitioning to the PGR5-dependent pathway and the Trx system needs to be properly regulated for the activation of the Calvin-Benson-Bassham cycle enzymes during the induction of photosynthesis.
Collapse
Affiliation(s)
- Yuki Okegawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| | - Natsuki Tsuda
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Ken Motohashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto, 603-8047 Japan
| |
Collapse
|
23
|
Yamamoto H, Sato N, Shikanai T. Critical Role of NdhA in the Incorporation of the Peripheral Arm into the Membrane-Embedded Part of the Chloroplast NADH Dehydrogenase-Like Complex. PLANT & CELL PHYSIOLOGY 2021; 62:1131-1145. [PMID: 33169158 DOI: 10.1093/pcp/pcaa143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The chloroplast NADH dehydrogenase-like (NDH) complex mediates ferredoxin-dependent plastoquinone reduction in the thylakoid membrane. In angiosperms, chloroplast NDH is composed of five subcomplexes and further forms a supercomplex with photosystem I (PSI). Subcomplex A (SubA) mediates the electron transport and consists of eight subunits encoded by both plastid and nuclear genomes. The assembly of SubA in the stroma has been extensively studied, but it is unclear how SubA is incorporated into the membrane-embedded part of the NDH complex. Here, we isolated a novel Arabidopsis mutant chlororespiratory reduction 16 (crr16) defective in NDH activity. CRR16 encodes a chloroplast-localized P-class pentatricopeptide repeat protein conserved in angiosperms. Transcript analysis of plastid-encoded ndh genes indicated that CRR16 was responsible for the efficient splicing of the group II intron in the ndhA transcript, which encodes a membrane-embedded subunit localized to the connecting site between SubA and the membrane subcomplex (SubM). To analyze the roles of NdhA in the assembly and stability of the NDH complex, the homoplastomic knockout plant of ndhA (ΔndhA) was generated in tobacco (Nicotiana tabacum). Biochemical analyses of crr16 and ΔndhA plants indicated that NdhA was essential for stabilizing SubA and SubE but not for the accumulation of the other three subcomplexes. Furthermore, the crr16 mutant accumulated the SubA assembly intermediates in the stroma more than that in the wild type. These results suggest that NdhA biosynthesis is essential for the incorporation of SubA into the membrane-embedded part of the NDH complex at the final assembly step of the NDH-PSI supercomplex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Nozomi Sato
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
24
|
Higashi H, Kato Y, Fujita T, Iwasaki S, Nakamura M, Nishimura Y, Takenaka M, Shikanai T. The Pentatricopeptide Repeat Protein PGR3 Is Required for the Translation of petL and ndhG by Binding Their 5' UTRs. PLANT & CELL PHYSIOLOGY 2021; 62:1146-1155. [PMID: 33439244 DOI: 10.1093/pcp/pcaa180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
PGR3 is a P-class pentatricopeptide repeat (PPR) protein required for the stabilization of petL operon RNA and the translation of the petL gene in plastids. Irrespective of its important roles in plastids, key questions have remained unanswered, including how PGR3 protein promotes translation and which plastid mRNA PGR3 activates the translation. Here, we show that PGR3 facilitates the translation from ndhG, in addition to petL, through binding to their 5' untranslated regions (UTRs). Ribosome profiling and RNA sequencing in pgr3 mutants revealed that translation from petL and ndhG was specifically suppressed. Harnessing small RNA fragments protected by PPR proteins in vivo, we probed the PGR3 recruitment to the 5' UTRs of petL and ndhG. The putative PGR3-bound RNA segments per se repress the translation possibly with a strong secondary structure and thereby block ribosomes' access. However, the PGR3 binding antagonizes the effects and facilitates the protein synthesis from petL and ndhG in vitro. The prediction of the 3-dimensional structure of PGR3 suggests that the 26th PPR motif plays important roles in target RNA binding. Our data show the specificity of a plastidic RNA-binding protein and provide a mechanistic insight into translational control.
Collapse
Affiliation(s)
- Haruka Higashi
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yoshinobu Kato
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan
| | - Masayuki Nakamura
- Center of Gene Research, Nagoya University, Nagoya, Aichi, 464-8602 Japan
| | - Yoshiki Nishimura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
25
|
Identification of a Novel Mutation Exacerbated the PSI Photoinhibition in pgr5/ pgrl1 Mutants; Caution for Overestimation of the Phenotypes in Arabidopsis pgr5-1 Mutant. Cells 2021; 10:cells10112884. [PMID: 34831107 PMCID: PMC8616342 DOI: 10.3390/cells10112884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
PSI photoinhibition is usually avoided through P700 oxidation. Without this protective mechanism, excess light represents a potentially lethal threat to plants. PGR5 is suggested to be a major component of cyclic electron transport around PSI and is important for P700 oxidation in angiosperms. The known Arabidopsis PGR5 deficient mutant, pgr5-1, is incapable of P700 oxidation regulation and has been used in numerous photosynthetic studies. However, here it was revealed that pgr5-1 was a double mutant with exaggerated PSI photoinhibition. pgr5-1 significantly reduced growth compared to the newly isolated PGR5 deficient mutant, pgr5hope1. The introduction of PGR5 into pgr5-1 restored P700 oxidation regulation, but remained a pale-green phenotype, indicating that pgr5-1 had additional mutations. Both pgr5-1 and pgr5hope1 tended to cause PSI photoinhibition by excess light, but pgr5-1 exhibited an enhanced reduction in PSI activity. Introducing AT2G17240, a candidate gene for the second mutation into pgr5-1 restored the pale-green phenotype and partially restored PSI activity. Furthermore, a deficient mutant of PGRL1 complexing with PGR5 significantly reduced PSI activity in the double-deficient mutant with AT2G17240. From these results, we concluded that AT2G17240, named PSI photoprotection 1 (PTP1), played a role in PSI photoprotection, especially in PGR5/PGRL1 deficient mutants.
Collapse
|
26
|
Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, Yamamoto H, Ishikawa T, Maruta T. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:876-892. [PMID: 34028907 DOI: 10.1111/tpj.15352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 05/24/2023]
Abstract
High-light (HL) stress enhances the production of H2 O2 from the photosynthetic electron transport chain in chloroplasts, potentially causing photo-oxidative damage. Although stromal and thylakoid membrane-bound ascorbate peroxidases (sAPX and tAPX, respectively) are major H2 O2 -scavenging enzymes in chloroplasts, their knockout mutants do not exhibit a visible phenotype under HL stress. Trans-thylakoid proton gradient (∆pH)-dependent mechanisms exist for controlling H2 O2 production from photosynthesis, such as thermal dissipation of light energy and downregulation of electron transfer between photosystems II and I, and these may compensate for the lack of APXs. To test this hypothesis, we focused on a proton gradient regulation 5 (pgr5) mutant, wherein both ∆pH-dependent mechanisms are impaired, and an Arabidopsis sapx tapx double mutant was crossed with the pgr5 single mutant. The sapx tapx pgr5 triple mutant exhibited extreme sensitivity to HL compared with its parental lines. This phenotype was consistent with cellular redox perturbations and enhanced expression of many oxidative stress-responsive genes. These findings demonstrate that the PGR5-dependent mechanisms compensate for chloroplast APXs, and vice versa. An intriguing finding was that the failure of induction of non-photochemical quenching in pgr5 (because of the limitation in ∆pH formation) was partially recovered in sapx tapx pgr5. Further genetic studies suggested that this recovery was dependent on the NADH dehydrogenase-like complex-dependent pathway for cyclic electron flow around photosystem I. Together with data from the sapx tapx npq4 mutant, we discuss the interrelationship between APXs and ∆pH-dependent mechanisms under HL stress.
Collapse
Affiliation(s)
- Takashi Kameoka
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takaya Okayasu
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Kana Kikuraku
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
| | - Takahisa Ogawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Ishikawa
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Takanori Maruta
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
- Bioresource and Life Sciences, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori, 680-8553, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
27
|
Ogawa T, Sonoike K. Screening of mutants using chlorophyll fluorescence. JOURNAL OF PLANT RESEARCH 2021; 134:653-664. [PMID: 33686578 DOI: 10.1007/s10265-021-01276-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Chlorophyll fluorescence has been widely used for the estimation of photosynthesis or its regulatory mechanisms. Chlorophyll fluorescence measurements are the methods with non-destructive nature and do not require contact between plant materials and fluorometers. Furthermore, the measuring process is very rapid. These characteristics of chlorophyll fluorescence measurements make them a suitable tool to screen mutants of photosynthesis-related genes. Furthermore, it has been shown that genes with a wide range of functions can be also analyzed by chlorophyll fluorescence through metabolic interactions. In this short review, we would like to first introduce the basic principle of the chlorophyll fluorescence measurements, and then explore the advantages and limitation of various screening methods. The emphasis is on the possibility of chlorophyll fluorescence measurements to screen mutants defective in metabolisms other than photosynthesis.
Collapse
Affiliation(s)
- Takako Ogawa
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
28
|
Okuzaki A, Rühle T, Leister D, Schmitz-Linneweber C. The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4904-4914. [PMID: 33872351 DOI: 10.1093/jxb/erab165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The processing of chloroplast RNA requires a large number of nuclear-encoded RNA-binding proteins (RBPs) that are imported post-translationally into the organelle. The chloroplast ribonucleoprotein 31A (CP31A) supports RNA editing at 13 sites and also supports the accumulation of multiple chloroplast mRNAs. In cp31a mutants it is the ndhF mRNA (coding for a subunit of the NDH complex) that is most strongly affected. CP31A becomes particularly important at low temperatures, where it is essential for chloroplast development in young tissue. Next to two RNA-recognition motifs (RRMs), CP31A has an N-terminal acidic domain that is phosphorylated at several sites. We investigated the function of the acidic domain in the role of CP31A in RNA metabolism and cold resistance. Using point mutagenesis, we demonstrate that the known phosphorylation sites within the acidic domain are irrelevant for any of the known functions of CP31A, both at normal and at low temperatures. Even when the entire acidic domain is removed, no effects on RNA editing were observed. By contrast, loss of the acidic domain reduced the ability of CP31A to stabilize the ndhF mRNA, which was associated with reduced NDH complex activity. Most importantly, acidic domain-less CP31A lines displayed bleached young tissue in the cold. Together, these data show that the different functions of CP31A can be assigned to different regions of the protein: the RRMs are sufficient to maintain RNA editing and to allow the accumulation of basal amounts of ndhF mRNA, while chloroplast development under cold conditions critically depends on the acidic domain.
Collapse
Affiliation(s)
- Ayako Okuzaki
- Molecular Genetics, Humboldt-University Berlin, Philippstr.13, Berlin, Germany
| | - Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | |
Collapse
|
29
|
NTRC Effects on Non-Photochemical Quenching Depends on PGR5. Antioxidants (Basel) 2021; 10:antiox10060900. [PMID: 34204867 PMCID: PMC8229092 DOI: 10.3390/antiox10060900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Non-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, Arabidopsis thaliana plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions. Conversely, the NADPH-dependent thioredoxin reductase C (NTRC) is required for efficient energy utilization and plant growth, and in its absence, transient and steady-state NPQ is drastically increased. How NTRC influences NPQ and functionally interacts with CEF is unclear. Therefore, we generated the A. thaliana line pgr5 ntrc, and found that the inactivation of PGR5 suppresses the high transient and steady-state NPQ and impaired growth phenotypes observed in the ntrc mutant under short-day conditions. This implies that NTRC negatively influences PGR5 activity and, accordingly, the lack of NTRC is associated with decreased levels of PGR5, possibly pointing to a mechanism to restrict upregulation of PGR5 activity in the absence of NTRC. When exposed to high light intensities, pgr5 ntrc plants display extremely impaired photosynthesis and growth, indicating additive effects of lack of both proteins. Taken together, these findings suggest that the interplay between NTRC and PGR5 is relevant for photoprotection and that NTRC might regulate PGR5 activity.
Collapse
|
30
|
Zhang Q, Wang Y, Xie W, Chen C, Ren D, Hu J, Zhu L, Zhang G, Gao Z, Guo L, Zeng D, Shen L, Qian Q. OsMORF9 is necessary for chloroplast development and seedling survival in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 307:110907. [PMID: 33902846 DOI: 10.1016/j.plantsci.2021.110907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 05/24/2023]
Abstract
Chloroplasts are closely associated with the growth and development of higher plants. Accumulating evidence has revealed that the multiple organellar RNA editing factors (MORF) family of proteins influences plastidic and mitochondrial development through post-transcriptional regulation. However, the role of MORFs in regulating the development of chloroplasts in rice is still unclear. The OsMORF9 gene belongs to a small family of 7 genes in rice and is highly expressed in young leaves. We used the CRISPR/Cas9 system to mutate OsMORF9. The resulting knockout lines osmorf9-1 and osmorf9-2 exhibited an albino seedling lethal phenotype. Besides, the expression of many plastid-encoded genes involved in photosynthesis, the biogenesis of plastidic ribosomes and the editing and splicing of specific plastidic RNA molecules were severely affected in these two OsMORF9 mutants. Furthermore, yeast two-hybrid analysis revealed that OsMORF9 could interact with OsSLA4 and DUA1 which are members of the pentatricopeptide repeat (PPR) family of proteins. Analysis of subcellular localization of OsMORF9 also suggested that it might function in chloroplasts. The findings from the present study demonstrated the critical role of OsMORF9 in the biogenesis of chloroplast ribosomes, chloroplast development and seedling survival. This therefore provides new insights on the function of MORF proteins in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wei Xie
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
31
|
Pipitone R, Eicke S, Pfister B, Glauser G, Falconet D, Uwizeye C, Pralon T, Zeeman SC, Kessler F, Demarsy E. A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. eLife 2021; 10:e62709. [PMID: 33629953 PMCID: PMC7906606 DOI: 10.7554/elife.62709] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Light triggers chloroplast differentiation whereby the etioplast transforms into a photosynthesizing chloroplast and the thylakoid rapidly emerges. However, the sequence of events during chloroplast differentiation remains poorly understood. Using Serial Block Face Scanning Electron Microscopy (SBF-SEM), we generated a series of chloroplast 3D reconstructions during differentiation, revealing chloroplast number and volume and the extent of envelope and thylakoid membrane surfaces. Furthermore, we used quantitative lipid and whole proteome data to complement the (ultra)structural data, providing a time-resolved, multi-dimensional description of chloroplast differentiation. This showed two distinct phases of chloroplast biogenesis: an initial photosynthesis-enabling 'Structure Establishment Phase' followed by a 'Chloroplast Proliferation Phase' during cell expansion. Moreover, these data detail thylakoid membrane expansion during de-etiolation at the seedling level and the relative contribution and differential regulation of proteins and lipids at each developmental stage. Altogether, we establish a roadmap for chloroplast differentiation, a critical process for plant photoautotrophic growth and survival.
Collapse
Affiliation(s)
- Rosa Pipitone
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of NeuchâtelNeuchâtelSwitzerland
| | - Denis Falconet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Clarisse Uwizeye
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCVGrenobleFrance
| | - Thibaut Pralon
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
| | - Emilie Demarsy
- Plant Physiology Laboratory, University of NeuchâtelNeuchâtelSwitzerland
- Department of Botany and Plant Biology, University of GenevaGenevaSwitzerland
| |
Collapse
|
32
|
Ma M, Liu Y, Bai C, Yang Y, Sun Z, Liu X, Zhang S, Han X, Yong JWH. The Physiological Functionality of PGR5/PGRL1-Dependent Cyclic Electron Transport in Sustaining Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:702196. [PMID: 34305990 PMCID: PMC8294387 DOI: 10.3389/fpls.2021.702196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 05/07/2023]
Abstract
The cyclic electron transport (CET), after the linear electron transport (LET), is another important electron transport pathway during the light reactions of photosynthesis. The proton gradient regulation 5 (PGR5)/PRG5-like photosynthetic phenotype 1 (PGRL1) and the NADH dehydrogenase-like complex pathways are linked to the CET. Recently, the regulation of CET around photosystem I (PSI) has been recognized as crucial for photosynthesis and plant growth. Here, we summarized the main biochemical processes of the PGR5/PGRL1-dependent CET pathway and its physiological significance in protecting the photosystem II and PSI, ATP/NADPH ratio maintenance, and regulating the transitions between LET and CET in order to optimize photosynthesis when encountering unfavorable conditions. A better understanding of the PGR5/PGRL1-mediated CET during photosynthesis might provide novel strategies for improving crop yield in a world facing more extreme weather events with multiple stresses affecting the plants.
Collapse
Affiliation(s)
- Mingzhu Ma
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yifei Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Chunming Bai
- National Sorghum Improvement Center, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Yunhong Yang
- Professional Technology Innovation Center of Magnesium Nutrition, Yingkou Magnesite Chemical Ind Group Co., Ltd., Yingkou, China
| | - Zhiyu Sun
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Liu
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Key Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yifei Liu, ; Xiaori Han,
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
33
|
A fluorescence-based approach to screen for productive chemically mutagenized strains of Desmodesmus armatus. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int J Mol Sci 2020; 21:ijms21176082. [PMID: 32846932 PMCID: PMC7503970 DOI: 10.3390/ijms21176082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.
Collapse
|
35
|
The Chloroplast RNA Binding Protein CP31A Has a Preference for mRNAs Encoding the Subunits of the Chloroplast NAD(P)H Dehydrogenase Complex and Is Required for Their Accumulation. Int J Mol Sci 2020; 21:ijms21165633. [PMID: 32781615 PMCID: PMC7460601 DOI: 10.3390/ijms21165633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.
Collapse
|
36
|
Khan SA, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B, Varshney RK, Zhuang W. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hypogaea). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2239-2257. [PMID: 32285164 DOI: 10.1007/s00122-020-03594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Two novel resistant QTLs mapped and candidate genes identified for Aspergillus flavus resistance in cultivated peanut using SLAF-seq. Aflatoxin contamination in peanuts caused by Aspergillus flavus is a serious food safety issue for human health around the world. Host plant resistance to fungal infection and reduction in aflatoxin are crucial for mitigating this problem. Identification of the resistance-linked markers can be used in marker-assisted breeding for varietal development. Here we report construction of two high-density genetic linkage maps with 1975 SNP loci and 5022 SNP loci, respectively. Two consistent quantitative trait loci (QTL) were identified as qRAF-3-1 and qRAF-14-1, which located on chromosomes A03 and B04, respectively. QTL qRAF-3-1 was mapped within 1.67 cM and had more than 19% phenotypic variance explained (PVE), while qRAF-14-1 was located within 1.34 cM with 5.15% PVE. While comparing with the reference genome, the mapped QTLs, qRAF-3-1 and qRAF-14-1, were located within a physical distance of 1.44 Megabase pair (Mbp) and 2.22 Mbp, harboring 67 and 137 genes, respectively. Among the identified candidate genes, six genes with the same function were found within both QTLs regions. In addition, putative disease resistance RPP13-like protein 1 (RPP13), lipoxygenase (Lox), WRKY transcription factor (WRKY) and cytochrome P450 71B34 genes were also identified. Using microarray analysis, genes responded to A. flavus infection included coding for RPP13, pentatricopeptide repeat-containing-like protein, and Lox which may be possible candidate genes for resistance to A. flavus. The QTLs and candidate genes will further facilitate marker development and validation of genes for deployment in the molecular breeding programs against A. flavus in peanuts.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ye Deng
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yuhua Chen
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chong Zhang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Tiecheng Cai
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Niaz Ali
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Gandeka Mamadou
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Dongyang Xie
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, 502324, India
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Plant Molecular and Cell Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
37
|
Wolf BC, Isaacson T, Tiwari V, Dangoor I, Mufkadi S, Danon A. Redox regulation of PGRL1 at the onset of low light intensity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:715-725. [PMID: 32259361 DOI: 10.1111/tpj.14764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 05/11/2023]
Abstract
PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) regulates photosystem I cyclic electron flow which transiently activates non-photochemical quenching at the onset of light. Here, we show that a disulfide-based mechanism of PGRL1 regulated this process in vivo at the onset of low light levels. We found that PGRL1 regulation depended on active formation of key regulatory disulfides in the dark, and that PGR5 was required for this activity. The disulfide state of PGRL1 was modulated in plants by counteracting reductive and oxidative components and reached a balanced state that depended on the light level. We propose that the redox regulation of PGRL1 fine-tunes a timely activation of photosynthesis at the onset of low light.
Collapse
Affiliation(s)
- Bat-Chen Wolf
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tal Isaacson
- Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Vivekanand Tiwari
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Inbal Dangoor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Sapir Mufkadi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avihai Danon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
38
|
The lineage and diversity of putative amino acid sensor ACR proteins in plants. Amino Acids 2020; 52:649-666. [PMID: 32306102 DOI: 10.1007/s00726-020-02844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.
Collapse
|
39
|
The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins. PLANTS 2020; 9:plants9020280. [PMID: 32098170 PMCID: PMC7076377 DOI: 10.3390/plants9020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/02/2023]
Abstract
C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions.
Collapse
|
40
|
Hao Y, Wang Y, Wu M, Zhu X, Teng X, Sun Y, Zhu J, Zhang Y, Jing R, Lei J, Li J, Bao X, Wang C, Wang Y, Wan J. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4705-4720. [PMID: 31087099 PMCID: PMC6760278 DOI: 10.1093/jxb/erz226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 05/06/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants. Recent studies revealed the functions of PPR proteins in organellar RNA metabolism and plant development, but the functions of most PPR proteins, especially PPRs localized in the nucleus, remain largely unknown. Here, we report the isolation and characterization of a rice mutant named floury and growth retardation1 (fgr1). fgr1 showed floury endosperm with loosely arranged starch grains, decreased starch and amylose contents, and retarded seedling growth. Map-based cloning showed that the mutant phenotype was caused by a single nucleotide substitution in the coding region of Os08g0290000. This gene encodes a nuclear-localized PPR protein, which we named OsNPPR1, that affected mitochondrial function. In vitro SELEX and RNA-EMSAs showed that OsNPPR1 was an RNA protein that bound to the CUCAC motif. Moreover, a number of retained intron (RI) events were detected in fgr1. Thus, OsNPPR1 was involved in regulation of mitochondrial development and/or functions that are important for endosperm development. Our results provide novel insights into coordinated interaction between nuclear-localized PPR proteins and mitochondrial function.
Collapse
Affiliation(s)
- Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- Correspondence: ; ; or
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, PR China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, PR China
- Correspondence: ; ; or
| |
Collapse
|
41
|
OsCAF1, a CRM Domain Containing Protein, Influences Chloroplast Development. Int J Mol Sci 2019; 20:ijms20184386. [PMID: 31500108 PMCID: PMC6770308 DOI: 10.3390/ijms20184386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023] Open
Abstract
The chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are involved in the splicing of chloroplast gene introns. Numerous CRM domain proteins have been reported to play key roles in chloroplast development in several plant species. However, the functions of CRM domain proteins in chloroplast development in rice remain poorly understood. In the study, we generated oscaf1 albino mutants, which eventually died at the seedling stage, through the editing of OsCAF1 with two CRM domains using CRISPR/Cas9 technology. The mesophyll cells in oscaf1 mutant had decreased chloroplast numbers and damaged chloroplast structures. OsCAF1 was located in the chloroplast, and transcripts revealed high levels in green tissues. In addition, the OsCAF1 promoted the splicing of group IIA and group IIB introns, unlike orthologous proteins of AtCAF1 and ZmCAF1, which only affected the splicing of subgroup IIB introns. We also observed that the C-terminal of OsCAF1 interacts with OsCRS2, and OsCAF1–OsCRS2 complex may participate in the splicing of group IIA and group IIB introns in rice chloroplasts. OsCAF1 regulates chloroplast development by influencing the splicing of group II introns.
Collapse
|
42
|
Ran Z, Zhao J, Tong G, Gao F, Wei L, Ma W. Ssl3451 is Important for Accumulation of NDH-1 Assembly Intermediates in the Cytoplasm of Synechocystis sp. Strain PCC 6803. PLANT & CELL PHYSIOLOGY 2019; 60:1374-1385. [PMID: 30847493 DOI: 10.1093/pcp/pcz045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Two mutants sensitive to high light for growth and impaired in NDH-1 activity were isolated from a transposon-tagged library of Synechocystis sp. strain PCC 6803. Both mutants were tagged in the ssl3451 gene encoding a hypothetical protein, which shares a significant homology with the Arabidopsis (Arabidopsis thaliana) CHLORORESPIRATORY REDUCTION 42 (CRR42). In Arabidopsis, CRR42 associates only with an NDH-1 hydrophilic arm assembly intermediate (NAI) of about 400 kDa (NAI400), one of total three NAIs (NAI800, NAI500 and NAI400), and its deletion has little, if any, effect on accumulation of any NAIs in the stroma. In comparison, the ssl3451 product was localized mainly in the cytoplasm and associates with two NAIs of about 300 kDa (NAI300) and 130 kDa (NAI130). Deletion of Ssl3451 reduced the abundance of the NAI300 complex to levels no longer visible on gels and of the NAI130 complex to a low level, thereby impeding the assembly process of NDH-1 hydrophilic arm. Further, Ssl3451 interacts with another assembly factor Ssl3829 and they have a similar effect on accumulation of NAIs and NdhI maturation factor Slr1097 in the cytoplasm. We thus propose that Ssl3451 plays an important role in accumulation of the NAI300 and NAI130 complexes in the cytoplasm via its interacting protein Ssl3829.
Collapse
Affiliation(s)
- Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Jiaohong Zhao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Guifang Tong
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Fudan Gao
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Lanzhen Wei
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, China
| |
Collapse
|
43
|
Ruwe H, Gutmann B, Schmitz-Linneweber C, Small I, Kindgren P. The E domain of CRR2 participates in sequence-specific recognition of RNA in plastids. THE NEW PHYTOLOGIST 2019; 222:218-229. [PMID: 30393849 DOI: 10.1111/nph.15578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are modular RNA-binding proteins involved in different aspects of RNA metabolism in organelles. PPR proteins of the PLS subclass often contain C-terminal domains that are important for their function, but the role of one of these domains, the E domain, is far from resolved. Here, we elucidate the role of the E domain in CRR2 in plastids. We identified a surprisingly large number of small RNAs that represent in vivo footprints of the Arabidopsis PLS-class PPR protein CRR2. An unexpectedly strong base conservation was found in the nucleotides aligned to the E domain. We used both in vitro and in vivo experiments to reveal the role of the E domain of CRR2. The E domain of CRR2 can be predictably altered to prefer different nucleotides in its RNA ligand, and position 5 of the E1-motif is biologically important for the PPR-RNA interaction. The 'code' of the E domain PPR motifs is different from that of P- and S-motifs. The findings presented here show that the E domain of CRR2 is involved in sequence-specific interaction with its RNA ligand and have implications for our ability to predict RNA targets for PLS-PPRs and their use as biotechnological tools to manipulate specific RNAs in vivo.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | | | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| | - Peter Kindgren
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia
| |
Collapse
|
44
|
Nakano H, Yamamoto H, Shikanai T. Contribution of NDH-dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:369-374. [PMID: 30878346 DOI: 10.1016/j.bbabio.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023]
Abstract
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ∆pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
45
|
Hein A, Brenner S, Knoop V. Multifarious Evolutionary Pathways of a Nuclear RNA Editing Factor: Disjunctions in Coevolution of DOT4 and Its Chloroplast Target rpoC1eU488SL. Genome Biol Evol 2019; 11:798-813. [PMID: 30753430 PMCID: PMC6424221 DOI: 10.1093/gbe/evz032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear-encoded pentatricopeptide repeat (PPR) proteins are site-specific factors for C-to-U RNA editing in plant organelles coevolving with their targets. Losing an editing target by C-to-T conversion allows for eventual loss of its editing factor, as recently confirmed for editing factors CLB19, CRR28, and RARE1 targeting ancient chloroplast editing sites in flowering plants. Here, we report on alternative evolutionary pathways for DOT4 addressing rpoC1eU488SL, a chloroplast editing site in the RNA polymerase β' subunit mRNA. Upon loss of rpoC1eU488SL by C-to-T conversion, DOT4 got lost multiple times independently in angiosperm evolution with intermediate states of DOT4 orthologs in various stages of degeneration. Surprisingly, we now also observe degeneration and loss of DOT4 despite retention of a C in the editing position (in Carica, Coffea, Vicia, and Spirodela). We find that the cytidine remains unedited, proving that DOT4 was not replaced by another editing factor. Yet another pathway of DOT4 evolution is observed among the Poaceae. Although the rpoC1eU488SL edit has been lost through C-to-T conversion, DOT4 orthologs not only remain conserved but also have their array of PPRs extended by six additional repeats. Here, the loss of the ancient target has likely allowed DOT4 to adapt for a new function. We suggest rps3 antisense transcripts as previously demonstrated in barley (Hordeum vulgare) arising from promotor sequences newly emerging in the rpl16 intron of Poaceae as a new candidate target for the extended PPR stretch of DOT4. Altogether, DOT4 and its target show more flexible pathways for evolution than the previously explored editing factors CLB19, CRR28, and RARE1. Certain plant clades (e.g., Amaranthus, Vaccinium, Carica, the Poaceae, Fabales, and Caryophyllales) show pronounced dynamics in the evolution of editing sites and corresponding factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Sarah Brenner
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| | - Volker Knoop
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Germany
| |
Collapse
|
46
|
Kato Y, Odahara M, Fukao Y, Shikanai T. Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase-like complex: Lhca5-dependent supercomplex formation in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:937-948. [PMID: 30176081 DOI: 10.1111/tpj.14080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 05/25/2023]
Abstract
In angiosperms, such as Arabidopsis and barley, the chloroplast NADH dehydrogenase-like (NDH) complex associates with two copies of photosystem I (PSI) supercomplex to form an NDH-PSI supercomplex for the stabilization of the NDH complex. Two linker proteins, Lhca5 and Lhca6, are members of the light-harvesting complex I (LHCI) family and mediate this supercomplex formation. The liverwort Marchantia polymorpha has branched from the basal land plant lineage and has neither Lhca5 nor Lhca6. Consequently, the NDH complex does not form a supercomplex with PSI in this plant. The Lhca6 gene does not seem to exist also in the moss Physcomitrella patens (Physcomitrella). Conversely, the Lhca5 gene has been found in Physcomitrella, although experimental evidence is still lacking for its contribution to NDH-PSI supercomplex formation as a linker. Here, we biochemically characterized the Lhca5 knock-out mutant (lhca5) in Physcomitrella. The NDH-PSI supercomplex observed in wild-type Physcomitrella was absent in the lhca5 mutant. Lhca5 protein was detected in this NDH-PSI supercomplex. Some PSI and NDH subunits were co-immunoprecipitated with Lhca5-HA. These results indicate that the Physcomitrella gene is the functional ortholog of Lhca5 reported in Arabidopsis. Between Physcomitrella and Arabidopsis, the stromal loop region is highly conserved in Lhca5 proteins but not in other LHCI members. We found that Lhca5 contributed to the stable accumulation of the NDH complex, but part of the NDH complex was still sensitive to high light intensity, even in the wild-type. We considered that angiosperms acquired another linker protein, Lhca6, to further stabilize the NDH complex.
Collapse
Affiliation(s)
- Yoshinobu Kato
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo, 171-8501, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
47
|
Xiao H, Zhang Q, Qin X, Xu Y, Ni C, Huang J, Zhu L, Zhong F, Liu W, Yao G, Zhu Y, Hu J. Rice PPS1 encodes a DYW motif-containing pentatricopeptide repeat protein required for five consecutive RNA-editing sites of nad3 in mitochondria. THE NEW PHYTOLOGIST 2018; 220:878-892. [PMID: 30019754 DOI: 10.1111/nph.15347] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/09/2018] [Indexed: 05/02/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family is a large family characterized by tandem arrays of a degenerate 35-amino-acid motif whose members function as important regulators of organelle gene expression at the post-transcriptional level. Despite the roles of PPRs in RNA editing in organelles, their editing activities and the underlying mechanism remain obscure. Here, we show that a novel DYW motif-containing PPR protein, PPS1, is associated with five conserved RNA-editing sites of nad3 located in close proximity to each other in mitochondria, all of which involve conversion from proline to leucine in rice. Both pps1 RNAi and heterozygous plants are characterized by delayed development and partial pollen sterility at vegetative stages and reproductive stage. RNA electrophoresis mobility shift assays (REMSAs) and reciprocal competition assays using different versions of nad3 probes confirm that PPS1 can bind to cis-elements near the five affected sites, which is distinct from the existing mode of PPR-RNA binding because of the continuity of the editing sites. Loss of editing at nad3 in pps1 reduces the activity of several complexes in the mitochondrial electron transport chain and affects mitochondrial morphology. Taken together, our results indicate that PPS1 is required for specific editing sites in nad3 in rice.
Collapse
Affiliation(s)
- Haijun Xiao
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qiannan Zhang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaojian Qin
- Chongqing Key Laboratory of Molecular Biology of Plants Environmental Adaptations, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, Chongqing, China
| | - Yanghong Xu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenzi Ni
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jishuai Huang
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Linlin Zhu
- No.16 Middle School of Zhengzhou, Zheng Zhou, 450000, Henan, China
| | - Feiya Zhong
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Wei Liu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Guoxin Yao
- School of Life and Science Technology, Hubei Engineering University, Xiaogan, 432000, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
48
|
Takagi D, Miyake C. PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. PHYSIOLOGIA PLANTARUM 2018; 164:337-348. [PMID: 29604096 DOI: 10.1111/ppl.12723] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/22/2023]
Abstract
In higher plants, light drives the linear photosynthetic electron transport reaction from H2 O to electron sinks, which is called the linear electron flow (LEF). LEF activity should be regulated depending on electron sinks; otherwise excess electrons accumulate in the thylakoid membranes and stimulate reactive oxygen species (ROS) production in photosystem I (PSI), which causes oxidative damage to PSI. To prevent ROS production in PSI, PSI should be oxidized during photosynthesis, and PROTON GRADIENT REGULATION 5 (PGR5) and PGR like 1 (PGRL1) are important for this oxidation. PGR5 and PGRL1 are recognized as a component of ferredoxin-dependent cyclic electron flow around PSI (Fd-CEF-PSI), however there is no direct evidence for the significant operation of Fd-CEF-PSI during photosynthesis in wild-type (WT) plants. Thus, electron distribution by PGR5 and PGRL1 between Fd-CEF-PSI and LEF is still elusive. Here, we show direct evidence that Fd-CEF-PSI activity is minor during steady-state photosynthesis by measuring the Fd redox state in vivo in Arabidopsis thaliana. We found that Fd oxidation rate is determined by LEF activity during steady-state photosynthesis in WT. On the other hand, pgr5 and pgrl1 showed lower electron transport efficiency from PSI to electron sinks through Fd during steady-state photosynthesis. These results demonstrate that electrons are exclusively consumed in electron sinks through Fd, and the phenotypes of pgr5 and pgrl1 are likely caused by the disturbance of the LEF between PSI and electron sinks. We suggest that PGR5 and PGRL1 modulate the LEF according to electron sink activities around PSI.
Collapse
Affiliation(s)
- Daisuke Takagi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Core Research for Environmental Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
49
|
Wang C, Takahashi H, Shikanai T. PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1173-1179. [DOI: 10.1016/j.bbabio.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
50
|
Zhao N, Wang Y, Hua J. Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium. J Genet 2018. [DOI: 10.1007/s12041-018-0993-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|