1
|
Jia R, Meng D, Geng W. Advances in the anti-tumor mechanisms of saikosaponin D. Pharmacol Rep 2024; 76:780-792. [PMID: 38965200 DOI: 10.1007/s43440-024-00569-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 07/06/2024]
Abstract
Saikosaponin D, a saponin compound, is extracted from Bupleurum and is a principal active component of the plant. It boasts a variety of pharmacologic effects including anti-inflammatory, antioxidant, immunomodulatory, metabolic, and anti-tumor properties, drawing significant attention in anti-tumor research in recent years. Research indicates that saikosaponin D inhibits the proliferation of numerous tumor cells, curbing the progression of cancers such as liver, pancreatic, lung, glioma, ovarian, thyroid, stomach, and breast cancer. Its anti-tumor mechanisms largely involve inhibiting tumor cell proliferation, promoting tumor cell apoptosis, thwarting tumor-cell invasion, and modulating tumor cell autophagy. Moreover, saikosaponin D enhances the sensitivity to anti-tumor drugs and augments body immunity. Given its multi-faceted anti-tumor roles, saikosaponin D offers promising potential in anti-tumor therapy. This paper reviews recent studies on its anti-tumor effects, aiming to furnish new theoretical insights for clinical cancer treatments.
Collapse
Affiliation(s)
- Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Geng
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China.
| |
Collapse
|
2
|
Matherne MG, Phillips ES, Embrey SJ, Burke CM, Machado HL. Emerging functions of C/EBPβ in breast cancer. Front Oncol 2023; 13:1111522. [PMID: 36761942 PMCID: PMC9905667 DOI: 10.3389/fonc.2023.1111522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Breast tumorigenesis relies on complex interactions between tumor cells and their surrounding microenvironment, orchestrated by tightly regulated transcriptional networks. C/EBPβ is a key transcription factor that regulates the proliferation and differentiation of multiple cell types and modulates a variety of biological processes such as tissue homeostasis and the immune response. In addition, C/EBPβ has well-established roles in mammary gland development, is overexpressed in breast cancer, and has tumor-promoting functions. In this review, we discuss context-specific roles of C/EBPβ during breast tumorigenesis, isoform-specific gene regulation, and regulation of the tumor immune response. We present challenges in C/EBPβ biology and discuss the importance of C/EBPβ isoform-specific gene regulation in devising new therapeutic strategies.
Collapse
Affiliation(s)
- Megan G. Matherne
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Emily S. Phillips
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Samuel J. Embrey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Caitlin M. Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States,*Correspondence: Heather L. Machado,
| |
Collapse
|
3
|
Spek CA, Aberson HL, Butler JM, de Vos AF, Duitman J. CEBPD Potentiates the Macrophage Inflammatory Response but CEBPD Knock-Out Macrophages Fail to Identify CEBPD-Dependent Pro-Inflammatory Transcriptional Programs. Cells 2021; 10:cells10092233. [PMID: 34571881 PMCID: PMC8470509 DOI: 10.3390/cells10092233] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
CCAAT/enhancer-binding protein delta (C/EBPδ) is a member of the C/EBP family of transcription factors. According to the current paradigm, C/EBPδ potentiates cytokine production and modulates macrophage function thereby enhancing the inflammatory response. Remarkably, however, C/EBPδ deficiency does not consistently lead to a reduction in Lipopolysaccharide (LPS)-induced cytokine production by macrophages. Here, we address this apparent discrepancy and show that the effect of C/EBPδ on cytokine production and macrophage function depends on both the macrophage subtype and the LPS concentration used. Using CRISPR-Cas generated macrophages in which the transactivation domain of C/EBPδ was deleted from the endogenous locus (ΔTAD macrophages), we next show that the context-dependent role of C/EBPδ in macrophage biology relies on compensatory transcriptional activity in the absence of C/EBPδ. We extend these findings by revealing a large discrepancy between transcriptional programs in C/EBPδ knock-out and C/EBPδ transactivation dead (ΔTAD) macrophages implying that compensatory mechanisms do not specifically modify C/EBPδ-dependent inflammatory responses but affect overall macrophage biology. Overall, these data imply that knock-out approaches are not suited for identifying the genuine transcriptional program regulated by C/EBPδ, and we suggest that this phenomenon applies for transcription factor families in general.
Collapse
Affiliation(s)
- C. Arnold Spek
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
- Correspondence:
| | - Hella L. Aberson
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - Joe M. Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
| | - JanWillem Duitman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (H.L.A.); (J.M.B.); (A.F.d.V.); (J.D.)
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Liu F, Romantseva T, Park YJ, Golding H, Zaitseva M. Production of fever mediator PGE 2 in human monocytes activated with MDP adjuvant is controlled by signaling from MAPK and p300 HAT: Key role of T cell derived factor. Mol Immunol 2020; 128:139-149. [PMID: 33126082 DOI: 10.1016/j.molimm.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
Fever and inflammatory responses were observed in some subjects in early clinical trials of vaccines adjuvanted with muramyl dipeptide (MDP), a NOD2 agonist. Biosynthesis of Prostaglandin E2 (PGE2) that transmits febrile signals to the brain is controlled by an inducible enzyme, Cyclooxygenase 2 (COX-2). MDP alone was not sufficient to induce expression of COX-2 and PGE2 production in vitro. Conditioned medium prepared from Peripheral Blood Mononuclear Cells (PBMCs)-derived CD3-bead purified human T cells (TCM) dramatically increased COX2 gene transcription, COX-2 protein expression, and PGE2 production in MDP-treated monocytes. We explored epigenetic changes at the COX2 promoter using Chromatin Immunoprecipitation assay (ChIP). Increase in COX2 transcription correlated with increased recruitment of RNA polymerase II (Pol II) and p300 histone acetyl transferase (HAT) to the COX2 promoter in monocytes activated with MDP and TCM. The role of p300 HAT was confirmed by using C646, an inhibitor of p300, that reduced binding of acetylated H3 and H4 histones at the COX2 promoter, COX2 transcription, and PGE2 production in monocytes. Binding of p300, Nuclear Factor Kappa B (NF-κB), and Pol II to the COX2 promoter was also sensitive to inhibitors of Mitogen-Activated Protein Kinase (MAPK) pathway and to antibodies against Macrophage-1 (Mac-1) integrin in MDP/TCM-treated monocytes. Importantly, recombinant Glycoprotein Ib alfa (GPIbα), the recently identified factor in TCM, increased binding of NF-κB, p300, and of Pol II to the COX2 promoter and COX2 transcription in MDP-treated monocytes. Our findings suggest that a second signal through Mac-1 and MAPK is triggered by a T cell derived soluble GPIbα protein leading to the assembly of the transcription machinery at the COX2 promoter and production of PGE2 in human monocytes in response to MDP/NOD2 activation.
Collapse
Affiliation(s)
- Fengjie Liu
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Tatiana Romantseva
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Marina Zaitseva
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.
| |
Collapse
|
5
|
Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells. Nutrients 2019; 11:nu11092113. [PMID: 31491956 PMCID: PMC6770769 DOI: 10.3390/nu11092113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the oncogenic phenotype of cancer cells by acting as signaling molecules for inducing proliferation. ROS are known to activate the epidermal growth factor receptor (EGFR), which causes the activation of the Ras/mitogen-activated protein kinases (MAPKs) pathway. The Ras-dependent pathway promotes the activation of nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB), a transcriptional modulator of cyclooxygenase-2 (COX-2) that induces cell proliferation. Lycopene is a potent antioxidant carotenoid and is responsible for the red color of fruits and vegetables. This study aims to investigate whether lycopene inhibits proliferation and induces apoptosis in gastric cancer AGS cells by suppressing the EGFR/Ras/MAPK and NF-κB-COX-2 signaling axis. Lycopene decreased cell viability and increased apoptotic indices (DNA fragmentation, apoptosis inducing factor, cleavage of caspase-3 and caspase-9, Bax/Bcl-2 ratio). Lycopene reduced the level of intracellular and mitochondrial ROS and decreased the activation of the ROS-mediated EGFR/Ras/extracellular signal-regulated kinase (ERK) and p38 MAPK pathways, thus leading to attenuation of the DNA-binding activity of NF-κB p50/p50 and the level of COX-2 gene expression. These results show that lycopene-induced apoptosis and inhibition of proliferation occur via inhibition of ROS-activated EGFR/Ras/ERK and p38 MAPK pathways and NF-κB-mediated COX-2 gene expression in AGS cells. In conclusion, consumption of lycopene-enriched foods could decrease the incidence of gastric cancer.
Collapse
|
6
|
Ren M, McGowan E, Li Y, Zhu X, Lu X, Zhu Z, Lin Y, He S. Saikosaponin-d Suppresses COX2 Through p-STAT3/C/EBPβ Signaling Pathway in Liver Cancer: A Novel Mechanism of Action. Front Pharmacol 2019; 10:623. [PMID: 31191326 PMCID: PMC6549044 DOI: 10.3389/fphar.2019.00623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/15/2019] [Indexed: 01/30/2023] Open
Abstract
Saikosaponin-d (SSd) is an active extract from Radix Bupleuri, the dried root from the plant Bupleurum falcatum used in China for thousands of years to treat liver diseases. The SSd extract possesses valuable pharmacological activities including anti-cancer and anti-inflammatory effects; however, the mechanism underlying the anti-cancer activity of SSd is largely unknown. Here, we explored the mechanism of action of SSd as an anti-cancer agent for liver cancer in two human hepatocellular carcinoma cell lines. Using MTT and annexin-V-FITC/PI assays, Western blots, immunohistochemistry, qRT-PCR, luciferase reporter assay, and a JAK2-specific inhibitor (AG490), we demonstrated that the anti-tumorigenic effects of SSd act through the intermediatory p-STAT3/C/EBPβ signaling pathway to suppress cyclooxygenase (COX)-2. SSd effectively inhibited cell proliferation in a dose-dependent manner. Apoptosis was significantly increased in cells treated with SSd (2.5–15 µg/ml) with concurrent increase and decrease in pro- and anti-apoptosis proteins, respectively. COX-2, C/EBPβ, and p-STAT3 were significantly decreased, at both the translational and transcriptional levels, by SSd treatment. AG490 produced similar inhibitory effects on STAT3, p-STAT3, C/EBPβ, and COX-2. In conclusion, our data suggest that SSd controls liver cancer proliferation through suppression of the p-STAT3/C/EBPβ signaling pathway inhibiting COX2 expression. These findings further our understanding of the pharmacological action of SSd, providing new information on SSd mechanism of action and showing potential for SSd as a novel therapy for liver cancer.
Collapse
Affiliation(s)
- Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Xiaofeng Zhu
- Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinlan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Zhanfang Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiao tong University, Xi'an, China
| |
Collapse
|
7
|
Liu L, Dai W, Xiang C, Chi J, Zhang M. 1,10-Secoguaianolides from Artemisia austro-yunnanensis and Their Anti-Inflammatory Effects. Molecules 2018; 23:E1639. [PMID: 29976846 PMCID: PMC6099792 DOI: 10.3390/molecules23071639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 11/16/2022] Open
Abstract
Seven 1,10-secoguaianolides 1⁻7, including a new one (compound 1), were isolated from Artemisia austro-yunnanensis and identified by HRESIMS and other spectroscopic methods. Their anti-inflammatory effects were evaluated by the model of LPS-induced RAW264.7 cells in vitro. Bioassay results showed that six of them (1⁻4, 6 and 7), with the exception of 5, produce some cytotoxicity on RAW264.7 cells at its high dosage, can significantly decrease the release of NO, TNF-α, IL-1β, IL-6 and PGE2 in a dose dependent manner, and down-regulate the expression of proteins iNOS and COX-2. The mechanism study indicated they regulated the NF-κB dependent transcriptional activity through decreasing the phosphorylation of NF-κB. Further, the relationship between their structures and cytokines to anti-inflammatory were studied by PCA and discussed.
Collapse
Affiliation(s)
- Lan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Weifeng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Chi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
8
|
Gao Y, Zhang H, Luo L, Lin J, Li D, Zheng S, Huang H, Yan S, Yang J, Hao Y, Li H, Gao Smith F, Jin S. Resolvin D1 Improves the Resolution of Inflammation via Activating NF-κB p50/p50-Mediated Cyclooxygenase-2 Expression in Acute Respiratory Distress Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2043-2054. [PMID: 28794232 PMCID: PMC5583748 DOI: 10.4049/jimmunol.1700315] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe illness characterized by uncontrolled inflammation. The resolution of inflammation is a tightly regulated event controlled by endogenous mediators, such as resolvin D1 (RvD1). Cyclooxygenase-2 (COX-2) has been reported to promote inflammation, along with PGE2, in the initiation of inflammation, as well as in prompting resolution, with PGD2 acting in the later phase of inflammation. Our previous work demonstrated that RvD1 enhanced COX-2 and PGD2 expression to resolve inflammation. In this study, we investigated mechanisms underlying the effect of RvD1 in modulating proresolving COX-2 expression. In a self-limited ARDS model, an LPS challenge induced the biphasic activation of COX-2, and RvD1 promoted COX-2 expression during the resolution phase. However, it was significantly blocked by treatment of a NF-κB inhibitor. In pulmonary fibroblasts, NF-κB p50/p50 was shown to be responsible for the proresolving activity of COX-2. Additionally, RvD1 potently promoted p50 homodimer nuclear translocation and robustly triggered DNA-binding activity, upregulating COX-2 expression via lipoxin A4 receptor/formyl peptide receptor 2. Finally, the absence of p50 in knockout mice prevented RvD1 from promoting COX-2 and PGD2 expression and resulted in excessive pulmonary inflammation. In conclusion, RvD1 expedites the resolution of inflammation through activation of lipoxin A4 receptor/formyl peptide receptor 2 receptor and NF-κB p50/p50-COX-2 signaling pathways, indicating that RvD1 might have therapeutic potential in the management of ARDS.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Huawei Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Lingchun Luo
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jing Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Dan Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Sisi Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hua Huang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Songfan Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Jingxiang Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| | - Fang Gao Smith
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
- Institute of Inflammation and Ageing, College of Medical and Dental Science, University of Birmingham, Birmingham B15 2WB, United Kingdom
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang 325027, China; and
| |
Collapse
|
9
|
Okuma T, Hirata M, Yano F, Mori D, Kawaguchi H, Chung UI, Tanaka S, Saito T. Regulation of mouse chondrocyte differentiation by CCAAT/enhancer-binding proteins. Biomed Res 2015; 36:21-9. [PMID: 25749148 DOI: 10.2220/biomedres.36.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBP) β regulates chondrocyte differentiaion and proliferation during endochondral ossification. However, expression and function of other C/EBP family members in chondrocytes have not been fully understood. To understand the comprehensive regulation of chondrocyte differentiation by C/EBPs, we initially examined their expression levels. Among four members (C/EBPα, C/EBPβ, C/EBPδ and C/EBPε) with transactivation domain, expression of Cebpb and Cebpd was abundant compared to Cebpa, while Cebpe was hardly expressed in mouse isolated chondrocytes. Doxycycline (DOX)-inducible overexpression of each of the three C/EBPs (C/EBPα, C/EBPβ and C/EBPδ) in ATDC5 cells suppressed expressions of early differentiation markers including Col2a1, aggrecan and Sox9, enhanced those of late differentiation markers including Mmp13, Vegfa and Col10a1, and decelerated cell proliferation, indicating their overlapped functions in chondrocytes. In contrast, DOX-inducible overexpression of A-CEBP, which exerts a dominant-negative effect against all C/EBPs, increased expressions of early differentiation markers and decreased those of late differentiation markers. Finally, microarray and gene ontology analyses showed that A-CEBP altered many genes related with various events or tissues such as skeletal development, cartilage, cell cycle, inflammation and apoptosis. In conclusion, C/EBPα, C/EBPβ and C/EBPδ regulate proliferation and differentiation of chondrocytes and possibly is involved with apoptosis and inflammation. C/EBPs may play a variety of roles in the homeostasis of joint cartilage under physiological and pathological conditions.
Collapse
Affiliation(s)
- Tomotake Okuma
- Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
While increased COX2 expression and prostaglandin levels are elevated in human cancers, the mechanisms of COX2 regulation at the post-translational level are unknown. Initial observation that COX2 forms adduct with non-receptor tyrosine kinase FYN, prompted us to study FYN-mediated post-translational regulation of COX2. We found that FYN increased COX2 activity in prostate cancer cells DU145, independent of changes in COX2 or COX1 protein expression levels. We report that FYN phosphorylates human COX2 on Tyr 446, and while corresponding phospho-mimetic COX2 mutation promotes COX2 activity, the phosphorylation blocking mutation prevents FYN-mediated increase in COX2 activity.
Collapse
|
11
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
12
|
Arai KY, Fujioka A, Okamura R, Nishiyama T. Stimulatory effect of fibroblast-derived prostaglandin E₂ on keratinocyte stratification in the skin equivalent. Wound Repair Regen 2015; 22:701-11. [PMID: 25224163 DOI: 10.1111/wrr.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/04/2014] [Indexed: 02/03/2023]
Abstract
Epidermal-dermal interaction plays important roles in physiological events such as wound healing. In this study, we examined a double paracrine mechanism between keratinocytes and fibroblasts through interleukin-1 (IL-1) and an IL-1-induced inflammatory mediator prostaglandin E₂ (PGE₂) using the skin equivalent. The epidermal layer of the skin equivalent expressed high levels of IL-1α mRNA (IL1A mRNA) and relatively low levels of IL-1β mRNA (IL1B mRNA). IL1A mRNA was not detected in fibroblasts. Fibroblasts also expressed low but not negligible levels of IL1B mRNA only in the presence of keratinocytes. Expression of prostaglandin-endoperoxide synthase 2 mRNA (PTGS2 mRNA) and production of PGE₂ in three-dimensionally cultured fibroblasts were noticeably stimulated by co-culture with keratinocytes, whereas PTGS2 mRNA expression in the epidermal layer was very low. In addition, hydroxyprostaglandin dehydrogenase 15-(NAD) mRNA was highly expressed in keratinocytes but not in fibroblasts, and exogenous IL-1β stimulated PTGS2 mRNA expression in the dermal equivalent. The thickness of the epidermal layer and the number of MKI67-positive keratinocytes in the skin equivalent were decreased by treatment with indomethacin, and the decrease recovered when exogenous PGE₂ was added. These results indicate that keratinocytes stimulate their own proliferation through a double paracrine mechanism mediated by IL-1 and PGE₂.
Collapse
Affiliation(s)
- Koji Y Arai
- Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Han SA, Lee S, Seong SC, Lee MC. Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells. Tissue Eng Part A 2014; 20:2680-91. [PMID: 24806317 DOI: 10.1089/ten.tea.2013.0656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We investigated the effects of CD14 macrophages and proinflammatory cytokines on chondrogenic differentiation of osteoarthritic synovium-derived stem cells (SDSCs). Osteoarthritic synovial fluid was analyzed for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Levels of stem cell surface markers in osteoarthritic SDSCs were evaluated using flow cytometry. CD14-negative cells were obtained using magnetically activated cell sorting. We compared chondrogenic potentials between whole cells and CD14-negative cells in CD14(low) cells and CD14(high) cells, respectively. To assess whether nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein β (C/EBPβ) modulate IL-1β-induced alterations in chondrogenic potential, we performed small interfering RNA transfection. We observed a significant correlation between the CD14 ratio in osteoarthritic SDSCs and IL-1β and TNF-α in osteoarthritic synovial fluid. Phenotypic characterization of whole cells and CD14-negative cells showed no significant differences in levels of stem cell markers. mRNA expression of type II collagen was higher in CD14-negative cell pellets than in whole cell pellets. Immunohistochemical staining indicated higher levels of type II collagen in the CD14-negative cell pellets of CD14(high) cells than in whole cell pellets of CD14(high) cells. As expected, IL-1β and TNF-α significantly inhibited the expression of chondrogenic-related genes in SDSCs, an effect which was antagonized by knockdown of NF-κB and C/EBPβ. Our results suggest that depletion of CD14(+) synovial macrophages leads to improved chondrogenic potential in CD14(high) cell populations in osteoarthritic SDSCs, and that NF-κB (RelA) and C/EBPβ are critical factors mediating IL-1β-induced suppression of the chondrogenic potential of human SDSCs.
Collapse
Affiliation(s)
- Sun Ae Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine , Seoul, South Korea
| | | | | | | |
Collapse
|
14
|
Wang P, Guan PP, Guo C, Zhu F, Konstantopoulos K, Wang ZY. Fluid shear stress-induced osteoarthritis: roles of cyclooxygenase-2 and its metabolic products in inducing the expression of proinflammatory cytokines and matrix metalloproteinases. FASEB J 2013; 27:4664-77. [PMID: 23964078 DOI: 10.1096/fj.13-234542] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanical overloading of cartilage is involved in the pathophysiology of osteoarthritis (OA) by both biochemical and mechanical pathways. The application of fluid shear stress to chondrocytes recapitulates the earmarks of OA, as evidenced by the release of proinflammatory cytokines (PICs), matrix metalloproteinases (MMPs), and apoptotic factors. Dysregulations or mutations in these genes might directly cause OA in addition to determining the stage at which OA becomes apparent, the joint sites involved, and the severity of the disease and how rapidly it progresses. However, the underlying mechanisms remain unknown. In this review, we propose that the dysregulation of cyclooxygenase-2 (COX-2) is associated with fluid shear stress-induced OA via its metabolic products at different stages of the disease. Indeed, high fluid shear stress rapidly induces the production of PICs and MMPs via COX-2-derived prostaglandin (PG)E2 at the early stage of OA. In contrast, prolonged shear exposure (>12 h) aggravates the condition by concurrently up-regulating the expression of proapoptotic genes and down-regulating the expression of antiapoptotic genes in a 15-deoxy-Δ (12,14)-prostaglandin J2 (15d-PGJ2)-dependent manner at the late stage of disease. These observations may help to resolve long-standing questions in OA progression and provide insight for development of strategies to treat and combat OA.
Collapse
Affiliation(s)
- Pu Wang
- 1Z.-Y.W., College of Life and Health Sciences, Northeastern University, Shenyang, 110004, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Kovarik JJ, Hölzl MA, Hofer J, Waidhofer-Söllner P, Sobanov Y, Koeffel R, Saemann MD, Mechtcheriakova D, Zlabinger GJ. Eicosanoid modulation by the short-chain fatty acid n-butyrate in human monocytes. Immunology 2013; 139:395-405. [PMID: 23398566 DOI: 10.1111/imm.12089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 01/16/2023] Open
Abstract
n-Butyrate deriving from bacterial fermentation in the mammalian intestine is a key determinant in gastrointestinal homeostasis. We examined the effects of this short-chain fatty acid and Toll-like receptor 2 (TLR) and TLR4 engagement on inflammatory/immunity-associated genes, cyclo-oxygenases (COXs), prostaglandins (PGs) and leukotrienes (LTs) in human monocytes. Before RNA isolation, freshly isolated human monocytes were co-incubated for different time-points with 1 mm n-butyrate alone or in combination with bacterial stimuli. Based on a knowledge-driven approach, a signature of 180 immunity/inflammation-associated genes was picked and real-time PCR analysis was performed. Pathway analysis was carried out using a web-based database analysing program. Based on these gene expression studies the findings were evaluated at the protein/mediator level by Western blot analysis, FACS and ELISA. Following co-incubation with n-butyrate and lipopolysaccharide, key enzymes of the eicosanoid pathway, like PTGS2 (COX-2), TXS, ALOX5, LTA4H and LTC4S, were significantly up-regulated compared with stimulation with lipopolysaccharide alone. Furthermore, release of the lipid mediators PGE(2), 15d-PGJ(2), LTB(4) and thromboxane B(2) was increased by n-butyrate. Regarding signalling, n-butyrate had no additional effect on mitogen-activated protein kinase and interfered differently with early and late phases of nuclear factor-κB signalling. Our results suggest that among many other mediators of eicosanoid signalling n-butyrate massively induces PGE(2) production by increasing the expression of PTGS2 (COX-2) in monocytes following TLR4 and TLR2 activation and induces secretion of LTB(4) and thromboxane B(2). This underscores the role of n-butyrate as a crucial mediator of gut-specific immunity.
Collapse
Affiliation(s)
- Johannes J Kovarik
- Institute of Immunology, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hsiao YW, Li CF, Chi JY, Tseng JT, Chang Y, Hsu LJ, Lee CH, Chang TH, Wang SM, Wang DDH, Cheng HC, Wang JM. CCAAT/enhancer binding protein δ in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Sci Signal 2013; 6:ra59. [PMID: 23861541 DOI: 10.1126/scisignal.2003648] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although tumors tend to be associated with immune cells and inflammation, this immune response often fails to eliminate the cancer and instead promotes cancer progression. Tumor-associated macrophages (TAMs) fail to phagocytose tumor cells, and they also produce signals that suppress the adaptive immune response. We showed that immunosuppressive prostaglandin E₂ (PGE₂) led to the production and activity of the transcription factor CCAAT/enhancer binding protein δ (C/EBPδ) by stimulating the nucleocytoplasmic shuttling of the RNA binding protein Hu antigen R (HuR), which bound to and stabilized CEBPD mRNA in macrophages. An increase in C/EBPδ abundance in macrophages in response to PGE₂ resulted in enhanced production of the immunosuppressive cytokine interleukin-10 (IL-10) and of pentraxin 3 (PTX3), which suppresses the ability of macrophages to phagocytose tumor cells. Furthermore, conditioned medium from C/EBPδ-replete, but not C/EBPδ-deficient, macrophages inhibited the phagocytosis of tumor cells by macrophages, suggesting an autocrine mode of regulation. Immunohistochemical analysis demonstrated that the amount of cytosolic HuR protein correlated with increased C/EBPδ abundance in TAMs in malignant nasopharyngeal carcinoma. Together, these data suggest that the inflammatory PGE₂-HuR-C/EBPδ axis in macrophages promotes tumor progression by preventing the phagocytosis of tumor cells and inducing immunosuppressive cytokine production.
Collapse
Affiliation(s)
- Yu-Wei Hsiao
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sang X, Li B, Ze Y, Hong J, Ze X, Gui S, Sun Q, Liu H, Zhao X, Sheng L, Liu D, Yu X, Wang L, Hong F. Toxicological mechanisms of nanosized titanium dioxide-induced spleen injury in mice after repeated peroral application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5590-5599. [PMID: 23621103 DOI: 10.1021/jf3035989] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Due to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine whether the protein kinase MAPKs/PI3-K/Akt signaling pathways and transcription factors are activated prior to or concurrent with COX-2 up-regulation in mouse spleen following exposure to 10 mg/kg BW of pure anatase nano-TiO2 by the intragastric route for 15-90 days. The study clearly showed that nano-TiO2 was deposited in the spleen and resulted in reactive oxygen species production, time-dependent splenic inflammation, and necrosis, coupled with a 12.64-64.06% increase in COX-2 and prostaglandin E2 expression, respectively. Furthermore, nano-TiO2 elevated the expressions of ERK, AP-1, CRE, Akt, JNK2, MAPKs, PI3-K, c-Jun, and c-Fos in the spleen by 1.08-6-fold with increased exposure duration, respectively. These findings suggested that nano-TiO2-induced COX-2 expression may be mediated predominantly through the induction of AP-1 and CRE and that AP-1/CRE induction occurred via the MAPKs/PI3-K/Akt signaling pathways in the spleen. Therefore, the findings suggest the need for caution when using nanomaterials as food additives.
Collapse
Affiliation(s)
- Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
CCAAT enhancer binding protein δ plays an essential role in memory consolidation and reconsolidation. J Neurosci 2013; 33:3646-58. [PMID: 23426691 DOI: 10.1523/jneurosci.1635-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A newly formed memory is temporarily fragile and becomes stable through a process known as consolidation. Stable memories may again become fragile if retrieved or reactivated, and undergo a process of reconsolidation to persist and strengthen. Both consolidation and reconsolidation require an initial phase of transcription and translation that lasts for several hours. The identification of the critical players of this gene expression is key for understanding long-term memory formation and persistence. In rats, the consolidation of inhibitory avoidance (IA) memory requires gene expression in both the hippocampus and amygdala, two brain regions that process contextual/spatial and emotional information, respectively; IA reconsolidation requires de novo gene expression in the amygdala. Here we report that, after IA learning, the levels of the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) are significantly increased in both the hippocampus and amygdala. These increases are essential for long-term memory consolidation, as their blockade via antisense oligodeoxynucleotide-mediated knockdown leads to memory impairment. Furthermore, C/EBPδ is upregulated and required in the amygdala for IA memory reconsolidation. C/EBPδ is found in nuclear, somatic, and dendritic compartments, and a dendritic localization of C/EBPδ mRNA in hippocampal neuronal cultures suggests that this transcription factor may be translated at synapses. Finally, the induction of long-term potentiation at CA3-CA1 synapses by tetanic stimuli in acute slices, a cellular model of long-term memory, leads to an accumulation of C/EBPδ in the nucleus. We conclude that the transcription factor C/EBPδ plays a critical role in memory consolidation and reconsolidation.
Collapse
|
19
|
Duitman J, Hoogendijk AJ, Groot AP, Ruela de Sousa RR, van der Poll T, Florquin S, Spek CA. CCAAT-enhancer binding protein delta (C/EBPδ) protects against Klebsiella pneumoniae-induced pulmonary infection: potential role for macrophage migration. J Infect Dis 2012; 206:1826-35. [PMID: 23148291 DOI: 10.1093/infdis/jis615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mounting evidence suggests an important role for CCAAT-enhancer binding protein delta (C/EBPδ) in the acute-phase response after bacterial infection. However, whether C/EBPδ limits pneumonia remains elusive and is the aim of this study. Therefore, bacterial outgrowth, inflammatory responses, inflammatory cell influx, and survival were assessed in wild-type and C/EBPδ(-/-) mice infected with Klebsiella pneumoniae via the airways. We showed that C/EBPδ expression is highly induced in the lung during pulmonary infection and that Klebsiella-induced mortality was significantly increased among C/EBPδ(-/-) mice. Bacterial loads and inflammatory responses were similar in wild-type and C/EBPδ(-/-) mice early during infection, whereas bacterial loads were increased in C/EBPδ(-/-) mice later during infection. Moreover, macrophage numbers were reduced in lungs of C/EBPδ(-/-) mice. In vitro experiments showed that C/EBPδ only slightly affects macrophage function. Our data thus show that C/EBPδ contributes to host defense against Klebsiella-induced pneumonia and suggests that C/EBPδ-dependent macrophage mobilization is a key mechanism.
Collapse
Affiliation(s)
- JanWillem Duitman
- Center for Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica). Adv Pharmacol Sci 2012; 2012:614046. [PMID: 22927840 PMCID: PMC3426159 DOI: 10.1155/2012/614046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022] Open
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.
Collapse
|
21
|
Han EH, Yang JH, Kim HK, Choi JH, Khanal T, Do MT, Chung YC, Lee KY, Jeong TC, Jeong HG. 1-Bromopropane up-regulates cyclooxygenase-2 expression via NF-κB and C/EBP activation in murine macrophages. Food Chem Toxicol 2012; 50:1616-22. [PMID: 22353212 DOI: 10.1016/j.fct.2012.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/07/2012] [Accepted: 02/01/2012] [Indexed: 01/07/2023]
Abstract
1-Bromopropane (1-BP) has been used in industry as an alternative to ozone-depleting solvents. In the present study, we examined the effect of 1-BP on cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. 1-BP dose-dependently increased COX-2 protein and mRNA levels, as well as COX-2 promoter-driven luciferase activity in macrophages. Additionally, exposure to 1-BP markedly enhanced the production of prostaglandin E(2) (PGE(2)), a major COX-2 metabolite, in macrophages. Transfection experiments with several human COX-2 promoter constructs revealed that 1-BP activated the transcription factors nuclear factor-κB (NF-κB) and CCAAT/enhancer-binding protein (C/EBP), but not AP-1 or the cyclic AMP response element binding protein. Furthermore, Akt and mitogen-activated protein (MAP) kinases were significantly activated by 1-BP. These results demonstrated that 1-BP induced COX-2 expression via NF-κB and C/EBP activation through the Akt/ERK and p38 MAP kinase pathways. These findings provide further insight into the signal transduction pathways involved in the inflammatory effects of 1-BP.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu SQ, Otero M, Unger FM, Goldring MB, Phrutivorapongkul A, Chiari C, Kolb A, Viernstein H, Toegel S. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:364-372. [PMID: 21963554 PMCID: PMC3282169 DOI: 10.1016/j.jep.2011.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia sappan is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. In order to provide a scientific basis for the applicability of Caesalpinia sappan in arthritic diseases, the present study aimed to assess the effects of an ethanolic Caesalpinia sappan extract (CSE) on human chondrocytes and macrophages. MATERIALS AND METHODS Primary human chondrocytes were isolated from cartilage specimens of OA patients. Primary cells, SW1353 chondrocytes and THP-1 macrophages were serum-starved and pretreated with different concentrations of CSE prior to stimulation with 10 ng/ml of interleukin-1beta (IL-1β) or lipopolysaccharide (LPS). Following viability tests, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were evaluated by Griess assay and ELISA, respectively. Using validated real-time PCR assays, mRNA levels of IL-1β, TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified. SW1353 cells were cotransfected with a COX-2 luciferase reporter plasmid and nuclear factor-kappa-B (NF-κB) p50 and p65 expression vectors in the presence or absence of CSE. RESULTS CSE dose-dependently inhibited the expression of pro-inflammatory cytokines IL-1β and TNF-α in IL-1β-stimulated chondrocytes and LPS-stimulated THP-1 macrophages. CSE further suppressed the synthesis of NO in primary OA chondrocytes by blocking iNOS mRNA expression. The inhibition of COX-2 transcription was found to be related with the CSE inhibition of the p65/p50-driven transactivation of the COX-2 promoter. CONCLUSIONS The present report is first to demonstrate the anti-inflammatory activity of CSE in an in vitro cell model of joint inflammation. CSE can effectively abrogate the IL-1β-induced over-expression of inflammatory mediators at the transcriptional level in human chondrocytes and macrophages, most likely by inhibiting NF-κB (p65/p50) signaling. Blockade of IL-1β-induced NF-κB signaling and its downstream pro-inflammatory targets by CSE may be beneficial for reducing cartilage breakdown in arthritis.
Collapse
Affiliation(s)
- Shengqian Q Wu
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
- Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
| | - Miguel Otero
- Laboratory of Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | - Frank M Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Mary B Goldring
- Laboratory of Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Catharina Chiari
- Department of Orthopedics, Medical University Vienna, 1090 Vienna, Austria
| | - Alexander Kolb
- Department of Orthopedics, Medical University Vienna, 1090 Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
| | - Stefan Toegel
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 1090 Vienna, Austria
- Laboratory of Cartilage Biology, Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York, USA
- Department of Orthopedics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
23
|
Arai KY, Ono M, Kudo C, Fujioka A, Okamura R, Nomura Y, Nishiyama T. IL-1beta stimulates activin betaA mRNA expression in human skin fibroblasts through the MAPK pathways, the nuclear factor-kappaB pathway, and prostaglandin E2. Endocrinology 2011; 152:3779-90. [PMID: 21828177 DOI: 10.1210/en.2011-0255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During mouse skin wound healing, mRNAs encoding IL-1, activins, and TGF-βs significantly increased. To elucidate involvement of IL-1 in the regulation of activins and related factors in the wounded skin, human foreskin fibroblasts were stimulated with IL-1β, and levels of mRNAs encoding activins, TGF-βs, and follistatin family proteins were examined by quantitative real-time PCR. IL-1β increased activin βA (INHBA) and follistatin (FST) mRNA expression within 6 h. A p38 MAPK inhibitor, SB202190, a MAPK/ERK kinase inhibitor, U0126, and an nuclear factor κB pathway inhibitor, SC-514, significantly suppressed the IL-1β-stimulated INHBA and FST mRNA expression. A prostaglandin-endoperoxide synthase inhibitor indomethacin, a potent inhibitor of prostaglandin E(2) (PGE(2)) synthesis, also significantly suppressed the IL-1β-stimulated INHBA but not FST mRNA expression. Furthermore, stimulation of fibroblasts with PGE(2) significantly increased INHBA mRNA. The PGE(2)-induced INHBA mRNA expression was significantly suppressed by U0126 and a protein kinase C inhibitor, Gö 6983. Although IL-1β stimulated FST mRNA in an acute phase, long-term exposure of fibroblasts to IL-1β revealed time-dependent stimulatory and inhibitory effects of IL-1β on FST mRNA expression. On the other hand, coculture with keratinocytes significantly increased INHBA mRNA expression in dermal equivalents. In summary, the present study indicates that the p38 MAPK, the MAPK/ERK kinase, the nuclear factor κB pathway, and PGE(2) mediate the effects of IL-1β on INHBA mRNA expression. Furthermore, it is indicated that keratinocyte-derived factor of factors stimulate INHBA mRNA expression during wound healing.
Collapse
Affiliation(s)
- Koji Y Arai
- Division of Matrix Biology, Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Liang X, Hu YN, He SX, Deng Y, Li XF, Zhang YX, Hou HL, Zhu ZF. Significance of COX-2 and C/EBP β expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2010; 18:3040-3044. [DOI: 10.11569/wcjd.v18.i28.3040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of cyclooxygenase-2 (COX-2) and CCAAT/enhancer binding protein β (C/EBP β) and to analyze their correlation with the clinical pathological parameters in hepatocellular carcinoma (HCC).
METHODS: The expression of COX-2 and C/EBP β in 59 HCC tissue specimens and 18 normal hepatic tissue specimens were detected by immunohistochemistry.
RESULTS: The positive rate of COX-2 expression in HCC was 72.9% (P < 0.05). COX-2 expression was correlated with Child-Pugh classification, tumor diameter, TNM stage, vein invasion, lymph node metastasis, and distant metastasis (P < 0.05). The positive rate of C/EBP β expression in HCC was 47.5% (P < 0.05). C/EBP β expression was correlated with history of alcohol use, tumor diameter and TNM stage (P < 0.05). A close correlation was noted between the expression of COX-2 and C/EBP β (r = 0.580, P < 0.05).
CONCLUSION: COX-2 is overexpressed in HCC and may be involved in early hepatocarcinogenesis. C/EBP β-related signal pathway may up-regulate the expression of COX-2 in the early stage of HCC.
Collapse
|
25
|
Ejarque-Ortiz A, Gresa-Arribas N, Straccia M, Mancera P, Solà C, Tusell JM, Serratosa J, Saura J. CCAAT/enhancer binding protein delta in microglial activation. J Neurosci Res 2010; 88:1113-23. [PMID: 19908286 DOI: 10.1002/jnr.22272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein delta (C/EBP delta) regulates transcription of genes that play important roles in glial activation. Previous studies have shown the astroglial expression of C/EBP delta but the microglial expression of C/EBP delta remains virtually unexplored, with the exception of two microarray studies. In this report, using murine primary cultures and BV2 cells we clearly demonstrate that C/EBP delta is expressed by microglia and it is upregulated in microglial activation. Lipopolysaccharide upregulates C/EBP delta both in microglia and in astrocytes. This effect is time-dependent, with a maximum effect at 3 hr at mRNA level and at 4-8 hr at protein level, and concentration-dependent, with a maximum effect at 100 ng/mL. The lipopolysaccharide-induced C/EBP delta upregulation in BV2 microglia is mimicked by agonists of the toll-like receptors 2, 3 and 9 and can be prevented by an inhibitor of extracellular signal-regulated kinase activation. C/EBP delta from activated BV2 microglia binds to the cyclooxygenase-2 promoter and forms complexes with C/EBP beta isoforms. These results point to C/EBP delta as a putative key regulator of proinflammatory gene expression in microglial activation.
Collapse
Affiliation(s)
- Aroa Ejarque-Ortiz
- Department of Cerebral Ischaemia and Neurodegeneration, IIBB, CSIC, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol 2010; 88:877-84. [PMID: 20573802 DOI: 10.1189/jlb.0310153] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
TAMs are usually abundant in the tumor microenvironment and are now known to play an essential role in tumor progression. For example, TAMs influence many aspects of tumorigenesis, such as the growth, survival, invasion, and metastasis of tumor cells, tumor angiogenesis, and the suppression of other tumor-infiltrating immune effector cells. The molecular pathways that regulate these tumor-promoting functions of TAMs are currently under intense investigation. Several recent studies about transgenic murine tumor models have shown that the transcription factor NF-κB is a key player in tumor progression with distinct roles in regulating the functions of macrophages and tumor cells in malignant tumors. Here, we outline the evidence for classical and noncanonical NF-κB signaling pathways driving the tumor-promoting repertoire of TAMs.
Collapse
Affiliation(s)
- Subhra K Biswas
- 1.Biomedical Sciences Institutes, Agency for Science, Technology and Research (A*STAR), #04-01 Immunos, 8A Biomedical Grove, Singapore.
| | | |
Collapse
|
27
|
RNAi-based strategies for cyclooxygenase-2 inhibition in cancer. J Biomed Biotechnol 2010; 2010:828045. [PMID: 20625420 PMCID: PMC2896898 DOI: 10.1155/2010/828045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/18/2010] [Accepted: 04/08/2010] [Indexed: 12/19/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) enzyme has been involved in the tumorigenesis and in the progression of colorectal cancer (CRC). The use of traditional nonsteroidal anti-inflammatory drugs (NSAIDs) or selective COX-2 inhibitors has been proposed for the prevention and the treatment of this relevant neoplastic disease. In the light of an innovative alternative to these pharmacological approaches, we review here the possible strategies to achieve a strong and selective inhibition of COX-2 enzyme by using the mechanism of RNA Interference (RNAi) targeted against its mRNA. Anti-COX-2 siRNA molecules (siCOX-2) can be generated in CRC cells from short hairpin RNA (shRNA) precursors, delivered in vitro by a retroviral expression system, and induce a significant and stable silencing of overexpressed COX-2 in human colon cancer cells. As a safer alternative to viral approach, nonpathogenic bacteria (E. coli) can be engineered to invade eukaryotic cells and to generate siCOX-2 molecules in cancer cells. Moreover, the involvement of miRNAs in COX-2 posttranscriptional regulation opens up the possibility to exploit an endogenous silencing mechanism to knockdown overexpressed COX-2. Thus, these recent strategies disclose new challenging perspectives for the development of clinically compatible siRNA or miRNA capable of selectively inhibiting COX-2 enzyme.
Collapse
|
28
|
Han EH, Kim JY, Kim HG, Choi JH, Im JH, Woo ER, Jeong HG. Dihydro-N-caffeoyltyramine down-regulates cyclooxygenase-2 expression by inhibiting the activities of C/EBP and AP-1 transcription factors. Food Chem Toxicol 2010; 48:579-86. [DOI: 10.1016/j.fct.2009.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/27/2009] [Accepted: 11/11/2009] [Indexed: 01/17/2023]
|
29
|
Jeong HG, Pokharel YR, Lim SC, Hwang YP, Han EH, Yoon JH, Ahn SG, Lee KY, Kang KW. Novel role of Pin1 induction in type II collagen-mediated rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6689-6697. [PMID: 19846884 DOI: 10.4049/jimmunol.0901431] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints and subsequent destruction of cartilage and bone. Inflammatory mediators such as PGs and proinflammatory cytokines contribute to RA progress. Pin1, a peptidyl prolyl isomerase, plays important pathophysiological roles in several diseases, including cancer and neurodegeneration. We found that both Pin1 and cyclooxygenase-2 (COX-2) were highly expressed in ankle tissues of type II collagen-induced RA mice. HTB-94 cells overexpressing Pin1 and primary cultured human chondrocytes showed increased basal expression of proinflammatory proteins (COX-2, inducible NO synthase, TNF-alpha, and IL-1beta). Site-directed mutagenesis revealed that Pin1-mediated transcriptional activation of COX-2 was coordinately regulated by NF-kappaB, CREB, and C/EBP. Gel shift, reporter gene, and Western blot analyses confirmed that NF-kappaB, CREB, and C/EBP were consistently activated in chondrocytes overexpressing Pin1. Treatment of RA mice with juglone, a chemical inhibitor of Pin1, significantly reduced RA progress and COX-2 expression in the ankle tissues. Moreover, juglone dose dependently decreased the basal COX-2 expression in primary cultured chondrocytes from RA patients. These results demonstrate that Pin1 induction during RA progress stimulates proinflammatory protein expression by activating NF-kappaB, CREB, and C/EBP, and suggest that Pin1 is a potential therapeutic target of RA.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Armstrong DA, Phelps LN, Vincenti MP. CCAAT enhancer binding protein-beta regulates matrix metalloproteinase-1 expression in interleukin-1beta-stimulated A549 lung carcinoma cells. Mol Cancer Res 2009; 7:1517-24. [PMID: 19723873 DOI: 10.1158/1541-7786.mcr-09-0082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinase-1 (MMP-1) is an inflammation-inducible neutral protease that mediates extracellular matrix remodeling and promotes tumor invasion. In this study, we examined the activation of MMP-1 gene expression in A549 lung carcinoma cells stimulated with the inflammatory cytokine interleukin-1beta (IL-1beta). We found that MMP-1 mRNA levels were maximal following 16 hours of IL-1beta stimulation and that this correlated with the expression of the transcription factor CCAAT enhancer-binding protein-beta (CEBPB). Knockdown of CEBPB expression with short hairpin RNA abrogated the expression of MMP-1, MMP-3, and MMP-10 in IL-1beta-stimulated A549 cells. An established CEBP element in the MMP-1 promoter was found to be required for basal and IL-1beta-induced transcription. Electrophoresis mobility shift assays showed that CEBPB binds to this promoter element maximally 16 hours after IL-1beta stimulation. DNA affinity chromatography studies showed that the LAP1, LAP2, and LIP isoforms of CEBPB bind to the IL-1beta-responsive CEBPB site in the MMP-1 promoter. Exogenous expression of the LAP1 and LAP2 isoforms stimulated the MMP-1 promoter, whereas LIP had no effect. Phosphorylation of CEBPB at Thr(235) peaked at 16 hours in IL-1beta-stimulated cells. The MEK inhibitor U0126 inhibited this phosphorylation and reduced MMP-1 gene induction. These studies establish CEBPB as an important mediator of metalloproteinase gene activation during inflammatory responses in lung cancer cells and highlight the different regulatory roles of CEBPB isoforms.
Collapse
Affiliation(s)
- David A Armstrong
- Research Service, Department of Veterans Affairs, White River Junction, VT 05009, USA
| | | | | |
Collapse
|
31
|
Hayashida M, Okazaki K, Fukushi J, Sakamoto A, Iwamoto Y. CCAAT/enhancer binding protein beta mediates expression of matrix metalloproteinase 13 in human articular chondrocytes in inflammatory arthritis. ACTA ACUST UNITED AC 2009; 60:708-16. [PMID: 19248099 DOI: 10.1002/art.24332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To determine the function of CCAAT/enhancer binding protein beta (C/EBPbeta) in the expression of matrix metalloproteinase 13 (MMP-13) in chondrocytes in inflammatory arthritis. METHODS Cartilage obtained from patients with rheumatoid arthritis and osteoarthritis was immunostained for expression of C/EBPbeta or MMP-13. Interleukin-1beta- or tumor necrosis factor alpha (TNFalpha)-stimulated chondrocytes were subjected to Western blotting and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). MMP-13 promoter assays were conducted, and the C/EBPbeta response element was characterized by deletion and mutation analysis. C-28/I2 cells were treated with TNFalpha and subjected to chromatin immunoprecipitation (ChIP) assays. Finally, C/EBPbeta-liver-enriched activator protein (LAP) was overexpressed in C-28/I2 cells or cartilage tissues, and MMP-13 expression was analyzed. RESULTS C/EBPbeta and MMP-13 expression was colocalized in chondrocytes in arthritic cartilage. MMP-13 promoter activity was stimulated by C/EBPbeta overexpression in a dose-dependent manner. Luciferase assays revealed that a -981-bp promoter had the greatest activity, while deletion to -936 bp strongly diminished promoter activity. Luciferase activity was repressed to basal levels by mutations in potential C/EBP binding sites. The stimulatory effects of C/EBPbeta overexpression were diminished by mutation. ChIP assays revealed that TNFalpha treatment enhanced the binding of C/EBPbeta to the MMP-13 promoter. When C/EBPbeta-LAP was overexpressed in C-28/I2 cells, endogenous MMP-13 expression was stimulated up to 32-fold as detected by real-time RT-PCR. Furthermore, following adenoviral overexpression of C/EBPbeta-LAP in organ culture of articular cartilage, stimulation of MMP-13 was also detected by immunohistochemistry. CONCLUSION C/EBPbeta directly binds to the MMP-13 promoter region and stimulates the expression of MMP-13 in chondrocytes in inflammatory arthritis.
Collapse
|
32
|
Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE. Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood 2009; 113:3139-46. [PMID: 19171876 PMCID: PMC2869029 DOI: 10.1182/blood-2008-12-172825] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pivotal role of tumor-associated macrophages (TAMs) in tumor progression is now well established. TAMs have been shown to influence multiple steps in tumor development including the growth, survival, invasion, and metastasis of tumor cells as well as angiogenesis and lymphangiogenesis in tumors. The molecular circuits that polarize TAMs toward such a protumoral phenotype are now the focus of intense investigation. The transcription factor, nuclear factor-kappaB (NF-kappaB), is a master regulator of many cellular processes and been shown to regulate various pathways that impact on the function of TAMs. Much evidence for this has come from the use of elegant transgenic murine tumor models in which modification of single components of the NF-kappaB signaling pathway has been shown to regulate the pro-tumor repertoire of TAMs. Here, we outline this evidence and attempt to reconcile the various views that have emerged recently over the exact role of NF-kappaB in this phenomenon.
Collapse
Affiliation(s)
- Thorsten Hagemann
- Centre for Cancer and Inflammation, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Subhra K. Biswas
- Laboratory of Human Innate Immunity, Singapore Immunology Network, Biomedical Sciences Institutes, Agency for Science, Technology & Research, Singapore
| | - Toby Lawrence
- Centre for Cancer and Inflammation, Institute of Cancer, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Antonio Sica
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, and DiSCAFF, University of Piemonte Orientale A Avogadro, Novara, Italy
| | - Claire E. Lewis
- Academic Unit of Pathology, University of Sheffield Medical School, Sheffield, United Kingdom
| |
Collapse
|
33
|
Megías J, Guillén MI, Clérigues V, Rojo AI, Cuadrado A, Castejón MA, Gomar F, Alcaraz MJ. Heme oxygenase-1 induction modulates microsomal prostaglandin E synthase-1 expression and prostaglandin E(2) production in osteoarthritic chondrocytes. Biochem Pharmacol 2009; 77:1806-13. [PMID: 19428335 DOI: 10.1016/j.bcp.2009.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 12/21/2022]
Abstract
Pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) may participate in the pathogenesis of cartilage damage in osteoarthritis (OA) through the production of catabolic enzymes and inflammatory mediators. Induction of heme oxygenase-1 (HO-1) has previously been shown to exert anti-inflammatory effects in different cell types. We have investigated whether HO-1 induction may modify chondrocyte viability and the production of relevant mediators such as oxidative stress and prostaglandin E(2) (PGE(2)) elicited by IL-1beta in OA chondrocytes. Chondrocytes were isolated from OA cartilage and used in primary culture. Cells were stimulated with IL-1beta in the absence or presence of the HO-1 inducer cobalt protoporphyrin IX (CoPP). Gene expression was assessed by quantitative real-time PCR, protein levels by ELISA and Western blot, apoptosis by laser scanning cytometry using annexin V-FITC and TUNEL assays, and oxidative stress by LSC with dihydrorhodamine 123. HO-1 induction by CoPP enhanced chondrocyte viability and aggrecan content while inhibiting apoptosis and oxidative stress generation. PGE(2) is produced in OA chondrocytes stimulated by IL-1beta by the coordinated induction of cyclooxygenase-2 and microsomal PGE synthase 1 (mPGES-1). The production of PGE(2) was decreased by HO-1 induction as a result of diminished mPGES-1 protein and mRNA expression. Transfection with HO-1 small interfering RNA counteracted CoPP effects. In addition, the activation of nuclear factor-kappaB and early growth response-1 was significantly reduced by CoPP providing a basis for its anti-inflammatory effects. These results confirm the protective role of HO-1 induction in OA chondrocytes and suggest the potential interest of this strategy in degenerative joint diseases.
Collapse
Affiliation(s)
- Javier Megías
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hirata M, Kugimiya F, Fukai A, Ohba S, Kawamura N, Ogasawara T, Kawasaki Y, Saito T, Yano F, Ikeda T, Nakamura K, Chung UI, Kawaguchi H. C/EBPbeta Promotes transition from proliferation to hypertrophic differentiation of chondrocytes through transactivation of p57. PLoS One 2009; 4:e4543. [PMID: 19229324 PMCID: PMC2638010 DOI: 10.1371/journal.pone.0004543] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/06/2009] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis.
Collapse
Affiliation(s)
- Makoto Hirata
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumitaka Kugimiya
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Fukai
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naohiro Kawamura
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toru Ogasawara
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Kawasaki
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taku Saito
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumiko Yano
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiyuki Ikeda
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kozo Nakamura
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Kawaguchi
- Departments of Sensory & Motor System Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
35
|
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 2008; 67 Suppl 3:iii75-82. [PMID: 19022820 PMCID: PMC3939701 DOI: 10.1136/ard.2008.098764] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In osteoarthritis (OA), adult articular chondrocytes undergo phenotypic modulation in response to alterations in the environment owing to mechanical injury and inflammation. These processes not only stimulate the production of enzymes that degrade the cartilage matrix but also inhibit repair. With the use of in vitro and in vivo models, new genes, not known previously to act in cartilage, have been identified and their roles in chondrocyte differentiation during development and in dysregulated chondrocyte function in OA have been examined. These new genes include growth arrest and DNA damage (GADD)45beta and the epithelial-specific ETS (ESE)-1 transcription factor, induced by bone morphogenetic protein (BMP)-2 and inflammatory cytokines, respectively. Both genes are induced by NF-kappaB, suppress COL2A1 and upregulate matrix meatalloproteinase-13 (MMP-13) expression. These genes have also been examined in mouse models of OA, in which discoidin domain receptor 2 is associated with MMP-13-mediated remodelling, in order to understand their roles in physiological cartilage homoeostasis and joint disease.
Collapse
Affiliation(s)
- M B Goldring
- Hospital for Special Surgery, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
36
|
Han EH, Kim JY, Kim HK, Hwang YP, Jeong HG. o,p′-DDT induces cyclooxygenase-2 gene expression in murine macrophages: Role of AP-1 and CRE promoter elements and PI3-kinase/Akt/MAPK signaling pathways. Toxicol Appl Pharmacol 2008; 233:333-42. [DOI: 10.1016/j.taap.2008.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 01/13/2023]
|
37
|
Wang WL, Lee YC, Yang WM, Chang WC, Wang JM. Sumoylation of LAP1 is involved in the HDAC4-mediated repression of COX-2 transcription. Nucleic Acids Res 2008; 36:6066-79. [PMID: 18820298 PMCID: PMC2577330 DOI: 10.1093/nar/gkn607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CEBPB, one of the CEBP family members, is a crucial regulator of gene expression during innate immunity, inflammatory responses and adipogenesis. In this study, the EGF-induced increase of CEBPB mRNA is shown to be coincident with the decrease of COX-2 mRNA. We identified that all of the individual CEBPB isoforms, LAP1, LAP2 and LIP, attenuate EGF-induced COX-2 promoter activity. Although increased sumoylation of both LAP1 and LAP2 is observed during the lagging stage of EGF treatment, only the sumoylated LAP1, but not the sumoylated LAP2, is responsible for COX-2 gene repression. In addition, EGF treatment can regulate the nucleocytoplasmic redistribution of HDAC4 and SUMO1. We further demonstrated by loss-of- and gain-of-function approaches that HDAC4 can be a negative regulator while inactivating COX-2 transcription. The sumoylation mutant LAP1, LAP1K174A, exhibits an attenuated ability to interact with HDAC4, and increased COX-2 promoter activity. Furthermore, the in vivo DNA binding assay demonstrated that LAP1K174A and CEBPDK120A, sumoylation-defective CEBPD mutants, attenuate the binding of HDAC4 on the COX-2 promoter. In light of the above, our data suggest that the suCEBPD and suLAP1 are involved in the repression of COX-2 transcription through the recruitment of HDAC4.
Collapse
Affiliation(s)
- Wen-Ling Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Guillén MI, Megías J, Clérigues V, Gomar F, Alcaraz MJ. The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory process in osteoarthritic chondrocytes. Rheumatology (Oxford) 2008; 47:1323-8. [PMID: 18621749 DOI: 10.1093/rheumatology/ken264] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Previous work has shown that the CO-releasing molecule CORM-2 protects against cartilage degradation. The aim of this study was to examine whether CORM-2 can control the production of inflammatory mediators in osteoarthritic chondrocytes and determine the mechanisms involved. METHODS Primary cultures of chondrocytes from OA patients were stimulated with IL-1beta. The production of reactive oxygen species, nitrite, PGE(2), TNF-alpha and IL-1 receptor antagonist (IL-1Ra) were measured in the presence or absence of CORM-2. The expression of nitric oxide synthase-2 (NOS-2), cyclo-oxygenase-2 (COX-2) and microsomal PG E synthase-1 (mPGES-1) was followed by western blot and real-time PCR. Activation of nuclear factor-kappaB (NF-kappaB) and hypoxia inducible factor-1alpha (HIF-1alpha), and phosphorylation of NF-kappaB inhibitory protein alpha (IkappaBalpha) were determined by ELISA. RESULTS CORM-2 decreased the production of oxidative stress, nitrite and PGE(2). In addition, CORM-2 inhibited IL-1beta-induced TNF-alpha but enhanced IL-1Ra production. Treatment of chondrocytes with CORM-2 strongly down-regulated NOS-2 and mPGES-1 protein expression, whereas COX-2 was reduced to a lesser extent. These changes were accompanied by a significant decrease in mRNA expression for NOS-2 and mPGES-1. CORM-2 showed a concentration-dependent inhibition of DNA-binding activity for p65 NF-kappaB and HIF-1alpha. IkappaBalpha phosphorylation was also reduced by CORM-2 treatment. CONCLUSIONS These data have opened new mechanisms of action for CORM-2, raising the prospect that CO-releasing molecules are an interesting strategy for the development of new treatments in articular conditions.
Collapse
Affiliation(s)
- M I Guillén
- Department of Pharmacology, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain
| | | | | | | | | |
Collapse
|
39
|
Healy ZR, Zhu F, Stull JD, Konstantopoulos K. Elucidation of the signaling network of COX-2 induction in sheared chondrocytes: COX-2 is induced via a Rac/MEKK1/MKK7/JNK2/c-Jun-C/EBPβ-dependent pathway. Am J Physiol Cell Physiol 2008; 294:C1146-57. [DOI: 10.1152/ajpcell.00542.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear stress is a pathophysiologically relevant mechanical signal in cartilage biology and tissue engineering. Cyclooxygenase-2 (COX-2) is a pivotal proinflammatory enzyme, which is induced by mechanical loading-derived shear stress in chondrocytes. In the present study, we investigated the transcriptional machinery and signaling pathway regulating shear-induced COX-2 expression in human chondrocytic cells. Deletion and mutation analyses of the human cox-2 promoter reveal that the CCAAT/enhancer-binding protein (C/EBP) and activator protein-1 (AP-1) predominantly contribute to the shear-induced cox-2 promoter activity. Supershift assays disclose that C/EBPβ, but not C/EBPα or C/EBPδ, binds to the C/EBP site, whereas c-Jun binds to AP-1. Individual gene knockdown experiments demonstrate the direct regulation of C/EBPβ expression by c-Jun, and the critical roles of both c-Jun and C/EBPβ in shear-induced COX-2 synthesis. Our studies also indicate that Rac and, to a lesser extent, Cdc42 transactivate MEKK1, which is, in turn, responsible for activation of mitogen-activated protein kinase kinase 7 (MKK7). MKK7 regulates c-Jun NH2-terminal kinase 2 activation, which, in turn, triggers the phosphorylation of c-Jun that controls shear-mediated COX-2 upregulation in chondrocytes. Reconstructing the signaling network regulating shear-induced COX-2 expression and inflammation may provide insights to optimize conditions for culturing artificial cartilage in bioreactors and for developing therapeutic interventions for arthritic disorders.
Collapse
|
40
|
PENG HAIBING, TAN LUJIAN, OSAKI MAKOTO, ZHAN YUMEI, IJIRI KOSEI, TSUCHIMOCHI KANEYUKI, OTERO MIGUEL, WANG HONG, CHOY BOBK, GRALL FRANCKT, GU XUESONG, LIBERMANN TOWIAA, OETTGEN PETER, GOLDRING MARYB. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. J Cell Physiol 2008; 215:562-73. [PMID: 18044710 PMCID: PMC3937869 DOI: 10.1002/jcp.21338] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epithelium-specific ETS (ESE)-1 transcription factor is induced in chondrocytes by interleukin-1beta (IL-1beta). We reported previously that early activation of EGR-1 by IL-1beta results in suppression of the proximal COL2A1 promoter activity by displacement of Sp1 from GC boxes. Here we report that ESE-1 is a potent transcriptional suppressor of COL2A1 promoter activity in chondrocytes and accounts for the sustained, NF-kappaB-dependent inhibition by IL-1beta. Of the ETS factors tested, this response was specific to ESE-1, since ESE-3, which was also induced by IL-1beta, suppressed COL2A1 promoter activity only weakly. In contrast, overexpression of ETS-1 increased COL2A1 promoter activity and blocked the inhibition by IL-1beta. These responses to ESE-1 and ETS-1 were confirmed using siRNA-ESE1 and siRNA-ETS1. In transient cotransfections, the inhibitory responses to ESE-1 and IL-1beta colocalized in the -577/-132 bp promoter region, ESE-1 bound specifically to tandem ETS sites at -403/-381 bp, and IL-1-induced binding of ESE-1 to the COL2A1 promoter was confirmed in vivo by ChIP. Our results indicate that ESE-1 serves a potent repressor function by interacting with at least two sites in the COL2A1 promoter. However, the endogenous response may depend upon the balance of other ETS factors such as ETS-1, and other IL-1-induced factors, including EGR-1 at any given time. Intracellular ESE-1 staining in chondrocytes in cartilage from patients with osteoarthritis (OA), but not in normal cartilage, further suggests a fundamental role for ESE-1 in cartilage degeneration and suppression of repair.
Collapse
Affiliation(s)
- HAIBING PENG
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - LUJIAN TAN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - MAKOTO OSAKI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - YUMEI ZHAN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - KOSEI IJIRI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - KANEYUKI TSUCHIMOCHI
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| | - MIGUEL OTERO
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| | - HONG WANG
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - BOB K. CHOY
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - FRANCK T. GRALL
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - XUESONG GU
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - TOWIA A. LIBERMANN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - PETER OETTGEN
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
| | - MARY B. GOLDRING
- Department of Medicine, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, Massachusetts
- Laboratory for Cartilage Biology, Research Division, The Hospital for Special Surgery, Weill College of Medicine of Cornell University, New York, New York
| |
Collapse
|
41
|
Clément N, Gueguen M, Glorian M, Blaise R, Andréani M, Brou C, Bausero P, Limon I. Notch3 and IL-1beta exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-kappaB drives crosstalk. J Cell Sci 2008; 120:3352-61. [PMID: 17881497 DOI: 10.1242/jcs.007872] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Atherogenesis begins with the transfer of monocytes from the lumen to the intimal layer of arteries. The paracrine activity acquired by these monocytes shifts vascular smooth muscle cells from a contractile-quiescent to a secretory-proliferative phenotype, allowing them to survive and migrate in the intima. Transformed and relocated, they also start to produce and/or secrete inflammatory enzymes, converting them into inflammatory cells. Activation of the Notch pathway, a crucial determinant of cell fate, regulates some of the new features acquired by these cells as it triggers vascular smooth muscle cells to grow and inhibits their death and migration. Here, we evaluate whether and how the Notch pathway regulates the cell transition towards an inflammatory or de-differentiated state. Activation of the Notch pathway by the notch ligand Delta1, as well as overexpression of the active form of Notch3, prevents this phenomenon [initiated by interleukin 1beta (IL-1beta)], whereas inhibiting the Notch pathway enhances the transition. IL-1beta decreases the expression of Notch3 and Notch target genes. As shown by using an IkappaBalpha-mutated form, the decrease of Notch3 signaling elements occurs subsequent to dissociation of the NF-kappaB complex. These results demonstrate that the Notch3 pathway is attenuated through NF-kappaB activation, allowing vascular smooth muscle cells to switch into an inflammatory state.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Amyloid Precursor Protein Secretases/metabolism
- Animals
- Aorta/anatomy & histology
- Aorta/metabolism
- Biomarkers/metabolism
- Cell Communication/physiology
- Cells, Cultured
- Dinoprostone/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Inflammation/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NF-kappa B/metabolism
- Phospholipases A2/metabolism
- Rats
- Rats, Wistar
- Receptor, Notch3
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Nathalie Clément
- UMR 7079 de Physiologie et Physiopathologie, Université Pierre et Marie Curie, CNRS, 7 quai Saint-Bernard 75252 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen LX, Lin L, Wang HJ, Wei XL, Fu X, Zhang JY, Yu CL. Suppression of early experimental osteoarthritis by in vivo delivery of the adenoviral vector-mediated NF-kappaBp65-specific siRNA. Osteoarthritis Cartilage 2008; 16:174-84. [PMID: 17686636 DOI: 10.1016/j.joca.2007.06.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/05/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study was to use adenoviral vector-mediated nuclear factor-kappaBp65 (NF-kappaBp65)-specific siRNA (Ad-siRNA(NF-kappaBp65)) to suppress the progression of early osteoarthritis (OA) in rat model, and therefore to explore a new gene therapy for OA. METHODS Reverse transcription polymerase chain reaction was performed to confirm the silencing effect of Ad-siRNA(NF-kappaBp65) in cultured rat chondrocytes. Transection of the medial collateral ligament plus partial medial meniscectomy was operated in the knee of rats to establish OA model. Histological analysis was made to assess the morphological change of cartilage and synovium, and enzyme-linked immunosorbent assay was made to measure the expression of cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), in synovial fluid. The silencing effect of Ad-siRNA(NF-kappaBp65) on NF-kappaBp65 in cartilage and synovium of knee was measured with Western blot and the activation of NF-kappaB was measured with electrophoretic mobility shift assays. RESULTS Ad-siRNA(NF-kappaBp65) can inhibit the activation of NF-kappaB and the expression of NF-kappaBp65 in cartilage and synovium of the knee, restrain the induction of IL-1beta and TNF-alpha in synovial fluid, alleviate the inflammation of synovium and reduce the degradation of cartilage in early phase of experimental OA. CONCLUSIONS Ad-siRNA(NF-kappaBp65) can suppress the progression of the early experimental OA which suggests that Ad-siRNA(NF-kappaBp65) has potential to be a useful preventive and therapeutic agent for OA.
Collapse
Affiliation(s)
- L X Chen
- Institute of Sports Medicine, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing 100083, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Slofstra SH, Groot AP, Obdeijn MHP, Reitsma PH, ten Cate H, Spek CA. Gene expression profiling identifies C/EBPdelta as a candidate regulator of endotoxin-induced disseminated intravascular coagulation. Am J Respir Crit Care Med 2007; 176:602-9. [PMID: 17600275 DOI: 10.1164/rccm.200609-1250oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RATIONALE A runaway inflammatory response to systemic infection or severe trauma is characterized by the activation of a diversity of pathways, ultimately resulting in the development of disseminated intravascular coagulation (DIC) and multiorgan failure. OBJECTIVES Despite increased fundamental knowledge of the pathogenesis of DIC, the exact molecular mechanisms remain elusive. We aimed therefore to improve our understanding of the molecular pathways underlying endotoxin-induced DIC. METHODS We performed large-scale gene expression profiling in the liver of mice during the onset of endotoxin-induced DIC. The relevance of an identified candidate gene involved in endotoxin-induced DIC was subsequently assessed in the generalized Shwartzman reaction. MEASUREMENTS AND MAIN RESULTS Approximately 5% of over 20,000 genes were differentially regulated. In addition to well-established sepsis-associated genes, such as macrophage inflammatory protein 1, plasminogen activator inhibitor 1, CD14, and A20, we identified several novel candidates for inflammatory disease of which the transcription factor C/EBPdelta (CAAT/enhancer binding protein delta) was studied further. Induction of DIC in C/EBPdelta-deficient mice decreased endotoxin-induced systemic inflammation as compared with wild-type mice, as evident from decreased plasma levels of tumor necrosis factor-alpha and IL-6. In addition, C/EBPdelta deficiency partly protected against DIC-induced mortality. Interestingly, C/EBPdelta deficiency seemed mainly protective by improving renal function. This latter notion was confirmed in an experimental model of renal ischemia/reperfusion injury in which C/EBPdelta deficiency reduced ischemia/reperfusion-induced creatinine and urea levels. CONCLUSIONS Our results endorse the usefulness of gene expression profiling in identifying novel mediators of DIC by showing that C/EBPdelta regulates specific pathologic features of this endotoxin-induced syndrome.
Collapse
Affiliation(s)
- Sjoukje H Slofstra
- Center for Experimental and Molecular Medicine, G2-132, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Jeong HG, Pokharel YR, Han EH, Kang KW. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein. Biochem Biophys Res Commun 2007; 359:51-6. [PMID: 17524357 DOI: 10.1016/j.bbrc.2007.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/05/2007] [Indexed: 12/27/2022]
Abstract
Panax ginseng is a widely used herbal medicine in East Asia and is reported to have a variety of pharmacological effects against cardiovascular diseases and cancers. Here we show a unique effect of ginsenoside Rd (Rd) on cyclooxygenase-2 (COX-2) expression in RAW264.7 macrophages. Rd (100 microg/ml), but not other ginsenosides induced COX-2 and increased prostaglandin E(2) production. Gel shift and Western blot analyses using nuclear fractions revealed that Rd increased both the DNA binding of and the nuclear levels of CCAAT/enhancer binding protein (C/EBP)alpha/beta and cyclic AMP response element binding protein (CREB), but not of p65, in RAW264.7 cells. Moreover, Rd increased the luciferase reporter gene activity in cells transfected with a 574-bp mouse COX-2 promoter construct. Site-specific mutation analyses confirmed that Rd-mediated transcriptional activation of COX-2 gene was regulated by C/EBP and CREB. These results provide evidence that Rd activated C/EBP and CREB, and that the activation of C/EBP and CREB appears to be essential for induction of COX-2 in RAW264.7 cells.
Collapse
Affiliation(s)
- Hye Gwang Jeong
- BK21 Project Team, College of Pharmacy, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | | | | | | |
Collapse
|
45
|
Joo M, Wright JG, Hu NN, Sadikot RT, Park GY, Blackwell TS, Christman JW. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1219-26. [PMID: 17220375 DOI: 10.1152/ajplung.00474.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expression of cyclooxygenase-2 (COX-2) is associated with the pathogenesis of inflammation and various cancers, including lung cancer. Yin Yang 1 (YY1) is a zinc-finger transcription factor that interacts with histone acetyltransferases and deacetylases for its transcriptional activity and also is involved in inflammation and tumorigenesis. We investigated whether YY1 regulates COX-2 expression. We located a possible YY1 binding site proximal to the transcription initiation site of the COX-2 promoter. Electrophoretic mobility shift assays show that YY1 bound to the putative YY1 site in vitro. To show biological relevance, we performed chromatin immunoprecipitation assays showing that lipopolysaccharide (LPS) treatment induced YY1 binding to the cognate site in the endogenous COX-2 promoter. Overexpression of YY1 in macrophages treated with either LPS or live Pseudomonas aeruginosa increased COX-2 transcriptional activity. Furthermore, YY1 enhanced COX-2 protein expression and prostaglandin D2 production elicited by LPS treatment. Mechanistically, we observed that LPS treatment resulted in disruption of an interaction between YY1 and p300, a histone acetyltransferase, but did not affect the interaction between YY1 and histone deacetylase 1/2. These data suggest that in response to LPS, YY1 dissociates from p300 and binds to the COX-2 promoter, contributing to COX-2 expression in an inflammatory milieu.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2650, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Raghav SK, Gupta B, Shrivastava A, Das HR. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1β through suppression of NF-κB activation by 3-(1′-1′-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 2007; 560:69-80. [PMID: 17292351 DOI: 10.1016/j.ejphar.2007.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/06/2007] [Accepted: 01/10/2007] [Indexed: 12/21/2022]
Abstract
The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice. The normal behavioral condition in LPS challenged BALB/c mice was noticed when these were treated with active compound.
Collapse
Affiliation(s)
- Sunil Kumar Raghav
- Proteomics and Structural Biology Division, Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi-110 007, India
| | | | | | | |
Collapse
|
47
|
Jin SH, Kim TI, Yang KM, Kim WH. Thalidomide destabilizes cyclooxygenase-2 mRNA by inhibiting p38 mitogen-activated protein kinase and cytoplasmic shuttling of HuR. Eur J Pharmacol 2007; 558:14-20. [PMID: 17208222 DOI: 10.1016/j.ejphar.2006.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/18/2022]
Abstract
We investigated the effect of thalidomide on transcriptional and post-transcriptional cyclooxygenase-2 (COX-2) expression, including a pathway leading to COX-2 mRNA destabilization. We found that thalidomide inhibited the interleukin-1beta (IL-1beta)-mediated induction of COX-2 protein and mRNA in Caco-2 cells. Transient transfection with a COX-2 promoter construct demonstrated that thalidomide did not affect IL-1beta-induced transcriptional activation of COX-2, although it did decrease the stability of COX-2 mRNA and suppress IL-1beta-induced cytoplasmic shuttling of an mRNA stabilizing protein, HuR. Thalidomide also suppressed IL-1beta-induced p38 mitogen-activated protein kinase (MAPK) activation, while a p38 MAPK inhibitor destabilized COX-2 mRNA and the cytoplasmic shuttling of HuR induced by IL-1beta. These data suggest that one of the molecular mechanisms of thalidomide may be destabilization of COX-2 mRNA through inhibition of cytoplasmic shuttling of HuR and p38 MAPK.
Collapse
Affiliation(s)
- Soo Hyun Jin
- Department of Internal Medicine and Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
48
|
Raspollini MR, Taddei GL. Cyclooxygenase-2: a novel target in human solid tumors. Curr Oncol Rep 2007; 9:96-101. [PMID: 17288873 DOI: 10.1007/s11912-007-0004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The enzyme cyclooxygenase-2, which is involved in the conversion of arachidonic acid-to-prostanoid synthesis, plays a key role in many inflammatory and proliferative reactions. Experimental data have shown that prostaglandins have a central action in therapeutic targeting not only in the treatment of many inflammatory diseases but also in several types of human cancers. Inhibitors of cyclooxygenase activity seem to protect against carcinoma development and show promise as chemopreventive agents and possible target therapies. Data support new treatments for patients with solid cancers tailored to the molecular characteristics of the individual tumor.
Collapse
Affiliation(s)
- Maria Rosaria Raspollini
- Department of Human Pathology and Oncology, University of Florence, School of Medicine, Viale G.B. Morgagni, 85. 50134 Florence, Italy.
| | | |
Collapse
|
49
|
Hou DX, Masuzaki S, Hashimoto F, Uto T, Tanigawa S, Fujii M, Sakata Y. Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch Biochem Biophys 2007; 460:67-74. [PMID: 17313938 DOI: 10.1016/j.abb.2007.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 12/27/2006] [Accepted: 01/05/2007] [Indexed: 01/22/2023]
Abstract
The inhibitory effects of green tea proanthocyanidins on cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) release were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Prodelphinidin B2 3,3' di-O-gallate (PDGG) caused a dose-dependent inhibition of COX-2 at both mRNA and protein levels with the attendant release of PGE(2). Molecular evidence revealed that PDGG inhibited the degradation of Ikappa-B, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta, and phosphorylation of c-Jun, but not CRE-binding protein (CREB), which regulate COX-2 expression. Moreover, PDGG suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. The results demonstrated that PDGG suppressed COX-2 expression via blocking MAPK-mediated activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. Furthermore, studies on structure-activity relationship using five kinds of proanthocyanidins revealed that the galloyl moiety of proanthocyanidins appeared important to their inhibitory actions. Thus, our findings provide the first molecular basis that green tea proanthocyanidins with the galloyl moiety might have anti-inflammatory properties through blocking MAPK-mediated COX-2 expression.
Collapse
Affiliation(s)
- De-Xing Hou
- Department of Biochemical Science and Technology, Kagoshima University, Korimoto 1-21-24, Kagoshima City 890-0065, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Okazaki K, Yu H, Davies SR, Imamura T, Sandell LJ. A promoter element of the CD-RAP gene is required for repression of gene expression in non-cartilage tissues in vitro and in vivo. J Cell Biochem 2006; 97:857-68. [PMID: 16250001 DOI: 10.1002/jcb.20648] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cartilage-derived retinoic acid-sensitive protein (CD-RAP) gene is expressed predominately in cartilage. Previous studies in transgenic mice have shown that the DNA promoter segment from -2,251 bp to -2,068 bp of the CD-RAP gene contains elements critical for gene expression. Subsequent studies revealed both positive and negative regulatory motifs in this 183 bp element. Here we show that this element demonstrates activation or repression of gene expression in vitro and in vivo based on cell type and content of transcription factors. The distribution of Sox (positive) and C/EBP (negative) transcription factors in cell lines and in mouse tissues is consistent with their positive and negative roles. In transgenic mice, when the 183-bp element was removed from a 3,345-bp cartilage-specific CD-RAP promoter, expression of the reporter gene became widespread, being observed in muscle, bone, lung, and liver in addition to cartilage. In vitro, mutation of the C/EBP site activated the inactive 3,345-bp CD-RAP gene promoter in myoblastic cells, suggesting that this site is responsible for (-2,079 bp) repression. These results indicate that the 183-bp element plays an important role in cartilage-specific gene expression by acting as a chondrocyte-regulatory module repressing transcription in non-chondrocytes and contributing to activation in chondrocytes. This is the first report of a functional DNA element necessary for repression in non-cartilage tissues in vivo.
Collapse
Affiliation(s)
- Ken Okazaki
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|