1
|
Goyal S, Paspureddi A, Lu M, Chan H, Lyons SN, Wilson CN, Niere M, Ziegler M, Cambronne XA. Dynamics of SLC25A51 reveal preference for oxidized NAD + and substrate led transport. EMBO Rep 2023; 24:e56596. [PMID: 37575034 PMCID: PMC10561365 DOI: 10.15252/embr.202256596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | | | - Mu‐Jie Lu
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Hsin‐Ru Chan
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Scott N Lyons
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Crystal N Wilson
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Marc Niere
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Xiaolu A Cambronne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
- Livestrong Cancer InstituteUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
2
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Int J Mol Sci 2023; 24:12429. [PMID: 37569809 PMCID: PMC10419320 DOI: 10.3390/ijms241512429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Ferns and lycophytes have received scant molecular attention in comparison to angiosperms. The advent of high-throughput technologies allowed an advance towards a greater knowledge of their elusive genomes. In this work, proteomic analyses of heart-shaped gametophytes of two ferns were performed: the apomictic Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. In total, a set of 218 proteins shared by these two gametophytes were analyzed using the STRING database, and their proteome associated with metabolism, genetic information processing, and responses to abiotic stress is discussed. Specifically, we report proteins involved in the metabolism of carbohydrates, lipids, and nucleotides, the biosynthesis of amino acids and secondary compounds, energy, oxide-reduction, transcription, translation, protein folding, sorting and degradation, and responses to abiotic stresses. The interactome of this set of proteins represents a total network composed of 218 nodes and 1792 interactions, obtained mostly from databases and text mining. The interactions among the identified proteins of the ferns D. affinis and D. oreades, together with the description of their biological functions, might contribute to a better understanding of the function and development of ferns as well as fill knowledge gaps in plant evolution.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland;
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain;
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland; (V.G.); (U.G.)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain; (S.O.); (J.M.A.)
| |
Collapse
|
3
|
Qian J, Zhao T, Guo L, Li S, He Z, He M, Shen B, Fang R. Mitochondrial ADP/ATP Carrier 1 Is Important for the Growth of Toxoplasma Tachyzoites. Microbiol Spectr 2023; 11:e0004023. [PMID: 37154708 PMCID: PMC10269819 DOI: 10.1128/spectrum.00040-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023] Open
Abstract
Metabolism associated with energy production is highly compartmentalized in eukaryotic cells. During this process, transporters that move metabolites across organelle membranes play pivotal roles. The highly conserved ADP/ATP carrier (AAC) involved in ATP and ADP exchange between the mitochondria and cytoplasm is key to linking the metabolic activities in these 2 compartments. The ATP produced in mitochondria can be exchanged with cytoplasmic ADP by AAC, thus satisfying the energy needs in the cytoplasm. Toxoplasma gondii is an obligate intracellular parasite with a wide range of hosts. Previous studies have shown that mitochondrial metabolism helps Toxoplasma to parasitize diverse host cells. Here, we identified 2 putative mitochondria ADP/ATP carriers in Toxoplasma with significant sequence similarity to known AACs from other eukaryotes. We examined the ATP transport function of TgAACs by expressing them in Escherichia coli cells and found that only TgAAC1 had ATP transport activity. Moreover, knockdown of TgAAC1 caused severe growth defects of parasites and heterologous expression of mouse ANT2 in the TgAAC1 depletion mutant restored its growth, revealing its importance for parasite growth. These results verified that TgAAC1 functions as the mitochondrial ADP/ATP carrier in T. gondii and the functional studies demonstrated the importance of TgAAC1 for tachyzoites growth. IMPORTANCE T. gondii has an efficient and flexible energy metabolism system to meet different growth needs. ATP is an energy-carrying molecule and needs to be exchanged between organelles with the assistance of transporters. However, the function of TgAACs has yet to be characterized. Here, we identified 2 putative AACs of T. gondii and verified that only TgAAC1 had ATP transport activity with expression in the intact E. coli cells. Detailed analyses found that TgAAC1 is critical for the growth of tachyzoites and TgAAC2 is dispensable. Moreover, complementation with mouse ANT2 restored the growth speed of iTgAAC1, further suggesting TgAAC1 functions as a mitochondrial ADP/ATP carrier. Our research demonstrated the importance of TgAAC1 for tachyzoites growth.
Collapse
Affiliation(s)
- Jiahui Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Tongjie Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Liyu Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Senyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhengming He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Mingfeng He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
4
|
Xia H, Hong Y, Li X, Fan R, Li Q, Ouyang Z, Yao X, Lu S, Guo L, Tang S. BnaNTT2 regulates ATP homeostasis in plastid to sustain lipid metabolism and plant growth in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:54. [PMID: 37313423 PMCID: PMC10248631 DOI: 10.1007/s11032-022-01322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01322-8.
Collapse
Affiliation(s)
- Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
5
|
Hong Y, Xia H, Li X, Fan R, Li Q, Ouyang Z, Tang S, Guo L. Brassica napus BnaNTT1 modulates ATP homeostasis in plastids to sustain metabolism and growth. Cell Rep 2022; 40:111060. [PMID: 35830794 DOI: 10.1016/j.celrep.2022.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
The plastid-localized nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid to satisfy the needs of biochemistry activities in plastid. Here, we investigate the key functions of two conserved BnaNTT1 genes, BnaC06.NTT1b and BnaA07.NTT1a, in Brassica napus. Binding assays and metabolic analysis indicate that BnaNTT1 binds ATP/adenosine diphosphate (ADP), transports cytosolic ATP into chloroplast, and exchanges ADP into cytoplasm. Thylakoid structures are abnormal and plant growth is retarded in CRISPR mutants of BnaC06.NTT1b and BnaA07.NTT1a. Both BnaC06.NTT1b and BnaA07.NTT1a play important roles in the regulation of ATP/ADP homeostasis in plastid. Manipulation of BnaC06.NTT1b and BnaA07.NTT1a causes significant changes in glycolysis and membrane lipid composition, suggesting that increased ATP in plastid fuels more seed-oil accumulation. Together, this study implicates the vital role of BnaC06.NTT1b and BnaA07.NTT1a in plant metabolism and growth in B. napus.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruyi Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhewen Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
6
|
Li S, Qian J, Xu M, Yang J, He Z, Zhao T, Zhao J, Fang R. A new adenine nucleotide transporter located in the ER is essential for maintaining the growth of Toxoplasma gondii. PLoS Pathog 2022; 18:e1010665. [PMID: 35788770 PMCID: PMC9286291 DOI: 10.1371/journal.ppat.1010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/15/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
The lumen of the endoplasmic reticulum (ER) is the subcellular site where secretory protein folding, glycosylation and sulfation of membrane-bound proteins, proteoglycans, and lipids occur. The protein folding and degradation in the lumen of the ER require high levels of energy in the form of ATP. Biochemical and genetic approaches show that ATP must first be translocated across ER membrane by particular transporters before serving as substrates and energy sources in the lumenal reactions. Here we describe an ATP/ADP transporter residing in the ER membranes of T.gondii. Immunofluorescence (IFA) assay in transgenic TgANT1-HA tag revealed that TgANT1 is a protein specifically expressed in the ER. In vitro assays, functional integration of TgANT in the cytoplasmic membrane of intact E. coli cells reveals high specificity for an ATP/ADP antiport. The depletion of TgANT leads to fatal growth defects in T.gondii, including a significant slowdown in replication, no visible plaque formation, and reduced ability to invade. We also found that the amino acid mutations in two domains of TgANT lead to the complete loss of its function. Since these two domains are conserved in multiple species, they may share the same transport mechanism. Our results indicate that TgANT is the only ATP/ADP transporter in the ER of T. gondii, and the lack of ATP in the ER is the cause of the death of T. gondii. The secretory protein of T. gondii is essential for its invasion and normal growth in host cells, all the secretory proteins are synthesized in the ER before being destined for these distinct organelles, such as apicoplast, microneme, dense granule and rhoptry. ER ATP is demanded to support secretory protein folding and trafficking, and the level of ER ATP determines which proteins are able to be directed to the distinct organelles. In theory, the supply of ATP in the ER is necessary for T. gondii. However, the transport mechanism and importance of the ER ATP in T. gondii are still unclear. In our study, we identified an ATP/ADP transporter (TgANT) located in the ER and verified its function through various methods. Unlike the ER ATP/ADP transporter in mammals, we proved that TgANT is functionally specific; the deletion of TgANT caused the interruption of the supply of ATP in the ER, which leads to fatal phenotypic defects of T. gondii. Our research further expands the understanding of the growth regulation in T. gondii.
Collapse
Affiliation(s)
- Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiahui Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhengming He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Tongjie Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
7
|
Enhanced growth of Chromochloris zofingiensis through the transition of nutritional modes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Zhang Z, Sun D, Cheng KW, Chen F. Investigation of carbon and energy metabolic mechanism of mixotrophy in Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:36. [PMID: 33541405 PMCID: PMC7863362 DOI: 10.1186/s13068-021-01890-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/25/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Mixotrophy can confer a higher growth rate than the sum of photoautotrophy and heterotrophy in many microalgal species. Thus, it has been applied to biodiesel production and wastewater utilization. However, its carbon and energy metabolic mechanism is currently poorly understood. RESULTS To elucidate underlying carbon and energy metabolic mechanism of mixotrophy, Chromochloris zofingiensis was employed in the present study. Photosynthesis and glucose metabolism were found to operate in a dynamic balance during mixotrophic cultivation, the enhancement of one led to the lowering of the other. Furthermore, compared with photoautotrophy, non-photochemical quenching and photorespiration, considered by many as energy dissipation processes, were significantly reduced under mixotrophy. Comparative transcriptome analysis suggested that the intermediates of glycolysis could directly enter the chloroplast and replace RuBisCO-fixed CO2 to provide carbon sources for chloroplast organic carbon metabolism under mixotrophy. Therefore, the photosynthesis rate-limiting enzyme, RuBisCO, was skipped, allowing for more efficient utilization of photoreaction-derived energy. Besides, compared with heterotrophy, photoreaction-derived ATP reduced the need for TCA-derived ATP, so the glucose decomposition was reduced, which led to higher biomass yield on glucose. Based on these results, a mixotrophic metabolic mechanism was identified. CONCLUSIONS Our results demonstrate that the intermediates of glycolysis could directly enter the chloroplast and replace RuBisCO-fixed CO2 to provide carbon for photosynthesis in mixotrophy. Therefore, the photosynthesis rate-limiting enzyme, RuBisCO, was skipped in mixotrophy, which could reduce energy waste of photosynthesis while promote cell growth. This finding provides a foundation for future studies on mixotrophic biomass production and photosynthetic metabolism.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071000, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Dongzhe Sun
- Nutrition & Health Research Institute, China National Cereals, Oils and Foodstuffs Corporation (COFCO), Beijing, 102209, People's Republic of China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
9
|
Toleco MR, Naake T, Zhang Y, Heazlewood JL, R. Fernie A. Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. PLANTS 2020; 9:plants9010117. [PMID: 31963509 PMCID: PMC7020223 DOI: 10.3390/plants9010117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The evolution of membrane-bound organelles among eukaryotes led to a highly compartmentalized metabolism. As a compartment of the central carbon metabolism, mitochondria must be connected to the cytosol by molecular gates that facilitate a myriad of cellular processes. Members of the mitochondrial carrier family function to mediate the transport of metabolites across the impermeable inner mitochondrial membrane and, thus, are potentially crucial for metabolic control and regulation. Here, we focus on members of this family that might impact intracellular central plant carbon metabolism. We summarize and review what is currently known about these transporters from in vitro transport assays and in planta physiological functions, whenever available. From the biochemical and molecular data, we hypothesize how these relevant transporters might play a role in the shuttling of organic acids in the various flux modes of the TCA cycle. Furthermore, we also review relevant mitochondrial carriers that may be vital in mitochondrial oxidative phosphorylation. Lastly, we survey novel experimental approaches that could possibly extend and/or complement the widely accepted proteoliposome reconstitution approach.
Collapse
Affiliation(s)
- M. Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- School of BioSciences, the University of Melbourne, Victoria 3010, Australia;
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.R.T.); (T.N.); (Y.Z.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Correspondence:
| |
Collapse
|
10
|
Seppälä S, Yoo JI, Yur D, O'Malley MA. Heterologous transporters from anaerobic fungi bolster fluoride tolerance in Saccharomyces cerevisiae. Metab Eng Commun 2019; 9:e00091. [PMID: 31016136 PMCID: PMC6475669 DOI: 10.1016/j.mec.2019.e00091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022] Open
Abstract
Membrane-embedded transporters are crucial for the stability and performance of microbial production strains. Apart from engineering known transporters derived from model systems, it is equally important to identify transporters from nonconventional organisms that confer advantageous traits for biotechnological applications. Here, we transferred genes encoding fluoride exporter (FEX) proteins from three strains of early-branching anaerobic fungi (Neocallimastigomycota) to Saccharomyces cerevisiae. The heterologous transporters are localized to the plasma membrane and complement a fluoride-sensitive yeast strain that is lacking endogenous fluoride transporters up to 10.24 mM fluoride. Furthermore, we show that fusing an amino-terminal leader sequence to FEX proteins in yeast elevates protein yields, yet inadvertently causes a loss of transporter function. Adaptive laboratory evolution of FEX proteins restores fluoride tolerance of these strains, in one case exceeding the solute tolerance observed in wild type S. cerevisiae; however, the underlying molecular mechanisms and cause for the increased tolerance in the evolved strains remain elusive. Our results suggest that microbial cultures can achieve solvent tolerance through different adaptive trajectories, and the study is a promising step towards the identification, production, and biotechnological application of membrane proteins from nonconventional fungi. First report describing the heterologous production of functional ion transport proteins sourced from anaerobic gut fungi. Codon-optimization enables production of functional, gut fungal membrane proteins in S. cerevisiae but not in E. coli. Addition of an N-terminal leader peptide elevates membrane protein yields yet diminishes cellular activity. Adaptive laboratory evolution restores cellular fluoride export activity in yeast to levels exceeding native tolerance.
Collapse
Affiliation(s)
- Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Justin I. Yoo
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Daniel Yur
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
- Corresponding author.
| |
Collapse
|
11
|
da Fonseca-Pereira P, Neri-Silva R, Cavalcanti JHF, Brito DS, Weber APM, Araújo WL, Nunes-Nesi A. Data-Mining Bioinformatics: Connecting Adenylate Transport and Metabolic Responses to Stress. TRENDS IN PLANT SCIENCE 2018; 23:961-974. [PMID: 30287161 DOI: 10.1016/j.tplants.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Adenine nucleotides are essential in countless processes within the cellular metabolism. In plants, ATP is mainly produced in chloroplasts and mitochondria through photophosphorylation and oxidative phosphorylation, respectively. Thus, efficient adenylate transport systems are required for intracellular energy partitioning between the cell organelles. Adenylate carriers present in different subcellular compartments have been previously identified and biochemically characterized in plants. Here, by using data-mining bioinformatics tools, we propose how, and to what extent, these carriers integrate energy metabolism within a plant cell under different environmental conditions. We demonstrate that the expression pattern of the corresponding genes is variable under different environmental conditions, suggesting that specific adenylate carriers have distinct and nonredundant functions in plants.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - Roberto Neri-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; These authors contributed equally to this work
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danielle S Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; Max-Panck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Tran LSP. Cellular and Subcellular Phosphate Transport Machinery in Plants. Int J Mol Sci 2018; 19:ijms19071914. [PMID: 29966288 PMCID: PMC6073359 DOI: 10.3390/ijms19071914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs. Under conditions of Pi deficiency, Pi is also translocated from the shoot to the root via the phloem. Vacuoles act as a storage pool for extra Pi, enabling its delivery to the cytosol, a process which plays an important role in the homeostatic control of cytoplasmic Pi levels. In mitochondria and chloroplasts, Pi homeostasis regulates ATP synthase activity to maintain optimal ATP levels. Additionally, the endoplasmic reticulum functions to direct Pi transporters and Pi toward various locations. The intracellular membrane potential and pH in the subcellular organelles could also play an important role in the kinetics of Pi transport. The presented review provides an overview of Pi transport mechanisms in subcellular organelles, and also discusses how they affect Pi balancing at cellular, tissue, and whole-plant levels.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Munish Kumar Upadhyay
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamaska, Tottori 680-0001, Japan.
- Botany Department, Faculty of Sciences, Aswan University, Aswan 81528, Egypt.
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan.
| |
Collapse
|
13
|
Monné M, Daddabbo L, Gagneul D, Obata T, Hielscher B, Palmieri L, Miniero DV, Fernie AR, Weber APM, Palmieri F. Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. J Biol Chem 2018; 293:4213-4227. [PMID: 29371401 DOI: 10.1074/jbc.ra117.000771] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Indexed: 12/29/2022] Open
Abstract
The Arabidopsis thaliana genome contains 58 members of the solute carrier family SLC25, also called the mitochondrial carrier family, many of which have been shown to transport specific metabolites, nucleotides, and cofactors across the mitochondrial membrane. Here, two Arabidopsis members of this family, AtUCP1 and AtUCP2, which were previously thought to be uncoupling proteins and hence named UCP1/PUMP1 and UCP2/PUMP2, respectively, are assigned with a novel function. They were expressed in bacteria, purified, and reconstituted in phospholipid vesicles. Their transport properties demonstrate that they transport amino acids (aspartate, glutamate, cysteine sulfinate, and cysteate), dicarboxylates (malate, oxaloacetate, and 2-oxoglutarate), phosphate, sulfate, and thiosulfate. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. AtUCP1 and AtUCP2 catalyzed a fast counterexchange transport as well as a low uniport of substrates, with transport rates of AtUCP1 being much higher than those of AtUCP2 in both cases. The aspartate/glutamate heteroexchange mediated by AtUCP1 and AtUCP2 is electroneutral, in contrast to that mediated by the mammalian mitochondrial aspartate glutamate carrier. Furthermore, both carriers were found to be targeted to mitochondria. Metabolite profiling of single and double knockouts shows changes in organic acid and amino acid levels. Notably, AtUCP1 and AtUCP2 are the first reported mitochondrial carriers in Arabidopsis to transport aspartate and glutamate. It is proposed that the primary function of AtUCP1 and AtUCP2 is to catalyze an aspartateout/glutamatein exchange across the mitochondrial membrane and thereby contribute to the export of reducing equivalents from the mitochondria in photorespiration.
Collapse
Affiliation(s)
- Magnus Monné
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| | - Lucia Daddabbo
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - David Gagneul
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Toshihiro Obata
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Björn Hielscher
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Luigi Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy.,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Daniela Valeria Miniero
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Alisdair R Fernie
- the Department Willmitzer, Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany, and
| | - Andreas P M Weber
- the Cluster of Excellence on Plant Science (CEPLAS), Institute of Plant Biochemistry, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ferdinando Palmieri
- From the Department of Biosciences, Biotechnologies and Biopharmaceutics, Laboratory of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70125 Bari, Italy, .,the Center of Excellence in Comparative Genomics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
14
|
Frei B, Eisenach C, Martinoia E, Hussein S, Chen XZ, Arrivault S, Neuhaus HE. Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. J Biol Chem 2018; 293:4180-4190. [PMID: 29367340 DOI: 10.1074/jbc.ra117.000851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
The exact transport characteristics of the vacuolar dicarboxylate transporter tDT from Arabidopsis are elusive. To overcome this limitation, we combined a range of experimental approaches comprising generation/analysis of tDT overexpressors, 13CO2 feeding and quantification of 13C enrichment, functional characterization of tDT in proteoliposomes, and electrophysiological studies on vacuoles. tdt knockout plants showed decreased malate and increased citrate concentrations in leaves during the diurnal light-dark rhythm and after onset of drought, when compared with wildtypes. Interestingly, under the latter two conditions, tDT overexpressors exhibited malate and citrate levels opposite to tdt knockout plants. Highly purified tDT protein transports malate and citrate in a 1:1 antiport mode. The apparent affinity for malate decreased with decreasing pH, whereas citrate affinity increased. This observation indicates that tDT exhibits a preference for dianion substrates, which is supported by electrophysiological analysis on intact vacuoles. tDT also accepts fumarate and succinate as substrates, but not α-ketoglutarate, gluconate, sulfate, or phosphate. Taking tDT as an example, we demonstrated that it is possible to reconstitute a vacuolar metabolite transporter functionally in proteoliposomes. The displayed, so far unknown counterexchange properties of tDT now explain the frequently observed reciprocal concentration changes of malate and citrate in leaves from various plant species. tDT from Arabidopsis is the first member of the well-known and widely present SLC13 group of carrier proteins, exhibiting an antiport mode of transport.
Collapse
Affiliation(s)
- Benedikt Frei
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany
| | - Cornelia Eisenach
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Enrico Martinoia
- the Institut für Pflanzenbiologie, Universität Zürich, CH-8008 Zürich, Switzerland
| | - Shaimaa Hussein
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Xing-Zhen Chen
- the Faculty of Medicine and Dentistry, Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada, and
| | - Stéphanie Arrivault
- the Max Planck-Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - H Ekkehard Neuhaus
- From Pflanzenphysiologie, Universität Kaiserslautern, Erwin Schrödinger-Strasse, D-67653 Kaiserslautern, Germany,
| |
Collapse
|
15
|
Xu Y, Fei J, Li G, Yuan T, Li J. Compartmentalized Assembly of Motor Protein Reconstituted on Protocell Membrane toward Highly Efficient Photophosphorylation. ACS NANO 2017; 11:10175-10183. [PMID: 28933821 DOI: 10.1021/acsnano.7b04747] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecule assembly and functionalization of protocells have achieved a great success. However, the yield efficiency of photophosphorylation in the present cell-like systems is limited. Herein, inspired by natural photobacteria, we construct a protocell membrane reconstituting motor protein for highly efficient light-mediated adenosine triphosphate (ATP) synthesis through a layer-by-layer technique. The assembled membrane, compartmentally integrating photoacid generator, proton conductor, and ATP synthase, possesses excellent transparency, fast proton production, and quick proton transportation. Remarkably, these favorable features permit the formation of a large proton gradient in a confined region to drive ATP synthase to produce ATP with high efficiency (873 ATP s-1). It is the highest among the existing artificial photophosphorylation systems. Such a biomimetic system provides a bioenergy-supplying scenario for early photosynthetic life and holds promise in remotely controlled ATP-consumed biosensors, biocatalysts, and biodevices.
Collapse
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
16
|
Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Sci Rep 2017; 7:41355. [PMID: 28134341 PMCID: PMC5278347 DOI: 10.1038/srep41355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Chloroplast development is an important subject in botany. In this study, a rice (Oryza sativa) mutant exhibiting impairment in early chloroplast development (seedling leaf albino (sla)) was isolated from a filial generation via hybridization breeding. The sla mutant seedlings have an aberrant form of chloroplasts, which resulted in albinism at the first and second leaves; however, the leaf sheath was green. The mutant gradually turned green after the two-leaf stage, and the third leaf was a normal shade of green. Map-based cloning indicated that the gene OsBT1-3, which belongs to the mitochondrial carrier family (MCF), is responsible for the sla mutant phenotype. OsBT1-3 expression was high in the young leaves, decreased after the two-leaf stage, and was low in the sheath, and these findings are consistent with the recovery of a number of chloroplasts in the third leaf of sla mutant seedlings. The results also showed that OsBT1-3-yellow fluorescent protein (YFP) was targeted to the chloroplast, and a Western blot assay using a peptide-specific antibody indicated that OsBT1-3 localizes to the chloroplast envelope. We also demonstrated that OsBT1-3 functions as a unidirectional transporter of adenine nucleotides. Based on these findings, OsBT1-3 likely acts as a plastid nucleotide uniporter and is essential for chloroplast development in rice leaves at the young seedling stage.
Collapse
|
17
|
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact 2016; 15:212. [PMID: 27998268 PMCID: PMC5168858 DOI: 10.1186/s12934-016-0611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
Collapse
Affiliation(s)
- Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kgs. Lyngby, Denmark.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
18
|
Schlüter U, Denton AK, Bräutigam A. Understanding metabolite transport and metabolism in C4 plants through RNA-seq. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:83-90. [PMID: 27082280 DOI: 10.1016/j.pbi.2016.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
RNA-seq, the measurement of steady-state RNA levels by next generation sequencing, has enabled quantitative transcriptome analyses of complex traits in many species without requiring the parallel sequencing of their genomes. The complex trait of C4 photosynthesis, which increases photosynthetic efficiency via a biochemical pump that concentrates CO2 around RubisCO, has evolved convergently multiple times. Due to these interesting properties, C4 photosynthesis has been analyzed in a series of comparative RNA-seq projects. These projects compared both species with and without the C4 trait and different tissues or organs within a C4 plant. The RNA-seq studies were evaluated by comparing to earlier single gene studies. The studies confirmed the marked changes expected for C4 signature genes, but also revealed numerous new players in C4 metabolism showing that the C4 cycle is more complex than previously thought, and suggesting modes of integration into the underlying C3 metabolism.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Alisandra K Denton
- Institute for Biology I, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Palmieri F, Monné M. Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2362-78. [PMID: 26968366 DOI: 10.1016/j.bbamcr.2016.03.007] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
Mitochondrial carriers (MCs) are a superfamily of nuclear-encoded proteins that are mostly localized in the inner mitochondrial membrane and transport numerous metabolites, nucleotides, cofactors and inorganic anions. Their unique sequence features, i.e., a tripartite structure, six transmembrane α-helices and a three-fold repeated signature motif, allow MCs to be easily recognized. This review describes how the functions of MCs from Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana (listed in the first table) were discovered after the genome sequence of S. cerevisiae was determined in 1996. In the genomic era, more than 50 previously unknown MCs from these organisms have been identified and characterized biochemically using a method consisting of gene expression, purification of the recombinant proteins, their reconstitution into liposomes and transport assays (EPRA). Information derived from studies with intact mitochondria, genetic and metabolic evidence, sequence similarity, phylogenetic analysis and complementation of knockout phenotypes have guided the choice of substrates that were tested in the transport assays. In addition, the diseases associated to defects of human MCs have been briefly reviewed. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy.
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; Department of Sciences, University of Basilicata, Via Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
20
|
Lorenz A, Lorenz M, Vothknecht UC, Niopek-Witz S, Neuhaus HE, Haferkamp I. In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca(2+)-effects. BMC PLANT BIOLOGY 2015; 15:238. [PMID: 26444389 PMCID: PMC4595200 DOI: 10.1186/s12870-015-0616-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/12/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties. RESULTS Recombinant plant APCs were functionally reconstituted into liposomes and their biochemical characteristics were determined by transport measurements using radiolabeled substrates. All three plant APCs were capable of ATP, ADP and phosphate exchange, however, high preference for ATP-Mg, as shown for orthologous carriers, was not detectable. By contrast, the obtained data suggest that in the liposomal system the plant APCs rather favor ATP-Ca as substrate. Moreover, investigation of a representative mutant APC protein revealed that the observed calcium effects on ATP transport did not primarily/essentially involve Ca(2+)-binding to the EF-hand motifs in the N-terminal domain of the carrier. CONCLUSION Biochemical characteristics suggest that plant APCs can mediate net transport of adenine nucleotides and hence, like their pendants from animals and yeast, might be involved in the alteration of the mitochondrial adenine nucleotide pool. Although, ATP-Ca was identified as an apparent import substrate of plant APCs in vitro it is arguable whether ATP-Ca formation and thus the corresponding transport can take place in vivo.
Collapse
Affiliation(s)
- André Lorenz
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Melanie Lorenz
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Ute C Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany.
| | - Sandra Niopek-Witz
- Plant Physiology, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, University of Kaiserslautern, 67653, Kaiserslautern, Germany.
| |
Collapse
|
21
|
Functional characterization and organ distribution of three mitochondrial ATP-Mg/Pi carriers in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1220-30. [PMID: 26140942 DOI: 10.1016/j.bbabio.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 11/22/2022]
Abstract
The Arabidopsis thaliana genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Three members of this family, here named AtAPC1, AtAPC2, and AtAPC3, exhibit high structural similarities to the human mitochondrial ATP-Mg(2+)/phosphate carriers. Under normal physiological conditions the AtAPC1 gene was expressed at least five times more than the other two AtAPC genes in flower, leaf, stem, root and seedlings. However, in stress conditions the expression levels of AtAPC1 and AtAPC3 change. Direct transport assays with recombinant and reconstituted AtAPC1, AtAPC2 and AtAPC3 showed that they transport phosphate, AMP, ADP, ATP, adenosine 5'-phosphosulfate and, to a lesser extent, other nucleotides. AtAPC2 and AtAPC3 also had the ability to transport sulfate and thiosulfate. All three AtAPCs catalyzed a counter-exchange transport that was saturable and inhibited by pyridoxal-5'-phosphate. The transport activities of AtAPCs were also inhibited by the addition of EDTA or EGTA and stimulated by the addition of Ca(2+). Given that phosphate and sulfate can be recycled via their own specific carriers, these findings indicate that AtAPCs can catalyze net transfer of adenine nucleotides across the inner mitochondrial membrane in exchange for phosphate (or sulfate), and that this transport is regulated both at the transcriptional level and by Ca(2+).
Collapse
|
22
|
Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci U S A 2014; 111:E4560-7. [PMID: 25313036 DOI: 10.1073/pnas.1406251111] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.
Collapse
|
23
|
Bräutigam A, Schliesky S, Külahoglu C, Osborne CP, Weber APM. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3579-93. [PMID: 24642845 PMCID: PMC4085959 DOI: 10.1093/jxb/eru100] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with related C4 species belonging to the NAD-malic enzyme (NAD-ME) and NADP-ME subgroups of C4 photosynthesis. However, a comparison between C3 and the phosphoenolpyruvate carboxykinase (PEP-CK) subtype of C4 photosynthesis is still missing. An integrative analysis of all three C4 subtypes has also not been possible to date, since no comparison has been available for closely related C3 and PEP-CK C4 species. To generate the data, the guinea grass Megathyrsus maximus, which represents a PEP-CK species, was analysed in comparison with a closely related C3 sister species, Dichanthelium clandestinum, and with publicly available sets of RNA-Seq data from C4 species belonging to the NAD-ME and NADP-ME subgroups. The data indicate that the core C4 cycle of the PEP-CK grass M. maximus is quite similar to that of NAD-ME species with only a few exceptions, such as the subcellular location of transfer acid production and the degree and pattern of up-regulation of genes encoding C4 enzymes. One additional mitochondrial transporter protein was associated with the core cycle. The broad comparison identified sucrose and starch synthesis, as well as the prevention of leakage of C4 cycle intermediates to other metabolic pathways, as critical components of C4 metabolism. Estimation of intercellular transport fluxes indicated that flux between cells is increased by at least two orders of magnitude in C4 species compared with C3 species. In contrast to NAD-ME and NADP-ME species, the transcription of photosynthetic electron transfer proteins was unchanged in PEP-CK. In summary, the PEP-CK blueprint of M. maximus appears to be simpler than those of NAD-ME and NADP-ME plants.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
25
|
König AC, Hartl M, Pham PA, Laxa M, Boersema PJ, Orwat A, Kalitventseva I, Plöchinger M, Braun HP, Leister D, Mann M, Wachter A, Fernie AR, Finkemeier I. The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. PLANT PHYSIOLOGY 2014; 164:1401-14. [PMID: 24424322 PMCID: PMC3938629 DOI: 10.1104/pp.113.232496] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The posttranslational regulation of proteins by lysine (Lys) acetylation has recently emerged to occur not only on histones, but also on organellar proteins in plants and animals. In particular, the catalytic activities of metabolic enzymes have been shown to be regulated by Lys acetylation. The Arabidopsis (Arabidopsis thaliana) genome encodes two predicted sirtuin-type Lys deacetylases, of which only Silent Information Regulator2 homolog (SRT2) contains a predicted presequence for mitochondrial targeting. Here, we have investigated the function of SRT2 in Arabidopsis. We demonstrate that SRT2 functions as a Lys deacetylase in vitro and in vivo. We show that SRT2 resides predominantly at the inner mitochondrial membrane and interacts with a small number of protein complexes mainly involved in energy metabolism and metabolite transport. Several of these protein complexes, such as the ATP synthase and the ATP/ADP carriers, show an increase in Lys acetylation in srt2 loss-of-function mutants. The srt2 plants display no growth phenotype but rather a metabolic phenotype with altered levels in sugars, amino acids, and ADP contents. Furthermore, coupling of respiration to ATP synthesis is decreased in these lines, while the ADP uptake into mitochondria is significantly increased. Our results indicate that SRT2 is important in fine-tuning mitochondrial energy metabolism.
Collapse
|
26
|
Xu J, Yang J, Wu Z, Liu H, Huang F, Wu Y, Carrie C, Narsai R, Murcha M, Whelan J, Wu P. Identification of a dual-targeted protein belonging to the mitochondrial carrier family that is required for early leaf development in rice. PLANT PHYSIOLOGY 2013; 161:2036-48. [PMID: 23411694 PMCID: PMC3613474 DOI: 10.1104/pp.112.210831] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A dual-targeted protein belonging to the mitochondrial carrier family was characterized in rice (Oryza sativa) and designated 3'-Phosphoadenosine 5'-Phosphosulfate Transporter1 (PAPST1). The papst1 mutant plants showed a defect in thylakoid development, resulting in leaf chlorosis at an early leaf developmental stage, while normal leaf development was restored 4 to 6 d after leaf emergence. OsPAPST1 is highly expressed in young leaves and roots, while the expression is reduced in mature leaves, in line with the recovery of chloroplast development seen in the older leaves of papst1 mutant plants. OsPAPST1 is located on the outer mitochondrial membrane and chloroplast envelope. Whole-genome transcriptomic analysis reveals reduced expression of genes encoding photosynthetic components (light reactions) in papst1 mutant plants. In addition, sulfur metabolism is also perturbed in papst1 plants, and it was seen that PAPST1 can act as a nucleotide transporter when expressed in Escherichia coli that can be inhibited significantly by 3'-phosphoadenosine 5'-phosphosulfate. Given these findings, together with the altered phenotype seen only when leaves are first exposed to light, it is proposed that PAPST1 may act as a 3'-phosphoadenosine 5'-phosphosulfate carrier that has been shown to act as a retrograde signal between chloroplasts and the nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Ping Wu
- Corresponding author; e-mail
| |
Collapse
|
27
|
Haferkamp I, Linka N. Functional expression and characterisation of membrane transport proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:675-90. [PMID: 22639981 DOI: 10.1111/j.1438-8677.2012.00591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Membrane transporters set the framework organising the complexity of plant metabolism in cells, tissues and organisms. Their substrate specificity and controlled activity in different cells is a crucial part for plant metabolism to run pathways in concert. Transport proteins catalyse the uptake and exchange of ions, substrates, intermediates, products and cofactors across membranes. Given the large number of metabolites, a wide spectrum of transporters is required. The vast majority of in silico annotated membrane transporters in plant genomes, however, has not yet been functionally characterised. Hence, to understand the metabolic network as a whole, it is important to understand how transporters connect and control the metabolic pathways of plant cells. Heterologous expression and in vitro activity studies of recombinant transport proteins have highly improved their functional analysis in the last two decades. This review provides a comprehensive overview of the recent advances in membrane protein expression and functional characterisation using various host systems and transport assays.
Collapse
Affiliation(s)
- I Haferkamp
- Plant Physiology, Technical University of Kaiserslautern, Kaiserslautern, Germany Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Linka
- Plant Physiology, Technical University of Kaiserslautern, Kaiserslautern, Germany Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Ravaud S, Bidon-Chanal A, Blesneac I, Machillot P, Juillan-Binard C, Dehez F, Chipot C, Pebay-Peyroula E. Impaired transport of nucleotides in a mitochondrial carrier explains severe human genetic diseases. ACS Chem Biol 2012; 7:1164-9. [PMID: 22497660 DOI: 10.1021/cb300012j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mitochondrial ADP/ATP carrier (AAC) is a prominent actor in the energetic regulation of the cell, importing ADP into the mitochondria and exporting ATP toward the cytoplasm. Severe genetic diseases have been ascribed to specific mutations in this membrane protein. How minute, well-localized modifications of the transporter impact the function of the mitochondria remains, however, largely unclear. Here, for the first time, the relationship between all documented pathological mutations of the AAC and its transport properties is established. Activity measurements combined synergistically with molecular-dynamics simulations demonstrate how all documented pathological mutations alter the binding affinity and the translocation kinetics of the nucleotides. Throwing a bridge between the pathologies and their molecular origins, these results reveal two distinct mechanisms responsible for AAC-related genetic disorders, wherein the mutations either modulate the association of the nucleotides to the carrier by modifying its electrostatic signature or reduce its conformational plasticity.
Collapse
Affiliation(s)
- Stéphanie Ravaud
- Université
Grenoble 1,
IBS, Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027
Grenoble cedex 1, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Axel Bidon-Chanal
- Nancy Université, BP239,
54506 Vandoeuvre-lès-Nancy Cedex, France
- CNRS, SRSMC, Nancy, France
| | - Iulia Blesneac
- Université
Grenoble 1,
IBS, Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027
Grenoble cedex 1, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Paul Machillot
- Université
Grenoble 1,
IBS, Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027
Grenoble cedex 1, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - Céline Juillan-Binard
- Université
Grenoble 1,
IBS, Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027
Grenoble cedex 1, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| | - François Dehez
- Nancy Université, BP239,
54506 Vandoeuvre-lès-Nancy Cedex, France
- CNRS, SRSMC, Nancy, France
| | - Chris Chipot
- Nancy Université, BP239,
54506 Vandoeuvre-lès-Nancy Cedex, France
- CNRS, SRSMC, Nancy, France
| | - Eva Pebay-Peyroula
- Université
Grenoble 1,
IBS, Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027
Grenoble cedex 1, France
- CEA, IBS, Grenoble, France
- CNRS, IBS, Grenoble, France
| |
Collapse
|
29
|
Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. FRONTIERS IN PLANT SCIENCE 2012; 3:2. [PMID: 22639632 PMCID: PMC3355725 DOI: 10.3389/fpls.2012.00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Mitochondria play a key role in respiration and energy production and are involved in multiple eukaryotic but also in several plant specific metabolic pathways. Solute carriers in the inner mitochondrial membrane connect the internal metabolism with that of the surrounding cell. Because of their common basic structure, these transport proteins affiliate to the mitochondrial carrier family (MCF). Generally, MCF proteins consist of six membrane spanning helices, exhibit typical conserved domains and appear as homodimers in the native membrane. Although structurally related, MCF proteins catalyze the specific transport of various substrates, such as nucleotides, amino acids, dicarboxylates, cofactors, phosphate or H(+). Recent investigations identified MCF proteins also in several other cellular compartments and therefore their localization and physiological function is not only restricted to mitochondria. MCF proteins are a characteristic feature of eukaryotes and bacterial genomes lack corresponding sequences. Therefore, the evolutionary origin of MCF proteins is most likely associated with the establishment of mitochondria. It is not clear whether the host cell, the symbiont, or the chimerical organism invented the ancient MCF sequence. Here, we try to explain the establishment of different MCF proteins and focus on the characteristics of members from plants, in particular from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Technische Universität KaiserslauternKaiserslautern, Germany
- *Correspondence: Ilka Haferkamp, Biologie, Zelluläre Physiologie/Membrantransport, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 22, 67653 Kaiserslautern, Germany. e-mail:
| | | |
Collapse
|
30
|
Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011; 6:e29191. [PMID: 22216205 PMCID: PMC3244453 DOI: 10.1371/journal.pone.0029191] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.
Collapse
Affiliation(s)
- Florent Bernaudat
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nozawa A, Fujimoto R, Matsuoka H, Tsuboi T, Tozawa Y. Cell-free synthesis, reconstitution, and characterization of a mitochondrial dicarboxylate-tricarboxylate carrier of Plasmodium falciparum. Biochem Biophys Res Commun 2011; 414:612-7. [PMID: 21986531 DOI: 10.1016/j.bbrc.2011.09.130] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/27/2011] [Indexed: 11/28/2022]
Abstract
The malaria parasite, Plasmodium falciparum, was recently shown to operate a branched pathway of tricarboxylic acid (TCA) metabolism. To identify and characterize membrane transporters required for such TCA metabolism in the parasite, we isolated a cDNA for a dicarboxylate-tricarboxylate carrier homolog (PfDTC), synthesized the encoded protein with the use of a cell-free translation system, and determined the substrate specificity of its transport activity with a proteoliposome reconstitution system. PfDTC was found to mediate efficient oxoglutarate-malate, oxoglutarate-oxaloacetate, or oxoglutarate-oxoglutarate exchange across the liposome membrane. Our results suggest that PfDTC may mediate the oxoglutarate-malate exchange across the inner mitochondrial membrane required for the branched pathway of TCA metabolism in the malaria parasite.
Collapse
Affiliation(s)
- Akira Nozawa
- Cell-Free Science and Technology Research Center and Venture Business Laboratory, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | |
Collapse
|
32
|
Haferkamp I, Fernie AR, Neuhaus HE. Adenine nucleotide transport in plants: much more than a mitochondrial issue. TRENDS IN PLANT SCIENCE 2011; 16:507-15. [PMID: 21622019 DOI: 10.1016/j.tplants.2011.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 04/16/2011] [Indexed: 05/03/2023]
Abstract
Adenine nucleotides play a vital role in plant metabolism and physiology, essentially representing the major energy currency of the cell. Heterotrophic cells regenerate most of the ATP in mitochondria, whereas autotrophic cells also possess chloroplasts, representing a second powerhouse for ATP regeneration. Even though the synthesis of these nucleotides is restricted to a few locations, their use is nearly ubiquitous across the cell and thereby highly efficient systems are required to transport these molecules into and out of different compartments. Here, we discuss the location, biochemical characterization and evolution of corresponding transport systems in plants. We include recent scientific findings concerning organellar transporters from plants and algae and also focus on the physiological importance of adenine nucleotide exchange in these cells.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
33
|
Rieder B, Neuhaus HE. Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. THE PLANT CELL 2011; 23:1932-44. [PMID: 21540435 PMCID: PMC3123944 DOI: 10.1105/tpc.111.084574] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.
Collapse
|
34
|
Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR. Evolution, structure and function of mitochondrial carriers: a review with new insights. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:161-81. [PMID: 21443630 DOI: 10.1111/j.1365-313x.2011.04516.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The mitochondrial carriers (MC) constitute a large family (MCF) of inner membrane transporters displaying different substrate specificities, patterns of gene expression and even non-mitochondrial organelle localization. In Arabidopsis thaliana 58 genes encode these six trans-membrane domain proteins. The number in other sequenced plant genomes varies from 37 to 125, thus being larger than that of Saccharomyces cerevisiae and comparable with that of Homo sapiens. In addition to displaying highly similar secondary structures, the proteins of the MCF can be subdivided into subfamilies on the basis of substrate specificity and the presence of specific symmetry-related amino acid triplets. We assessed the predictive power of these triplets by comparing predictions with experimentally determined data for Arabidopsis MCs, and applied these predictions to the not yet functionally characterized mitochondrial carriers of the grass, Brachypodium distachyon, and the alga, Ostreococcus lucimarinus. We additionally studied evolutionary aspects of the plant MCF by comparing sequence data of the Arabidopsis MCF with those of Saccharomyces cerevisiae and Homo sapiens, then with those of Brachypodium distachyon and Ostreococcus lucimarinus, employing intra- and inter-genome comparisons. Finally, we discussed the importance of the approaches of global gene expression analysis and in vivo characterizations in order to address the relevance of these vital carrier proteins.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Pharmaco-Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
35
|
Flügge UI, Häusler RE, Ludewig F, Gierth M. The role of transporters in supplying energy to plant plastids. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2381-92. [PMID: 21511915 DOI: 10.1093/jxb/erq361] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.
Collapse
Affiliation(s)
- Ulf-Ingo Flügge
- Botanical Institute, Biocenter Cologne, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | | | | | | |
Collapse
|
36
|
The gametic central cell of Arabidopsis determines the lifespan of adjacent accessory cells. Proc Natl Acad Sci U S A 2010; 107:22350-5. [PMID: 21135240 DOI: 10.1073/pnas.1012795108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plant germ cells develop in specialized haploid structures, termed gametophytes. The female gametophyte patterns of flowering plants are diverse, with often unknown adaptive value. Here we present the Arabidopsis fiona mutant, which forms a female gametophyte that is structurally and functionally reminiscent of a phylogenetic distant female gametophyte. The respective changes include a modified reproductive behavior of one of the female germ cells (central cell) and an extended lifespan of three adjacent accessory cells (antipodals). FIONA encodes the cysteinyl t-RNA synthetase SYCO ARATH (SYCO), which is expressed and required in the central cell but not in the antipodals, suggesting that antipodal lifespan is controlled by the adjacent gamete. SYCO localizes to the mitochondria, and ultrastructural analysis of mutant central cells revealed that the protein is necessary for mitochondrial cristae integrity. Furthermore, a dominant ATP/ADP translocator caused mitochondrial cristae degeneration and extended antipodal lifespan when expressed in the central cell of wild-type plants. Notably, this construct did not affect antipodal lifespan when expressed in antipodals. Our results thus identify an unexpected noncell autonomous role for mitochondria in the regulation of cellular lifespan and provide a basis for the coordinated development of gametic and nongametic cells.
Collapse
|
37
|
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne 3800, Australia
| | | | | | | |
Collapse
|
38
|
Geigenberger P, Riewe D, Fernie AR. The central regulation of plant physiology by adenylates. TRENDS IN PLANT SCIENCE 2010; 15:98-105. [PMID: 20005151 DOI: 10.1016/j.tplants.2009.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 05/22/2023]
Abstract
There have been many recent developments concerning the metabolic, transport and signalling functions of adenylates in plants, suggesting new roles for these compounds as central regulators of plant physiology. For example, altering the expression levels of enzymes involved in the equilibration, salvaging, synthesis and transport of adenylates leads to perturbations in storage, growth and stress responses, implying a role for adenylates as important signals. Furthermore, sensing of the internal energy status involves SNF1-related kinases, which control the expression and phosphorylation of key metabolic enzymes. ATP also acts as an apoplastic signalling molecule to control cell growth and pathogen responses. These new results could shed light on the emerging question of whether energy homeostasis in plant cells differs from mechanisms found in microbes and mammals.
Collapse
Affiliation(s)
- Peter Geigenberger
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
39
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
40
|
de Graaf RM, Duarte I, van Alen TA, Kuiper JWP, Schotanus K, Rosenberg J, Huynen MA, Hackstein JHP. The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 2009; 9:287. [PMID: 20003182 PMCID: PMC2796672 DOI: 10.1186/1471-2148-9-287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather unrelated to taxa with hitherto studied hydrogenosomes. Results Electron microscopy of P. lanterna flagellates reveals a large globule in the centre of the cell that is build up from stacks of some 20 individual hydrogenosomes. The individual hydrogenosomes are surrounded by a double membrane that encloses a homogeneous, dark staining matrix lacking cristae. The "modified mitochondria" are found in the cytoplasm of the cell and are surrounded by 1-2 cisterns of rough endoplasmatic reticulum, just as the mitochondria of certain related aerobic Heterolobosea. The ultrastructure of the "modified mitochondria" and hydrogenosomes is very similar, and they have the same size distribution as the hydrogenosomes that form the central stack. The phylogenetic analysis of selected EST sequences (Hsp60, Propionyl-CoA carboxylase) supports the phylogenetic position of P. lanterna close to aerobic Heterolobosea (Naegleria gruberi). Moreover, this analysis also confirms the identity of several mitochondrial or hydrogenosomal key-genes encoding proteins such as a Hsp60, a pyruvate:ferredoxin oxidoreductase, a putative ADP/ATP carrier, a mitochondrial complex I subunit (51 KDa), and a [FeFe] hydrogenase. Conclusion Comparison of the ultrastructure of the "modified mitochondria" and hydrogenosomes strongly suggests that both organelles are just two morphs of the same organelle. The EST studies suggest that the hydrogenosomes of P. lanterna are physiologically similar to the hydrogenosomes of Trichomonas vaginalis and Trimastix pyriformis. Phylogenetic analysis of the ESTs confirms the relationship of P. lanterna with its aerobic relative, the heterolobosean amoeboflagellate Naegleria gruberi, corroborating the evolution of hydrogenosomes from a common, mitochondriate ancestor.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Deng W, Luo K, Li Z, Yang Y. Molecular cloning and characterization of a mitochondrial dicarboxylate/tricarboxylate transporter gene inCitrus junosresponse to aluminum stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/19401730802351012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM. Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. THE PLANT CELL 2008; 20:3241-57. [PMID: 19073763 PMCID: PMC2630453 DOI: 10.1105/tpc.108.062042] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several recent proteomic studies of plant peroxisomes indicate that the peroxisomal matrix harbors multiple ATP-dependent enzymes and chaperones. However, it is unknown whether plant peroxisomes are able to produce ATP by substrate-level phosphorylation or whether external ATP fuels the energy-dependent reactions within peroxisomes. The existence of transport proteins that supply plant peroxisomes with energy for fatty acid oxidation and other ATP-dependent processes has not previously been demonstrated. Here, we describe two Arabidopsis thaliana genes that encode peroxisomal adenine nucleotide carriers, PNC1 and PNC2. Both proteins, when fused to enhanced yellow fluorescent protein, are targeted to peroxisomes. Complementation of a yeast mutant deficient in peroxisomal ATP import and in vitro transport assays using recombinant transporter proteins revealed that PNC1 and PNC2 catalyze the counterexchange of ATP with ADP or AMP. Transgenic Arabidopsis lines repressing both PNC genes were generated using ethanol-inducible RNA interference. A detailed analysis of these plants showed that an impaired peroxisomal ATP import inhibits fatty acid breakdown during early seedling growth and other beta-oxidation reactions, such as auxin biosynthesis. We show conclusively that PNC1 and PNC2 are essential for supplying peroxisomes with ATP, indicating that no other ATP generating systems exist inside plant peroxisomes.
Collapse
Affiliation(s)
- Nicole Linka
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Arai Y, Hayashi M, Nishimura M. Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. THE PLANT CELL 2008; 20:3227-40. [PMID: 19073762 PMCID: PMC2630451 DOI: 10.1105/tpc.108.062877] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/05/2008] [Accepted: 11/18/2008] [Indexed: 05/17/2023]
Abstract
We have identified the novel protein Glycine max PEROXISOMAL ADENINE NUCLEOTIDE CARRIER (Gm PNC1) by proteomic analyses of peroxisomal membrane proteins using a blue native/SDS-PAGE technique combined with peptide mass fingerprinting. Gm PNC1, and the Arabidopsis thaliana orthologs At PNC1 and At PNC2, were targeted to peroxisomes. Functional integration of Gm PNC1 and At PNC2 into the cytoplasmic membranes of intact Escherichia coli cells revealed ATP and ADP import activities. The amount of Gm PNC1 in cotyledons increased until 5 d after germination under constant darkness and then decreased very rapidly in response to illumination. We investigated the physiological functions of PNC1 in peroxisomal metabolism by analyzing a transgenic Arabidopsis plant in which At PNC1 and At PNC2 expression was suppressed using RNA interference. The pnc1/2i mutant required sucrose for germination and suppressed the degradation of storage lipids during postgerminative growth. These results suggest that PNC1 contributes to the transport of adenine nucleotides that are consumed by reactions that generate acyl-CoA for peroxisomal fatty acid beta-oxidation during postgerminative growth.
Collapse
Affiliation(s)
- Yuko Arai
- Department of Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Japan
| | | | | |
Collapse
|
44
|
Kirchberger S, Tjaden J, Neuhaus HE. Characterization of the Arabidopsis Brittle1 transport protein and impact of reduced activity on plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:51-63. [PMID: 18564385 DOI: 10.1111/j.1365-313x.2008.03583.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome contains a gene (Atbt1) encoding a highly hydrophobic membrane protein of the mitochondrial carrier family, with six predicted transmembrane domains, and showing substantial structural similarity to Brittle1 proteins from maize and potato. We demonstrate that AtBT1 transports AMP, ADP and ATP (but not ADP-glucose), shows a unidirectional mode of transport, and locates to the plastidial membrane and not to the ER as previously proposed. Analysis using an Atbt1 promoter-GUS construct revealed substantial gene expression in rapidly growing root tips and maturating or germinating pollen. Survival of homozygous Atbt1::T-DNA mutants is very limited, and those that do survive produce non-fertile seeds. These observations indicate that no other carrier protein or metabolic mechanism can compensate for the loss of this transporter. Atbt1 RNAi dosage mutants show substantially retarded growth, adenylate levels similar to those of wild-type plants, increased glutamine contents and unchanged starch levels. Interestingly, the growth retardation of Atbt1 RNAi mutant plants was circumvented by adenosine feeding, and was accompanied by increased adenylate levels. Further observations showed the presence of a functional nucleotide salvage pathway in Atbt1 RNAi mutants. In summary, our data indicate that AtBT1 is a plastidial nucleotide uniport carrier protein that is strictly required to export newly synthesized adenylates into the cytosol.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Monophosphate/metabolism
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biological Transport, Active
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Mutagenesis, Insertional
- Nucleotide Transport Proteins/genetics
- Nucleotide Transport Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plastids/genetics
- Plastids/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Plant/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Simon Kirchberger
- Universität Kaiserslautern, Pflanzenphysiologie, Biologie, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
45
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 DOI: 10.1199/tab.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
|
46
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 PMCID: PMC3243404 DOI: 10.1199/tab.0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
Affiliation(s)
- A. Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - Ian D. Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - David A. Day
- School of Biological Sciences, The University of Sydney 2006, NSW, Australia
| | - James Whelan
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| |
Collapse
|
47
|
Leroch M, Neuhaus HE, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, Tjaden J. Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. THE PLANT CELL 2008; 20:438-51. [PMID: 18296626 PMCID: PMC2276436 DOI: 10.1105/tpc.107.057554] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many metabolic reactions in the endoplasmic reticulum (ER) require high levels of energy in the form of ATP, which is important for cell viability. Here, we report on an adenine nucleotide transporter residing in the ER membranes of Arabidopsis thaliana (ER-ANT1). Functional integration of ER-ANT1 in the cytoplasmic membrane of intact Escherichia coli cells reveals a high specificity for an ATP/ADP antiport. Immunodetection in transgenic ER-ANT1-C-MYC-tag Arabidopsis plants and immunogold labeling of wild-type pollen grain tissue using a peptide-specific antiserum reveal the localization of this carrier in ER membranes. Transgenic ER-ANT1-promoter-beta-glucuronidase Arabidopsis lines show high expression in ER-active tissues (i.e., pollen, seeds, root tips, apical meristems, or vascular bundles). Two independent ER-ANT1 Arabidopsis knockout lines indicate a high physiological relevance of ER-ANT1 for ATP transport into the plant ER (e.g., disruption of ER-ANT1 results in a drastic retardation of plant growth and impaired root and seed development). In these ER-ANT1 knockout lines, the expression levels of several genes encoding ER proteins that are dependent on a sufficient ATP supply (i.e., BiP [for luminal binding protein] chaperones, calreticulin chaperones, Ca2+-dependent protein kinase, and SEC61) are substantially decreased.
Collapse
Affiliation(s)
- Michaela Leroch
- Pflanzenphysiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Williams BA, Haferkamp I, Keeling PJ. An ADP/ATP-Specific Mitochondrial Carrier Protein in the Microsporidian Antonospora locustae. J Mol Biol 2008; 375:1249-57. [DOI: 10.1016/j.jmb.2007.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/27/2022]
|
49
|
Trentmann O, Horn M, van Scheltinga ACT, Neuhaus HE, Haferkamp I. Enlightening energy parasitism by analysis of an ATP/ADP transporter from chlamydiae. PLoS Biol 2007; 5:e231. [PMID: 17760504 PMCID: PMC1951785 DOI: 10.1371/journal.pbio.0050231] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 06/28/2007] [Indexed: 11/18/2022] Open
Abstract
Energy parasitism by ATP/ADP transport proteins is an essential, common feature of intracellular bacteria such as chlamydiae and rickettsiae, which are major pathogens of humans. Although several ATP/ADP transport proteins have so far been characterized, some fundamental questions regarding their function remained unaddressed. In this study, we focused on the detailed biochemical analysis of a representative ATP/ADP transporter (PamNTT1), from the amoeba symbiont Protochlamydia amoebophila (UWE25) to further clarify the principle of energy exploitation. We succeeded in the purification of the first bacterial nucleotide transporter (NTT) and its functional reconstitution into artificial lipid vesicles. Reconstituted PamNTT1 revealed high import velocities for ATP and an unexpected and previously unobserved stimulating effect of the luminal ADP on nucleotide import affinities. Latter preference of the nucleotide hetero-exchange is independent of the membrane potential, and therefore, PamNTT1 not only structurally but also functionally differs from the well-characterized mitochondrial ADP/ATP carriers. Reconstituted PamNTT1 exhibits a bidirectional orientation in lipid vesicles, but interestingly, only carriers inserted with the N-terminus directed to the proteoliposomal interior are functional. The data presented here comprehensively explain the functional basis of how the intracellular P. amoebophila manages to exploit the energy pool of its host cell effectively by using the nucleotide transporter PamNTT1. This membrane protein mediates a preferred import of ATP, which is additionally stimulated by a high internal (bacterial) ADP/ATP ratio, and the orientation-dependent functionality of the transporter ensures that it is not working in a mode that is detrimental to P. amoebophila. Heterologous expression and purification of high amounts of PamNTT1 provides the basis for its crystallization and detailed structure/function analyses. Furthermore, functional reconstitution of this essential chlamydial protein paves the way for high-throughput uptake studies in order to screen for specific inhibitors potentially suitable as anti-chlamydial drugs.
Collapse
Affiliation(s)
- Oliver Trentmann
- Pflanzenphysiologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Horn
- Department für Mikrobielle Ökologie, Universität Wien, Wien, Austria
| | | | - H. Ekkehard Neuhaus
- Pflanzenphysiologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Ilka Haferkamp
- Zelluläre Physiologie/Membrantransport, Technische Universität Kaiserslautern, Kaiserslautern, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Razakantoanina V, Florent I, Jaureguiberry G. Plasmodium falciparum: functional mitochondrial ADP/ATP transporter in Escherichia coli plasmic membrane as a tool for selective drug screening. Exp Parasitol 2007; 118:181-7. [PMID: 17920591 DOI: 10.1016/j.exppara.2007.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum mitochondrial ADP/ATP transporter or adenylate translocase (PfAdT) was previously characterised at the molecular level and intracellularly located by immuno-electromicroscopy. Inhibition of this transporter blocks parasite development in erythrocytes. In this study, PfAdT was expressed in C43 (DE3) Escherichia coli strain under isopropyl beta-d-thiogalacto-pyranoside (IPTG) induction to screen inhibitory molecules. PfAdT was integrated directly into the bacterial cytoplasmic membrane. Whereas IPTG-induced bacterial cells imported radioactively labelled ATP, non-induced cells did not. The transporter bound specifically ADP and ATP, but not AMP. IPTG-induced cells preloaded with labelled ATP exported ATP after exogenous addition of unlabelled ADP or ATP, indicating a counter exchange transport mechanism. Bongrekic acid and atractyloside, two well-known specific inhibitors of mitochondrial ADP/ATP transporter, were tested. This experimental model was evaluated using three Malagasy crude plants extracts which have shown antiplasmodial activity on in vitro parasite cultures.
Collapse
Affiliation(s)
- Valérie Razakantoanina
- Biologie Fonctionnelle des Protozoaires, USM504-EA3335, Département Régulations, Développement, Diversité Moléculaire, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75005 Paris, France
| | | | | |
Collapse
|