1
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
2
|
Patel J, Dawson VL, Dawson TM. Blocking the Self-Destruct Program of Dopamine Neurons through Macrophage Migration Inhibitory Factor Nuclease Inhibition. Mov Disord 2024; 39:644-650. [PMID: 38396375 PMCID: PMC11160583 DOI: 10.1002/mds.29748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that pathognomonically involves the death of dopaminergic neurons in the substantia nigra pars compacta, resulting in a myriad of motor and non-motor symptoms. Given the insurmountable burden of this disease on the population and healthcare system, significant efforts have been put forth toward generating disease modifying therapies. This class of treatments characteristically alters disease course, as opposed to current strategies that focus on managing symptoms. Previous literature has implicated the cell death pathway known as parthanatos in PD progression. Inhibition of this pathway by targeting poly (ADP)-ribose polymerase 1 (PARP1) prevents neurodegeneration in a model of idiopathic PD. However, PARP1 has a vast repertoire of functions within the body, increasing the probability of side effects with the long-term treatment likely necessary for clinically significant neuroprotection. Recent work culminated in the development of a novel agent targeting the macrophage migration inhibitory factor (MIF) nuclease domain, also named parthanatos-associated apoptosis-inducing factor nuclease (PAAN). This nuclease activity specifically executes the terminal step in parthanatos. Parthanatos-associated apoptosis-inducing factor nuclease inhibitor-1 was neuroprotective in multiple preclinical mouse models of PD. This piece will focus on contextualizing this discovery, emphasizing its significance, and discussing its potential implications for parthanatos-directed treatment. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jaimin Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Tang C, Chen G, Wu F, Cao Y, Yang F, You T, Liu C, Li M, Hu S, Ren L, Lu Q, Deng W, Xu Y, Wang G, Jo H, Zhang Y, Wu Y, Zabel BA, Zhu L. Endothelial CCRL2 induced by disturbed flow promotes atherosclerosis via chemerin-dependent β2 integrin activation in monocytes. Cardiovasc Res 2023; 119:1811-1824. [PMID: 37279540 PMCID: PMC10405567 DOI: 10.1093/cvr/cvad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 06/08/2023] Open
Abstract
AIMS Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate β2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with β2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-β2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| | - Guona Chen
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fan Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yiren Cao
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fei Yang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Tao You
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chu Liu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Menglu Li
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Shuhong Hu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Lijie Ren
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Qiongyu Lu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Wei Deng
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Ying Xu
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Guixue Wang
- JinFeng Laboratory, Chongqing, China
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yonghong Zhang
- Department of Epidemiology School of Public Health, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yi Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Li Zhu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- The Ninth Affiliated Hospital, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
4
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
5
|
Skeens E, Gadzuk-Shea M, Shah D, Bhandari V, Schweppe DK, Berlow RB, Lisi GP. Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery. Structure 2022; 30:840-850.e6. [PMID: 35381187 DOI: 10.1016/j.str.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional immunoregulatory protein that is a key player in the innate immune response. Given its overexpression at sites of inflammation and in diseases marked by increasingly oxidative environments, a comprehensive understanding of how cellular redox conditions impact the structure and function of MIF is necessary. We used NMR spectroscopy and mass spectrometry to investigate biophysical signatures of MIF under varied solution redox conditions. Our results indicate that the MIF structure is modified and becomes increasingly dynamic in an oxidative environment, which may be a means to alter the MIF conformation and functional response in a redox-dependent manner. We identified latent allosteric sites within MIF through mutational analysis of redox-sensitive residues, revealing that a loss of redox-responsive residues attenuates CD74 receptor activation. Leveraging sites of redox sensitivity as targets for structure-based drug design therefore reveals an avenue to modulate MIF function in its "disease state."
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ 08103, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - George P Lisi
- Department of Molecular Biology, Cell Biology, & Biochemistry, Brown University, Providence, RI 02903, USA.
| |
Collapse
|
6
|
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Collapse
|
7
|
The emerging role of red blood cells in cytokine signalling and modulating immune cells. Blood Rev 2019; 41:100644. [PMID: 31812320 DOI: 10.1016/j.blre.2019.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
For many years red blood cells have been described as inert bystanders rather than participants in intercellular signalling, immune function, and inflammatory processes. However, studies are now reporting that red blood cells from healthy individuals regulate immune cell activity and maturation, and red blood cells from disease cohorts are dysfunctional. These cells have now been shown to bind more than 50 cytokines and have been described as a sink for these molecules, and the loss of this activity has been correlated with disease progression. In this review, we summarise what is currently understood about the role of red blood cells in cytokine signalling and in modulating the activity of immune cells. We also discuss the implications of these findings for transfusion medicine and in furthering our understanding of anaemia of chronic inflammation. By bringing these disparate units of work together, we aim to shine a light on an area that requires significantly more investigation.
Collapse
|
8
|
Huang S, Pengsakul T, Cao Y, Lu M, Peng W, Lin J, Tang C, Tang L. Biological activities and functional analysis of macrophage migration inhibitory factor in Oncomelania hupensis, the intermediate host of Schistosoma japonicum. FISH & SHELLFISH IMMUNOLOGY 2018; 74:133-140. [PMID: 29305986 DOI: 10.1016/j.fsi.2017.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/26/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
Schistosomiasis is a destructive parasitic zoonosis caused by agents of the genus Schistosoma, which afflicts more than 250 million people worldwide. The freshwater amphibious snail Oncomelania hupensis serves as the obligate intermediate host of Schistosoma japonicum. Macrophage migration inhibitory factor (MIF) has been demonstrated to be a pleiotropic immunoregulatory cytokine and a key signaling molecule involved in adaptive and innate immunity. In the present study, we obtained the full-length cDNA of OhMIF and analyzed the characteristics of the ORF and the peptide sequence in O. hupensis. Next we have successfully expressed and purified the recombinant OhMIF protein (rOhMIF) together with a site-directed mutant rOhMIFP2G, in which the N-terminal Proline (Pro2) was substituted by a Gly. Our results indicated that rOhMIF displayed the conserved D-dopachrome tautomerase activity which is dependent on Pro2, and this enzymatic activity can be significantly inhibited by the MIF antagonist ISO-1. Moreover, we also measured and compared the steady state kinetic values for D-dopachrome tautomerase activity of rOhMIF and rHsMIF, and the results showed that the reaction rate, catalytic efficiency and substrate affinity of rOhMIF are significantly lower than those of rHsMIF. Additionally, we also showed that rOhMIF had the oxidoreductase activity which can utilize DTT as reductant to reduce insulin. Furthermore, the results obtained from the in vitro injection assay demonstrated that rOhMIF and its mutant rOhMIFP2G can also induce the phosphorylation and activation of ERK1/2 pathway in O. hupensis circulating hemocytes, indicating that the tautomerase activity is not required for this biological function. These results are expected to produce a better understanding of the internal immune defense system in O. hupensis, and help to further explore the interaction between O. hupensis and its natural parasite S. japoniucm.
Collapse
Affiliation(s)
- Shuaiqin Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Theerakamol Pengsakul
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Yunchao Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenfeng Peng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Chongti Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liang Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China; Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Schinagl A, Kerschbaumer RJ, Sabarth N, Douillard P, Scholz P, Voelkel D, Hollerweger JC, Goettig P, Brandstetter H, Scheiflinger F, Thiele M. Role of the Cysteine 81 Residue of Macrophage Migration Inhibitory Factor as a Molecular Redox Switch. Biochemistry 2018; 57:1523-1532. [PMID: 29412660 DOI: 10.1021/acs.biochem.7b01156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory and tumor-promoting cytokine that occurs in two redox-dependent immunologically distinct conformational isoforms. The disease-related structural isoform of MIF (oxMIF) can be specifically and predominantly detected in the circulation of patients with inflammatory diseases and in tumor tissue, whereas the ubiquitously expressed isoform of MIF (redMIF) is abundantly expressed in healthy and diseased subjects. In this article, we report that cysteine 81 within MIF serves as a "switch cysteine" for the conversion of redMIF to oxMIF. Modulating cysteine 81 by thiol reactive agents leads to significant structural rearrangements of the protein, resulting in a decreased β-sheet content and an increased random coil content, but maintaining the trimeric quaternary structure. This conformational change in the MIF molecule enables binding of oxMIF-specific antibodies BaxB01 and BaxM159, which showed beneficial activity in animal models of inflammation and cancer. Crystal structure analysis of the MIF-derived EPCALCS peptide, bound in its oxMIF-like conformation by the Fab fragment of BaxB01, revealed that this peptide adopts a curved conformation, making the central thiol protein oxidoreductase motif competent to undergo disulfide shuffling. We conclude that redMIF might reflect a latent zymogenic form of MIF, and formation of oxMIF leads to a physiologically relevant, i.e., enzymatically active, state.
Collapse
Affiliation(s)
- Alexander Schinagl
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | | | - Nicolas Sabarth
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Patrice Douillard
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Peter Scholz
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Dirk Voelkel
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| | - Julia C Hollerweger
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Peter Goettig
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Hans Brandstetter
- Division of Structural Biology and Bioinformatics , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | | | - Michael Thiele
- Baxalta Innovations GmbH , Uferstrasse 15 , 2304 Orth an der Donau , Austria
| |
Collapse
|
10
|
Bloom J, Sun S, Al-Abed Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 2016; 20:1463-1475. [PMID: 27762152 DOI: 10.1080/14728222.2016.1251582] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) has emerged as a promising drug target in diseases including sepsis, rheumatoid arthritis, and cancer. MIF has multiple properties that favor development of specific, targeted therapies: it is expressed broadly among human cells, has noted roles in diverse inflammatory and oncological processes, and has intrinsic enzymatic activity amenable to high-throughput screening. Despite these advantages, anti-MIF therapy remains well behind other cytokine-targeted therapeutics, with no small molecules in the pipeline for clinical development and anti-MIF antibodies only recently beginning clinical trials. Areas covered: In this review we summarize current literature regarding MIF structure and function-including challenges and controversies that have arisen in studies of anti-MIF therapeutics-and propose a strategy for development of clinically relevant anti-MIF drugs. Expert opinion: We believe that the field of anti-MIF therapeutics would benefit from capitalizing on the protein's multiple assets while acknowledging their flaws. The tautomerase enzymatic site of MIF may not be active biologically, but can nonetheless offer a high-throughput method to highlight molecules of interest that can affect its other, frequently intertwined bioactivities. Future work should also focus on developing more robust assays for MIF bioactivity that can be used for second-pass screening and specificity studies.
Collapse
Affiliation(s)
- Joshua Bloom
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
11
|
Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions: EVIDENCE FOR PARTIAL ALLOSTERIC AGONISM IN COMPARISON WITH CXCL12 CHEMOKINE. J Biol Chem 2016; 291:15881-95. [PMID: 27226569 PMCID: PMC4957068 DOI: 10.1074/jbc.m116.717751] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
An emerging number of non-chemokine mediators are found to bind to classical chemokine receptors and to elicit critical biological responses. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that exhibits chemokine-like activities through non-cognate interactions with the chemokine receptors CXCR2 and CXCR4, in addition to activating the type II receptor CD74. Activation of the MIF-CXCR2 and -CXCR4 axes promotes leukocyte recruitment, mediating the exacerbating role of MIF in atherosclerosis and contributing to the wealth of other MIF biological activities. Although the structural basis of the MIF-CXCR2 interaction has been well studied and was found to engage a pseudo-ELR and an N-like loop motif, nothing is known about the regions of CXCR4 and MIF that are involved in binding to each other. Using a genetic strain of Saccharomyces cerevisiae that expresses a functional CXCR4 receptor, site-specific mutagenesis, hybrid CXCR3/CXCR4 receptors, pharmacological reagents, peptide array analysis, chemotaxis, fluorescence spectroscopy, and circular dichroism, we provide novel molecular information about the structural elements that govern the interaction between MIF and CXCR4. The data identify similarities with classical chemokine-receptor interactions but also provide evidence for a partial allosteric agonist compared with CXCL12 that is possible due to the two binding sites of CXCR4.
Collapse
Affiliation(s)
- Deepa Rajasekaran
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabine Gröning
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Corinna Schmitz
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and
| | - Swen Zierow
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Natalie Drucker
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Maria Bakou
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Kristian Kohl
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - André Mertens
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Hongqi Lue
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Christian Weber
- the Institute for Cardiovascular Prevention, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Pettenkofer Strasse 8, 80336 Munich, Germany
| | - Annie Xiao
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gary Luker
- the Center for Molecular Imaging, Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109
| | - Aphrodite Kapurniotu
- the Division of Peptide Biochemistry, Technische Universität München, 85354 Freising-Weihenstephan, Germany,
| | - Elias Lolis
- From the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520,
| | - Jürgen Bernhagen
- the Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany, Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 17, and the Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
12
|
Kostevich VA, Sokolov AV, Grudinina NA, Zakharova ET, Samygina VR, Vasilyev VB. Interaction of macrophage migration inhibitory factor with ceruloplasmin: role of labile copper ions. Biometals 2015; 28:817-26. [DOI: 10.1007/s10534-015-9868-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
|
13
|
Tillmann S, Bernhagen J, Noels H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front Immunol 2013; 4:115. [PMID: 23720662 PMCID: PMC3655399 DOI: 10.3389/fimmu.2013.00115] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been defined as an important chemokine-like function (CLF) chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor (this function being eponymous), but is now known as a potent inflammatory cytokine with CLFs including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte “motility instruction program.”
Collapse
Affiliation(s)
- Sabine Tillmann
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University Aachen, Germany
| | | | | |
Collapse
|
14
|
Molecular and functional characterization of macrophage migration inhibitory factor (MIF) homolog of human from lymphatic filarial parasite Wuchereria bancrofti. Parasitol Res 2012; 111:2035-47. [DOI: 10.1007/s00436-012-3051-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/16/2012] [Indexed: 12/23/2022]
|
15
|
Luedike P, Hendgen-Cotta UB, Sobierajski J, Totzeck M, Reeh M, Dewor M, Lue H, Krisp C, Wolters D, Kelm M, Bernhagen J, Rassaf T. Cardioprotection through S-nitros(yl)ation of macrophage migration inhibitory factor. Circulation 2012; 125:1880-9. [PMID: 22415145 DOI: 10.1161/circulationaha.111.069104] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a structurally unique inflammatory cytokine that controls cellular signaling in human physiology and disease through extra- and intracellular processes. Macrophage migration inhibitory factor has been shown to mediate both disease-exacerbating and beneficial effects, but the underlying mechanism(s) controlling these diverse functions are poorly understood. METHODS AND RESULTS Here, we have identified an S-nitros(yl)ation modification of MIF that regulates the protective functional phenotype of MIF in myocardial reperfusion injury. Macrophage migration inhibitory factor contains 3 cysteine (Cys) residues; using recombinant wtMIF and site-specific MIF mutants, we have identified that Cys-81 is modified by S-nitros(yl)ation whereas the CXXC-derived Cys residues of MIF remained unaffected. The selective S-nitrosothiol formation at Cys-81 led to a doubling of the oxidoreductase activity of MIF. Importantly, S-nitrosothiol-MIF formation was measured both in vitro and in vivo and led to a decrease in cardiomyocyte apoptosis in the reperfused heart. This decrease was paralleled by a S-nitrosothiol-MIF- but not Cys81 serine (Ser)-MIF mutant-dependent reduction of infarct size in an in vivo model of myocardial ischemia/reperfusion injury. CONCLUSIONS S-nitros(yl)ation of MIF is a pivotal novel regulatory mechanism, providing enhanced activity resulting in increased cytoprotection in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Peter Luedike
- University Hospital Düsseldorf, Medical Faculty, Division of Cardiology, Pulmonology, and Vascular Medicine, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kerschbaumer RJ, Rieger M, Völkel D, Le Roy D, Roger T, Garbaraviciene J, Boehncke WH, Müllberg J, Hoet RM, Wood CR, Antoine G, Thiele M, Savidis-Dacho H, Dockal M, Ehrlich H, Calandra T, Scheiflinger F. Neutralization of macrophage migration inhibitory factor (MIF) by fully human antibodies correlates with their specificity for the β-sheet structure of MIF. J Biol Chem 2012; 287:7446-55. [PMID: 22238348 DOI: 10.1074/jbc.m111.329664] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that recently emerged as an attractive therapeutic target for a variety of diseases. A diverse panel of fully human anti-MIF antibodies was generated by selection from a phage display library and extensively analyzed in vitro. Epitope mapping studies identified antibodies specific for linear as well as structural epitopes. Experimental animal studies revealed that only those antibodies binding epitopes within amino acids 50-68 or 86-102 of the MIF molecule exerted protective effects in models of sepsis or contact hypersensitivity. Within the MIF protein, these two binding regions form a β-sheet structure that includes the MIF oxidoreductase motif. We therefore conclude that this β-sheet structure is a crucial region for MIF activity and a promising target for anti-MIF antibody therapy.
Collapse
|
17
|
Macrophage migration inhibitory factor: critical role in obesity, insulin resistance, and associated comorbidities. Mediators Inflamm 2010; 2010:610479. [PMID: 20169173 PMCID: PMC2821632 DOI: 10.1155/2010/610479] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/07/2010] [Indexed: 12/28/2022] Open
Abstract
Obesity is associated with insulin resistance, disturbed glucose homeostasis, low grade inflammation, and comorbidities such as type 2 diabetes and cardiovascular disease. The cytokine macrophage migration inhibitory factor (MIF) is an ubiquitously expressed protein that plays a crucial role in many inflammatory and autoimmune disorders. Increasing evidence suggests that MIF also controls metabolic and inflammatory processes underlying the development of metabolic pathologies associated with obesity. This is a comprehensive summary of our current knowledge on the role of MIF in obesity and obesity-associated comorbidities, based on human clinical data as well as animal models of disease.
Collapse
|
18
|
Brown KK, Blaikie FH, Smith RAJ, Tyndall JDA, Lue H, Bernhagen J, Winterbourn CC, Hampton MB. Direct modification of the proinflammatory cytokine macrophage migration inhibitory factor by dietary isothiocyanates. J Biol Chem 2009; 284:32425-33. [PMID: 19776019 PMCID: PMC2781657 DOI: 10.1074/jbc.m109.047092] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/14/2009] [Indexed: 11/06/2022] Open
Abstract
Isothiocyanates are a class of phytochemicals with widely reported anti-cancer and anti-inflammatory activity. However, knowledge of their activity at a molecular level is limited. The objective of this study was to identify biological targets of phenethyl isothiocyanate (PEITC) using an affinity purification approach. An analogue of PEITC was synthesized to enable conjugation to a solid-phase resin. The pleiotropic cytokine macrophage migration inhibitory factor (MIF) was the major protein captured from cell lysates. Site-directed mutagenesis and mass spectrometry showed that PEITC covalently modified the N-terminal proline residue of MIF. This resulted in complete loss of catalytic tautomerase activity and disruption of protein conformation, as determined by impaired recognition by a monoclonal antibody directed to the region that receptors and interacting proteins bind to MIF. The conformational change was supported by in silico modeling. Monoclonal antibody binding to plasma MIF was disrupted in humans consuming watercress, a major dietary source of PEITC. The isothiocyanates have significant potential for development as MIF inhibitors, and this activity may contribute to the biological properties of these phytochemicals.
Collapse
Affiliation(s)
- Kristin K. Brown
- From the
Free Radical Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | | | | | - Joel D. A. Tyndall
- the
National School of Pharmacy, University of Otago, Dunedin 9054, New Zealand, and
| | - Hongqi Lue
- the
Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen 52074, Germany
| | - Jürgen Bernhagen
- the
Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen 52074, Germany
| | - Christine C. Winterbourn
- From the
Free Radical Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Mark B. Hampton
- From the
Free Radical Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
19
|
Ahsan MK, Lekli I, Ray D, Yodoi J, Das DK. Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid Redox Signal 2009; 11:2741-58. [PMID: 19583492 PMCID: PMC2821134 DOI: 10.1089/ars.2009.2683] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) are the key mediators of pathogenesis in cardiovascular diseases. Members of the thioredoxin superfamily take an active part in scavenging reactive oxygen species, thus playing an essential role in maintaining the intracellular redox status. The alteration in the expression levels of thioredoxin family members and related molecules constitute effective biomarkers in various diseases, including cardiovascular complications that involve oxidative stress. Thioredoxin, glutaredoxin, peroxiredoxin, and glutathione peroxidase, along with their isoforms, are involved in interaction with the members of metabolic and signaling pathways, thus making them attractive targets for clinical intervention. Studies with cells and transgenic animals have supported this notion and raised the hope for possible gene therapy as modern genetic medicine. Of all the molecules, thioredoxins, glutaredoxins, and peroxiredoxins are emphasized, because a growing body of evidence reveals their essential and regulatory role in several steps of redox regulation. In this review, we discuss some pertinent observations regarding their distribution, structure, functions, and interactions with the several survival- and death-signaling pathways, especially in the myocardium.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Cardiovascular Research Center, Department of Surgery, School of Medicine, University of Connecticut Health Center , Farmington, CT 06030-1110, USA.
| | | | | | | | | |
Collapse
|
20
|
McLean LR, Zhang Y, Li H, Li Z, Lukasczyk U, Choi YM, Han Z, Prisco J, Fordham J, Tsay JT, Reiling S, Vaz RJ, Li Y. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening. Bioorg Med Chem Lett 2009; 19:6717-20. [PMID: 19836948 DOI: 10.1016/j.bmcl.2009.09.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.
Collapse
Affiliation(s)
- Larry R McLean
- Discovery Research, sanofi-aventis, Bridgewater, NJ 08807, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Verjans E, Noetzel E, Bektas N, Schütz AK, Lue H, Lennartz B, Hartmann A, Dahl E, Bernhagen J. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 2009; 9:230. [PMID: 19602265 PMCID: PMC2716369 DOI: 10.1186/1471-2407-9-230] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 07/14/2009] [Indexed: 02/08/2023] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and mediator of acute and chronic inflammatory diseases. MIF is overexpressed in various tumours and has been suggested as a molecular link between chronic inflammation and cancer. MIF overexpression is observed in breast cancer but its causal role in the development of this tumour entity is unclear. Methods MIF levels in breast cancer cell lines were determined by ELISA and Western blot. CD74 was measured by Western blot, fluorescence microscopy and flow cytometry. Cell proliferation was studied by BrdU incorporation, cell adhesion by Matrigel adhesion assay, and cell invasion by migration assay through Matrigel-coated filters using the Transwell system. MIF expression in primary human breast cancers was measured by tissue microarray and a semi-quantitative immunoreactivity score (IRS) and comparison with histopathological parameters and patient outcome data. Results MIF was abundantly expressed in the non-invasive breast cancer cell lines MDA-MB-468 and ZR-75-1, but not in invasive MDA-MB-231 cells, which in turn expressed higher levels of the MIF-receptor CD74. Stimulation with exogenous MIF led to a dramatic upregulation of MIF secretion (50-fold) in MDA-MB-231 cells. Autocrine MIF promoted tumour cell proliferation, as indicated by blockade of MIF or CD74 in MDA-MB-231 and MDA-MB-468, and MDA-MB-231 invasiveness was enhanced by exogenous MIF. We correlated the expression of MIF with histopathological parameters and patient outcome data, using a tissue microarray of 175 primary invasive breast cancers and 35 normal control tissues. MIF was upregulated in breast cancer versus normal tissue (median IRS = 8 versus 6). MIF expression showed positive correlations with progesterone (p = 0.006) and estrogen (p = 0.028) receptor expression, markers of a favourable prognosis and a negative correlation to tumour size (p = 0.007). In line with these data, disease-specific overall (OS) as well as recurrence-free (RFS) survival was significantly improved in breast cancer patients with abundant cytosolic MIF expression compared to MIF low expressers (5-year OS = 67% versus 50%, p = 0.0019; 5-year RFS = 52% versus 36%, p = 0.0327). Conclusion We conclude that intracellular expression of MIF in breast cancer cells is beneficial, whereas extracellular MIF may play a pro-oncogenic role in promoting breast cancer cell-stroma interactions.
Collapse
Affiliation(s)
- Eva Verjans
- Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University Hospital, Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ceccarelli J, Delfino L, Zappia E, Castellani P, Borghi M, Ferrini S, Tosetti F, Rubartelli A. The redox state of the lung cancer microenvironment depends on the levels of thioredoxin expressed by tumor cells and affects tumor progression and response to prooxidants. Int J Cancer 2008; 123:1770-8. [PMID: 18661523 DOI: 10.1002/ijc.23709] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we report that human nonsmall cell lung carcinomas overexpress macrophage migration inhibitory factor (MIF) and thioredoxin (Trx), 2 oxidoreductases with cytokine function, and contain more abundant nonprotein thiols (glutathione and cysteine) than nonneoplastic lung tissues. Cell clones derived from the same lung carcinoma cell lines but expressing different levels of Trx and/or MIF displayed growth rates in vitro and in vivo correlating with Trx but not with MIF. Interestingly, the different clones generate extracellularly reduced nonprotein thiols, in amounts related to the Trx content and inhibited by inhibitors of Trx function. Each clone also showed distinct responses to the prooxidant compound arsenic trioxide. Cells with a strongly antioxidant and aggressive phenotype were more susceptible to the cytotoxic effect of the drug than cells expressing little Trx. The latter counteracted the oxidative stress by increasing Trx expression and thiol release. Together these results indicate that different human lung cancer cell lines have distinct redox properties defined by the levels of Trx and nonprotein thiols, the higher antioxidant phenotype correlating with the higher aggressiveness. Moreover, the redox phenotype dictates their response to prooxidant drugs and must be taken into account when therapeutic interventions with redox active substances are considered.
Collapse
Affiliation(s)
- Jenny Ceccarelli
- Cell Biology Unit, National Cancer Research Institute, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
El-Turk F, Cascella M, Ouertatani-Sakouhi H, Narayanan RL, Leng L, Bucala R, Zweckstetter M, Rothlisberger U, Lashuel HA. The conformational flexibility of the carboxy terminal residues 105-114 is a key modulator of the catalytic activity and stability of macrophage migration inhibitory factor. Biochemistry 2008; 47:10740-56. [PMID: 18795803 DOI: 10.1021/bi800603x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo and the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Delta 110-114NSTFA and Delta 105-114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants DeltaC5 huMIF 1-109 and DeltaC10 huMIF 1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105-114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that intersubunit interactions involving the C-terminal region 105-114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighboring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity.
Collapse
Affiliation(s)
- Farah El-Turk
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Oda S, Oda T, Nishi K, Takabuchi S, Wakamatsu T, Tanaka T, Adachi T, Fukuda K, Semenza GL, Hirota K. Macrophage migration inhibitory factor activates hypoxia-inducible factor in a p53-dependent manner. PLoS One 2008; 3:e2215. [PMID: 18493321 PMCID: PMC2375051 DOI: 10.1371/journal.pone.0002215] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 04/14/2008] [Indexed: 11/18/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is not only a cytokine which has a critical role in several inflammatory conditions but also has endocrine and enzymatic functions. MIF is identified as an intracellular signaling molecule and is implicated in the process of tumor progression, and also strongly enhances neovascularization. Overexpression of MIF has been observed in tumors from various organs. MIF is one of the genes induced by hypoxia in an hypoxia-inducible factor 1 (HIF-1)-dependent manner. Methods/Principal Findings The effect of MIF on HIF-1 activity was investigated in human breast cancer MCF-7 and MDA-MB-231 cells, and osteosarcoma Saos-2 cells. We demonstrate that intracellular overexpression or extracellular administration of MIF enhances activation of HIF-1 under hypoxic conditions in MCF-7 cells. Mutagenesis analysis of MIF and knockdown of 53 demonstrates that the activation is not dependent on redox activity of MIF but on wild-type p53. We also indicate that the MIF receptor CD74 is involved in HIF-1 activation by MIF at least when MIF is administrated extracellularly. Conclusion/Significance MIF regulates HIF-1 activity in a p53-dependent manner. In addition to MIF's potent effects on the immune system, MIF is linked to fundamental processes conferring cell proliferation, cell survival, angiogenesis, and tumor invasiveness. This functional interdependence between MIF and HIF-1α protein stabilization and transactivation activity provide a molecular mechanism for promotion of tumorigenesis by MIF.
Collapse
Affiliation(s)
- Seiko Oda
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Tomoyuki Oda
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichiro Nishi
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- Department of Anesthesiology, Kansai Medical University, Moriguchi-City, Osaka, Japan
| | - Satoshi Takabuchi
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Takuhiko Wakamatsu
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Takehiko Adachi
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
| | - Gregg L. Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto, Japan
- The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- * E-mail:
| |
Collapse
|
25
|
Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kiriya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T. Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology 2006; 131:1110-21. [PMID: 17030181 DOI: 10.1053/j.gastro.2006.08.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 06/15/2006] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Thioredoxin-1 (TRX) is a small multifunctional protein with antioxidative and redox-regulating functions. In this study, we investigated the significance of TRX in patients with inflammatory bowel disease (IBD) and the ability and mechanism to ameliorate experimental colitis. METHODS Serum TRX and macrophage migration inhibitory factor (MIF) levels were measured in patients with IBD. The effects of TRX were evaluated in a dextran sulfate sodium (DSS)-induced colitis model by comparing TRX-overexpressing transgenic (TRX-TG) and control mice. We further evaluated the effect of recombinant human TRX (rhTRX) administration on DSS-induced colitis and colonic inflammation of interleukin (IL)-10 knockout (IL-10 KO) mice. Colonic inflammation was examined clinically and histologically. Proinflammatory cytokine levels were examined in colonic tissues, and MIF levels were measured in colonic tissues and sera in mice. The effect of TRX on MIF production was also analyzed in vitro. RESULTS Serum TRX and MIF levels were significantly higher in patients with IBD than normal controls, and TRX levels correlated with disease activity. TRX significantly ameliorated DSS-induced colitis and colonic inflammation of IL-10 KO mice. Increase of tumor necrosis factor-alpha and interferon-gamma in colonic tissues was significantly suppressed in TRX-TG mice compared with wild-type mice. MIF levels in colonic tissues and sera were significantly lower in TRX-TG mice than in wild-type mice, irrespective of DSS administration. Anti-TRX treatment exacerbated DSS-induced colitis. In vitro studies demonstrated that rhTRX suppressed MIF production in human monocyte cells. CONCLUSIONS TRX might have a potential as a novel therapeutic agent for the treatment of IBD.
Collapse
MESH Headings
- Animals
- Anticoagulants
- Cell Line, Tumor
- Colitis, Ulcerative/blood
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colon/metabolism
- Crohn Disease/blood
- Crohn Disease/drug therapy
- Crohn Disease/immunology
- Dextran Sulfate
- Disease Models, Animal
- Female
- Gene Expression
- Humans
- Immune Sera/pharmacology
- Interferon-gamma/metabolism
- Interleukin-10/genetics
- Intramolecular Oxidoreductases
- Leukemia, Monocytic, Acute
- Macrophage Migration-Inhibitory Factors/blood
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/immunology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Thioredoxins/blood
- Thioredoxins/genetics
- Thioredoxins/pharmacology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Hiroyuki Tamaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Morand EF, Leech M, Bernhagen J. MIF: a new cytokine link between rheumatoid arthritis and atherosclerosis. Nat Rev Drug Discov 2006; 5:399-410. [PMID: 16628200 DOI: 10.1038/nrd2029] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is well established as a key cytokine in immuno-inflammatory diseases such as rheumatoid arthritis. Inflammation is now also recognized as having a crucial role in atherosclerosis, and recent evidence indicates that MIF could also be important in this disease. Here, we review the role of MIF in rheumatoid arthritis and atherosclerosis, discuss the ways in which MIF and its relationship with glucocorticoids could link these diseases, and consider the potential of MIF as a new therapeutic target for small-molecule and antibody-based anti-cytokine drugs.
Collapse
Affiliation(s)
- Eric F Morand
- Centre for Inflammatory Diseases, Monash Institute for Medical Research, 246 Clayton Road, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
27
|
Leng L, Bucala R. Insight into the biology of Macrophage Migration Inhibitory Factor (MIF) revealed by the cloning of its cell surface receptor. Cell Res 2006; 16:162-8. [PMID: 16474429 DOI: 10.1038/sj.cr.7310022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recent cloning of MIF receptor fills an important gap in our understanding of the molecular biology and immunology of MIF. The MIF receptor, like MIF, does not fall into any established family of protein mediators, providing both new challenges and opportunities for the structural and functional analysis of MIF signal transduction.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cloning, Molecular
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/metabolism
- Humans
- Macrophage Migration-Inhibitory Factors/chemistry
- Macrophage Migration-Inhibitory Factors/metabolism
- Models, Molecular
- Protein Structure, Quaternary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Lin Leng
- Department of Medicine, Yale University School of Medicine, The Anlyan Center, S525, 300 Cedar Street, New Haven CT 06520-8056, USA.
| | | |
Collapse
|
28
|
Cherepkova OA, Lyutova EM, Gurvits BY. Macrophage migration inhibitory factor: isolation from bovine brain. BIOCHEMISTRY (MOSCOW) 2006; 71:73-8. [PMID: 16457622 DOI: 10.1134/s0006297906010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purification of macrophage migration inhibitory factor (MIF) from bovine brain cytosol and its partial characterization are reported. A rapid and relatively simple method for MIF isolation was developed based mainly on size-exclusion chromatography on Toyopearl TSK polymer having a tendency to adsorb MIF as compared to elution of other proteins with similar molecular weights. The method gives a high yield of MIF (0.1 mg homogenous protein per g wet tissue). The retardation is conveniently utilized to achieve good separations of MIF from other proteins of similar molecular weights. The isolated protein was identified as MIF by SDS-electrophoresis, immunoblotting, sequencing of the N-terminal amino acid residues, and also by determination of keto-enol tautomerase activity that is characteristic of MIF with p-hydroxyphenylpyruvic acid as a substrate.
Collapse
Affiliation(s)
- O A Cherepkova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
29
|
Matsuura T, Sun C, Leng L, Kapurniotu A, Bernhagen J, Bucala R, Martynyuk AE, Sumners C. Macrophage Migration Inhibitory Factor Increases Neuronal Delayed Rectifier K+ Current. J Neurophysiol 2006; 95:1042-8. [PMID: 16267117 DOI: 10.1152/jn.00499.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has widespread actions in the immune, endocrine, and nervous systems. Previously, we reported that increases in the intracellular levels of MIF depress the firing of hypothalamus/brain stem neurons in culture, including the chronotropic actions of angiotensin II. The objective of this study was to investigate the effects of MIF on delayed rectifier K+ current ( IKv), one of the component currents whose activity contributes to neuronal firing. Intracellular perfusion of MIF (80 nM) into Sprague–Dawley rat neuronal cultures caused a significant increase in IKv, as measured by patch-clamp recordings. This effect was apparent by 3 min, and was maximal after 20–30 min. IKv current density (pA/pF) increased from 31.58 ± 2.36 in controls to 41.88 ± 3.76 in MIF-treated neurons (mean ± SE; n = 9; P < 0.01). MIF that had been inactivated by boiling did not alter IKv, and MIF-neutralizing antibodies abolished the action of recombinant MIF (rMIF). The stimulatory effect of MIF on IKv current density was mimicked by intracellular application of either P1S-MIF (80 nM) or the peptide MIF-(50–65) (0.8–8 μM), both of which harbor the thiol-protein oxidoreductase (TPOR) activity of the MIF molecule. Conversely, neither C60S-MIF (80 nM) nor the MIF homologue D-dopachrome tautomerase (80 nM), both of which lack TPOR activity, altered IKv. Finally, the increase in IKv produced by rMIF was abolished by the superoxide scavenger Tiron (1 mM). These studies indicate that the neuronal action of MIF includes a stimulatory action on IKv that may be mediated by a TPOR/superoxide-scavenging mechanism.
Collapse
Affiliation(s)
- Tomokazu Matsuura
- Department of Physiology and Functional Genomics and McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bizzarri C, Holmgren A, Pekkari K, Chang G, Colotta F, Ghezzi P, Bertini R. Requirements for the different cysteines in the chemotactic and desensitizing activity of human thioredoxin. Antioxid Redox Signal 2005; 7:1189-94. [PMID: 16115022 DOI: 10.1089/ars.2005.7.1189] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxin (Trx) is a protein disulfide oxidoreductase that can be secreted and act as a chemoattractant for leukocytes. Like chemokines, it causes desensitization of monocytes against its chemotactic activity and that of monocyte chemoattractant protein-1 (MCP-1). To investigate the role of the redox properties of Trx, and particularly of some of its five cysteines, in its chemotactic and desensitizing action, we tested different mutants, including Trx80, a truncated form, and various mutants lacking specific cysteines: Trx C62S/C73S and the redox-inactive mutant Trx C32S/C35S. Of the mutants, only Trx80 maintained the chemotactic activity of wild-type Trx toward both monocytes and polymorphonuclear neutrophils, all of them desensitized monocytes against wild-type Trx or MCP-1, but not chemotactic peptide formyl-methionyl-leucil peptide. These data indicate that different redox-active cysteines are important for Trx chemotactic action, whereas its desensitizing action does not have these requirements, suggesting a redox-independent mechanism.
Collapse
Affiliation(s)
- Cinzia Bizzarri
- Dompe' Research Center and Consorzio Biolaq, L'Aquila, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Thiele M, Bernhagen J. Link between macrophage migration inhibitory factor and cellular redox regulation. Antioxid Redox Signal 2005; 7:1234-48. [PMID: 16115028 DOI: 10.1089/ars.2005.7.1234] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionary conserved 12.5-kDa protein mediator with multiple functions in innate and acquired immunity. Upon leaderless secretion, MIF acts as a typical inflammatory cytokine, but there is no structural homology between MIF and any of the known cytokine protein families. Also, MIF is unique among cytokines in that it exhibits certain endocrine properties and has enzymatic activity. The catalytic thiol-protein oxidoreductase (TPOR) activity of MIF is mediated by a Cys-Ala-Leu-Cys active site between residues 57 and 60 that can undergo reversible intramolecular disulfide formation. Such a redox motif is typically found in TPORs of the thioredoxin (Trx) family of proteins. MIF seems to act as a disulfide reductase, and structure-function analyses of the redox site indicate that this activity is not only observed in vitro, but plays a role in cellular redox homeostasis, apoptosis inhibition, MIF-mediated monocyte/macrophage activation, and possibly the modulation of the activity of MIF-binding proteins. In this Forum review, the biochemical and biological evidence for a role of the TPOR activity for various MIF functions is summarized and discussed. In particular, the marked functional homologies with Trx proteins, the MIF redox/MHC II link, and recent attempts to discern the intra- versus extracellular roles of the MIF TPOR activity are dealt with.
Collapse
Affiliation(s)
- Michael Thiele
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
32
|
Vera PL, Iczkowski KA, Leng L, Bucala R, Meyer-Siegler KL. MACROPHAGE MIGRATION INHIBITORY FACTOR IS RELEASED AS A COMPLEX WITH α1-INHIBITOR-3 IN THE INTRALUMINAL FLUID DURING BLADDER INFLAMMATION IN THE RAT. J Urol 2005; 174:338-43. [PMID: 15947686 DOI: 10.1097/01.ju.0000161606.15696.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Macrophage migration inhibitory factor (MIF) is released into intraluminal fluid (ILF) during bladder inflammation in the rat. We investigated the forms of MIF that are released. We examined MIF release after subcutaneous substance P (SP) or intravesical capsaicin and studied proteins associated with excreted MIF in ILF. MATERIALS AND METHODS Anesthetized male rats with the bladder isolated from the kidneys were injected with SP subcutaneously (saline vehicle) or with intravesical capsaicin (vehicle, 0.1 mM and 1 mM). After 1 hour the ILF was removed and MIF levels were determined using enzyme-linked immunosorbent assay or Western blotting procedures under native, nonreducing and reducing conditions. Mass spectrometry was used to identify proteins associated with MIF in ILF and results were verified by immunoprecipitation. RESULTS SP and intravesical capsaicin increased the total amount of MIF in ILF. MIF was found in high molecular weight complexes that resolved into 2 bands under nonreducing conditions. SP and capsaicin differentially increased the MIF bands. Mass spectrometry determined that MIF was complexed with acute phase proteins. MIF immunoprecipitation followed by Western blotting confirmed that MIF was complexed to alpha1-inhibitor-3. CONCLUSIONS MIF is complexed with alpha1-inhibitor-3, a member of the alpha-2-macroglobulin proteinase inhibitor family, in the rat. Although SP and capsaicin increased the total amount of MIF detected by enzyme-linked immunosorbent assay in ILF, the patterns of MIF complexes elicited by these 2 treatments were different. These findings suggest that in association with other proteins MIF forms part of a complex elicited by bladder inflammation.
Collapse
Affiliation(s)
- Pedro L Vera
- Research and Development Service, Bay Pines Veterans Affairs Medical Center, Bay Pines, Florida, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Studies on thioredoxin (Trx) and its related molecules have expanded dramatically recently. Proteins that share the similar active-site sequence, -Cys-Xxx-Yyy-Cys-, are called the Trx family, and the number of Trx family members is increasing. Trx reductase, which reduces oxidized Trx in cooperation with NADPH, has three isoforms, and peroxiredoxin, which is Trx-dependent peroxidase, has six isoforms. In addition to a role as an antioxidant, Trx and its related molecules play crucial roles in the redox regulation of signal transduction. The classical cytosolic Trx1 and truncated Trx80 are released from cells. Plasma/serum levels of Trx1 are good markers for oxidative stress. Exogenous Trx1 shows cytoprotective and antiinflammatory effects and has a good potential for clinical application. This is an update review on Trx and its related molecules.
Collapse
Affiliation(s)
- Hajime Nakamura
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
34
|
Burger-Kentischer A, Finkelmeier D, Thiele M, Schmucker J, Geiger G, Tovar GEM, Bernhagen J. Binding of JAB1/CSN5 to MIF is mediated by the MPN domain but is independent of the JAMM motif. FEBS Lett 2005; 579:1693-701. [PMID: 15757663 DOI: 10.1016/j.febslet.2005.01.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 01/07/2005] [Accepted: 01/31/2005] [Indexed: 11/26/2022]
Abstract
Macrophage migration inhibitory factor (MIF) binds to c-Jun activation domain binding protein-1 (JAB1)/subunit 5 of COP9 signalosome (CSN5) and modulates cell signaling and the cell cycle through JAB1. The binding domain of JAB1 responsible for binding to MIF is unknown. We hypothesized that the conserved Mpr1p Pad1p N-terminal (MPN) domain of JAB1 may mediate binding to MIF. In fact, yeast two hybrid (YTH) and in vitro translation/coimmunoprecipitation (CoIP) analysis showed that a core MPN domain, which did not cover the functional JAB1/MPN/Mov34 metalloenzyme (JAMM) deneddylase sequence, binds to MIF comparable to full-length JAB1. YTH and pull-down analysis in conjunction with nanobead affinity matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry demonstrated that MIF(50-65) and MPN are sufficient to mediate MIF-JAB1 interaction, respectively. Finally, endogenous CoIP of MIF-CSN6 complexes from mammalian cells demonstrated that MPN is responsible for MIF-JAB1 binding in vivo, and, as CSN6 does not contain a functional JAMM motif, confirmed that the interaction does not require JAMM.
Collapse
Affiliation(s)
- Anke Burger-Kentischer
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Hwang CY, Ryu YS, Chung MS, Kim KD, Park SS, Chae SK, Chae HZ, Kwon KS. Thioredoxin modulates activator protein 1 (AP-1) activity and p27Kip1 degradation through direct interaction with Jab1. Oncogene 2004; 23:8868-75. [PMID: 15480426 DOI: 10.1038/sj.onc.1208116] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thioredoxin (Trx) is a cellular redox enzyme that plays multiple roles in regulating cell growth and apoptosis. Jun activation domain-binding protein 1 (Jab1) was originally identified as a coactivator of activator protein 1 (AP-1) transcription and was also shown to promote degradation of the cyclin-dependent kinase inhibitor, p27Kip1. Recently, Jab1 expression was associated with the progression and poor prognosis of pituitary, epithelial ovarian, and breast cancers, suggesting that it plays a role in oncogenesis. Here, we report that Trx specifically interacts with and modulates the function of Jab1. Fluorescence resonance energy transfer and co-immunoprecipitation studies revealed that Trx and Jab1 colocalize and directly interact with each other. Further, Trx negatively regulates two important Jab1-controlled signaling pathways, activation of AP-1 transcription and degradation of p27Kip1, probably through a direct interaction between Trx and C-terminal of Jab1. The negative effect of Trx on AP-1 activity is Jab1-dependent, as it disappears when Jab1 levels are suppressed by an antisense approach. In addition, Trx competes with p27Kip1 for Jab1 binding. Taken together, our results suggest that Trx may regulate cell cycle and growth through a novel modulation of Jab1-mediated proliferation signals, further indicating that Trx may have the ability to control tumor progression.
Collapse
Affiliation(s)
- Chae Young Hwang
- Center for Systems Biology, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Du J, Xie X, Chen H, Yang W, Dong M, Su J, Wang Y, Yu C, Zhang S, Xu A. Macrophage migration inhibitory factor (MIF) in chinese amphioxus as a molecular marker of immune evolution during the transition of invertebrate/vertebrate. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:961-971. [PMID: 15236927 DOI: 10.1016/j.dci.2004.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/24/2004] [Accepted: 04/02/2004] [Indexed: 05/24/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an important cytokine related to host defenses and autoimmune diseases. Here, we reported two full-length cDNA clones isolated from Chinese amphioxus (Branchiostoma belcheri tsingtaunese). Amino acid sequences analysis and structure prediction of these two molecules, called Bbt-MIF-I and Bbt-MIF-II, respectively, indicated that several conservative domains existed in the two amphioxus MIFs and their sequences were highly homologous to their counterparts of other species. Intriguingly, the Bbt-MIFs gene is present in multi-copy per haploid genome, which is very unusual compared with vertebrate's MIF gene given the known genome duplication theory. The genomic copy number, expression pattern of MIF gene and phylogenetic analysis of MIF proteins all suggested that a leap forward happened for MIF gene during the evolution from invertebrate to vertebrate. Considering the crucial role of MIF in innate immunity, MIF might serve as one of key molecular markers of evolution of immune system.
Collapse
Affiliation(s)
- Jingchun Du
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cytokines are essential effector molecules of innate immunity that initiate and coordinate the cellular and humoral responses aimed, for example, at the eradication of microbial pathogens. Discovered in the late 1960s as a product of activated T cells, the cytokine macrophage migration inhibitory factor (MIF) has been discovered recently to carry out important functions as a mediator of the innate immune system. Constitutively expressed by a broad spectrum of cells and tissues, including monocytes and macrophages, MIF is rapidly released after exposure to microbial products and pro-inflammatory mediators, and in response to stress. After it is released, MIF induces pro-inflammatory biological responses that act as a regulator of immune responses. MIF activates the extracellular signal-regulated kinase 1 (ERK1)/ERK2–mitogen-activated protein kinase pathway, inhibits the activity of JUN activation domain-binding protein 1 (JAB1) — a co-activator of the activator protein 1 (AP1) — upregulates the expression of Toll-like receptor 4 to promote the recognition of endotoxin-expressing bacterial pathogens, sustains pro-inflammatory function by inhibiting p53-dependent apoptosis of macrophages and counter-regulates the immunosuppressive effects of glucocorticoids on immune cells. As a pro-inflammatory mediator, MIF has been shown to be implicated in the pathogenesis of severe sepsis and septic shock, acute respiratory distress syndrome, and several other inflammatory and autoimmune diseases, including rheumatoid arthritis, glomerulonephritis and inflammatory bowel diseases. Given its crucial role as a regulator of innate and acquired immunity, pharmacological or immunological modulation of MIF activity might offer new treatment opportunities for the management of acute and chronic inflammatory diseases.
For more than a quarter of a century, macrophage migration inhibitory factor (MIF) has been a mysterious cytokine. In recent years, MIF has assumed an important role as a pivotal regulator of innate immunity. MIF is an integral component of the host antimicrobial alarm system and stress response that promotes the pro-inflammatory functions of immune cells. A rapidly increasing amount of literature indicates that MIF is implicated in the pathogenesis of sepsis, and inflammatory and autoimmune diseases, suggesting that MIF-directed therapies might offer new treatment opportunities for human diseases in the future.
Collapse
Affiliation(s)
- Thierry Calandra
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
38
|
Nguyen MT, Beck J, Lue H, Fünfzig H, Kleemann R, Koolwijk P, Kapurniotu A, Bernhagen J. A 16-residue peptide fragment of macrophage migration inhibitory factor, MIF-(50-65), exhibits redox activity and has MIF-like biological functions. J Biol Chem 2003; 278:33654-71. [PMID: 12796500 DOI: 10.1074/jbc.m301735200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that participates in the host inflammatory response. A Cys-Xaa-Xaa-Cys (CXXC)-based thiol-protein oxidoreductase activity of MIF is associated with certain biological functions. Peptides spanning the CXXC region of thiol-protein oxidoreductases retain some biochemical properties of the full-length protein. We report on the characterization of CXXC-spanning MIF-(50-65) and its serine variant, C57S/C60S-MIF-(50-65). Following disulfide-mediated cyclization, MIF-(50-65) adapted a beta-turn conformation comparable with that of beta-turn-containing cyclo-57,60-[Asp57,Dap60]MIF-(50-65). MIF-(50-65) had a redox potential E'0 of -0.258 V and formed mixed disulfides with glutathione and cysteine. MIF-(50-65) but not C57S/C60S-MIF-(50-65) had oxidoreductase activity in vitro. Intriguingly, MIF-(50-65) exhibited MIF-like cellular activities. The peptide but not its variant had glucocorticoid overriding and proliferation-enhancing activity and stimulated ERK1/2 phosphorylation. MIF-(50-65) and its variant bound to the MIF-binding protein JAB1 and enhanced cellular levels of p27Kip1. As the peptide and its variant were endocytosed at similar efficiency, sequence 50-65 appears sufficient for the JAB1-related effects of MIF, whereas other activities require CXXC. Cyclo-57,60-[Asp57,Dap60]MIF-(50-65) activated ERK1/2, indicating that CXXC-dependent disulfide and beta-turn formation is associated with an activity-inducing conformation. We conclude that CXXC and sequence 50-65 are critical for the activities of MIF. MIF-(50-65) is a surprisingly short sequence with MIF-like functions that could be an excellent molecular template for MIF therapeutics.
Collapse
Affiliation(s)
- Mai Tuyet Nguyen
- Division of Biochemistry and Molecular Cell Biology, Institute of Biochemistry, University Hospital RWTH Aachen, D-52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Leng L, Metz CN, Fang Y, Xu J, Donnelly S, Baugh J, Delohery T, Chen Y, Mitchell RA, Bucala R. MIF signal transduction initiated by binding to CD74. J Exp Med 2003; 197:1467-76. [PMID: 12782713 PMCID: PMC2193907 DOI: 10.1084/jem.20030286] [Citation(s) in RCA: 842] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal-regulated kinase-1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of approximately 9 x 10-9 Kd, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal-regulated kinase activation in defined cell systems. These data provide a molecular basis for MIF's interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.
Collapse
Affiliation(s)
- Lin Leng
- Department of Internal Medicine, Section of Rheumatology, Yale University School of Medicine, 333 Cedar St., P.O. Box 208031, New Haven, CT 06520-8031, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Macrophage migration inhibitory factor (MIF) is a ubiquitous protein that is found in virtually all cells. Its precise function in the majority of cells is not known, but studies performed over the last decade indicate that it is a critical upstream regulator of the innate and acquired immune response. MIF is released under a variety of circumstances, regulates cytokine secretion and the expression of receptors that are involved in innate immunity, inhibits p53 function, and activates components of the mitogen-activated protein kinase and Jun-activation domain-binding protein-1 (Jab-1) pathways. Compelling in vitro and in vivo evidence has focused attention on this protein as a new therapeutic target for inflammatory and autoimmune diseases. Unique structural features, including an intrinsic catalytic activity, offer attractive opportunities for the discovery and design of therapeutic MIF inhibitors.
Collapse
Affiliation(s)
- Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
41
|
Kapurniotu A, Buck A, Weber M, Schmauder A, Hirsch T, Bernhagen J, Tatarek-Nossol M. Conformational restriction via cyclization in beta-amyloid peptide Abeta(1-28) leads to an inhibitor of Abeta(1-28) amyloidogenesis and cytotoxicity. CHEMISTRY & BIOLOGY 2003; 10:149-59. [PMID: 12618187 DOI: 10.1016/s1074-5521(03)00022-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aggregation process of beta-amyloid peptide Abeta into amyloid is strongly associated with the pathology of Alzheimer's disease (AD). Aggregation may involve a transition of an alpha helix in Abeta(1-28) into beta sheets and interactions between residues 18-20 of the "Abeta amyloid core." We applied an i, i+4 cyclic conformational constraint to the Abeta amyloid core and devised side chain-to-side chain lactam-bridged cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28). In contrast to Abeta(1-28) and [Lys(17), Asp(21)]Abeta(1-28), cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was not able to form beta sheets and cytotoxic amyloid aggregates. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was able to interact with Abeta(1-28) and to inhibit amyloid formation and cytotoxicity. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) also interacted with Abeta(1-40) and interfered with its amyloidogenesis. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) or similarly constrained Abeta sequences may find therapeutic and diagnostic applications in AD.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Laboratory of Bioorganic and Medicinal Chemistry, Institute of Biochemistry, University Hospital of the RWTH Aachen, D-52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect 2002; 4:449-60. [PMID: 11932196 DOI: 10.1016/s1286-4579(02)01560-5] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a unique cytokine and critical mediator of host defenses with a role in septic shock and chronic inflammatory and autoimmune diseases. Its mechanism of action is incompletely understood. Here, we attempt to correlate current knowledge on the molecular pathways of MIF activity with its functions in immunity and disease.
Collapse
Affiliation(s)
- Hongqi Lue
- Laboratory of Biochemistry, Institute for Interfacial Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
43
|
Kleemann R, Grell M, Mischke R, Zimmermann G, Bernhagen J. Receptor binding and cellular uptake studies of macrophage migration inhibitory factor (MIF): use of biologically active labeled MIF derivatives. J Interferon Cytokine Res 2002; 22:351-63. [PMID: 12034043 DOI: 10.1089/107999002753675785] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine for which a receptor has not been identified. That MIF has intracellular functions has been suggested by its enzymatic activity and constitutive expression profile. The discovery of functional MIF-c-Jun activation domain binding protein 1 (JAB1) binding has confirmed this notion and indicated that nonreceptor-based signaling mechanisms are important for MIF function. Here, we have generated and tested several biologically active labeled MIF derivatives to further define target protein binding by MIF and its cellular uptake characteristics. (35)S-MIF, biotinylated MIF, and fluoresceinated MIF were demonstrated to exhibit full biologic activity. Neither by applying a standard iodinated MIF preparation nor by using the biologically active (35)S-MIF derivative in receptor-binding studies were we able to measure any receptor-binding activity on numerous cells, confirming that uptake of MIF into target cells and MIF signaling can occur by receptor-independent pathways. When MIF derivatives were applied in cellular uptake studies, MIF was found to be endocytosed into both immune and nonimmune cells and targeted to the cytosol and lysosomes. The entry of MIF was temperature and energy dependent and was inhibited by monodansylcadaverine but not by ouabain. Endocytosed biotin-MIF bound JAB1 not only in macrophages, as shown previously, but also in nonimmune cells. A tagged MIF construct, MIF-enhanced green fluorescent protein (EGFP), was shown to be a valuable tool, as EGFP constructs of critical MIF cysteine mutants exhibited identical cellular localization properties to those of wild-type MIF (wtMIF). Our results indicate that MIF membrane receptors are not widely expressed, if at all, and suggest that the cellular uptake of MIF occurs by nonreceptor-mediated endocytosis rather than penetration. All the derivatives investigated, except for iodinated MIF, represent valuable tools for further MIF target protein and cellular studies.
Collapse
Affiliation(s)
- Robert Kleemann
- Laboratory of Biochemistry, Institute for Interfacial Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
44
|
Lu C, Li Y, Zhao Y, Xing G, Tang F, Wang Q, Sun Y, Wei H, Yang X, Wu C, Chen J, Guan KL, Zhang C, Chen H, He F. Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway. FASEB J 2002; 16:90-2. [PMID: 11709497 DOI: 10.1096/fj.01-0506fje] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many growth factors and cytokines are involved in liver regeneration. Of them, only hepatopoietin (HPO)/ALR (augmenter of liver regeneration) is a specifically hepatotrophic factor originally identified from the cytosol of regenerating or hyperplastic hepatic cells. Previous reports indicate that extracellular HPO triggers the MAPK pathway by binding its specific receptor on the cell surface. However, its function in the cytosol of hepatocytes is unclear. Here we identified that JAB1 (Jun activation domain-binding protein 1), a co-activator of AP-1, which is essential for liver regeneration, specifically interacts with intracellular HPO. JAB1 colocalizes with HPO in nuclei of hepatic cells or COS-7 cells. As an intracrine factor, the intracellular function of HPO is to increase c-Jun phosphorylation independent of c-Jun amino-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) -1 and -2, and leads to potentiation of JAB1-mediated AP-1 activation. Amino acids 1-63 of HPO molecule are sufficient to bind to JAB1, but the full-length HPO is necessary for its intracellular signaling. Taken together, these results elucidate a novel mechanism of intracrine cytokine signaling by specifically modulating the AP-1 pathway through JAB1, in a MAPK-independent fashion.
Collapse
Affiliation(s)
- Chengrong Lu
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Chinese National Human Genome Center at Beijing, Beijing 100850, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kleemann R, Rorsman H, Rosengren E, Mischke R, Mai NT, Bernhagen J. Dissection of the enzymatic and immunologic functions of macrophage migration inhibitory factor. Full immunologic activity of N-terminally truncated mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7183-93. [PMID: 11106430 DOI: 10.1046/j.1432-1327.2000.01823.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine with broad regulatory functions in innate immunity. MIF belongs to the few cytokines displaying catalytic activities, i.e. MIF has a Pro2-dependent tautomerase and a Cys-Ala-Leu-Cys (CALC) cysteine-based thiol-protein oxidoreductase activity. Previous studies have addressed the roles of the catalytic site residues and the C-terminus. The two activities have not been directly compared. Here we report on the N-terminal mutational analysis and minimization of MIF and on a dissection of the two catalytic activities by comparing mutants P2AMIF, Delta4MIF, Delta5MIF, Delta6MIF, Delta7MIF, Delta8MIF, and Delta10MIF with the cysteine mutants of MIF. As N-terminal deletion was predicted to interfere with protein structure due to disruption of the central beta sheet, it was surprising that deletion of up to six N-terminal residues resulted in normally expressed proteins with wild-type conformation. Strikingly, such mutants exhibited full MIF-specific immunologic activity. While mutation of Pro2 eliminated tautomerase activity, the CALC cysteine residues had no influence on this activity. However, mutant C81SMIF, which otherwise has full biologic activity, only had 32% tautomerase activity. Deletion of four N-terminal residues did not interfere with insulin reduction by MIF. By contrast, reduction of 2-hydroxyethyldisulfide (HED) was markedly affected by N-terminal manipulation, with P2AMIF and Delta2MIF exhibiting 40% activity, and Delta4MIF completely failing to reduce HED. This study constitutes the first comparison of the two catalytic activities of MIF and should assist in understanding the molecular links between the catalytic and immunologic activities of this cytokine and in providing guidelines for N-terminal protein minimization.
Collapse
Affiliation(s)
- R Kleemann
- Laboratory of Biochemistry, Institute for Interfacial Engineering, University of Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Kleemann R, Hausser A, Geiger G, Mischke R, Burger-Kentischer A, Flieger O, Johannes FJ, Roger T, Calandra T, Kapurniotu A, Grell M, Finkelmeier D, Brunner H, Bernhagen J. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 2000; 408:211-6. [PMID: 11089976 DOI: 10.1038/35041591] [Citation(s) in RCA: 456] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cytokines are multifunctional mediators that classically modulate immune activity by receptor-mediated pathways. Macrophage migration inhibitory factor (MIF) is a cytokine that has a critical role in several inflammatory conditions but that also has endocrine and enzymatic functions. The molecular targets of MIF action have so far remained unclear. Here we show that MIF specifically interacts with an intracellular protein, Jab1, which is a coactivator of AP-1 transcription that also promotes degradation of the cyclin-dependent kinase inhibitor p27Kip1 (ref. 10). MIF colocalizes with Jab1 in the cytosol, and both endogenous and exogenously added MIF following endocytosis bind Jab1. MIF inhibits Jab1- and stimulus-enhanced AP-1 activity, but does not interfere with the induction of the transcription factor NFkappaB. Jab1 activates c-Jun amino-terminal kinase (JNK) activity and enhances endogenous phospho-c-Jun levels, and MIF inhibits these effects. MIF also antagonizes Jab1-dependent cell-cycle regulation by increasing p27Kip1 expression through stabilization of p27Kip1 protein. Consequently, Jab1-mediated rescue of fibroblasts from growth arrest is blocked by MIF. Amino acids 50-65 and Cys 60 of MIF are important for Jab1 binding and modulation. We conclude that MIF may act broadly to negatively regulate Jab1-controlled pathways and that the MIF-Jab1 interaction may provide a molecular basis for key activities of MIF.
Collapse
Affiliation(s)
- R Kleemann
- Laboratory of Biochemistry/Institute for Interfacial Engineering, University of Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|