1
|
Hanson AM, Kittilson JD, Sheridan MA. Environmental estrogens inhibit insulin-like growth factor (IGF) receptor mRNA expression, IGF binding, and IGF signaling ex vivo in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2023; 330:114125. [PMID: 36116484 DOI: 10.1016/j.ygcen.2022.114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
In this study, we used juvenile rainbow trout to examine the direct effects of selected environmental estrogens (EE), specifically, 17 β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP), on target tissue sensitivity to insulin-like growth factor (IGF) as assessed by expression of IGF receptor type 1 (IGFR1) mRNAs and IGF-1 binding capacity, as well as on the cell signaling pathways through which EE exert their effects. E2 and NP inhibited IGFR1A and IGFR1B mRNA expression in a time- and concentration-related manner in gill and muscle; however, βS had no effect on expression of IGFR1 mRNAs in either tissue. NP reduced 125I-IGF binding in gill and E2 and NP reduced 125I-IGF in white muscle; βS had no effect on 125I-IGF binding in either gill or white muscle. Treatment of gill filaments with either E2 or NP rapidly deactivated (via reduced proportion of phosphorylation) JAK2, STAT5, Akt, and ERK; βS had no effect on the activation state of any cell signaling elements tested. The effects of EE on IGFR mRNA expression in gill were estrogen receptor (ER) dependent as the inhibitory effects were rescued by the ER antagonist, ICI 182,780. All EE tested blocked growth hormone (GH)-stimulated IGFR mRNA expression in gill filaments. GH-stimulated activation of JAK2, STAT5, Akt, and ERK were blocked by E2, βS, and NP. Lastly, E2 and NP stimulated suppressor of cytokine signaling 2 (SOCS-2) mRNA expression, an effect that also was ER dependent. These results indicate that EE directly reduce the sensitivity of peripheral tissues to IGF by reducing mRNA and functional expression of IGFRs. Such inhibitory actions of EE are mediated, at least in part, by ER-dependent mechanisms that deactivate JAK, STAT, Akt, and ERK and enhance expression of SOCS-2. These findings together with our previous results show that EE retard growth of post-embryonic rainbow trout through widespread direct effects on the GH-IGF system, specifically, by reducing tissue sensitivity to GH, inhibiting IGF production, reducing tissue sensitivity to IGF, and by deactivating post-receptor IGF cell signaling pathways.
Collapse
Affiliation(s)
- Andrea M Hanson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA.
| |
Collapse
|
2
|
Frank SJ. Classical and novel GH receptor signaling pathways. Mol Cell Endocrinol 2020; 518:110999. [PMID: 32835785 PMCID: PMC7799394 DOI: 10.1016/j.mce.2020.110999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
In this review, I summarize historical and recent features of the classical pathways activated by growth hormone (GH) through the cell surface GH receptor (GHR). GHR is a cytokine receptor superfamily member that signals by activating the non-receptor tyrosine kinase, JAK2, and members of the Src family kinases. Activation of the GHR engages STATs, PI3K, and ERK pathways, among others, and details of these now-classical pathways are presented. Modulating elements, including the SOCS proteins, phosphatases, and regulated GHR metalloproteolysis, are discussed. In addition, a novel physical and functional interaction of GHR with IGF-1R is summarized and discussed in terms of its mechanisms, consequences, and physiological and therapeutic implications.
Collapse
Affiliation(s)
- Stuart J Frank
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, 1720 2nd Avenue South, BDB 485, AL, 35294-0012, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Klepsch O, Namer LS, Köhler N, Kaempfer R, Dittrich A, Schaper F. Intragenic regulation of SOCS3 isoforms. Cell Commun Signal 2019; 17:70. [PMID: 31238931 PMCID: PMC6593527 DOI: 10.1186/s12964-019-0379-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
Background Inflammatory reactions are commonly affected by stress responses. Interleukin-6 signalling is part of the inflammatory response and is stringently regulated by the feedback inhibitor SOCS3 expressed in a short and long isoform. Here, we studied the inhibitory potential of the two SOCS3 isoforms. Furthermore, we analysed the regulation of SOCS3 isoform expression and the role of PKR stress kinase signalling in SOCS3 protein expression. Methods We performed Western blotting, reporter assays, genetic analyses and manipulations for studying SOCS3 isoform expression and activation of signalling components involved in interleukin-6-induced and PKR-dependent signalling. Results Interleukin-6-induced endogenous expression of both SOCS3 isoforms was found in distinct cell types. Forced expression of either the long or short SOCS3 isoform demonstrated equal inhibitory activity of each isoform and confirmed longer half-life of the short isoform. Study of intragenic regulation of SOCS3 isoform expression revealed that (i) the 5′-UTR of SOCS3 mRNA restrains specifically expression of the long SOCS3 isoform, (ii) expression of the long isoform restrains expression of the short isoform, and (iii) signalling through the stress kinase PKR does not impact on SOCS3 isoform ratio. Conclusions Both SOCS3 isoforms show a similar potential for inhibiting interleukin-6 signalling but differ in their half-lives. Relative expression of the isoforms depends on intragenic elements yet is independent of PKR signalling. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0379-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Klepsch
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Lise Sarah Namer
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Nadine Köhler
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, 9112102, Jerusalem, Israel
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Fred Schaper
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
4
|
Wójcik M, Krawczyńska A, Antushevich H, Herman AP. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Int J Mol Sci 2018; 19:E1843. [PMID: 29932147 PMCID: PMC6073700 DOI: 10.3390/ijms19071843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
The growth hormone (GH) plays a key role in the regulation of metabolic processes in an organism. Determination of the correct structure and functioning of the growth hormone receptor (GHR) allowed for a more detailed research of its post-receptor regulators, which substantially influences its signal transduction. This review is focused on the description of the post-receptor inhibitors of the GHR-JAK2-STAT pathway, which is one of the most important pathways in the transduction of the somatotropic axis signal. The aim of this review is the short characterization of the main post-receptor inhibitors, such as: cytokine-inducible SH2-containing protein (CIS), Suppressors of Cytokine Signaling (SOCS) 1, 2 and 3, sirtuin 1 (SIRT1), protein inhibitors of activated STAT (PIAS) 1, 3 and PIAS4, protein tyrosine phosphatases (PTP) 1B and H1, Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP) 1, 2 and signal regulatory protein (SIRP) α1. The equilibrium between these regulators activity and inhibition is of special concern because, as many studies showed, even slight imbalance may disrupt the GH activity causing serious diseases. The regulation of the described inhibitors expression and activity may be a point of interest for pharmaceutical industry.
Collapse
Affiliation(s)
- Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Agata Krawczyńska
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| | - Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland.
| |
Collapse
|
5
|
Chhabra Y, Wong HY, Nikolajsen LF, Steinocher H, Papadopulos A, Tunny KA, Meunier FA, Smith AG, Kragelund BB, Brooks AJ, Waters MJ. A growth hormone receptor SNP promotes lung cancer by impairment of SOCS2-mediated degradation. Oncogene 2018; 37:489-501. [PMID: 28967904 PMCID: PMC5799715 DOI: 10.1038/onc.2017.352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
Both humans and mice lacking functional growth hormone (GH) receptors are known to be resistant to cancer. Further, autocrine GH has been reported to act as a cancer promoter. Here we present the first example of a variant of the GH receptor (GHR) associated with cancer promotion, in this case lung cancer. We show that the GHRP495T variant located in the receptor intracellular domain is able to prolong the GH signal in vitro using stably expressing mouse pro-B-cell and human lung cell lines. This is relevant because GH secretion is pulsatile, and extending the signal duration makes it resemble autocrine GH action. Signal duration for the activated GHR is primarily controlled by suppressor of cytokine signalling 2 (SOCS2), the substrate recognition component of the E3 protein ligase responsible for ubiquitinylation and degradation of the GHR. SOCS2 is induced by a GH pulse and we show that SOCS2 binding to the GHR is impaired by a threonine substitution at Pro 495. This results in decreased internalisation and degradation of the receptor evident in TIRF microscopy and by measurement of mature (surface) receptor expression. Mutational analysis showed that the residue at position 495 impairs SOCS2 binding only when a threonine is present, consistent with interference with the adjacent Thr494. The latter is key for SOCS2 binding, together with nearby Tyr487, which must be phosphorylated for SOCS2 binding. We also undertook nuclear magnetic resonance spectroscopy approach for structural comparison of the SOCS2 binding scaffold Ile455-Ser588, and concluded that this single substitution has altered the structure of the SOCS2 binding site. Importantly, we find that lung BEAS-2B cells expressing GHRP495T display increased expression of transcripts associated with tumour proliferation, epithelial-mesenchymal transition and metastases (TWIST1, SNAI2, EGFR, MYC and CCND1) at 2 h after a GH pulse. This is consistent with prolonged GH signalling acting to promote cancer progression in lung cancer.
Collapse
Affiliation(s)
- Y Chhabra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - H Y Wong
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
| | - L F Nikolajsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Steinocher
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - K A Tunny
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - F A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - B B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - A J Brooks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - M J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Hanson AM, Ickstadt AT, Marquart DJ, Kittilson JD, Sheridan MA. Environmental estrogens inhibit mRNA and functional expression of growth hormone receptors as well as growth hormone signaling pathways in vitro in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2017; 246:120-128. [PMID: 27388662 DOI: 10.1016/j.ygcen.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
Abstract
Fish in aquatic habitats are exposed to increasing concentrations and types of environmental contaminants, including environmental estrogens (EE). While there is growing evidence to support the observation that endocrine-disrupting compounds (EDCs) possess growth-inhibiting effects, the mechanisms by which these physiological effects occur are poorly understood. In this study, we examined the direct effects of EE, specifically 17β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP), on GH sensitivity as assessed by mRNA expression and functional expression of growth hormone receptor in hepatocytes, gill filaments, and muscle in rainbow trout (Oncorhynchus mykiss). Additionally, we examined the effects of EE on signaling cascades related to growth hormone signal transduction (i.e., JAK-STAT, MAPK, and PI3K-Akt). Environmental estrogens directly suppressed the expression of GHRs in a tissue- and compound-related manner. The potency and efficacy varied with EE; effects were most pronounced with E2 in liver. EE treatment deactivated the JAK-STAT, MAPK, and PI3K-Akt pathways in liver a time-, EE- and concentration-dependent manner. Generally, E2 and NP were most effective in deactivating pathway elements; maximum suppression for each pathway was rapid, typically occurring at 10-30min. The observed effects occurred via an estrogen-dependent pathway, as indicated by treatment with an ER antagonist, ICI 182,780. These findings suggest that EEs suppress growth by reducing GH sensitivity in terms of reduced GHR synthesis and reduced surface GHR expression and by repressing GH signaling pathways.
Collapse
Affiliation(s)
- Andrea M Hanson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Alicia T Ickstadt
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Dillon J Marquart
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Jeffrey D Kittilson
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA
| | - Mark A Sheridan
- Department of Biological Sciences, North Dakota State University, Fargo 58108, USA.
| |
Collapse
|
7
|
Boyraz M, Yeşilkaya E, Ezgü F, Bideci A, Doğan H, Ulucan K, Cinaz P. Effect of Cytokine Signaling 3 Gene Polymorphisms in Childhood Obesity. J Clin Res Pediatr Endocrinol 2016; 8:452-460. [PMID: 27611604 PMCID: PMC5198005 DOI: 10.4274/jcrpe.3167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Although polymorphisms in suppressor of cytokine signaling 3 (SOCS3) was reported to be related to obesity, Metabolic syndrome (MS), and type 2 diabetes mellitus in various adult studies, there is a lack of data in children. In this study, we examined eight reported polymorphisms of SOCS3 in obese Turkish children and adolescent with and without MS and compared the results with that of controls. METHODS One hundred and forty eight obese and 63 age- and sex-matched control subjects were enrolled in the study. Obesity classification was carried out according to body mass index. World Health Organization and National Cholesterol Education Program criteria were used for the diagnosis of MS. Genotyping procedure was carried out by polymerase chain reaction and Sanger sequencing protocol. RESULTS The frequency of rs2280148 polymorphism was significantly higher in obese subjects with MS than in the control group, whereas the frequency of rs8064821 polymorphism was significantly higher in obese subjects with MS than in obese children without MS. CONCLUSION The significant associations of certain SOCS3 polymorphisms with obesity parameters in both MS and MS -related insulin resistance, hypertension, and fatty liver suggest that polymorphisms in this gene may play a role in the pathogenesis of MS and also that they can be potentially used as a marker for attenuated or aggressive disease.
Collapse
Affiliation(s)
- Mehmet Boyraz
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | | | - Fatih Ezgü
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Aysun Bideci
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| | | | - Korkut Ulucan
- Marmara University Faculty of Dentistry, Department of Medical Biology and Genetics, İstanbul, Turkey, Phone: +90 216 400 22 22- 2409 E-mail:
| | - Peyami Cinaz
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey
| |
Collapse
|
8
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
9
|
Yang HL, Yan J, Feng M, Tan X, Yan GY, Gan L, Sun C. Construction of suppressor of cytokine signaling 2 (SOCS2) adenoviral overexpression vector and its impact on growth-hormone-induced lipolysis in swine primary adipocytes. GENETICS AND MOLECULAR RESEARCH 2013; 12:1283-93. [PMID: 23359054 DOI: 10.4238/2013.january.9.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the effect of overexpression suppressor of cytokine signaling 2 (SOCS2) on lipolysis in swine primary adipocytes (pAd) induced by growth hormone (GH). We constructed pAd-SOCS2 adenoviral overexpression vectors to infect HEK293 cells for virus packaging and propagation. Cultured swine primary adipocytes were infected with virus particles; after 48 h the infected adipocytes were treated with 500 ng GH/mL in the growth medium. Lipometabolism-related gene expressions were detected at 0, 0.25, 0.5, 1, 2, and 4 h, by measuring mRNA and protein levels. The pAd-SOCS2 overexpression vector was successfully constructed and the concentration of titrated virus was 1.2 x 10(9) PFU/mL. We found that virus infection significantly increased SOCS2 mRNA and protein levels in swine primary adipocytes. Overexpression of SOCS2 significantly inhibited the increase in fatty acid synthase, adipose triglyceride lipase mRNA, and protein expression at 0.5 h. However, after 0.5 h, this inhibition was not significant. We concluded that overexpression of SOCS2 inhibited the increase in lipolysis induced by GH in swine primary adipocytes; this could provide a basis for studies of lipometabolism.
Collapse
Affiliation(s)
- H L Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Szczesna M, Kirsz K, Kucharski M, Szymaszek P, Zieba DA. Obesity and leptin resistance: The role of growth hormone. Health (London) 2013. [DOI: 10.4236/health.2013.58a3005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Effect of suppressor of cytokine signaling 2 (SOCS2) on fat metabolism induced by growth hormone (GH) in porcine primary adipocyte. Mol Biol Rep 2012; 39:9113-22. [DOI: 10.1007/s11033-012-1783-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 06/09/2012] [Indexed: 01/13/2023]
|
12
|
Garbers C, Hermanns HM, Schaper F, Müller-Newen G, Grötzinger J, Rose-John S, Scheller J. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 2012; 23:85-97. [PMID: 22595692 DOI: 10.1016/j.cytogfr.2012.04.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-6-type cytokines are critically involved in health and disease. The duration and strength of IL-6-type cytokine-mediated signaling is tightly regulated to avoid overshooting activities. Here, molecular mechanisms of inter-familiar cytokine cross-talk are reviewed which regulate dynamics and strength of IL-6 signal transduction. Both plasticity and cytokine cross-talk are significantly involved in pro- and anti-inflammatory/regenerative properties of IL-6-type cytokines. Furthermore, we focus on IL-6-type cytokine/cytokine receptor plasticity and cross-talk exemplified by the recently identified composite cytokines IL-30/IL-6R and IL-35, the first inter-familiar IL-6/IL-12 family member. The complete understanding of the intra- and extracellular cytokine networks will aid to develop novel tailor-made therapeutic strategies with reduced side effects.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Dittrich A, Khouri C, Sackett SD, Ehlting C, Böhmer O, Albrecht U, Bode JG, Trautwein C, Schaper F. Glucocorticoids increase interleukin-6-dependent gene induction by interfering with the expression of the suppressor of cytokine signaling 3 feedback inhibitor. Hepatology 2012; 55:256-66. [PMID: 21898505 DOI: 10.1002/hep.24655] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Glucocorticoids are known to be potent regulators of inflammation and have been used pharmacologically against inflammatory, immune, and lymphoproliferative diseases for more than 50 years. Due to their possible and well-documented side effects, it is crucial to understand the molecular mechanisms and targets of glucocorticoid action in detail. Several modes of action have been discussed; nevertheless, none of them fully explain all the functions of glucocorticoids. Therefore, we analyzed the cross-talk between glucocorticoids and interleukin-6 (IL-6) in the liver. IL-6 exerts pro-inflammatory as well as anti-inflammatory properties and is a main inducer of the acute-phase response. The balance between the proinflammatory and anti-inflammatory activities of IL-6 is tightly regulated by suppressor of cytokine signaling 3 (SOCS3), a well-known feedback inhibitor of IL-6 signaling. Here, it is demonstrated that glucocorticoids enhance IL-6-dependent γ-fibrinogen expression. Studying of the underlying mechanism revealed prolonged activation of signal transducer and activator of transcription 3 (STAT3) caused by down-regulation of SOCS3 protein expression. Consequently, in SOCS3-deficient cells glucocorticoids do not affect IL-6-induced signal transduction. Moreover, in hepatocytes lacking the SOCS3 recruiting motif within gp130, IL-6-dependent γ-fibrinogen expression is not influenced by glucocorticoid treatment. CONCLUSION Glucocorticoids interfere with IL-6-induced expression of the feedback inhibitor SOCS3, thereby leading to enhanced expression of acute-phase genes in hepatocytes. This mechanism contributes to the explanation of how glucocorticoids affect inflammation and acute-phase gene induction.
Collapse
Affiliation(s)
- Anna Dittrich
- Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chia DJ, Rotwein P. Defining the epigenetic actions of growth hormone: acute chromatin changes accompany GH-activated gene transcription. Mol Endocrinol 2010; 24:2038-49. [PMID: 20702579 DOI: 10.1210/me.2010-0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Many of the long-term physiological effects of GH require hormone-mediated changes in gene expression. The transcription factor signal transducer and activator of transcription 5b (Stat5b) plays a critical role in the actions of GH on growth and metabolism by regulating a large number of GH-dependent genes by incompletely understood mechanisms. Here we have assessed the impact of GH-initiated and Stat5b-mediated signaling on the chromatin landscape of hormone-regulated genes in the liver of pituitary-deficient young adult male rats. In the absence of GH there was minimal ongoing transcription at the Socs2, Cish, Igfals, and Spi 2.1 promoters, minimal occupancy of Stat5b at proximal promoter sites, and relatively closed chromatin, as evidenced by low levels of core histone acetylation. In contrast, transcriptionally silent Igf1 promoter 1 appeared poised to be activated, based on binding of coactivators p300 and Med1/Trap220, high levels of histone acetylation, and the presence of RNA polymerase II. GH treatment led to a 8- to 20-fold rise in transcriptional activity of all five genes within 30-60 min and was accompanied by binding of Stat5b to the proximal Socs2, Cish, Igfals, and Spi 2.1 promoters and to seven distal Igf1 Stat5b elements, by enhanced histone acetylation at all five promoters, by recruitment of RNA polymerase II to the Socs2, Cish, Igfals, and Spi 2.1 promoters, and by loss of the transcriptional repressor Bcl6 from Socs2, Cish, and Igfals Stat5b sites, but not from two Igf1 Stat5b domains. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at target promoters and propose that the chromatin signature of Igf1 differs from other GH-and Stat5b-dependent genes.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Oregon Health & Science University, Portland Oregon 97239-3098, USA
| | | |
Collapse
|
15
|
Sun L, Ma X, Liu H, Wang Y, Li X. No association of polymorphisms in the suppressor of cytokine signaling (SOCS)-3 with rheumatoid arthritis in the Chinese Han population. GENETICS AND MOLECULAR RESEARCH 2010; 9:1518-24. [DOI: 10.4238/vol9-3gmr914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Zídek Z, Anzenbacher P, Kmonícková E. Current status and challenges of cytokine pharmacology. Br J Pharmacol 2009; 157:342-61. [PMID: 19371342 PMCID: PMC2707982 DOI: 10.1111/j.1476-5381.2009.00206.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 12/12/2022] Open
Abstract
The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Z Zídek
- Department of Pharmacology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | |
Collapse
|
17
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int J Cancer 2009; 124:1756-66. [DOI: 10.1002/ijc.24172] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Novosyadlyy R, Lelbach A, Sheikh N, Tron K, Pannem R, Ramadori G, Scharf JG. Temporal and spatial expression of IGF-I and IGFBP-1 during acute-phase response induced by localized inflammation in rats. Growth Horm IGF Res 2009; 19:51-60. [PMID: 18632293 DOI: 10.1016/j.ghir.2008.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 05/07/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The acute-phase response (APR), a cytokine-induced defense reaction of the body that enhances the innate immunity mechanisms directed to eliminate the noxious agent and restrict the area of damage, is accompanied by numerous alterations of the IGF axis. The liver is a central organ of both the IGF system and the APR because it releases most of IGF-I and IGFBP-1 in the circulation and is the main target organ for acute-phase-cytokines such as IL-6. METHODS In the current work the expression of IGF-I and IGFBP-1 was studied in the liver and extrahepatic tissues in a rat model of localized inflammation induced by intramuscular injection of turpentine oil (TO). The mRNA expression of IGF-I and IGFBP-1 was determined by Northern blot analysis and quantitative RT-PCR. Circulating levels of IGF-I and IGFBP-1 were evaluated by radioimmunoassay and [(125)I]-IGF-I ligand blotting, respectively. RESULTS Administration of TO to the rats led to a significant reduction of IGF-I gene expression in the liver and spleen. These changes were accompanied by a reduction of serum IGF-I concentrations to approximately 50% of levels observed in control rats. In contrast to IGF-I, IGFBP-1 mRNA expression was rapidly elevated in the livers of TO-treated rats. IGFBP-1 transcripts were already detectable at 30 min after TO injection and reached their maximal levels by 6h. IGFBP-1 gene expression was also increased in the kidneys. This elevation, however, was delayed and less prominent than in the liver. CONCLUSIONS Our data demonstrate that localized inflammation induced by intramuscular TO injection is accompanied not only by decreased IGF-I but also by increased IGFBP-1 gene expression explaining at least in part the catabolic changes of metabolism observed during the acute-phase response.
Collapse
Affiliation(s)
- R Novosyadlyy
- Department of Medicine, Division of Gastroenterology and Endocrinology, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Yeager MP, Pioli PA, Wardwell K, Beach ML, Martel P, Lee HK, Rassias AJ, Guyre PM. In vivo exposure to high or low cortisol has biphasic effects on inflammatory response pathways of human monocytes. Anesth Analg 2008; 107:1726-34. [PMID: 18931239 DOI: 10.1213/ane.0b013e3181875fb0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent studies demonstrate that glucocorticoids (GCs) have both supportive (stimulatory) and suppressive effects on immune responses, depending upon the GC concentration. Since some GC effects on inflammation are stimulatory, we hypothesized that acute in vivo GC depletion would decrease inflammatory responses of human monocytes. METHODS Monocytes were isolated from healthy volunteer participants before and after in vivo treatment with; 1) IV saline, 2) IV high dose hydrocortisone (8 microg x kg(-1) x min(-1)) followed by oral hydrocortisone overnight, and 3) oral RU486 (200 mg at 0400 and 1600 h) to block the intracellular GC receptor and IV etomidate (1.5 mg x kg(-1) x h(-1)) for 12 h to prevent compensatory adrenal cortisol synthesis. Plasma adrenocorticotropic hormone, plasma, and salivary cortisol were measured serially. Monocytes were tested for; 1) cytokine responses, 2) expression of CD163, CD119, and CD54, and 3) mRNA levels of GC-responsive inflammatory mediators. All measurements were made with and without in vitro stimulation of monocytes by lipopolysaccharide. RESULTS Cortisol and adrenocorticotropic hormone measurements demonstrated effective manipulation of in vivo cortisol. In vivo hypercortisolemia and in vivo GC depletion had reciprocal effects on monocyte mRNA levels of 4 important GC-responsive molecules: 1) GC receptor, CD163, interleukin-10, and suppressor of the cytokine synthesis-3. Monocyte cytokine responses and protein expression were not affected by GC depletion. CD163 expression was increased by hypercortisolemia. CONCLUSIONS Short-term GC depletion affects mRNA levels of GC-responsive molecules but does not affect monocyte protein expression or cytokine responses.
Collapse
Affiliation(s)
- Mark P Yeager
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr., Lebanon, NH 03756, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hou T, Ray S, Lee C, Brasier AR. The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. J Biol Chem 2008; 283:30725-34. [PMID: 18782771 DOI: 10.1074/jbc.m805941200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor mainly activated by the interleukin-6 cytokine family. Previous studies have shown that activated STAT3 recruits p300, a coactivator whose intrinsic histone acetyltransferase activity is essential for transcription. Here we investigated the function of the STAT3 NH(2)-terminal domain and how its interaction with p300 regulates STAT3 signal transduction. In STAT3(-/-) mouse embryonic fibroblasts, a stably expressed NH(2) terminus-deficient STAT3 mutant (STAT3-DeltaN) was unable to efficiently induce either STAT3-mediated reporter activity or endogenous mRNA expression. Chromatin immunoprecipitation assays were performed to determine whether the NH(2)-terminal domain regulates p300 recruitment or stabilizes enhanceosome assembly. Despite equivalent levels of STAT3 binding, cells expressing the STAT3-DeltaN mutant were unable to recruit p300 and RNA polymerase II to the native socs3 promoter as efficiently as those expressing STAT3-full length. We previously reported that the STAT3 NH(2)-terminal domain is acetylated by p300 at Lys-49 and Lys-87. By introducing K49R/K87R mutations, here we found that the acetylation status of the STAT3 NH(2)-terminal domain regulates its interaction with p300. In addition, the STAT3 NH(2)-terminal binding site maps to the p300 bromodomain, a region spanning from amino acids 995 to 1255. Finally a p300 mutant lacking the bromodomain (p300-DeltaB) exhibited a weaker binding to STAT3, and the enhanceosome formation on the socs3 promoter was inhibited when p300-DeltaB was overexpressed. Taken together, our data suggest that the STAT3 NH(2)-terminal domain plays an important role in the interleukin-6 signaling pathway by interacting with the p300 bromodomain, thereby stabilizing enhanceosome assembly.
Collapse
Affiliation(s)
- Tieying Hou
- Department of Biochemistry, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | |
Collapse
|
21
|
Nuclear Factor κB Mediates the Inhibitory Effects of Interleukin-1 on Growth Hormone-Inducible Gene Expression. ACTA ACUST UNITED AC 2008; 64:1427-35; discussion 1435-6. [DOI: 10.1097/ta.0b013e318174e8a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Cinelli P, Casanova EA, Uhlig S, Lochmatter P, Matsuda T, Yokota T, Rülicke T, Ledermann B, Bürki K. Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3. BMC DEVELOPMENTAL BIOLOGY 2008; 8:57. [PMID: 18500982 PMCID: PMC2409313 DOI: 10.1186/1471-213x-8-57] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 05/23/2008] [Indexed: 11/17/2022]
Abstract
Background The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES) cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. Results Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B) was shown to be restricted to the inner cell mass (ICM) of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. Conclusion Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent manner as STAT3 or Nanog.
Collapse
Affiliation(s)
- Paolo Cinelli
- Institute of Laboratory Animal Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Suzuki T, Arakawa H, Mizuno T, Muramatsu K, Tadaki H, Takizawa T, Mochizuki H, Tokuyama K, Matsukura S, Morikawa A. Differential regulation of eotaxin expression by dexamethasone in normal human lung fibroblasts. Am J Respir Cell Mol Biol 2008; 38:707-14. [PMID: 18203973 DOI: 10.1165/rcmb.2007-0337oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung fibroblasts are a major source of several cytokines including CC chemokine eotaxin. We aimed to study the regulation of eotaxin-1/CCL11 production by dexamethasone and analyze its molecular mechanisms in human lung fibroblasts. Normal human lung fibroblast cells were exposed to IL-4 (40 ng/ml) and/or dexamethasone (10(-6)-10(-9) M), and eotaxin mRNA expression and production was evaluated. Mechanisms of transcriptional regulation were assessed by Western blotting and dual luciferase assay for eotaxin promoter. The effects of dexamethasone on suppressor of cytokine signaling (SOCS)-1 and eotaxin mRNA expression in the cells transfected with expression vector (pAcGFP1-C1) or short interfering RNA (siRNA) for SOCS-1 were also investigated. Within 24 hours, dexamethasone inhibited IL-4-induced eotaxin mRNA expression and protein production, while eotaxin production was markedly increased at 48 and 72 hours after coincubation with IL-4 and dexamethasone. IL-4-induced eotaxin promoter activity was inhibited by dexamethasone at 8 hours, but enhanced at 48 hours after coincubation. Dexamethasone suppressed SOCS-1 mRNA expression but enhanced IL-4-induced STAT6 phosphorylation at 36 to 48 hours after coincubation. Enhanced expression of eotaxin mRNA by dexamethasone 48 hours after coincubation was completely diminished in the cells transfected with either expression vector or siRNA for SOCS-1. These results indicated that dexamethasone, depending on the exposure duration, can either inhibit or enhance IL-4-induced expression and production of eotaxin in the lung fibroblasts. The mechanisms of later enhanced production may depend on the prolonged transcriptional activity of the eotaxin gene, in part due to inhibition of SOCS-1 expression.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Department of Pediatrics and Developmental Medicine, Gunma University Graduate School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. Regulation of Suppressor of Cytokine Signaling 3 (SOC3) by Growth Hormone in Pro-B Cells. Mol Endocrinol 2007; 21:2503-15. [PMID: 17609438 DOI: 10.1210/me.2006-0498] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractSuppressor of cytokine signaling 3 (SOCS3) is expressed by lymphoid cells and can modulate the sensitivity of these cells to cytokine stimulation through inhibition of Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathways. This study employed a mouse pro-B cell line expressing the human GH receptor (BaF/3-GHR), to elucidate the signal transduction pathways used by GH to elicit SOCS3 expression. GH treatment of these cells caused a rapid, dose-dependent increase in SOCS3 mRNA expression, which was independent of de novo protein synthesis. As expected, GH treatment increased JAK-dependent STAT5 tyrosine phosphorylation, which bound to the proximal STAT response element (pSRE) on the SOCS3 promoter. This process appeared to involve STAT5b, rather than STAT5a. In addition, GH activation of the SOCS3 promoter required a nearby activator protein (AP) 1/cAMP response element (CRE), which bound cAMP response element binding protein, c-Fos, and c-Jun. Moreover, inhibitors of p38 MAPK and c-Jun N-terminal kinase prevented GH-stimulation of SOCS3 mRNA expression in these cells, suggesting a role for these kinases in SOCS3 transcription. Importantly, GH stimulation increased binding of FOXO3a to the SOCS3 promoter at a site overlapping the AP1/CRE response element, and overexpression of FOXO3a in these cells augmented SOCS3 promoter activation. In addition, we show a direct interaction between FOXO3a and STAT5 in these cells, which may provide a link between STAT5 and the AP1 transcription factors on the SOCS3 promoter. We conclude that regulation of SOCS3 expression by GH in a pro-B cell involves not only the pSRE, but also a transcriptionally active complex involving cAMP response element binding protein/c-Fos/c-Jun and FOXO3a. This study has implications for cytokine regulation of SOCS gene expression in lymphoid cells.
Collapse
Affiliation(s)
- Johanna L Barclay
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | | | | | | |
Collapse
|
25
|
Barclay JL, Anderson ST, Waters MJ, Curlewis JD. Characterization of the SOCS3 promoter response to prostaglandin E2 in T47D cells. Mol Endocrinol 2007; 21:2516-28. [PMID: 17636039 DOI: 10.1210/me.2007-0030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine signaling, is expressed in breast cancer cells where it can modify sensitivity and responsiveness to cytokine signaling through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Although it is widely accepted that SOCS3 expression is in itself regulated by STATs, we and others have shown that prostaglandins can also up-regulate SOCS3 expression. Here we used T47D breast cancer cells treated with prostaglandin E2 (PGE2) to examine this pathway. T47D cells responded to PGE2 stimulation with a significant increase in SOCS3 mRNA that was independent of de novo protein synthesis. PGE2 stimulation resulted in STAT3 serine and tyrosine phosphorylation, although mutation of either of the two previously characterized STAT response elements on the SOCS3 promoter did not affect SOCS3 promoter activation by PGE2. In addition, overexpression of STAT3 wild-type, constitutively active or dominant-negative constructs did not affect PGE2-induced SOCS3 promoter activation, indicating that STATs are unlikely mediators of this pathway in these cells. PGE2 is a known activator of the cAMP/protein kinase A (PKA) pathway, and in T47D cells, up-regulation of SOCS3 mRNA by PGE2 was abolished by pretreatment with H89, a PKA inhibitor and increased by cAMP and forskolin treatment. Consistent with this, PGE2 treatment increased cAMP response element (CRE)-binding protein serine phosphorylation. However, mutation of the activator protein 1/CRE on the promoter did not affect basal or PGE2-stimulated activation, suggesting a role for cAMP/PKA that is independent of CRE-binding protein binding. Mutation of the GC-rich region of the SOCS3 promoter, a putative Sp1/Sp3 binding site, abolished both basal and PGE2-stimulated activation. Gel-shift assays showed increased complex formation after treatment, and this was inhibited by the addition of an Sp1 antibody or pretreatment with PKA inhibitor. Chromatin immunoprecipitation assay verified Sp1 binding to the promoter in response to PGE2. Sp1 overexpression increased SOCS3 promoter activation, and both basal and PGE2-induced SOCS3 mRNA expression was prevented by mithramycin, an inhibitor of Sp1 DNA binding. Finally, a physiological role for PGE2 was demonstrated with PGE2 pretreatment reducing lipopolysaccharide-induced STAT3 activation. Collectively, this study details a novel mechanism of SOCS3 up-regulation by PGE2 in breast cancer cells that appears to be STAT independent and involve Sp1 binding to the promoter. This process has possible implications for cytokine responsiveness and tumor progression.
Collapse
Affiliation(s)
- Johanna L Barclay
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
| | | | | | | |
Collapse
|
26
|
Miyanaka Y, Ueno Y, Tanaka S, Yoshioka K, Hatakeyama T, Shimamoto M, Sumii M, Chayama K. Clinical significance of mucosal suppressors of cytokine signaling 3 expression in ulcerative colitis. World J Gastroenterol 2007; 13:2939-44. [PMID: 17589943 PMCID: PMC4171145 DOI: 10.3748/wjg.v13.i21.2939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinical significance of mucosal expression of suppressors of cytokine signaling 1 (SOCS1) and SOCS3 in human ulcerative colitis (UC).
METHODS: Biopsy specimens for histological analysis and mRNA detection were obtained endoscopically from the rectum of 62 patients with UC (36 men; age 13-76 years). The patients were classified endoscopically according to Matts’ grade (grade 1 to 4). Expression of SOCS1 and SOCS3 mRNAs was quantified in samples by competitive reverse transcription-polymerase chain reaction (RT-PCR). GAPDH was used as an internal control for efficiency of RT-PCR and amount of RNA.
RESULTS: SOCS3 mRNA expression was significantly higher in inflamed mucosa of UC than in inactive mucosa. The level of expression was well correlated with the degree of both endoscopic and histologic inflammation. Interestingly, among the patients in remission, the group with relatively low expression of SOCS3 showed a higher rate of remission maintenance over a 12-mo period. In contrast, SOCS1 mRNA was expressed in both inflamed and non-inflamed colonic mucosa and was not correlated with the activity of colonic mucosa or prognosis.
CONCLUSION: These observations suggest that increased expression of mucosal SOCS3, but not of SOCS1, may play a critical role in the development of the colonic inflammation of UC.
Collapse
Affiliation(s)
- Yoshihiro Miyanaka
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ahmed TA, Buzzelli MD, Lang CH, Capen JB, Shumate ML, Navaratnarajah M, Nagarajan M, Cooney RN. Interleukin-6 inhibits growth hormone-mediated gene expression in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1793-803. [PMID: 17395896 DOI: 10.1152/ajpgi.00547.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During systemic inflammation, the liver becomes unresponsive to growth hormone (GH), resulting in decreased plasma insulin-like growth factor-I (IGF-I) with concomitant reductions in lean body mass. Transgenic mice that overexpress IL-6 also demonstrate impaired growth and decreased IGF-I. To determine whether IL-6 directly inhibits GH-inducible gene expression, CWSV-1 hepatocytes were incubated with IL-6 (10 ng/ml), then stimulated with recombinant human GH (500 ng/ml, 18 h). The increase in IGF-I and serine protease inhibitor 2.1 (Spi 2.1) mRNA in GH-treated cells was inhibited by treatment with IL-6 for 24 h. To investigate potential mechanisms, we examined the effects of IL-6 on GH receptor (GHR) expression and GH signaling via the JAK/signal transducer and activator of transcription (STAT) and MAP kinase pathways. Incubation of cells with IL-6 (10 ng/ml, 24 h) had no effect on GHR abundance or signaling proteins JAK2, STAT5b, and ERK1/2. Although GH transiently increased (2- to 5-fold) the tyrosine phosphorylation of GHR, JAK2, STAT5b, and ERK1/2, IL-6 did not alter these phosphorylation events. However, nuclear protein from IL-6-treated cells demonstrated reduced STAT5 DNA binding (by EMSA) at 15 min (-20%) and 60 min (-43%) after GH stimulation. To determine whether IL-6 inhibits GH-inducible promoter activity, CWSV-1 cells were transfected with Spi 2.1 or prolactin receptor promoter luciferase vectors, incubated with or without IL-6, then stimulated with GH. The induction of both Spi 2.1 (7.5-fold) and prolactin receptor (4-fold) promoter activity by GH was inhibited by IL-6. In summary, IL-6 mediates hepatic GH resistance by a time-dependent inhibition of GH-inducible promoter activity that is associated with reductions in STAT5 DNA binding.
Collapse
Affiliation(s)
- Tamer A Ahmed
- Dept. of Surgery, H070, Pennsylvania State Univ, College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ehlting C, Lai WS, Schaper F, Brenndörfer ED, Matthes RJ, Heinrich PC, Ludwig S, Blackshear PJ, Gaestel M, Häussinger D, Bode JG. Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade. THE JOURNAL OF IMMUNOLOGY 2007; 178:2813-26. [PMID: 17312125 DOI: 10.4049/jimmunol.178.5.2813] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The potential of some proinflammatory mediators to inhibit gp130-dependent STAT3 activation by enhancing suppressor of cytokine signaling (SOCS) 3 expression represents an important molecular mechanism admitting the modulation of the cellular response toward gp130-mediated signals. Thus, it is necessary to understand the mechanisms involved in the regulation of SOCS3 expression by proinflammatory mediators. In this study, we investigate SOCS3 expression initiated by the proinflammatory cytokine TNF-alpha. In contrast to IL-6, TNF-alpha increases SOCS3 expression by stabilizing SOCS3 mRNA. Activation of the MAPK kinase 6 (MKK6)/p38(MAPK)-cascade is required for TNF-alpha-mediated stabilization of SOCS3 mRNA and results in enhanced SOCS3 protein expression. In fibroblasts or macrophages deficient for MAPK-activated protein kinase 2 (MK2), a downstream target of the MKK6/p38(MAPK) cascade, basal SOCS3-expression is strongly reduced and TNF-alpha-induced SOCS3-mRNA stabilization is impaired, indicating that MK2 is crucial for the control of SOCS3 expression by p38(MAPK)-dependent signals. As a target for SOCS3 mRNA stability-regulating signals, a region containing three copies of a pentameric AUUUA motif in close proximity to a U-rich region located between positions 2422 and 2541 of the 3' untranslated region of SOCS3 is identified. One factor that could target this region is the zinc finger protein tristetraprolin (TTP), which is shown to be capable of destabilizing SOCS3 mRNA via this region. However, data from TTP-deficient cells suggest that TTP does not play an irreplaceable role in the regulation of SOCS3 mRNA stability by TNF-alpha. In summary, these data indicate that TNF-alpha regulates SOCS3 expression on the level of mRNA stability via activation of the MKK6/p38(MAPK) cascade and that the activation of MK2, a downstream target of p38(MAPK), is important for the regulation of SOCS3 expression.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hölter K, Wermter AK, Scherag A, Siegfried W, Goldschmidt H, Hebebrand J, Hinney A. Analysis of sequence variations in the suppressor of cytokine signaling (SOCS)-3 gene in extremely obese children and adolescents. BMC MEDICAL GENETICS 2007; 8:21. [PMID: 17445271 PMCID: PMC1866222 DOI: 10.1186/1471-2350-8-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 04/19/2007] [Indexed: 11/10/2022]
Abstract
Background The suppressor of cytokine signaling (SOCS)-3 is a negative feedback regulator of cytokine signaling and also influences leptin signaling. We investigated association of variations in the coding sequence and promoter region of SOCS3 with extreme obesity in German children and adolescents. Methods An initial screen for sequence variations in 181 extremely obese children and adolescents and 188 healthy underweight adults revealed two previously reported single nucleotide polymorphisms (SNPs) in the SOCS3 5' region: -1044 C>A (numbering refers to bases upstream of ATG in exon 2) within a predicted STAT3 binding element and -920 C>A (rs12953258, for numbering, see above). Results We did not detect significant differences in allele or genotype frequencies for any of these SNPs between the analysed study groups (all nominal p > 0.2). In addition, we performed a pedigree transmission disequilibrium test (PDT) for the SNP -1044 C>A in families comprising 703 obese children and adolescents, 281 of their obese siblings and both biological parents. The PDT revealed no transmission disequilibrium (nominal p > 0.05). Conclusion In conclusion, our data do not suggest evidence for a major role of the respective SNPs in SOCS3 in the pathogenesis of extreme obesity in our study groups.
Collapse
Affiliation(s)
- Katja Hölter
- Clinical Research Group, Department of Child and Adolescent Psychiatry, Philipps-University of Marburg, Germany
| | - Anne-Kathrin Wermter
- Clinical Research Group, Department of Child and Adolescent Psychiatry, Philipps-University of Marburg, Germany
| | - André Scherag
- Institute of Medical Biometry and Epidemiology, Philipps-University of Marburg, Germany
| | | | | | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, Woelfle J, Ono M, Lenhard B, Norstedt G, Rotwein P, Flores-Morales A. In Vivo Transcript Profiling and Phylogenetic Analysis Identifies Suppressor of Cytokine Signaling 2 as a Direct Signal Transducer and Activator of Transcription 5b Target in Liver. Mol Endocrinol 2007; 21:293-311. [PMID: 17008382 DOI: 10.1210/me.2006-0096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AbstractThe GH-activated signal transducer and activator of transcription 5b (STAT5b) is an essential regulator of somatic growth. The transcriptional response to STAT5b in liver is poorly understood. We have combined microarray-based expression profiling and phylogenetic analysis of gene regulatory regions to study the interplay between STAT5b and GH in the regulation of hepatic gene expression. The acute transcriptional response to GH in vivo after a single pulse of GH was studied in the liver of hypophysectomized rats in the presence of either constitutively active or a dominant-negative STAT5b delivered by adenoviral gene transfer. Genes showing differential expression in these two situations were analyzed for the presence of STAT5b binding sites in promoter and intronic regions that are phylogenetically conserved between rats and humans. Using this approach, we showed that most rapid transcriptional effects of GH in the liver are not results of direct actions of STAT5b. In addition, we identified novel STAT5b cis regulatory elements in genes such as Frizzled-4, epithelial membrane protein-1, and the suppressor of cytokine signaling 2 (SOCS2). Detailed analysis of SOCS2 promoter demonstrated its direct transcriptional regulation by STAT5b upon GH stimulation. A novel response element was identified within the first intron of the human SOCS2 gene composed of an E-box followed by tandem STAT5b binding sites, both of which are required for full GH responsiveness. In summary, we demonstrate the power of combining transcript profiling with phylogenetic sequence analysis to define novel regulatory paradigms.
Collapse
Affiliation(s)
- Oscar M Vidal
- Department of Molecular Medicine and Surgery, Karolinska Institutet 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cytokine-induced expression of SOCS (suppressor of cytokine signalling) molecules is important for the negative regulatory control of STAT (signal transduction and activators of transcription)-dependent cytokine signalling, e.g. for the signal transduction of IL-6 (interleukin-6)-type cytokines through the JAK (Janus kinase)/STAT cascade. STAT activation itself represents an important step in the transcriptional activation of SOCS3 gene expression. However, downstream of the STAT-responsive element, the SOCS3 gene contains a GC-rich element in its 5'-upstream region. The aim of the present study was to investigate the implications of this GC-rich element in the transcriptional control of SOCS3 gene expression. In the present study, we show that mutation of this GC-rich element abolishes IL-6-dependent transcriptional activation of the SOCS3 promoter and that Sp3 (specificity protein 3), a ubiquitously expressed transcription factor, but not Sp1 binds to this GC-rich motif, suggesting that Sp3 is involved in the regulation of SOCS3 expression. The results suggest that Sp3 is important for IL-6-induced transcriptional activation of the SOCS3 (gene) promoter and acts as an enhancer of basal as well as induced transcriptional activity, resulting in enhanced SOCS3 mRNA and protein expression. Mutation of Lys-483, a potential target for Sp3 acetylation, inhibited Sp3-mediated enhancement of SOCS3 mRNA expression and SOCS3 promoter activation, indicating that the acetylation of this lysine residue of Sp3 is important for the enhancing effect of Sp3 on SOCS3 expression.
Collapse
Affiliation(s)
- Christian Ehlting
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
| | - Johannes G. Bode
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, 40255 Düsseldorf, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Fisker S. Physiology and pathophysiology of growth hormone-binding protein: methodological and clinical aspects. Growth Horm IGF Res 2006; 16:1-28. [PMID: 16359897 DOI: 10.1016/j.ghir.2005.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/01/2005] [Accepted: 11/01/2005] [Indexed: 11/20/2022]
Abstract
Circulating GH is partly bound to a high-affinity binding protein (GHBP), which in humans is derived from cleavage of the extracellular domain of the GH receptor. The precise biological function GHBP is unknown, although a regulation of GH bioactivity appears plausible. GHBP levels are determined by GH secretory status, body composition, age, and sex hormones, but the cause-effect relationships remain unclarified. In addition to the possible in vivo significance of GHBP, the interaction between GH and GHBP has methodological implications for both GH and GHBP assays. The present review concentrates on methodological aspects of GHBP measurements, GHBP levels in certain clinical conditions with a special emphasis on disturbances in the GH-IGF axis, and discusses the possible relationship between plasma GHBP and GH receptor status in peripheral tissues.
Collapse
Affiliation(s)
- Sanne Fisker
- Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus Sygehus, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
33
|
Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 2005; 281:3190-7. [PMID: 16339156 DOI: 10.1074/jbc.m510204200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key agent in the anabolic actions of growth hormone (GH) is insulin-like growth factor-I (IGF-I), a 70-amino acid secreted protein with direct effects on somatic growth and tissue maintenance and repair. GH rapidly and potently stimulates IGF-I gene transcription by mechanisms independent of new protein synthesis, and recent studies have linked the transcription factor Stat5b to a regulatory network connecting the activated GH receptor on the cell membrane to the IGF-I gene in the nucleus. Here we analyze two distinct conserved GH response elements in the rat IGF-I locus that contain paired Stat5b sites. Each response element binds Stat5b in vivo in a GH-dependent way, as assessed by chromatin immunoprecipitation assays, and consists of one high affinity and one lower affinity Stat5b site, as determined by both qualitative and quantitative protein-DNA binding studies. In biochemical reconstitution experiments, both response elements are able to mediate GH-stimulated and Stat5b-dependent transcription when fused to a reporter gene containing either the major IGF-I promoter or a minimal neutral promoter, although the paired Stat5b sites located in the second IGF-I intron were more than twice as effective as the response element that mapped approximately 73 kb 5' to the IGF-I exon 1. Taken together, our results define the initial molecular architecture of a complicated GH-regulated transcriptional pathway, and suggest that apparently redundant hormone response elements provide a mechanism for amplifying GH action at a physiologically important target gene.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
34
|
Laubner K, Kieffer TJ, Lam NT, Niu X, Jakob F, Seufert J. Inhibition of preproinsulin gene expression by leptin induction of suppressor of cytokine signaling 3 in pancreatic beta-cells. Diabetes 2005; 54:3410-7. [PMID: 16306356 DOI: 10.2337/diabetes.54.12.3410] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Leptin inhibits insulin secretion and preproinsulin gene expression in pancreatic beta-cells, but signal transduction pathways and molecular mechanisms underlying this effect are poorly characterized. In this study, we analyzed leptin-mediated signal transduction and preproinsulin gene regulation at the molecular level in pancreatic beta-cells. Leptin stimulation led to janus kinase (JAK)2-dependent phosphorylation and nuclear translocation of the transcription factors signal transducer and activator of transcription (STAT)3 and STAT5b in INS-1 beta-cells. Leptin also induced mRNA expression of the JAK-STAT inhibitor suppressor of cytokine signaling (SOCS)3 in INS-1 beta-cells and human pancreatic islets in vitro and in pancreatic islets of ob/ob mice in vivo. Transcriptional activation of the rat SOCS3 promoter by leptin was observed with concomitant leptin-induced STAT3 and STAT5b DNA binding to specific promoter regions. Unexpectedly, SOCS3 inhibited both basal and STAT3/5b-dependent rat preproinsulin 1 gene promoter activity in INS-1 cells. These results suggest that SOCS3 represents a transcriptional inhibitor of preproinsulin gene expression, which is induced by leptin through JAK-STAT3/5b signaling in pancreatic beta-cells. In conclusion, although SOCS3 is believed to be a negative feedback regulator of JAK-STAT signaling, our findings suggest involvement of SOCS3 in a direct gene regulatory pathway downstream of leptin-activated JAK-STAT signaling in pancreatic beta-cells.
Collapse
Affiliation(s)
- Katharina Laubner
- Division of Metabolism, Endocrinology, and Molecular Medicine, Medizinische Klinik und Poliklinik II, University of Würzburg, Klinikstrasse 6-8, 97070 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Flores-Morales A, Greenhalgh CJ, Norstedt G, Rico-Bautista E. Negative regulation of growth hormone receptor signaling. Mol Endocrinol 2005; 20:241-53. [PMID: 16037128 DOI: 10.1210/me.2005-0170] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
GH has been of significant scientific interest for decades because of its capacity to dramatically change physiological growth parameters. Furthermore, GH interacts with a range of other hormonal pathways and is an established pharmacological agent for which novel therapeutical applications can be foreseen. It is easy to see the requirement for a number of postreceptor mechanisms to regulate and control target tissue sensitivity to this versatile hormone. In recent years, some of the components that take part in the down-regulatory mechanism targeting the activated GH receptor (GHR) have been defined, and the physiological significance of some of these key components has begun to be characterized. Down-regulation of the GHR is achieved through a complex mechanism that involves rapid ubiquitin-dependent endocytosis of the receptor, the action of tyrosine phosphatases, and the degradation by the proteasome. The suppressors of cytokine signaling (SOCS) protein family, particularly SOCS2, plays an important role in regulating GH actions. The aim of this review is to summarize collected knowledge, including very recent findings, regarding the intracellular mechanisms responsible for the GHR signaling down-regulation. Insights into these mechanisms can be of relevance to several aspects of GH research. It can help to understand growth-related disease conditions, to explain GH resistance, and may be used to develop pharmaceuticals that enhance some the beneficial actions of endogenously secreted GH in a tissue-specific manner.
Collapse
|
36
|
Leong GM, Moverare S, Brce J, Doyle N, Sjögren K, Dahlman-Wright K, Gustafsson JA, Ho KKY, Ohlsson C, Leung KC. Estrogen up-regulates hepatic expression of suppressors of cytokine signaling-2 and -3 in vivo and in vitro. Endocrinology 2004; 145:5525-31. [PMID: 15319356 DOI: 10.1210/en.2004-0061] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-alpha, ERbeta, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERbeta knockout mice but not in those lacking ERalpha or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides -1862 and -855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERalpha, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.
Collapse
Affiliation(s)
- Gary M Leong
- Pituitary Research Unit, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
He B, You L, Xu Z, Mazieres J, Lee AY, Jablons DM. Activity of the suppressor of cytokine signaling-3 promoter in human non-small-cell lung cancer. Clin Lung Cancer 2004; 5:366-70. [PMID: 15217536 DOI: 10.3816/clc.2004.n.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Janus kinase (JAKs)/signal transducers and activators of transcription (STAT) signaling pathway is controlled by a classical feedback loop through suppressors of cytokine signaling (SOCS/JAB/SSI). Suppressors of cytokine signaling proteins are induced rapidly by activated STATs upon phosphorylation and act to block the cytokine signal. Abnormalities of the JAK/STAT pathway are associated with cancer. Recently, we cloned the functional 5' promoter region of the human SOCS-3 gene and showed that this region is highly conserved in murine and rat SOCS-3 promoters. In addition, we found that the wild type SOCS-3 promoter construct has significantly greater activity in human non-small-cell lung cancer (NSCLC) cell lines than in normal cells in accordance with STAT3 deregulation in these cells. Furthermore, we have confirmed that frequent hypermethylation of the functional SOCS-3 promoter correlates with its transcription silencing in NSCLC cell lines and primary lung cancer tissue samples. Restoration of SOCS-3 in lung cancer cells in which SOCS-3 has been methylation-silenced induces apoptosis and suppresses growth. Therefore, methylation silencing of SOCS-3 may be used as a marker for early detection of NSCLC. Suppressor of cytokine signaling-3 therapy may be useful for the treatment of lung cancer.
Collapse
Affiliation(s)
- Biao He
- Comprehensive Cancer Center, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
38
|
van de Geijn GJM, Gits J, Aarts LHJ, Heijmans-Antonissen C, Touw IP. G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood 2004; 104:667-74. [PMID: 15069015 DOI: 10.1182/blood-2003-08-2913] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Truncated granulocyte colony-stimulating factor receptors (G-CSF-Rs) are implicated in severe congenital neutropenia (SCN) and the consecutive development of acute myeloid leukemia (AML). Mice expressing G-CSF-R truncation mutants (gcsfr-d715) show defective receptor internalization, an increased signal transducer and activator of transcription 5 (STAT5)/STAT3 activation ratio, and hyperproliferative responses to G-CSF treatment. We determined whether a lack of negative feedback by suppressor of cytokine signaling (SOCS) proteins contributes to the signaling abnormalities of G-CSF-R-d715. Expression of SOCS3 transcripts in bone marrow cells from G-CSF-treated gcsfr-d715 mice was approximately 60% lower than in wild-type (WT) littermates. SOCS3 efficiently suppressed STAT3 and STAT5 activation by WT G-CSF-R in luciferase reporter assays. In contrast, while SOCS3 still inhibited STAT3 activation by G-CSF-R-d715, STAT5 activation was no longer affected. This was due mainly to loss of the SOCS3 recruitment site Tyr729, with an additional contribution of the internalization defects of G-CSF-R-d715. Because Tyr729 is also a docking site for the Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2), which binds to and inactivates STAT5, we suggest a model in which reduced SOCS3 expression, combined with the loss of recruitment of both SOCS3 and SHP-2 to the activated receptor complex, determine the increased STAT5/STAT3 activation ratio and the resulting signaling abnormalities projected by truncated G-CSF-R mutants.
Collapse
|
39
|
Abstract
Failure of interferon-alpha (IFN-alpha) treatment in patients with chronic hepatitis C virus (HCV) infection is a challenging obstacle for clinical and experimental hepatology. Both viral and host factors have been implicated in reducing responsiveness to IFN-alpha therapy. The role of viral factors has been studied extensively and has been summarized in several review articles; however, much less attention has been paid to host factors. In this paper, we review evidence of host factor involvement in IFN-alpha treatment failure. We discuss possible underlying mechanisms responsible for these effects. Potential therapeutic strategies to enhance the effectiveness of IFN-alpha therapy for HCV are also proposed.
Collapse
Affiliation(s)
- Bin Gao
- Section on Liver Biology, Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
40
|
Eicher SD, McMunn KA, Hammon HM, Donkin SS. Toll-like receptors 2 and 4, and acute phase cytokine gene expression in dexamethasone and growth hormone treated dairy calves. Vet Immunol Immunopathol 2004; 98:115-25. [PMID: 15010221 DOI: 10.1016/j.vetimm.2003.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2003] [Revised: 09/15/2003] [Accepted: 10/20/2003] [Indexed: 11/19/2022]
Abstract
Cattle are exposed to growth hormone stimulants and to stressors that cause cortisol release. Both of these hormones affect immune responses which may reduce disease resistance. Toll-like receptors are the pattern recognition molecules of pathogens that are on immune cells. They then orchestrate the induction of the appropriate acute phase cytokines of the early innate response. The objective of this study was to determine changes in toll-like receptors and acute phase cytokines following treatment with a synthetic glucocorticoid (dexamethasone) and growth hormone (GH). Twenty-eight calves were given the control (Cnt), dexamethasone (DEX), GH, or dexamethasone and GH (Both) treatments from 3 until 56 days of age. Blood was collected by jugular venipuncture on days 14, 28, 42, and 56. On day 56, a lung lavage was performed and spleen and thymus tissues collected. Total RNA was extracted from blood leukocytes, lung lavage cells, spleen and thymus cells. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to quantify interleukin-1 (IL-1), IL-1 receptor antagonist (IL-1Ra), tumor necrosis factor (TNF)-alpha, toll-like receptor 2 (TLR2), and toll-like receptor 4 (TLR4). Blood leukocytes had a time effect for IL-1Ra (P < 0.01), with a trend for a treatment effect (P = 0.07) and had a treatment by time interaction (P < 0.05). IL-1, TNF, and TLR2 and TLR4 were greatest (P < 0.05) for Cnt only at day 14. IL-1 expression of lung lavage cells was greatest (P < 0.05) for calves on the Both treatment compared to the other three treatments. However, IL-1Ra was not different among the treatments. Toll-like receptor 2 expression was enhanced with Both compared to either DEX (P < 0.05) or GH (P < 0.05) and tended to be greater than Cnt expression (P = 0.07). Expression of TLR4 tended to be reduced by Both compared to Cnt (P = 0.06). Tumor necrosis factor-alpha was greatly enhanced by Both compared to the other three treatments (P < 0.05). Spleen cell tended to have different IL-1 expression between GH and Both (P < 0.10). Interleukin-1 receptor antagonist and TLR2 and TLR4 were not different among treatments. However, TNF-alpha expression was enhanced by the DEX treatment alone compared to the GH treatment (P < 0.05), and tended (P < 0.10) to be greater than Cnt expression. None of the gene expressions were different among treatments for thymus cells. Lung lavage cell expression appears to be most susceptible to these hormones while blood leukocyte expression was only slightly affected, and thymus cells were not affected at all. These data demonstrate that TLR2 and TLR4 and acute phase cytokine expression can be altered by stress and growth hormones, which may decrease resistance of those animals to disease.
Collapse
Affiliation(s)
- S D Eicher
- USDA-ARS, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
41
|
Woelfle J, Rotwein P. In vivo regulation of growth hormone-stimulated gene transcription by STAT5b. Am J Physiol Endocrinol Metab 2004; 286:E393-401. [PMID: 14761873 DOI: 10.1152/ajpendo.00389.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long-term effects of growth hormone (GH) are mediated through coordinated changes in gene expression that are the outcome of interactions between hormone-activated signal transduction pathways and specific feedback loops. Recent studies in mice have implicated the transcription factor STAT5b as part of the GH-regulated somatic growth pathway, because mice lacking this protein showed diminished growth rates. To assess the role of Stat5b in GH-stimulated gene expression, we have delivered modified versions of the protein to the liver of pituitary-deficient male rats by quantitative adenovirus-mediated gene transfer. In pilot studies in cell culture, both constitutive-active and dominant-negative STAT5b showed appropriate binding properties toward a specific DNA response element. After in vivo expression, neither protein prevented nuclear accumulation of STATs 1 and 3 in the liver. Dominant-negative STAT5b completely inhibited GH-stimulated transcription of genes encoding the growth-promoting proteins IGF-I, IGF-binding protein-3 (IGFBP-3), and acid-labile subunit (ALS), which comprise the major circulating IGF-I complex, and blocked expression of the GH inhibitors SOCS-1, SOCS-2, and CIS, but had little effect on induction of SOCS-3. Constitutive-active STAT5b stimulated robust transcription of IGF-I, ALS, and IGFBP-3 in the absence of hormone but did little to modify GH-mediated activation of SOCS family genes. An adenovirus encoding EGFP was without effect. These results, in addition to establishing STAT5b as one of the key agents of GH-stimulated gene transcription, demonstrate the feasibility of using in vivo gene transfer to target and dissect the functions of distinct components of complex hormone-activated signal transduction pathways.
Collapse
Affiliation(s)
- Joachim Woelfle
- Molecular Medicine Division, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239-3098, USA
| | | |
Collapse
|
42
|
Mahboubi K, Kirkiles-Smith NC, Karras J, Pober JS. Desensitization of signaling by oncostatin M in human vascular cells involves cytoplasmic Tyr residue 759 in gp130 but is not mediated by either Src homology 2 domain-containing tyrosine phosphatase 2 or suppressor of cytokine signaling 3. J Biol Chem 2003; 278:25014-23. [PMID: 12724316 DOI: 10.1074/jbc.m211867200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oncostatin M (OnM) signals through cell surface receptors, which utilize the gp130 subunit. In cultured human umbilical vein endothelial cells (HUVEC), OnM transiently elevates mRNA encoding for suppressor of cytokine signaling-3 (SOCS-3). By 1 h of OnM treatment, HUVEC become refractory to the restimulation by OnM, measured as failure to reinduce SOCS-3 mRNA. OnM-induced desensitization also prevents responses to other gp130-signaling cytokines (e.g. leukemia inhibitory factor and interleukin 11). OnM treatment does not affect gp130 expression levels and desensitizes signaling mediated by a transduced chimeric receptor containing extracellular domains of platelet-derived growth factor receptor-beta (PDGFRbeta) and the cytoplasmic region of gp130. Interestingly, a chimeric PDGFRbeta-gp130 mutant receptor, in which intracellular Tyr residue 759 of gp130 is replaced by a Phe residue, mediates prolonged signaling and is not cross-desensitized by OnM. Phospho-Tyr759 is the binding site for both SOCS-3 and for Src homology domain 2-containing tyrosine phosphatase 2 (SHP-2). In human aortic smooth muscle cells, neither prevention of SOCS-3 protein induction, using STAT3 or SOCS-3 antisense, nor prevention of SHP-2 expression, also with antisense, ablates desensitization. These data suggest that desensitization of vascular cells to OnM is mediated in trans and involves Tyr residue 759 in gp130 but is not mediated by either SOCS-3 or SHP-2, the only two proteins currently known to bind to gp130 at this site.
Collapse
Affiliation(s)
- Keyvan Mahboubi
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
43
|
Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 2003; 278:13740-6. [PMID: 12560330 DOI: 10.1074/jbc.m210689200] [Citation(s) in RCA: 438] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines implicated in insulin resistance during infection, cachexia, and obesity. We recently demonstrated that IL-6 inhibits insulin signaling in hepatocytes (Senn, J. J., Klover, P. J., Nowak, I. A., and Mooney, R. A. (2002) Diabetes 51, 3391-3399). Members of the suppressors of cytokine signaling (SOCS) family associate with the insulin receptor (IR), and their ectopic expression inhibits IR signaling. Since several SOCS proteins are induced by IL-6, a working hypothesis is that IL-6-dependent insulin resistance is mediated, at least in part, by induction of SOCS protein(s) in insulin target cells. To examine the involvement of SOCS protein(s) in IL-6-dependent inhibition of insulin receptor signaling, HepG2 cells were treated with IL-6 (20 ng/ml) for periods from 1 min to 8 h. IL-6 induced SOCS-3 transcript at 30 min with a maximum effect at 1 h. SOCS-3 protein levels were also markedly elevated at 1 h. Transcript and protein levels returned to near basal levels by 2 h. SOCS-3 induction by IL-6 paralleled IL-6-dependent inhibition of IR signal transduction. Ectopically expressed SOCS-3 associated with the IR and suppressed insulin-dependent receptor autophosphorylation, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, association of IRS-1 with the p85 subunit of phosphatidylinositol 3-kinase, and activation of Akt. SOCS-3 was also a direct inhibitor of insulin receptor autophosphorylation in vitro. In mice exposed to IL-6 for 60-90 min, hepatic SOCS-3 expression was increased. This was associated with inhibition of hepatic insulin-dependent receptor autophosphorylation and IRS-1 tyrosine phosphorylation. These data suggest that induction of SOCS-3 in liver may be an important mechanism of IL-6-mediated insulin resistance.
Collapse
Affiliation(s)
- Joseph J Senn
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Denson LA, Held MA, Menon RK, Frank SJ, Parlow AF, Arnold DL. Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am J Physiol Gastrointest Liver Physiol 2003; 284:G646-54. [PMID: 12519742 DOI: 10.1152/ajpgi.00178.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytokines may cause an acquired growth hormone (GH) resistance in patients with inflammatory diseases. Anabolic effects of GH are mediated through activation of STAT5 transcription factors. We have reported that TNF-alpha suppresses hepatic GH receptor (GHR) gene expression, whereas the cytokine-inducible SH2-containing protein 1 (Cis)/suppressors of cytokine signaling (Socs) genes are upregulated by TNF-alpha and IL-6 and inhibit GH activation of STAT5. However, the relative importance of these mechanisms in inflammatory GH resistance was not known. We hypothesized that IL-6 would prevent GH activation of STAT5 and that this would involve Cis/Socs protein upregulation. GH +/- LPS was administered to TNF receptor 1 (TNFR1) or IL-6 null mice and wild-type (WT) controls. STAT5, STAT3, GHR, Socs 1-3, and Cis phosphorylation and abundance were assessed by using immunoblots, EMSA, and/or real time RT-PCR. TNF-alpha and IL-6 abundance were assessed by using ELISA. GH activated STAT5 in WT and TNFR1 or IL-6 null mice. LPS pretreatment prevented STAT5 activation in WT and TNFR1 null mice; however, STAT5 activation was preserved in IL-6 null mice. GHR abundance did not change with LPS administration. Inhibition of STAT5 activation by LPS was temporally associated with phosphorylation of STAT3 and upregulation of Cis and Socs-3 protein in WT and TNFR1 null mice; STAT3, Cis, and Socs-3 were not induced in IL-6 null mice. IL-6 inhibits hepatic GH signaling by upregulating Cis and Socs-3, which may involve activation of STAT3. Therapies that block IL-6 may enhance GH signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Lee A Denson
- The Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
45
|
He B, You L, Uematsu K, Matsangou M, Xu Z, He M, McCormick F, Jablons DM. Cloning and characterization of a functional promoter of the human SOCS-3 gene. Biochem Biophys Res Commun 2003; 301:386-91. [PMID: 12565872 DOI: 10.1016/s0006-291x(02)03071-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SOCS-3 is a member of a newly discovered protein family that inhibits LIF-activated Janus kinase (JAK)-signal transducers and activators of transcription (STAT) signaling in a negative auto-regulatory manner. In this study, we have cloned and characterized the promoter region of the human SOCS-3 gene. This region is approximately 1.1 kbp in length and consists of two putative STAT-binding elements, a G-rich element, and a putative TATA box. These elements are highly conserved in both murine and rat SOCS-3 promoters. Functional analysis of this region shows that the whole fragment (approximately 1.1 kbp) has high basal promoter activity and is responsive to growth factors. We also found that the wild type SOCS-3 promoter construct has significantly greater activity in non-small-cell lung cancer cell lines than in normal cells in accordance with STAT3 disregulation in these cells. Cloning of the human SOCS-3 promoter should help uncover mechanisms of regulation of the JAK-STAT pathway in human cancer.
Collapse
Affiliation(s)
- Biao He
- Department of Surgery, Thoracic Oncology Laboratory, Comprehensive Cancer Center, University of California, 1600 Divisadero St., C322C, Box 1674, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Youssef JA, Badr MZ. Hepatocarcinogenic potential of the glucocorticoid antagonist RU486 in B6C3F1 mice: effect on apoptosis, expression of oncogenes and the tumor suppressor gene p53. Mol Cancer 2003; 2:3. [PMID: 12605714 PMCID: PMC149417 DOI: 10.1186/1476-4598-2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Accepted: 01/03/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glucocorticoids inhibit hepatocellular proliferation and modulate the expression of oncogenes and tumor suppressor genes via mechanisms involving the glucocorticoid receptor. Glucocorticoids also produce a receptor-mediated inhibitory effect on both basal and hormone-stimulated expression of a newly discovered family of molecules important for shutting off cytokine action. We therefore hypothesized that inhibiting glucocorticoid receptors may disturb hepatocellular growth and apoptosis. Consequently, we investigated the effect of RU486, a potent antagonist of the glucocorticoid receptor, on basal levels of hepatocellular proliferation and apoptosis in male B6C3F1 mice. Furthermore, we evaluated the effect of this compound on cellular genes involved in the regulation of these important processes. RESULTS Data show that treatment of male B6F3C1 mice with RU486 (2 mg/kg/d, ip) for 7 days dramatically inhibited liver cell proliferation by about 45% and programmed hepatocellular death by approximately 66%. RU 486 also significantly increased hepatic expression of the oncogenes mdm2 and JunB, while reducing that of the tumor suppressor gene p53. CONCLUSION Exposure to RU486 may ultimately enhance the susceptibility of the liver to cancer risk by diminishing its ability to purge itself of pre-cancerous cells via apoptosis. This effect may be mediated through increases in the hepatic expression of the oncogene mdm2, coupled with decreases in that of the tumor suppressor gene p53. The decrease in hepatocellular proliferation caused by RU 486 may be related to effects other than its anti-glucocorticoid activity.
Collapse
Affiliation(s)
- Jihan A Youssef
- University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Mostafa Z Badr
- University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| |
Collapse
|
47
|
Baran-Marszak F, Fagard R, Girard B, Camilleri-Broët S, Zeng F, Lenoir GM, Raphaël M, Feuillard J. Gene array identification of Epstein Barr virus-regulated cellular genes in EBV-converted Burkitt lymphoma cell lines. J Transl Med 2002; 82:1463-79. [PMID: 12429807 DOI: 10.1097/01.lab.0000035025.51772.2b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epstein Barr virus (EBV) is associated with various B-cell neoplasms such as post-transplant lymphoproliferative disease or Burkitt lymphoma. B-lymphocyte reprogramming by EBV involves the control of numerous cellular genes. To identify such EBV-deregulated genes, we have compared the gene expression profile of EBV-negative Burkitt lymphoma cell lines (BL) (BL2, BL30, BL70) with their EBV-converted counterpart (BL2-B95, BL30-B95, BL70-B95) by cDNA array. Statistical analysis of the results was made using Ward's cluster analysis method. Results showed that the expression of up to 26% of the 1176 cellular genes analyzed may be modified in EBV-converted BL cells. Within this set of genes, a subset of genes markedly regulated in EBV-converted BL cells was defined as those for which expression in EBV+ cells was increased or decreased more than 2-fold. Expression of various genes was modulated in agreement with their previously reported regulation by EBV or by transcription factors activated by EBV. Numerous genes were newly identified as modulated in EBV-converted BL cells. Some of these results were verified by both semiquantitative RT-PCR and Western blotting, and were consistent with functional studies. Functional classification of EBV-regulated genes gave a comprehensive picture of cellular reprogramming by EBV in BL, by pointing out cellular modules such as cell cycle, apoptosis, and signal transduction pathways, including BCR and TNF receptor family and interferon pathways. Furthermore, and perhaps most importantly, cDNA array results point to three families of transcription factors, Rel/NF-kappaB, STAT1, and Ets-related proteins Spi-B, Elf-1, and Ets-1 as putative cellular targets of EBV.
Collapse
Affiliation(s)
- Fanny Baran-Marszak
- Service d'Hématologie Biologique, Hôpital Avicenne AP-HP et EA 3406 ATHSCO Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kong SE, Firth SM, Baxter RC, Delhanty PJD. Regulation of the acid-labile subunit in sustained endotoxemia. Am J Physiol Endocrinol Metab 2002; 283:E692-701. [PMID: 12217886 DOI: 10.1152/ajpendo.00148.2002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of sustained endotoxemia on expression of the acid-labile subunit (ALS) in relation to hepatic markers of altered GH and insulin sensitivity was examined. Juvenile rats were injected with endotoxin twice daily for 48 h, causing reduced food intake and attenuated growth. In pair-fed controls, food restriction caused marked suppression of ALS gene expression and circulating levels within 12 h, and endotoxemia augmented this effect. This acute effect of endotoxin corresponded temporally with transient induction of suppressor of cytokine signaling (SOCS)-3, cytokine-inducible SH2-containing protein (CIS), phosphoenolpyruvate carboxykinase (PEPCK), and insulin-like growth factor-binding protein (IGFBP)-1 and suppression of GH receptor (GHR). During the subsequent 36 h of sustained endotoxin treatment, expression of ALS recovered to, and then rose above, that of their pair-fed controls. This effect was paralleled by other ternary complex components. The inductive effect of sustained endotoxemia relative to pair-fed controls could not be explained by differences in expression of GHR, SOCS-3, or CIS but coincided with normalized PEPCK and IGFBP-1 levels, suggesting better hepatic insulin sensitivity in these animals. These data may indicate that, in sustained endotoxemia, ALS levels are regulated through modulation of hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Sung-Eun Kong
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
49
|
Morales O, Faulds MH, Lindgren UJ, Haldosén LA. 1Alpha,25-dihydroxyvitamin D3 inhibits GH-induced expression of SOCS-3 and CIS and prolongs growth hormone signaling via the Janus kinase (JAK2)/signal transducers and activators of transcription (STAT5) system in osteoblast-like cells. J Biol Chem 2002; 277:34879-84. [PMID: 12107179 DOI: 10.1074/jbc.m204819200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) and 1alpha,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) are regulators of bone growth and bone metabolism. In target cells, GH activates several signaling pathways, among them the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. GH mainly activates JAK2 and STAT5a and b. The effects of 1,25-(OH)(2)D(3) are mediated via a nuclear receptor, the vitamin D receptor, which, when bound by 1,25-(OH)(2)D(3), activates the transcription of target genes. In earlier studies (Morel, G., Chavassieux, P., Barenton, B., Dubois, P. M., Meunier, P. J., and Boivin, G. (1993) Cell Tissue Res. 273, 279-286) synergistic interaction between 1,25-(OH)(2)D(3) and GH regarding expression of osteoblastic markers has been described. The UMR 106 cell line is a rat osteosarcoma cell line with osteoblast-like properties. We have recently shown (Morales, O., Lindgren, U., and Haldosen, L. A. (2000) J. Bone Miner. Res. 15, 2284-2290) that UMR 106 cells express a GH-responsive JAK2/STAT5 signaling system. These cells also express the vitamin D receptor and respond to 1,25-(OH)(2)D(3). In the present study we have investigated whether 1,25-(OH)(2)D(3) influences GH signaling via the JAK2/STAT5 pathway in UMR 106 cells. We found that 1,25-(OH)(2)D(3) prolonged GH signaling via the JAK2/STAT5 pathway. Pretreatment of cells with 1,25-(OH)(2)D(3) was also necessary in order to detect GH-induced STAT5 transcriptional response. Furthermore, the pretreatment of cells with 1,25-(OH)(2)D(3) rendered to the cells the capacity to respond to repetitive GH-stimulation. In UMR 106 cells, GH induced the expression of the JAK/STAT negative regulatory proteins SOCS-3 and CIS. Interestingly, pretreatment with 1,25-(OH)(2)D(3) inhibited GH-induced expression of these proteins. From these results we propose that 1,25-(OH)(2)D(3) has an inhibitory effect on negative regulatory pathways acting on JAK2 and/or STAT5 in UMR 106 cells and that this, in all or partly, explains the effects of 1,25-(OH)(2)D(3) on GH-signaling via the JAK/STAT pathway.
Collapse
Affiliation(s)
- Orlando Morales
- Department of Orthopedic Surgery, Karolinska Institutet, Huddinge Hospital, S-141 86 Huddinge, Sweden
| | | | | | | |
Collapse
|
50
|
Tonko-Geymayer S, Goupille O, Tonko M, Soratroi C, Yoshimura A, Streuli C, Ziemiecki A, Kofler R, Doppler W. Regulation and function of the cytokine-inducible SH-2 domain proteins, CIS and SOCS3, in mammary epithelial cells. Mol Endocrinol 2002; 16:1680-95. [PMID: 12089360 DOI: 10.1210/mend.16.7.0872] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cytokine-inducible src homology 2 (SH-2) proteins, CIS (cytokine inducible SH-2 domain protein) and SOCS3 (suppressor of cytokine signaling 3), are implicated in the negative regulation of prolactin (PRL) receptor-mediated activation of signal transducer and activator of transcription 5 (STAT5). We have studied the expression and function of CIS and SOCS3 proteins in the mouse mammary gland and in HC11 mammary epithelial cells. CIS and SOCS3 were differentially regulated: high expression levels of CIS mRNA were measured during the second half of pregnancy, whereas SOCS3 expression was high during the first 12 d post conceptum. SOCS3 levels increased, whereas CIS levels decreased, in the initial phase of involution. At the beginning of the lactation period both CIS and SOCS3 were high. PRL and epidermal growth factor (EGF) were able to induce CIS and SOCS3, whereas glucocorticoids inhibited their expression in mammary epithelial cells. The effect of EGF was much stronger on SOCS3 than on CIS. Ectopic expression of both SOCS3 and CIS inhibited STAT5 activation. Our data indicate that in the mammary gland CIS and SOCS3 are involved in regulating STAT5 signaling at three different instances: 1) SOCS3 serves as a mediator of the inhibitory EGF effect on PRL-induced STAT5 activation; 2) CIS and SOCS3 play a role as negative feedback inhibitors of PRL action; 3) Inhibition of CIS and SOCS3 expression by glucocorticoids contributes to the positive effect of glucocorticoids on PRL-induced STAT5 activation.
Collapse
Affiliation(s)
- Sibylle Tonko-Geymayer
- Institut für Medizinische Chemie und Biochemie, Abteilung Molekulare Pathophysiologie, Universität Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|