1
|
Cook L, Gharzia FG, Bartsch JW, Yildiz D. A jack of all trades - ADAM8 as a signaling hub in inflammation and cancer. FEBS J 2024; 291:3989-4008. [PMID: 38097912 DOI: 10.1111/febs.17034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
As a member of the family of A Disintegrin And Metalloproteinases (ADAM) ADAM8 is preferentially expressed in lymphatic organs, immune cells, and tumor cells. The substrate spectrum for ADAM8 proteolytic activity is not exclusive but is related to effectors of inflammation and signaling in the tumor microenvironment. In addition, complexes of ADAM8 with extracellular binding partners such as integrin β-1 cause an extensive intracellular signaling in tumor cells, thereby activating kinase pathways with STAT3, ERK1/2, and Akt signaling, which causes increased cell survival and enhanced motility. The cytoplasmic domain of ADAM8 harbors five SRC homology-3 (SH3) domains that can potentially interact with several proteins involved in actin dynamics and cell motility, including Myosin 1F (MYO1F), which is essential for neutrophil motility. The concept of ADAM8 thus involves immune cell recruitment, in most cases leading to an enhancement of inflammatory (asthma, COPD) and tumor (including pancreatic and breast cancers) pathologies. In this review, we report on available studies that qualify ADAM8 as a therapeutic target in different pathologies. As a signaling hub, ADAM8 controls extracellular, intracellular, and intercellular communication, the latter one mainly mediated by the release of extracellular vesicles with ADAM8 as cargo. Here, we will dissect the contribution of different domains to these distinct ways of communication in several pathologies. We conclude that therapeutic targeting attempts for ADAM8 should consider blocking more than a single domain and that this requires a thorough evaluation of potent molecules targeting ADAM8 in an in vivo setting.
Collapse
Affiliation(s)
- Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Federico Guillermo Gharzia
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Daniela Yildiz
- Experimental and Clinical Pharmacology and Toxicology Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Schröder SK, Gasterich N, Weiskirchen S, Weiskirchen R. Lipocalin 2 receptors: facts, fictions, and myths. Front Immunol 2023; 14:1229885. [PMID: 37638032 PMCID: PMC10451079 DOI: 10.3389/fimmu.2023.1229885] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The human 25-kDa Lipocalin 2 (LCN2) was first identified and purified as a protein that in part is associated with gelatinase from neutrophils. This protein shows a high degree of sequence similarity with the deduced sequences of rat α2-microglobulin-related protein and the mouse protein 24p3. Based on its typical lipocalin fold, which consists of an eight-stranded, anti-parallel, symmetrical β-barrel fold structure it was initially thought that LCN2 is a circulating protein functioning as a transporter of small lipophilic molecules. However, studies in Lcn2 null mice have shown that LCN2 has bacteriostatic properties and plays a key role in innate immunity by sequestering bacterial iron siderophores. Numerous reports have further shown that LCN2 is involved in the control of cell differentiation, energy expenditure, cell death, chemotaxis, cell migration, and many other biological processes. In addition, important roles for LCN2 in health and disease have been identified in Lcn2 null mice and multiple molecular pathways required for regulation of Lcn2 expression have been identified. Nevertheless, although six putative receptors for LCN2 have been proposed, there is a fundamental lack in understanding of how these cell-surface receptors transmit and amplify LCN2 to the cell. In the present review we summarize the current knowledge on LCN2 receptors and discuss inconsistencies, misinterpretations and false assumptions in the understanding of these potential LCN2 receptors.
Collapse
Affiliation(s)
- Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
3
|
Zhao RY, Wei PJ, Sun X, Zhang DH, He QY, Liu J, Chang JL, Yang Y, Guo ZN. Role of lipocalin 2 in stroke. Neurobiol Dis 2023; 179:106044. [PMID: 36804285 DOI: 10.1016/j.nbd.2023.106044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Ruo-Yu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Peng-Ju Wei
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jun-Lei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| |
Collapse
|
4
|
Santos-Lima B, Pietronigro EC, Terrabuio E, Zenaro E, Constantin G. The role of neutrophils in the dysfunction of central nervous system barriers. Front Aging Neurosci 2022; 14:965169. [PMID: 36034148 PMCID: PMC9404376 DOI: 10.3389/fnagi.2022.965169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Leukocyte migration into the central nervous system (CNS) represents a central process in the development of neurological diseases with a detrimental inflammatory component. Infiltrating neutrophils have been detected inside the brain of patients with several neuroinflammatory disorders, including stroke, multiple sclerosis and Alzheimer’s disease. During inflammatory responses, these highly reactive innate immune cells can rapidly extravasate and release a plethora of pro-inflammatory and cytotoxic factors, potentially inducing significant collateral tissue damage. Indeed, several studies have shown that neutrophils promote blood-brain barrier damage and increased vascular permeability during neuroinflammatory diseases. Recent studies have shown that neutrophils migrate into the meninges and choroid plexus, suggesting these cells can also damage the blood-cerebrospinal fluid barrier (BCSFB). In this review, we discuss the emerging role of neutrophils in the dysfunction of brain barriers across different neuroinflammatory conditions and describe the molecular basis and cellular interplays involved in neutrophil-mediated injury of the CNS borders.
Collapse
|
5
|
Sim TM, Mak A, Tay SH. Insights into the role of neutrophils in neuropsychiatric systemic lupus erythematosus: Current understanding and future directions. Front Immunol 2022; 13:957303. [PMID: 36016935 PMCID: PMC9396336 DOI: 10.3389/fimmu.2022.957303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) involvement of systemic lupus erythematosus (SLE), termed neuropsychiatric SLE (NPSLE), is a major and debilitating manifestation of the disease. While patients with SLE mostly complain of common neuropsychological symptoms such headache and mild mood disorders that may not even be technically attributed to SLE, many SLE patients present with life-threatening NPSLE syndromes such as cerebrovascular disease, seizures and psychosis that are equally challenging in terms of early diagnosis and therapy. While we are just beginning to unravel some mysteries behind the immunologic basis of NPSLE, advancements in the mechanistic understanding of the complex pathogenic processes of NPSLE have been emerging through recent murine and human studies. The pathogenic pathways implicated in NPSLE are multifarious and various immune effectors such as cell-mediated inflammation, autoantibodies and cytokines including type I interferons have been found to act in concert with the disruption of the blood-brain barrier (BBB) and other neurovascular interfaces. Beyond antimicrobial functions, neutrophils are emerging as decision-shapers during innate and adaptive immune responses. Activated neutrophils have been recognized to be involved in ischemic and infective processes in the CNS by releasing neutrophil extracellular traps (NETs), matrix metalloproteinase-9 and proinflammatory cytokines. In the context of NPSLE, these mechanisms contribute to BBB disruption, neuroinflammation and externalization of modified proteins on NETs that serve as autoantigens. Neutrophils that sediment within the peripheral blood mononuclear cell fraction after density centrifugation of blood are generally defined as low-density neutrophils (LDNs) or low-density granulocytes. LDNs are a proinflammatory subset of neutrophils that are increased with SLE disease activity and are primed to undergo NETosis and release cytokines such as interferon-α and tumor necrosis factor. This review discusses the immunopathogenesis of NPSLE with a focus on neutrophils as a core mediator of the disease and potential target for translational research in NPSLE.
Collapse
|
6
|
Increased Plasma Lipocalin-2 Levels in Patients with Myelin Oligodendrocyte Glycoprotein-IgG–Positive Optic Neuritis. J Clin Med 2022; 11:jcm11092635. [PMID: 35566760 PMCID: PMC9105342 DOI: 10.3390/jcm11092635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to evaluate the correlation between plasma lipocalin-2 (LCN2) levels and myelin oligodendrocyte glycoprotein (MOG)-immunoglobulin G (IgG) seropositivity in patients with optic neuritis. Peripheral blood samples were collected from 19 patients with optic neuritis and 20 healthy controls. Plasma LCN2 and MOG-IgG levels were measured using enzyme-linked immunosorbent assay and a cell-based assay, respectively. The correlation between plasma LCN2 levels and MOG-IgG titers in patients with optic neuritis was analyzed. Receiver operating characteristic (ROC) curves were constructed to assess and compare the ability of plasma LCN2 and MOG-IgG levels for predicting optic neuritis recurrence. Patients with MOG-IgG–positive optic neuritis had significantly higher mean plasma LCN2 levels than controls and patients with MOG-IgG–negative optic neuritis (p = 0.037). Plasma LCN2 and MOG-IgG levels were significantly correlated in patients with optic neuritis (r = 0.553, p = 0.0141). There were no significant differences in the areas under the ROC curve (AUC) of plasma LCN2 (0.693, 95% confidence interval [CI] 0.443–0.880, p = 0.133) and MOG-IgG (0.641, 95% CI, 0.400–0.840, p = 0.298) levels (95% CI, −0.266–0.448, p = 0.618). Plasma LCN2 levels may aid differentiation of MOG-IgG–positive optic neuritis from MOG-IgG–negative optic neuritis.
Collapse
|
7
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
8
|
Cruz-Silva I, Nunes VA, Rydlewski M, Gozzo AJ, Praxedes-Garcia P, Ferraz Carbonel AA, Tanaka AS, Araújo MDS. Disclosing the involvement of proteases in an eczema murine animal model: Perspectives for protease inhibitor-based therapies. Biochimie 2021; 194:1-12. [PMID: 34896570 DOI: 10.1016/j.biochi.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022]
Abstract
Eczema is a skin condition characterized by itchy and inflammatory patches. The accumulation of neutrophils and the imbalance between enzymes and their inhibitors appears to be related to this condition. We proposed a neutrophil elastase (NE)-based eczema model in mice in order to verify histopathological features as well as the expression and activity of proteases and inhibitors. Mice skins were topically administered with human NE (0-2 pmol/cm2) for 24-168 h. It was observed thickening of epidermis, parakeratosis, spongiosis and leukocyte infiltration. Also, NE-treated skins presented high activity of epidermal kallikreins 5 and 7, and cathepsin B on synthetic substrates, and expression evaluated by RT-qPCR. The proteolytic activity was inhibited by soybean trypsin inhibitor, CA074 and Caesalpinia echinata kallikrein inhibitor (CeKI). The topic application of CeKI reversed eczema phenotype in NE-treated skins. Elafin expression was shown to be increased in NE-treated skins. These results suggest that the NE may trigger morphological and biochemical changes in skin similar to those observed in eczematous diseases. In addition to the establishment of this in vivo model, this work opens perspectives for the use of protease inhibitor-based drugs for the management of this skin condition.
Collapse
Affiliation(s)
- Ilana Cruz-Silva
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil; Centro Universitário São Camilo, SP, Brazil
| | - Viviane Abreu Nunes
- Laboratory of Skin Physiology and Tissue Bioengineering, School of Arts, Sciences and Humanities, Universidade de São Paulo, SP, Brazil.
| | - Mariana Rydlewski
- Department of Biochemistry, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, Asmawi MZ, Huang X. The Adipokine Component in the Molecular Regulation of Cancer Cell Survival, Proliferation and Metastasis. Pathol Oncol Res 2021; 27:1609828. [PMID: 34588926 PMCID: PMC8473628 DOI: 10.3389/pore.2021.1609828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
Collapse
Affiliation(s)
| | - Waseem Hassan
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Manal Buabeid
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | - Elshaimaa Arafa
- Department of Clinical Sciences, Ajman University, Ajman, United Arab Emirates.,Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
| | | | - Mohd Zaini Asmawi
- School of Pharmaceutical Sciences, University of Science Malaysia, Pulau Pinang, Malaysia
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
10
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA, Sud'ina GF. Inhibition of Neutrophil Secretion Upon Adhesion as a Basis for the Anti-Inflammatory Effect of the Tricyclic Antidepressant Imipramine. Front Pharmacol 2021; 12:709719. [PMID: 34421605 PMCID: PMC8375473 DOI: 10.3389/fphar.2021.709719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Dlamini Z, Hull R, Mbatha SZ, Alaouna M, Qiao YL, Yu H, Chatziioannou A. Prognostic Alternative Splicing Signatures in Esophageal Carcinoma. Cancer Manag Res 2021; 13:4509-4527. [PMID: 34113176 PMCID: PMC8186946 DOI: 10.2147/cmar.s305464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing (AS) is a method of increasing the number of proteins that the genome is capable of coding for, by altering the pre-mRNA during its maturation. This process provides the ability of a broad range of proteins to arise from a single gene. AS events are known to occur in up to 94% of human genes. Cumulative data have shown that aberrant AS functionality is a major factor in human diseases. This review focuses on the contribution made by aberrant AS functionality in the development and progression of esophageal cancer. The changes in the pattern of expression of alternately spliced isoforms in esophageal cancer can be used as diagnostic or prognostic biomarkers. Additionally, these can be used as targets for the development of new treatments for esophageal cancer.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Rodney Hull
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| | - Sikhumbuzo Z Mbatha
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Mohammed Alaouna
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You-Lin Qiao
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Herbert Yu
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Aristotelis Chatziioannou
- SAMRC Precision Prevention & Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa.,Center of Systems Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece.,e-NIOS Applications PC, Kallithea, Athens, 17676, Greece
| |
Collapse
|
13
|
Camel Milk Mitigates Cyclosporine-Induced Renal Damage in Rats: Targeting p38/ERK/JNK MAPKs, NF-κB, and Matrix Metalloproteinases. BIOLOGY 2021; 10:biology10050442. [PMID: 34067576 PMCID: PMC8156933 DOI: 10.3390/biology10050442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Renal damage is a devastating adverse effect for cyclosporine; a widely used immunosuppressant drug. The present work examined the potential of camel milk, a natural agent with marked anti-inflammatory/antioxidant properties, to attenuate cyclosporine-induced renal injury. The kidney tissue was examined with the aid of Western blotting, immunohistochemistry, biochemical assays, including colorimetric and ELISA kits. The present findings revealed that camel milk (10 mL/kg/day; for 3 weeks by gavage) significantly lowered serum creatinine, BUN, and KIM-1 renal dysfunction markers. Mechanistically, camel milk inhibited renal inflammation, as seen by significant decrease of the pro-inflammatory cytokines (MCP-1, TNF-α, IL-1β, and IL-18) and extracellular degradation signals (MMP-2 and MMP-9) and enhanced the generation of the anti-inflammatory IL-10. Moreover, it inhibited the upstream pro-inflammatory p38/ERK/JNK MAPK pathway by lowering the phosphorylation of the 3 subfamilies of MAPKs (p38 MAPK, JNK1/2, and ERK1/2). Furthermore, camel milk curbed the NF-κB pathway activation by downregulating the protein expression of activated NF-κBp65, p-NF-κBp65, and p-IκBα proteins. Additionally, camel milk inhibited renal oxidative stress by lowering the MPO activity and augmenting the reduced/oxidized glutathione ratio and total antioxidant capacity. These findings propose that camel milk may be a promising agent that inhibits cyclosporine-triggered renal inflammation via curtailing the p38/ERK/JNK MAPK and NF-κB pathways, matrix metalloproteinases, and pro-inflammatory cytokines.
Collapse
|
14
|
Fetz AE, Bowlin GL. Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:437-450. [PMID: 33736452 DOI: 10.1089/ten.teb.2021.0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue injury initiates a tissue repair program, characterized by acute inflammation and recruitment of immune cells, dominated by neutrophils. Neutrophils prevent infection in the injured tissue through multiple effector functions, including the production of reactive oxygen species, the release of granules, the phagocytosis of invaders, and the extrusion of neutrophil extracellular traps (NETs). However, these canonical protective mechanisms can also have detrimental effects both in the context of infection and in response to sterile injuries. Of particular interest to biomaterials and tissue engineering is the release of NETs, which are extracellular structures composed of decondensed chromatin and various toxic nuclear and granular components. These structures and their dysregulated release can cause collateral tissue damage, uncontrolled inflammation, and fibrosis and prevent the neutrophil from exerting its prohealing functions. This review discusses our knowledge of NETs, including their composition and morphology, signaling pathways, inhibitors, and contribution to inflammatory pathologies, as well as their role in the resolution of inflammation. In addition, we summarize what is known about the release of NETs as a preconditioning event in the response to biomaterials and highlight future considerations to target the neutrophil response and enhance biomaterial-guided tissue repair and regeneration. Impact statement Neutrophil extracellular trap (NET) release is an active process programmed into the neutrophil's molecular machinery to prevent infection. However, the release of NETs on biomaterials appears to be a significant preconditioning event that influences the potential for tissue healing with largely detrimental consequences. Given their contribution to inflammatory pathologies, this review highlights the role of NETs in the response to biomaterials. Together, the studies discussed in this review suggest that biomaterials should be designed to regulate NET release to avoid maladaptive immune responses and improve the therapeutic potential of tissue-engineered biomaterials and their applications in the clinical setting.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Bruschi F, Gruden-Movesijan A, Pinto B, Ilic N, Sofronic-Milosavlјevic L. Trichinella spiralis excretory-secretory products downregulate MMP-9 in Dark Agouti rats affected by experimental autoimmune encephalomyelitis. Exp Parasitol 2021; 225:108112. [PMID: 33964315 DOI: 10.1016/j.exppara.2021.108112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs), are implicated in the pathogenesis of multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). Our aim was to investigate whether amelioration of EAE in Dark Agouti (DA) rats, induced by Trichinella spiralis muscle larvae excretory-secretory products (ES L1), could be related to the level and activity of gelatinases, MMP-9 and MMP-2. Serum levels of MMP-9, MMP-2, NGAL/MMP-9, TIMP-1, and cytokines, evaluated by gel-zymography or ELISA, as well as gelatinases and TIMP-1 expression in the spinal cord (SC), were determined in: i) EAE induced, ii) ES L1-treated EAE induced animals. Milder clinical signs in ES L1-treated EAE induced DA rats were accompanied with lower serum levels of MMP-9 and NGAL/MMP-9 complex. However, the correlation between the severity of EAE and the level of serum MMP-9 was found only in the peak of the disease, with MMP-9/TIMP-1 ratio higher in EAE animals without ES L1 treatment. Lower expression of MMP-9 in SC of ES L1-treated, EAE induced rats, correlated with the reduced number of SC infiltrating cells. In SC infiltrates, in the effector and the recovery phase, production of anti-inflammatory cytokines IL-4 and IL-10 was higher in animals treated with ES L1 prior to EAE induction, compared to untreated EAE animals. Reduced expression of MMP-9 in SC tissue, which correlated with the reduced number of infiltrating cells, might be ascribed to regulatory mechanisms, among which is IL-10.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., Medical School, Universita di Pisa, Pisa, Italy.
| | - Alisa Gruden-Movesijan
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - Barbara Pinto
- Department of Translational Research, N.T.M.S., Medical School, Universita di Pisa, Pisa, Italy
| | - Natasa Ilic
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | | |
Collapse
|
16
|
D'Amico F, Candido S, Libra M. Interaction between matrix metalloproteinase-9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL): A recent evolutionary event in primates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103933. [PMID: 33245981 DOI: 10.1016/j.dci.2020.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Matrix metalloproteases are known to represent an early step in the evolution of the immune system. Similarly, neutrophil gelatinase-associated lipocalin is known to be a key effector in immune response. MMP-9 interacts with NGAL, but their interaction mechanisms remain unclear. Functional interaction between proteins is ensured by coevolution. Protein coevolution was inferred by calculating the linear correlation coefficients between inter-protein distance matrices using MirrorTree. Among examined mammal species, we found a robust signal of MMP-9/NGAL coevolution exclusively within Primates (R = 0.96, p < 1e-06). Owing to the high conservation of these proteins among Mammals, we chose to utilize a recent version of Blocks in Sequences (BIS2) algorithm implemented in BIS2Analyzer webserver. Coevolution clusters between the two proteins were identified in MMP-9 fibronectin and hemopexin domains. Our results suggest that MMP-9/NGAL interaction is a recent evolutionary acquisition in Primates. Furthermore, MMP-9 hemopexin domain would represent a promising target for drug design against these molecules.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| |
Collapse
|
17
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
18
|
Fetz AE, Radic MZ, Bowlin GL. Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:95-106. [PMID: 32299302 DOI: 10.1089/ten.teb.2020.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomaterial-guided in situ tissue regeneration uses biomaterials to stimulate and guide the body's endogenous, regenerative processes to drive functional tissue repair and regeneration. To be successful, cell migration into the biomaterials is essential, which requires angiogenesis to maintain cell viability. Neutrophils, the first cells responding to an implanted biomaterial, are now known to play an integral part in angiogenesis in multiple tissues and exhibit considerable potential for driving angiogenesis in the context of tissue regeneration. In terms of biomaterial-guided in situ tissue regeneration, harnessing the proangiogenic potential of the neutrophil through its robust secretion of matrix metalloproteinase 9 (MMP-9) may provide a mechanism to improve biomaterial performance by initiating matrix reprogramming. This review will discuss neutrophils as matrix reprogrammers and what is currently known about their ability to create a microenvironment that is more conducive for angiogenesis and tissue regeneration through the secretion of MMP-9. It will first review a set of ground-breaking studies in tumor biology and then present an overview of what is currently known about neutrophils and MMP-9 in biomaterial vascularization. Finally, it will conclude with potential strategies and considerations to engage neutrophils in biomaterial-guided angiogenesis and in situ tissue regeneration. Impact statement This review draws attention to a highly neglected topic in tissue engineering, the role of neutrophils in biomaterial-guided tissue regeneration and angiogenesis. Moreover, it highlights their abundant secretion of matrix metalloproteinase 9 (MMP-9) for matrix reprogramming, a topic with great potential yet to be vetted in the literature. It presents strategies and considerations for designing the next generation of immunomodulatory biomaterials. While there is literature discussing the overall role of neutrophils in angiogenesis, there are a limited number of review articles focused on this highly relevant topic in the context of biomaterial integration and tissue regeneration, making this a necessary and impactful article.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
19
|
Asymmetric dimethylarginine and angiopoietin-like protein-2 are independent predictors of cardiovascular risk in pre-dialysis non-diabetic chronic kidney disease patients. Int Urol Nephrol 2020; 52:1321-1328. [PMID: 32409974 DOI: 10.1007/s11255-020-02484-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with increased cardiovascular (CVD) morbidity and mortality. Hence, this study was carried out to assess the biomarkers of endothelial dysfunction and inflammation as predictors of CVD risk in Indian patients with CKD. METHODS In this case control study, we recruited 43 patients with CKD and 43 healthy control volunteers. Circulating levels of endothelial dysfunction markers [asymmetric dimethylarginine (ADMA), angiopoietin-like protein-2 (ANGPTL2), matrix metallopeptidase 9 (MMP-9)] and systemic inflammation [high-sensitivity C-reactive protein (hs-CRP)] were assessed in the study population. All study participants underwent brachial artery flow mediated dilation (FMD) to estimate endothelial dysfunction. Disease severity (e-GFR) was assessed by a nephrologist. RESULTS CKD patients showed markedly elevated levels of ADMA, ANGPTL2, MMP-9, and hs-CRP. FMD and eGFR were significantly decreased in cases, as compared to the controls. ADMA, ANGPTL2, MMP-9 and hs-CRP showed significant positive correlation with one another and significant negative correlation with FMD and disease severity. We also observed a significant negative correlation of FMD with disease severity and duration of CKD. In the multiple linear regression model, ADMA and ANGPTL2 were found to be independent predictors of FMD. CONCLUSION In CKD patients, there is significantly increased endothelial dysfunction and systemic inflammation, which showed a positive correlation with disease severity. Thus, the markers of endothelial dysfunction such as ADMA and ANGPTL2 can be used as predictors of CVD risk in CKD.
Collapse
|
20
|
Koh SA, Lee KH. Function of hepatocyte growth factor in gastric cancer proliferation and invasion. Yeungnam Univ J Med 2020; 37:73-78. [PMID: 32074717 PMCID: PMC7142030 DOI: 10.12701/yujm.2019.00437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/28/2020] [Indexed: 11/06/2022] Open
Abstract
Cancer incidence has been increasing steadily and is the leading cause of mortality worldwide. Gastric cancer is still most common malignancy in Korea. Cancer initiation and progression are multistep processes involving various growth factors and their ligands. Among these growth factors, we have studied hepatocyte growth factor (HGF), which is associated with cell proliferation and invasion, leading to cancer and metastasis, especially in gastric cancer. We explored the intercellular communication between HGF and other surface membrane receptors in gastric cancer cell lines. Using complimentary deoxyribonucleic acid microarray technology, we found new genes associated with HGF in the stomach cancer cell lines, NUGC-3 and MKN-28, and identified their function within the HGF pathway. The HGF/N-methyl-N’-nitroso-guanidine human osteosarcoma transforming gene (c-MET) axis interacts with several molecules including E-cadherin, urokinase plasminogen activator, KiSS-1, Jun B, and lipocalin-2. This pathway may affect cell invasion and metastasis or cell apoptosis and is therefore associated with tumorigenesis and metastasis in gastric cancer.
Collapse
Affiliation(s)
- Sung Ae Koh
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyung Hee Lee
- Department of Hematology-Oncology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
21
|
Provenzano M, Andreucci M, Garofalo C, Faga T, Michael A, Ielapi N, Grande R, Sapienza P, de Franciscis S, Mastroroberto P, Serra R. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules 2020; 10:E154. [PMID: 31963569 PMCID: PMC7022805 DOI: 10.3390/biom10010154] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
: Chronic Kidney Disease (CKD) represents a risk factor for fatal and nonfatal cardiovascular (CV) events, including peripheral vascular disease (PVD). This occurs because CKD encompasses several factors that lead to poor prognoses, mainly due to a reduction of the estimated glomerular filtration rate (eGFR), the presence of proteinuria, and the uremic inflammatory milieu. The matrix metalloproteinases (MMPs) are a group of zinc-containing endopeptidases implicated in extracellular matrix (ECM) remodeling, a systemic process in tissue homeostasis. MMPs play an important role in cell differentiation, angiogenesis, inflammation, and vascular damage. Our aim was to review the published evidence regarding the association between MMPs, PVD, and CKD to find possible common pathophysiological mechanisms. MMPs favor ECM deposition through the glomeruli, and start the shedding of cellular junctions and epithelial-mesenchymal transition in the renal tubules. MMP-2 and -9 have also been associated with the presence of systemic vascular damage, since they exert a pro-inflammatory and proatherosclerotic actions. An imbalance of MMPs was found in the context of PVD, where MMPs are predictors of poor prognoses in patients who underwent lower extremity revascularization. MMP circulating levels are increased in both conditions, i.e., that of CKD and PVD. A possible pathogenic link between these conditions is represented by the enhanced production of transforming growth factor-β that worsens vascular calcifications and atherosclerosis and the development of proteinuria in patients with increased levels of MMPs. Proteinuria has been recognized as a marker of systemic vascular damage, and this may explain in part the increase in CV risk that is manifest in patients with CKD and PVD. In conclusion, MMPs can be considered a useful tool by which to stratify CV risk in patients with CKD and PVD. Further studies are needed to investigate the causal-relationships between MMPs, CKD, and PVD, and to optimize their prognostic and predictive (in response to treatments) roles.
Collapse
Affiliation(s)
- Michele Provenzano
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Carlo Garofalo
- Division of Nephrology, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Teresa Faga
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Renal Unit, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.P.); (M.A.); (T.F.); (A.M.)
| | - Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy
- Department of Radiology, Vibo Valentia Hospital, 89900 Vibo Valentia, Italy
| | - Raffaele Grande
- Department of Surgery “P. Valdoni”, “Sapienza” University of Rome, 00161 Rome, Italy; (R.G.); (P.S.)
| | - Paolo Sapienza
- Department of Surgery “P. Valdoni”, “Sapienza” University of Rome, 00161 Rome, Italy; (R.G.); (P.S.)
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University, 88100 Catanzaro, Italy;
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy; (N.I.); (S.d.F.)
- Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Bauvois B, Susin SA. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers (Basel) 2018; 10:cancers10090336. [PMID: 30231474 PMCID: PMC6162539 DOI: 10.3390/cancers10090336] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. NGAL exists as a 25 kDa monomer, a 46 kDa homodimer (the most abundant form in healthy subjects) and a 130 kDa disulfide-linked heterodimer bound to latent matrix metalloproteinase-9. Dysregulated expression of NGAL in human malignancies suggests its value as a clinical marker. A growing body of evidence is highlighting NGAL’s paradoxical (i.e., both beneficial and detrimental) effects on cellular processes associated with tumor development (proliferation, survival, migration, invasion, and multidrug resistance). At least two distinct cell surface receptors are identified for NGAL. This review (i) summarizes our current knowledge of NGAL’s expression profiles in solid tumors and leukemias, and (ii) critically evaluates the beneficial and detrimental activities of NGAL having been documented in a diverse range of cancer-derived cell lines. A better understanding of the causal relationships between NGAL dysregulation and tumor development will require a fine analysis of the molecular aspects and biological role(s) of NGAL both in primary tumors and at different stages of disease. Having an accurate picture of NGAL’s contribution to tumor progression is a prerequisite for attempting to modulate this protein as a putative therapeutic target.
Collapse
Affiliation(s)
- Brigitte Bauvois
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| | - Santos A Susin
- INSERM UMRS 1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, 75006 Paris, France.
- Sorbonne Universités Paris Cité, F-75006 Paris, France.
- Université Paris Descartes, F-75005 Paris, France.
| |
Collapse
|
23
|
Sub-Cellular Localization of Metalloproteinases in Megakaryocytes. Cells 2018; 7:cells7070080. [PMID: 30037039 PMCID: PMC6071070 DOI: 10.3390/cells7070080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Metalloproteinases (MMPs) are zinc-dependent endopeptidases that play essential roles as the mediator of matrix degradation and remodeling during organogenesis, wound healing and angiogenesis. Although MMPs were originally identified as matrixin proteases that act in the extracellular matrix, more recent research has identified members of the MMP family in unusual locations within the cells, exerting distinct functions in addition to their established role as extracellular proteases. During thrombopoiesis, megakaryocytes (Mks) sort MMPs to nascent platelets through pseudopodial-like structure known as proplatelets. Previous studies identified gelatinases, MMP-2 and MMP-9, as a novel regulator system of Mks and the platelet function. In this work we have exploited a sensitive immunoassay to detect and quantify multiple MMP proteins and their localization, in conditioned medium and sub-cellular fractions of primary human CD34+-derived Mks. We provide evidence that Mks express other MMPs in addition to gelatinases MMP-2 and MMP-9, peculiar isoforms of MMP-9 and MMPs with a novel nuclear compartmentalization.
Collapse
|
24
|
Borkham-Kamphorst E, Van de Leur E, Meurer SK, Buhl EM, Weiskirchen R. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting. Front Pharmacol 2018; 9:426. [PMID: 29755357 PMCID: PMC5932398 DOI: 10.3389/fphar.2018.00426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/11/2018] [Indexed: 01/15/2023] Open
Abstract
Lipocalin 2 (LCN2) is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eddy Van de Leur
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, Electron Microscopy Facility, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
25
|
Neutrophils Release Metalloproteinases during Adhesion in the Presence of Insulin, but Cathepsin G in the Presence of Glucagon. Mediators Inflamm 2018; 2018:1574928. [PMID: 29670459 PMCID: PMC5833473 DOI: 10.1155/2018/1574928] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022] Open
Abstract
In patients with reperfusion after ischemia and early development of diabetes, neutrophils can attach to blood vessel walls and release their aggressive bactericide agents, which damage the vascular walls. Insulin and 17β-estradiol (E2) relieve the vascular complications observed in metabolic disorders. In contrast, glucagon plays an essential role in the pathophysiology of diabetes. We studied the effect of hormones on neutrophil secretion during adhesion to fibronectin. Amino acid analysis revealed that proteins secreted by neutrophils are characterized by a stable amino acid profile enriched with glutamate, leucine, lysine, and arginine. The total amount of secreted proteins defined as the sum of detected amino acids was increased in the presence of insulin and reduced in the presence of glucagon. E2 did not affect the amount of protein secretion. Proteome analysis showed that in the presence of insulin and E2, neutrophils secreted metalloproteinases MMP-9 and MMP-8 playing a key role in modulation of the extracellular matrix. In contrast, glucagon induced the secretion of cathepsin G, a key bactericide protease of neutrophils. Cathepsin G can promote the development of vascular complications because of its proinflammatory activity and ability to stimulate neutrophil adhesion via the proteolysis of surface receptors.
Collapse
|
26
|
Yuhong L, Tana W, Zhengzhong B, Feng T, Qin G, Yingzhong Y, Wei G, Yaping W, Langelier C, Rondina MT, Ge RL. Transcriptomic profiling reveals gene expression kinetics in patients with hypoxia and high altitude pulmonary edema. Gene 2018; 651:200-205. [PMID: 29366758 DOI: 10.1016/j.gene.2018.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/12/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE High altitude pulmonary edema (HAPE) is a life threatening condition occurring in otherwise healthy individuals who rapidly ascend to high altitude. However, the molecular mechanisms of its pathophysiology are not well understood. The objective of this study is to evaluate differential gene expression in patients with HAPE during acute illness and subsequent recovery. METHODS Twenty-one individuals who ascended to an altitude of 3780 m were studied, including 12 patients who developed HAPE and 9 matched controls without HAPE. Whole-blood samples were collected during acute illness and subsequent recovery for analysis of the expression of hypoxia-related genes, and physiologic and laboratory parameters, including mean pulmonary arterial pressure (mPAP), heart rate, blood pressure, and arterial oxygen saturation (SpO2), were also measured. RESULTS Compared with control subjects, numerous hypoxia-related genes were up-regulated in patients with acute HAPE. Gene network analyses suggested that HIF-1α played a central role in acute HAPE by affecting a variety of hypoxia-related genes, including BNIP3L, VEGFA, ANGPTL4 and EGLN1. Transcriptomic profiling revealed the expression of most HAPE-induced genes was restored to a normal level during the recovery phase except some key hypoxia response factors, such asBNIP3L, EGR1, MMP9 and VEGF, which remained persistently elevated. CONCLUSIONS Differential expression analysis of hypoxia-related genes revealed distinct molecular signatures of HAPE during acute and recovery phases. This study may help us to better understand HAPE pathogenesis and putative targets for further investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Li Yuhong
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Department of Respiratory Medicine, The Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Wuren Tana
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bai Zhengzhong
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Tang Feng
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Ga Qin
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Yang Yingzhong
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Guan Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; Department of Respiratory Medicine, The Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Wang Yaping
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Charles Langelier
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, California, USA
| | - Matthew T Rondina
- Division of General Internal Medicine, Department of Internal Medicine, Molecular Medicine Program at the University of Utah Health Sciences Center, Salt Lake City, UT, United States; GRECC at the George E. Wahlen VAMC, Salt Lake City, UT, USA; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China.
| |
Collapse
|
27
|
Grudzinska FS, Sapey E. Friend or foe? The dual role of neutrophils in lung injury and repair. Thorax 2018; 73:305-307. [DOI: 10.1136/thoraxjnl-2017-211253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Chung IH, Wu TI, Liao CJ, Hu JY, Lin YH, Tai PJ, Lai CH, Lin KH. Overexpression of lipocalin 2 in human cervical cancer enhances tumor invasion. Oncotarget 2017; 7:11113-26. [PMID: 26840566 PMCID: PMC4905461 DOI: 10.18632/oncotarget.7096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/17/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical carcinoma is the third-most common cause of cancer-related deaths in women worldwide. However, the molecular mechanisms underlying the metastasis of cervical cancer are still unclear. Oligonucleotide microarrays coupled with bioinformatics analysis show that cytoskeletal remodeling and epithelial-to- mesenchymal transition (EMT) are significant pathways in clinical specimens of cervical cancer. In accord with clinical observations demonstrating ectopic expression of lipocalin 2 (LCN2), an oncogenic protein associated with EMT, in malignant tumors, was significantly upregulated in cervical cancer and correlated with lymph node metastasis. Overexpression of LCN2 enhanced tumor cell migration and invasion both in vitro and in vivo. Conversely, knockdown or neutralization of LCN2 reduced tumor cell migration and invasion. LCN2-induced migration was stimulated by activation of the EMT-associated proteins, Snail, Twist, N-cadherin, fibronectin, and MMP-9. Our findings collectively support a potential role of LCN2 in cancer cell invasion through the EMT pathway and suggest that LCN2 could be effectively utilized as a lymph node metastasis marker in cervical cancer.
Collapse
Affiliation(s)
- I-Hsiao Chung
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Tzu-I Wu
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333.,Department of Obstetrics and Gynecology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan 116
| | - Chia-Jung Liao
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Jin-Yo Hu
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Yang-Hsiang Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Pei-Ju Tai
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan 333.,Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| | - Kwang-Huei Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University and Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan 333
| |
Collapse
|
29
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Insulin treatment prevents wounding associated changes in tissue and circulating neutrophil MMP-9 and NGAL in diabetic rats. PLoS One 2017; 12:e0170951. [PMID: 28182694 PMCID: PMC5300126 DOI: 10.1371/journal.pone.0170951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 01/13/2017] [Indexed: 01/13/2023] Open
Abstract
Neutrophils are important for wound repair, but their persistence can impair the healing process. Neutrophils express matrix metalloproteinases including MMP-9 and its regulator neutrophil gelatinase associated lipocalin (NGAL). Whether wounding affects neutrophil MMP-9 and NGAL in diabetic animals is not known. Skin wound tissue MMP-9 and NGAL was examined by qRT-PCR and immunohistochemistry in control, diabetic and insulin treated diabetic rats. The temporal expression of MMP-9 and NGAL mRNA, MMP-9 activity and the NGAL/MMP-9 complex was also investigated in an implant model and their circulating neutrophils. The cellular localisation of MMP-9 and NGAL was confirmed by immunofluorescence and the ability of glucose to regulate these factors was examined in isolated neutrophils. In skin wound tissue compared with control, diabetes increased neutrophil infiltration, NGAL mRNA and MMP-9 protein (P<0.05). Diabetes significantly increased implant neutrophil NGAL and MMP-9 protein as well as NGAL mRNA, wound fluid NGAL/MMP-9 complex and MMP-9 activity (all <0.05). Circulating neutrophil MMP-9 and NGAL was also increased in these diabetic animals (P<0.05). These changes were prevented by insulin treatment. Ex vivo, high glucose (25mM) increased neutrophil NGAL and MMP-9 (both by 2 fold, P<0.05). NGAL and MMP-9 are increased in wound and circulating neutrophils in diabetic rodents. These changes and the association between higher NGAL and increased wound fluid MMP-9 activity suggest that increased neutrophil NGAL may contribute to increased MMP-9 in poorly healing diabetic wounds. Whether targeting neutrophil NGAL or MMP-9 can improve diabetic wound healing remains to be investigated.
Collapse
|
31
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
32
|
Differential Diagnosis of Autoimmune Pancreatitis From Pancreatic Cancer by Analysis of Serum Gelatinase Levels. Pancreas 2016; 45:1048-55. [PMID: 26692441 DOI: 10.1097/mpa.0000000000000576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this study was to analyze serum gelatinases as part of the clinical strategy for the preoperative differentiation between autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). The finding of differential markers will prevent unnecessary surgical resection and allow optimal treatment of these diseases. METHODS Quantitative gelatin zymography was applied to analyze all individual gelatinase forms in serum and to define proteinase alterations associated with AIP and PDAC. For this purpose, sera of 130 patients, being 29 with AIP, 33 with chronic pancreatitis, 32 with PDAC, and 36 healthy controls, were first assayed for gelatinase levels by quantitative zymography before further validation by the analysis with commercial sandwich enzyme linked immunosorbent assays. RESULTS Serum profiling data obtained by zymography analysis revealed that gelatinase B/matrix metalloproteinase 9 (MMP-9), the neutrophil gelatinase B-associated lipocalin/MMP-9 complex, and gelatinase A/MMP-2 levels were significantly increased in patients with AIP. These proteins are promising markers to discriminate between AIP and PDAC. The best composite parameter, being the ratio of total MMP-9 over MMP-2 levels, can predict 93% of the AIP and 75% of the PDAC correctly. With enzyme linked immunosorbent assay, we confirmed the zymography results. CONCLUSIONS Differential gelatinase serum profiles as AIP markers, together with other clinical tests, help to assure the diagnosis of PDAC or AIP.
Collapse
|
33
|
Wang X, Li A, Guo Y, Wang Y, Zhao X, Xiang L, Han Z, Li Y, Xu W, Zhuang K, Yan Q, Zhong J, Xiong J, Liu S. iTRAQ-Based Proteomics Screen identifies LIPOCALIN-2 (LCN-2) as a potential biomarker for colonic lateral-spreading tumors. Sci Rep 2016; 6:28600. [PMID: 27339395 PMCID: PMC4919649 DOI: 10.1038/srep28600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
The improvement and implementation of a colonoscopy technique has led to increased detection of laterally spreading tumors (LSTs), which are presumed to constitute an aggressive type of colonic neoplasm. Early diagnosis and treatment of LSTs is clinically challenging. To overcome this problem, we employed iTRAQ to identify LST-specific protein biomarkers potentially involved in LST progression. In this study, we identified 2,001 differentially expressed proteins in LSTs using iTRAQ-based proteomics technology. Lipocalin-2 (LCN-2) was the most up-regulated protein. LSTs expression levels of LCN-2 and matrix metallopeptidase-9 (MMP-9) showed positive correlation with worse pathological grading, and up-regulation of these proteins in LSTs was also reflected in serum. Furthermore, LCN-2 protein overexpression was positively correlated with MMP-9 protein up-regulation in the tumor tissue and serum of LST patients (former rs = 0.631, P = 0.000; latter rs = 0.815, P = 0.000). Our results suggest that LCN-2 constitutes a potential biomarker for LST disease progression and might be a novel therapeutic target in LSTs.
Collapse
Affiliation(s)
- Xianfei Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Aimin Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubin Guo
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yadong Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinhua Zhao
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Mianyang Central Hospital, Mianyang, China
| | - Li Xiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang Central Hospital, Shen Zhen, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Xu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangmin Zhuang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qun Yan
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jietao Zhong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Xiong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Chee CS, Chang KM, Loke MF, Angela Loo VP, Subrayan V. Association of potential salivary biomarkers with diabetic retinopathy and its severity in type-2 diabetes mellitus: a proteomic analysis by mass spectrometry. PeerJ 2016; 4:e2022. [PMID: 27280065 PMCID: PMC4893325 DOI: 10.7717/peerj.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/13/2016] [Indexed: 02/06/2023] Open
Abstract
AIM/HYPOTHESIS The aim of our study was to characterize the human salivary proteome and determine the changes in protein expression in two different stages of diabetic retinopathy with type-2 diabetes mellitus: (1) with non-proliferative diabetic retinopathy (NPDR) and (2) with proliferative diabetic retinopathy (PDR). Type-2 diabetes mellitus without diabetic retinopathy (XDR) was designated as control. METHOD In this study, 45 saliva samples were collected (15 samples from XDR control group, 15 samples from NPDR disease group and 15 samples from PDR disease group). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with an isobaric tag for relative and absolute quantitation (iTRAQ) before being analyzed by an Orbitrap fusion tribrid mass spectrometer. Protein annotation, fold change calculation and statistical analysis were interrogated by Proteome Discoverer. Biological pathway analysis was performed by Ingenuity Pathway Analysis. Data are available via ProteomeXchange with identifiers PXD003723-PX003725. RESULTS A total of 315 proteins were identified from the salivary proteome and 119 proteins were found to be differentially expressed. The differentially expressed proteins from the NPDR disease group and the PDR disease group were assigned to respective canonical pathways indicating increased Liver X receptor/Retinoid X receptor (LXR/RXR) activation, Farnesoid X receptor/Retinoid X receptor (FXR/RXR) activation, acute phase response signaling, sucrose degradation V and regulation of actin-based motility by Rho in the PDR disease group compared to the NPDR disease group. CONCLUSIONS/INTERPRETATION Progression from non-proliferative to proliferative retinopathy in type-2 diabetic patients is a complex multi-mechanism and systemic process. Furthermore, saliva was shown to be a feasible alternative sample source for diabetic retinopathy biomarkers.
Collapse
Affiliation(s)
- Chin Soon Chee
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Khai Meng Chang
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology/Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Visvaraja Subrayan
- Department of Ophthalmology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Chung IH, Chen CY, Lin YH, Chi HC, Huang YH, Tai PJ, Liao CJ, Tsai CY, Lin SL, Wu MH, Chen CY, Lin KH. Thyroid hormone-mediated regulation of lipocalin 2 through the Met/FAK pathway in liver cancer. Oncotarget 2016; 6:15050-64. [PMID: 25940797 PMCID: PMC4558135 DOI: 10.18632/oncotarget.3670] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
The thyroid hormone, 3,3′,5-triiodo-L-thyronine (T3), regulates cell growth, development and differentiation via interactions with thyroid hormone receptors (TR), but the mechanisms underlying T3-mediated modulation of cancer progression are currently unclear. Lipocalin 2 (LCN2), a tumor-associated protein, is overexpressed in a variety of cancer types. Oligonucleotide microarray, coupled with proteomic analysis, has revealed that LCN2 is positively regulated by T3/TR. However, the physiological role and pathway of T3-mediated regulation of LCN2 in hepatocellular carcinogenesis remain to be characterized. Upregulation of LCN2 after T3 stimulation was observed in a time- and dose-dependent manner. Additionally, TRE on the LCN2 promoter was identified at positions −1444/−1427. Overexpression of LCN2 enhanced tumor cell migration and invasion, and conversely, its knockdown suppressed migration and invasion, both in vitro and in vivo. LCN2-induced migration occurred through activation of the Met/FAK cascade. LCN2 was overexpressed in clinical hepatocellular carcinoma (HCC) patients, compared with normal subjects, and positively correlated with TRα levels. Both TRα and LCN2 showed similar expression patterns in relation to survival rate, tumor grade, tumor stage and vascular invasion. Our findings collectively support a potential role of T3/TR in cancer progression through regulation of LCN2 via the Met/FAK cascade. LCN2 may thus be effectively utilized as a novel marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- I-Hsiao Chung
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yang-Hsiang Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Pei-Ju Tai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Syuan-Ling Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
36
|
Felix K, Gaida MM. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression. Int J Biol Sci 2016; 12:302-13. [PMID: 26929737 PMCID: PMC4753159 DOI: 10.7150/ijbs.14996] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma.
Collapse
Affiliation(s)
- Klaus Felix
- 1. Department of General Surgery, University of Heidelberg, INF 110, Heidelberg, Germany
| | - Matthias M Gaida
- 2. Institute of Pathology, University of Heidelberg, INF 224, Heidelberg, Germany
| |
Collapse
|
37
|
Katagiri M, Takahashi M, Doi K, Myojo M, Kiyosue A, Ando J, Hirata Y, Komuro I. Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels 2015; 31:1595-602. [PMID: 26614309 DOI: 10.1007/s00380-015-0776-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
Abstract
Serum neutrophil gelatinase-associated lipocalin (NGAL) is recognized as a useful biomarker for acute kidney injury. Recently, elevated NGAL levels were reported in patients with heart failure and cardiac events, but the association between serum NGAL and severity of coronary artery disease (CAD) has not been investigated adequately. This study aimed to evaluate the association between serum NGAL concentration and CAD severity in patients without heart failure and chronic kidney disease. Two-hundred thirteen patients [mean age: 66.2 ± 9.2 (SD)] without heart failure and chronic kidney disease (estimated glomerular filtration rate >60 mL/min/1.73 m(2)) who underwent coronary angiography were retrospectively analyzed using the SYNTAX score. The mean concentration of serum NGAL was 134.3 ± 111.3 ng/mL. A statistically significant correlation was observed between serum NGAL levels and the SYNTAX score (R = 0.18, P = 0.0091). Multivariable analysis also showed elevated serum NGAL as an independent risk factor for a high SYNTAX score (P < 0.01). Moreover, we evaluated the association of serum NGAL and brain natriuretic peptide (BNP) with the SYNTAX score. Patients with high levels of serum NGAL (>100 ng/mL) and high levels of BNP (>25 pg/mL) had a higher SYNTAX score (low-low vs. high-high: 13.8 ± 13.4 vs. 20.8 ± 18.9, P < 0.05). Serum NGAL levels were positively and significantly associated with CAD severity, and the evaluation of both serum NGAL and BNP was useful for predicting CAD in patients without renal dysfunction and heart failure. Serum NGAL might be a biomarker for CAD severity.
Collapse
Affiliation(s)
- Mikako Katagiri
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masao Takahashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kent Doi
- Department of Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Myojo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Arihiro Kiyosue
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jiro Ando
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
38
|
Koh SA, Lee KH. HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-κB activation. Oncol Rep 2015; 34:2179-87. [PMID: 26259977 DOI: 10.3892/or.2015.4189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
Abstract
Lipocalin 2 (LCN2) is a member of lipocalin family that binds and transports a small lipophilic ligand, sharing a highly conserved tertiary structure and can be found as a monomer, homodimer, heterodimer with matrix metalloproteinase 9 (MMP9). The high molecule LCN2/MMP9 complex was found in several cancer types. Yet, the mechanisms of regulation between LCN2 with MMP9 in tumorigenesis is unclear. The aims of the present study were to identify the function of LCN2 associated with MMP9 in gastric cancer growth and metastasis. First, we confirmed that the expression level of LCN2 and MMP9 was upregulated by hepatocyte growth factor (HGF). To identify the association pathway of HGF-induced LCN2, the cells were treated with PI3-kinase inhibitor (LY294002), or MEK inhibitor (PD098059), or p38 inhibitor (SB203580) and then analyzed using western blotting. The HGF-mediated LCN2 protein level was decreased with LY294002. Also, the HGF-mediated MMP9 was decreased with LY294002. The role for LCN2 with HGF mediated MMP9 was determined by knockdown of LCN2. LCN2-sh RNA cells showed a decreased level of HGF-mediated MMP9. The HGF-mediated LCN2 protein level was decreased with treatment of the NFκB inhibitor. We confirmed the role of HGF-mediated LCN2. HGF-mediated cell proliferation and in vitro invasion was decreased in LCN2 knockdown cell. In conclusion, the present study showed that LCN2 upregulated MMP9 through PI3K/AKT/NFκB pathway in gastric cancer. LCN2 has a role in cell proliferation and cell invasion in gastric cancer, which may be a possible target for developing gastric cancer therapy.
Collapse
Affiliation(s)
- Sung Ae Koh
- Department of Hematology-Oncology, College of Medicine, Yeungnam University, Namgu, Daegu 705-703, Republic of Korea
| | - Kyung Hee Lee
- Department of Hematology-Oncology, College of Medicine, Yeungnam University, Namgu, Daegu 705-703, Republic of Korea
| |
Collapse
|
39
|
Christensen MHE, Fenne IS, Nordbø Y, Varhaug JE, Nygård KO, Lien EA, Mellgren G. Novel inflammatory biomarkers in primary hyperparathyroidism. Eur J Endocrinol 2015; 173:9-17. [PMID: 25850829 DOI: 10.1530/eje-14-1038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/07/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Primary hyperparathyroidism (PHPT) has been associated with low-grade inflammation and increased risk of cardiovascular disease (CVD). The aim of the study was to investigate systemic levels of pro-inflammatory proteins that previously have not been examined in patients with PHPT. The selection of the pro-inflammatory biomarkers included in this study, MMP9, S100A4, S100A8/A9 and the receptors sCD14 and RAGE, was based on a previous microarray screen of mRNAs in adipose tissue from PHPT patients. DESIGN A prospective study was conducted on a total of 57 patients with PHPT and a control group of 20 healthy blood donors. METHODS PHPT patients with normalisation of serum calcium levels after parathyroidectomy were followed for 6 months. Forty-two patients participated in the longitudinal study, in which blood samples were taken at inclusion, and 1, 3 and 6 months after surgery. RESULTS We observed increased serum levels of MMP9 (P=0.029), S100A4 (P<0.001) and sCD14 (P=0.002) in the 57 patients with PHPT compared to the control-group. During 6 months of follow up, S100A4 (P=0.022) and sCD14 (0.002) decreased significantly, while serum levels of MMP9 increased (P=0.025). CONCLUSIONS The results demonstrate an increased inflammatory response in PHPT patients shown by elevated MMP9, S100A4 and sCD14 at inclusion. During the 6 months of follow-up, MMP9 increased further, possibly due to the tissue repair process after parathyroidectomy. S100A4 and sCD14 decreased after surgery demonstrating a partial reversal of the systemic inflammation.
Collapse
Affiliation(s)
- M H E Christensen
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - I S Fenne
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - Y Nordbø
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - J E Varhaug
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - K O Nygård
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - E A Lien
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| | - G Mellgren
- Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway Department of Clinical ScienceUniversity of Bergen, Bergen, NorwayHormone LaboratoryDepartment of SurgeryHaukeland University Hospital, 5021 Bergen, NorwayDepartment of Surgical ScienceUniversity of Bergen, Bergen, NorwayKG Jebsen Center for Diabetes ResearchBergen, NorwayDepartment of Heart DiseaseHaukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
41
|
Kao TH, Peng YJ, Salter DM, Lee HS. Nerve growth factor increases MMP9 activity in annulus fibrosus cells by upregulating lipocalin 2 expression. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1959-68. [PMID: 25412834 DOI: 10.1007/s00586-014-3675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Nerve growth factor (NGF) expression and activity is important in chronic lower back pain but may also act as a pro-catabolic factor in the pathogenesis of intervertebral disc (IVD) degeneration. Lipocalin 2 (Lcn2) expression in IVD was upregulated by NGF stimulation in our previous study. The current study was undertaken to identify potential mechanisms of the latter effect including potential interactions between Lcn2 and matrix metalloproteinase 9 (MMP9). METHODS Rat annulus fibrosus (AF) cells were stimulated by NGF and subjected to microarray analysis, subsequent real-time PCR, western immunoblotting, and immunofluorescence. Cells were treated with NGF in the absence or presence of the NGF inhibitor Ro 08-2750. Zymography and functional MMP9 assays were used to determine MMP9 activity, whilst the dimethyl-methylene blue assay was used to quantify the release of glycosaminoglycans (GAGs) reflecting catabolic effects following NGF treatment. Immunoprecipitation with immunoblotting was used to identify interactions between MMP9 and Lcn2. RESULTS Increased expression of Lcn2 gene and protein following NGF stimulation was confirmed by microarray analysis, real-time PCR, western blot and immunofluorescence. Zymography showed that NGF enhanced 125-kDa gelatinase activity, identified as a Lcn2/MMP9 complex by immunoprecipitation and immunoblotting. Functional assays showed increased MMP9 activity and GAG release in the presence of NGF. The effects of NGF were neutralized by the presence of Ro 08-2750. CONCLUSIONS NGF upregulates Lcn2 expression and increases MMP9 activity in AF cells; processes which are likely to potentiate degeneration of AF tissue in vivo. Anti-NGF treatment may have benefit for management of pain relief and slowing down progression of AF tissue degeneration.
Collapse
Affiliation(s)
- Ting-Hsien Kao
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
42
|
Kao TH, Peng YJ, Tsou HK, Salter DM, Lee HS. Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation. J Neurosurg Spine 2014; 21:653-61. [DOI: 10.3171/2014.6.spine13756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Object
Increased neurotrophin activity in degenerative intervertebral discs (IVDs) is one potential cause of chronic low-back pain (LBP). The aim of the study was to assess if nerve growth factor (NGF) might alter gene expression of IVD cells and contribute to disc degeneration by enhancing expression or activity of factors that cause breakdown of IVD matrix.
Methods
Rat-tail IVD cells were stimulated by NGF and subjected to microarray analysis. Real-time polymerase chain reaction, Western blotting, and immunocytochemistry of rat and human IVD cells and tissues treated with NGF in vitro in the absence or presence of the NGF inhibitor Ro 08-2750 were used to confirm findings of the microarray studies. Phosphorylation of mitogen-activated protein kinase (MAPK) was used to identify cell signaling pathways involved in NGF stimulation in the absence or presence of Ro 08-2750.
Results
Microarray analysis demonstrated increased expression of chitinase 3-like 1 (Chi3l1), lipocalin 2 (Lcn2), and matrix metalloproteinase–3 (Mmp3) following NGF stimulation of rat IVD cells in vitro. Increased gene expression was confirmed by real-time polymerase chain reaction with a relative increase in the Mmp/Timp ratio. Increased expression of Chi3l1, Lcn2, and Mmp3 following NGF stimulation was also demonstrated in rat cells and human tissue in vitro. Effects of NGF on protein expression were blocked by an NGF inhibitor and appear to function through the extracellular-regulation kinase 1/2 (ERK1/2) MAPK pathway.
Conclusions
Nerve growth factor has potential effects on matrix turnover activity and influences the catabolic/anabolic balance of IVD cells in an adverse way that may potentiate IVD degeneration. Anti-NGF treatment might be beneficial to ameliorate progressive tissue breakdown in IVD degeneration and may lead to pain relief.
Collapse
Affiliation(s)
- Ting-Hsien Kao
- 1Graduate Institute of Medical Science, National Defense Medical Center, and
- 3Department of Neurosurgery, Taichung Veterans General Hospital, Taichung;
- Departments of 4Acupressure Technology and
| | - Yi-Jen Peng
- 2Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei
| | - Hsi-Kai Tsou
- 3Department of Neurosurgery, Taichung Veterans General Hospital, Taichung;
- 5Early Childhood Care and Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan, Republic of China; and
| | - Donald M. Salter
- 6Osteoarticular Research Group, Molecular Medicine Center, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom
| | - Herng-Sheng Lee
- 1Graduate Institute of Medical Science, National Defense Medical Center, and
- 2Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei
| |
Collapse
|
43
|
Phillips LL, Chan JL, Doperalski AE, Reeves TM. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res 2014; 9:362-76. [PMID: 25206824 PMCID: PMC4146196 DOI: 10.4103/1673-5374.128237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.
Collapse
Affiliation(s)
- Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Adele E Doperalski
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Chan JL, Reeves TM, Phillips LL. Osteopontin expression in acute immune response mediates hippocampal synaptogenesis and adaptive outcome following cortical brain injury. Exp Neurol 2014; 261:757-71. [PMID: 25151457 DOI: 10.1016/j.expneurol.2014.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology was performed. At 1-2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with the reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery.
Collapse
Affiliation(s)
- Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA.
| |
Collapse
|
45
|
Neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex as a surrogate serum marker of mucosal healing in ulcerative colitis. Inflamm Bowel Dis 2014; 20:1198-207. [PMID: 24871805 DOI: 10.1097/mib.0000000000000068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The current standard for the assessment of mucosal healing after therapy in inflammatory bowel diseases is endoscopy. However, a high need exists for noninvasive, accurate surrogate markers. METHODS In 2 independent cohorts, levels of serum neutrophil gelatinase B-associated lipocalin and matrix metalloproteinase-9 complex (NGAL-MMP-9) from patients with active ulcerative colitis (UC) before and after first treatment with infliximab and from healthy controls (HC) were determined with zymography and sandwich enzyme-linked immunosorbent assay. The response to infliximab was defined as complete mucosal healing (Mayo endoscopic subscore 0-1) at control endoscopy. Data were analyzed with SPSS, and P values <0.05 were considered significant. RESULTS In cohort 1 (n = 66; median age, 30 yr; 38% female), serum NGAL-MMP-9 levels significantly increased at baseline in UC patients versus HC (103.8 versus 42.4 ng/mL; P < 0.0001), whereas 55% of the patients had normal C-reactive protein levels. NGAL-MMP-9 levels significantly decreased after therapy in UC responders (from 116.3 ng/mL to 32.0 ng/mL; P < 0.0001) and in nonresponders (from 94.7 ng/mL to 54.1 ng/mL; P = 0.047). In cohort 2 (n = 132; median age, 39 yr; 53% female), NGAL-MMP-9 levels increased at baseline in active UC patients versus HC (86.5 versus 60.4 ng/mL; P = 0.10), whereas 45% of the patients had normal C-reactive protein levels. NGAL-MMP-9 levels significantly decreased after therapy in responders (from 87.5 ng/mL to 16.3 ng/mL; P < 0.0001) but not in nonresponders (from 82.7 ng/mL to 57.8 ng/mL; P = 0.19). After pooling the data, a cutoff value of 97.7 ng/mL for NGAL-MMP-9 complex was determined to predict complete mucosal healing with high specificity (91%). CONCLUSIONS Serum NGAL-MMP-9 is suggested as a new surrogate marker for the assessment of mucosal healing in UC patients treated with infliximab.
Collapse
|
46
|
Nam Y, Kim JH, Seo M, Kim JH, Jin M, Jeon S, Seo JW, Lee WH, Bing SJ, Jee Y, Lee WK, Park DH, Kook H, Suk K. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues. J Biol Chem 2014; 289:16773-89. [PMID: 24808182 DOI: 10.1074/jbc.m113.542282] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipocalin-2 (LCN2) plays an important role in cellular processes as diverse as cell growth, migration/invasion, differentiation, and death/survival. Furthermore, recent studies indicate that LCN2 expression and secretion by glial cells are induced by inflammatory stimuli in the central nervous system. The present study was undertaken to examine the regulation of LCN2 expression in experimental autoimmune encephalomyelitis (EAE) and to determine the role of LCN2 in the disease process. LCN2 expression was found to be strongly increased in spinal cord and secondary lymphoid tissues after EAE induction. In spinal cords astrocytes and microglia were the major cell types expressing LCN2 and its receptor 24p3R, respectively, whereas in spleens, LCN2 and 24p3R were highly expressed in neutrophils and dendritic cells, respectively. Furthermore, disease severity, inflammatory infiltration, demyelination, glial activation, the expression of inflammatory mediators, and the proliferation of MOG-specific T cells were significantly attenuated in Lcn2-deficient mice as compared with wild-type animals. Myelin oligodendrocyte glycoprotein-specific T cells in culture exhibited an increased expression of Il17a, Ifng, Rorc, and Tbet after treatment with recombinant LCN2 protein. Moreover, LCN2-treated glial cells expressed higher levels of proinflammatory cytokines, chemokines, and MMP-9. Adoptive transfer and recombinant LCN2 protein injection experiments suggested that LCN2 expression in spinal cord and peripheral immune organs contributes to EAE development. Taken together, these results imply LCN2 is a critical mediator of autoimmune inflammation and disease development in EAE and suggest that LCN2 be regarded a potential therapeutic target in multiple sclerosis.
Collapse
Affiliation(s)
- Youngpyo Nam
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jong-Heon Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Minchul Seo
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jae-Hong Kim
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Myungwon Jin
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Sangmin Jeon
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jung-wan Seo
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - So Jin Bing
- College of Veterinary Medicine and Applied Radiological Institute, Jeju National University, Jeju 690-756, Korea
| | - Youngheun Jee
- College of Veterinary Medicine and Applied Radiological Institute, Jeju National University, Jeju 690-756, Korea
| | - Won Kee Lee
- Center of Biostatistics, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Dong Ho Park
- Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu 700-422, Korea, and
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-746, Korea
| | - Kyoungho Suk
- From the Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea,
| |
Collapse
|
47
|
Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda) 2014; 28:391-403. [PMID: 24186934 DOI: 10.1152/physiol.00029.2013] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinase (MMP)-9, one of the most widely investigated MMPs, regulates pathological remodeling processes that involve inflammation and fibrosis in cardiovascular disease. MMP-9 directly degrades extracellular matrix (ECM) proteins and activates cytokines and chemokines to regulate tissue remodeling. MMP-9 deletion or inhibition has proven overall beneficial in multiple animal models of cardiovascular disease. As such, MMP-9 expression and activity is a common end point measured. MMP-9 cell-specific overexpression, however, has also proven beneficial and highlights the fact that little information is available on the underlying mechanisms of MMP-9 function. In this review, we summarize our current understanding of MMP-9 physiology, including structure, regulation, activation, and downstream effects of increased MMP-9. We discuss MMP-9 roles during inflammation and fibrosis in cardiovascular disease. By concentrating on the substrates of MMP-9 and their roles in cardiovascular disease, we explore the overall function and discuss future directions on the translational potential of MMP-9 based therapies.
Collapse
|
48
|
Bouchet S, Bauvois B. Neutrophil Gelatinase-Associated Lipocalin (NGAL), Pro-Matrix Metalloproteinase-9 (pro-MMP-9) and Their Complex Pro-MMP-9/NGAL in Leukaemias. Cancers (Basel) 2014; 6:796-812. [PMID: 24713998 PMCID: PMC4074804 DOI: 10.3390/cancers6020796] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinase (MMP)-9 and neutrophil gelatinase-associated lipocalin (NGAL) have gained attention as cancer biomarkers. The inactive zymogen form of MMP-9 (pro-MMP-9) also exists as a disulphide-linked heterodimer bound to NGAL in humans. Leukaemias represent a heterogeneous group of neoplasms, which vary in their clinical behavior and pathophysiology. In this review, we summarize the current literature on the expression profiles of pro-MMP-9 and NGAL as prognostic factors in leukaemias. We also report the expression of the pro-MMP-9/NGAL complex in these diseases. We discuss the roles of (pro)-MMP-9 (active and latent forms) and NGAL in tumour development, and evaluate the mechanisms by which pro-MMP-9/NGAL may influence the actions of (pro)-MMP-9 and NGAL in cancer. Emerging knowledge about the coexpression and the biology of (pro)-MMP-9, NGAL and their complex in cancer including leukaemia may improve treatment outcomes.
Collapse
Affiliation(s)
- Sandrine Bouchet
- INSERM U1138, Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris 75006, France.
| | - Brigitte Bauvois
- INSERM U1138, Université Pierre et Marie Curie, Université Paris-Descartes, Centre de Recherche des Cordeliers, Paris 75006, France.
| |
Collapse
|
49
|
Adipokines as potential biomarkers in rheumatoid arthritis. Mediators Inflamm 2014; 2014:425068. [PMID: 24799765 PMCID: PMC3985296 DOI: 10.1155/2014/425068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by severe joint injury. Recently, research has been focusing on the possible identification of predictor markers of disease onset and/or progression, of joint damage, and of therapeutic response. Recent findings have uncovered the role of white adipose tissue as a pleiotropic organ not only specialized in endocrine functions but also able to control multiple physiopathological processes, including inflammation. Adipokines are a family of soluble mediators secreted by white adipose tissue endowed with a wide spectrum of actions. This review will focus on the recent advances on the role of the adipokine network in the pathogenesis of RA. A particular attention will be devoted to the action of these proteins on RA effector cells, and on the possibility to use circulating levels of adipokines as potential biomarkers of disease activity and therapeutic response.
Collapse
|
50
|
Balakrishnan L, Bhattacharjee M, Ahmad S, Nirujogi RS, Renuse S, Subbannayya Y, Marimuthu A, Srikanth SM, Raju R, Dhillon M, Kaur N, Jois R, Vasudev V, Ramachandra Y, Sahasrabuddhe NA, Prasad TK, Mohan S, Gowda H, Shankar S, Pandey A. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients. Clin Proteomics 2014; 11:1. [PMID: 24393543 PMCID: PMC3918105 DOI: 10.1186/1559-0275-11-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023] Open
Abstract
Background Rheumatoid arthritis and osteoarthritis are two common musculoskeletal disorders that affect the joints. Despite high prevalence rates, etiological factors involved in these disorders remain largely unknown. Dissecting the molecular aspects of these disorders will significantly contribute to improving their diagnosis and clinical management. In order to identify proteins that are differentially expressed between these two conditions, a quantitative proteomic profiling of synovial fluid obtained from rheumatoid arthritis and osteoarthritis patients was carried out by using iTRAQ labeling followed by high resolution mass spectrometry analysis. Results We have identified 575 proteins out of which 135 proteins were found to be differentially expressed by ≥3-fold in the synovial fluid of rheumatoid arthritis and osteoarthritis patients. Proteins not previously reported to be associated with rheumatoid arthritis including, coronin-1A (CORO1A), fibrinogen like-2 (FGL2), and macrophage capping protein (CAPG) were found to be upregulated in rheumatoid arthritis. Proteins such as CD5 molecule-like protein (CD5L), soluble scavenger receptor cysteine-rich domain-containing protein (SSC5D), and TTK protein kinase (TTK) were found to be upregulated in the synovial fluid of osteoarthritis patients. We confirmed the upregulation of CAPG in rheumatoid arthritis synovial fluid by multiple reaction monitoring assay as well as by Western blot. Pathway analysis of differentially expressed proteins revealed a significant enrichment of genes involved in glycolytic pathway in rheumatoid arthritis. Conclusions We report here the largest identification of proteins from the synovial fluid of rheumatoid arthritis and osteoarthritis patients using a quantitative proteomics approach. The novel proteins identified from our study needs to be explored further for their role in the disease pathogenesis of rheumatoid arthritis and osteoarthritis. Sartaj Ahmad and Raja Sekhar Nirujogi contributed equally to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Subramanian Shankar
- Department of Internal Medicine, Armed Forces Medical College, Pune 411040, India.
| | | |
Collapse
|