1
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
2
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Lisowska B, Jakubiak J, Siewruk K, Sady M, Kosson D. Which idea is better with regard to immune response? Opioid anesthesia or opioid free anesthesia. J Inflamm Res 2020; 13:859-869. [PMID: 33177861 PMCID: PMC7652233 DOI: 10.2147/jir.s275986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The stress of surgery is characterized by an inflammatory response with immune suppression resulting from many factors, including the type of surgery and the kind of anesthesia, linked with the drugs that are used and the underlying disease of the patient. The trauma of surgery triggers a cascade of reactions involving the immune response and nociception. As strong analgesics, opioids provide the analgesic component of general anesthesia with bi-directional effect on the immune system. Opioids influence almost all aspects of the immune response in regards to leukocytes, macrophages, mast cells, lymphocytes, and NK cells. The suppressive effect of opioids on the immune system is limiting their use, especially in patients with impaired immune response, so the possibility of using multimodal anesthesia without opioids, known as opioid-free anesthesia (OFA), is gaining more and more sympathizers. The idea of OFA is to eliminate opioid analgesia in the treatment of acute pain and to replace it with drugs from other groups that are assumed to have a comparable analgesic effect without affecting the immune system. Here, we present a review on the impact of anesthesia, with and without the use of opioids, on the immune response to surgical stress.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department Anesthesiology and Intensive Medical Care, National Geriatrics, Rheumatology and Rehabilitation Institute, Warsaw 02-637, Poland
| | - Jakub Jakubiak
- Department of Anesthesiology and Intensive Care, John Paul II Western Hospital, Grodzisk Mazowiecki 05-825, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Maria Sady
- Faculty of Veterinary Medicine, Department of Large Animal Diseases with Clinic, Warsaw University of Life Sciences, Warsaw 02-797, Poland
| | - Dariusz Kosson
- Department of Anaesthesiology and Intensive Care, Division of Teaching, Medical University of Warsaw, Warsaw 02-005, Poland
| |
Collapse
|
4
|
Affiliation(s)
- H. Cheng
- Livestock Behaviour Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Modulation of the Negative Affective Dimension of Pain: Focus on Selected Neuropeptidergic System Contributions. Int J Mol Sci 2019; 20:ijms20164010. [PMID: 31426473 PMCID: PMC6720937 DOI: 10.3390/ijms20164010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that emotions can interfere with the perception of physical pain, as well as with the development and maintenance of painful conditions. On the other hand, somatic pain can have significant consequences on an individual’s affective behavior. Indeed, pain is defined as a complex and multidimensional experience, which includes both sensory and emotional components, thus exhibiting the features of a highly subjective experience. Over the years, neural pathways involved in the modulation of the different components of pain have been identified, indicating the existence of medial and lateral pain systems, which, respectively, project from medial or lateral thalamic nuclei to reach distinct cortex regions relating to specific functions. However, owing to the limited information concerning how mood state and painful input affect each other, pain treatment is frequently unsatisfactory. Different neuromodulators, including endogenous neuropeptides, appear to be involved in pain-related emotion and in its affective influence on pain perception, thus playing key roles in vulnerability and clinical outcome. Hence, this review article focuses on evidence concerning the modulation of the sensory and affective dimensions of pain, with particular attention given to some selected neuropeptidergic system contributions.
Collapse
|
6
|
Correlation of Serum β-Endorphin and the Quality of Life in Allergic Rhinitis. DISEASE MARKERS 2016; 2016:2025418. [PMID: 27647946 PMCID: PMC5014966 DOI: 10.1155/2016/2025418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/02/2016] [Indexed: 11/18/2022]
Abstract
Background. Allergic rhinitis (AR) significantly impairs the quality of life of the patients; however, a questionnaire alone is an insufficient and subjective measure of this condition. Obtaining an objective clinical assessment of the level of impairment will be valuable for its treatment. β-Endorphin is one of the most important mediators of both mental state and specific immunity. Thus, we investigated the possibility of using β-endorphin as a biomarker for evaluating the impairment level in AR. Methods. This study included 48 patients with AR and 32 healthy volunteers. The serum β-endorphin level was determined by enzyme immunoassay, and the serum-specific IgE and total IgE levels were determined by immunoblot assay. The Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) was used to assess the impairment level in the symptom duration. Results. The β-endorphin concentration was significantly decreased in AR patients compared to the healthy controls (p = 0.000, p < 0.05). There was significant negative correlation between the impairment level and serum β-endorphin level (correlation coefficient: −0.468; p = 0.001; p < 0.05), but there was no association between the serum β-endorphin and total IgE levels (p = 0.947, p > 0.05). Conclusion. β-Endorphin is a systemic biomarker that has the potential to assess the impairment level in AR and may therefore be a novel therapeutic target for the treatment of AR.
Collapse
|
7
|
Fazalul Rahiman SS, Morgan M, Gray P, Shaw PN, Cabot PJ. Dynorphin 1-17 and Its N-Terminal Biotransformation Fragments Modulate Lipopolysaccharide-Stimulated Nuclear Factor-kappa B Nuclear Translocation, Interleukin-1beta and Tumor Necrosis Factor-alpha in Differentiated THP-1 Cells. PLoS One 2016; 11:e0153005. [PMID: 27055013 PMCID: PMC4824444 DOI: 10.1371/journal.pone.0153005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Dynorphin 1–17, (DYN 1–17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1–17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1–17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1–17 and a specific range of fragments, with the greatest reduction observed with DYN 1–7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1–17, DYN 1–6, DYN 1–7 and DYN 1–9, but not other DYN 1–17 N-terminal fragments (DYN 1–10 and 1–11) on NF-κB/p65 nuclear translocation. DYN 1–17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1–7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1–17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways.
Collapse
Affiliation(s)
- Siti Sarah Fazalul Rahiman
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Michael Morgan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Gray
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Department of Anaesthesia, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Paul Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Peter John Cabot
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
8
|
Uhrich E, Gautam M, Hatton J, Rowland K. Corticotropin releasing factor receptor expression in painful human dental pulp. Arch Oral Biol 2015; 60:1048-53. [PMID: 25924915 DOI: 10.1016/j.archoralbio.2015.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Our objective was to correlate the presence of symptoms and dental pulp injury with the amount of a subtype of corticotropin releasing factor receptor (CRF-R) in symptomatic and asymptomatic human teeth. We hypothesized that patients diagnosed with irreversible pulpitis have increased levels of CRF-R. MATERIALS AND METHODS Dental history, diagnosis and radiographs were obtained from treatment records following extractions. Teeth were diagnosed as asymptomatic or symptomatic demonstrated by clinical and radiographic evaluation. Tissue sections from tooth pulp were immunoreacted with antibodies directed against CRF receptor 2 (CRF-R2) and neurofilament protein and examined to correlate CRF-R expression with pulpal diagnosis. RESULTS Our results indicated that symptomatic pulps demonstrated significantly greater expression of CRF-R2. The increased expression was localized on distinct cellular profiles throughout the pulp and was not directly correlated with neurofilament expression. CONCLUSIONS Our findings suggest that the analgesic effects of endogenously produced CRF may be enhanced via upregulation of CRF-R2 expression, and may explain the occurrence of reduced pain symptoms in some patients with irreversible pulpitis. The application of CRF-R agonists may be a feasible strategy in reducing pain associated with irreversible pulpitis.
Collapse
Affiliation(s)
- Elizabeth Uhrich
- Southern Illinois University, School of Dental Medicine, 2800 College Avenue, Alton, IL 62002, United States
| | - Medha Gautam
- Southern Illinois University, School of Dental Medicine, 2800 College Avenue, Alton, IL 62002, United States
| | - John Hatton
- Center for Advanced Dental Education, Saint Louis University, St. Louis, MO 63103, United States
| | - Kevin Rowland
- Southern Illinois University, School of Dental Medicine, 2800 College Avenue, Alton, IL 62002, United States.
| |
Collapse
|
9
|
Machado FC, Zambelli VO, Fernandes ACO, Heimann AS, Cury Y, Picolo G. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine. Br J Pharmacol 2014; 171:961-72. [PMID: 24460677 PMCID: PMC3925035 DOI: 10.1111/bph.12488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/17/2013] [Accepted: 10/05/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Crotalphine is an antinociceptive peptide that, despite its opioid-like activity, does not induce some of the characteristic side effects of opioids, and its amino acid sequence has no homology to any known opioid peptide. Here, we evaluated the involvement of the peripheral cannabinoid system in the crotalphine effect and its interaction with the opioid system. EXPERIMENTAL APPROACH Hyperalgesia was evaluated using the rat paw pressure test. Involvement of the cannabinoid system was determined using a selective cannabinoid receptor antagonist. Cannabinoid and opioid receptor activation were evaluated in paw slices by immunofluorescence assays using conformation state-sensitive antibodies. The release of endogenous opioid peptides from skin tissue was measured using a commercial enzyme immunoassay (EIA). KEY RESULTS Both p.o. (0.008-1.0 μg·kg(-1) ) and intraplantar (0.0006 μg per paw) administration of crotalphine induced antinociception in PGE2 -induced hyperalgesia. Antinociception by p.o. crotalphine (1 μg·kg(-1) ) was blocked by AM630 (50 μg per paw), a CB2 receptor antagonist, and by antiserum anti-dynorphin A (1 μg per paw). Immunoassay studies confirmed that crotalphine increased the activation of both κ-opioid (51.7%) and CB2 (28.5%) receptors in paw tissue. The local release of dynorphin A from paw skin was confirmed by in vitro EIA and blocked by AM630. CONCLUSIONS AND IMPLICATIONS Crotalphine-induced antinociception involves peripheral CB2 cannabinoid receptors and local release of dynorphin A, which is dependent on CB2 receptor activation. These results enhance our understanding of the mechanisms involved in the peripheral effect of crotalphine, as well as the interaction between the opioid and cannabinoid systems.
Collapse
Affiliation(s)
- F C Machado
- Laboratório Especial de Dor e Sinalização, Instituto ButantanSão Paulo, Brazil
- Instituto de Ciências Biomédicas, Universidade de São PauloSão Paulo, Brazil
| | - V O Zambelli
- Laboratório Especial de Dor e Sinalização, Instituto ButantanSão Paulo, Brazil
| | - A C O Fernandes
- Laboratório Especial de Dor e Sinalização, Instituto ButantanSão Paulo, Brazil
| | | | - Y Cury
- Laboratório Especial de Dor e Sinalização, Instituto ButantanSão Paulo, Brazil
| | - G Picolo
- Laboratório Especial de Dor e Sinalização, Instituto ButantanSão Paulo, Brazil
| |
Collapse
|
10
|
Bridging the Gap Between Mind and Body: A Biobehavioral Model of the Effects of Guided Imagery on Pain, Pain Disability, and Depression. Pain Manag Nurs 2013; 14:368-378. [DOI: 10.1016/j.pmn.2011.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/08/2011] [Indexed: 01/24/2023]
|
11
|
Iwaszkiewicz KS, Schneider JJ, Hua S. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 2013; 4:132. [PMID: 24167491 PMCID: PMC3807052 DOI: 10.3389/fphar.2013.00132] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/04/2013] [Indexed: 01/25/2023] Open
Abstract
Mechanisms of endogenous pain control are significant. Increasing studies have clearly produced evidence for the clinical usefulness of opioids in peripheral analgesia. The immune system uses mechanisms of cell migration not only to fight pathogens but also to control pain and inflammation within injured tissue. It has been demonstrated that peripheral inflammatory pain can be effectively controlled by an interaction of immune cell-derived opioid peptides with opioid receptors on peripheral sensory nerve terminals. Experimental and clinical studies have clearly shown that activation of peripheral opioid receptors with exogenous opioid agonists and endogenous opioid peptides are able to produce significant analgesic and anti-inflammatory effects, without central opioid mediated side effects (e.g., respiratory depression, sedation, tolerance, dependence). This article will focus on the role of opioids in peripheral inflammatory conditions and the clinical implications of targeting peripheral opioid receptors.
Collapse
Affiliation(s)
- Katerina S Iwaszkiewicz
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | | | | |
Collapse
|
12
|
Chao PK, Lu KT, Lee YL, Chen JC, Wang HL, Yang YL, Cheng MY, Liao MF, Ro LS. Early systemic granulocyte-colony stimulating factor treatment attenuates neuropathic pain after peripheral nerve injury. PLoS One 2012; 7:e43680. [PMID: 22937076 PMCID: PMC3427178 DOI: 10.1371/journal.pone.0043680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/24/2012] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 µg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.
Collapse
Affiliation(s)
- Po-Kuan Chao
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Lin Lee
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Jin-Chung Chen
- Department of Pharmacology, Chang-Gung University, Tao-Yuan, Taiwan
| | - Hung-Li Wang
- Department of Physiology, Chang-Gung University, Tao-Yuan, Taiwan
| | - Yi-Ling Yang
- Institute of Biotechnology, National Chia-Yi University, Chia-Yi, Taiwan
| | - Mei-Yun Cheng
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Ming-Feng Liao
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
| | - Long-Sun Ro
- Division of Neuromuscular Disorders, Department of Neurology, Chang Gung Memorial Hospital and University, Chang-Gung University, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Herath HMDR, Cabot PJ, Shaw PN, Hewavitharana AK. Study of beta endorphin metabolism in inflamed tissue, serum and trypsin solution by liquid chromatography-tandem mass spectrometric analysis. Anal Bioanal Chem 2012; 402:2089-100. [PMID: 22231512 DOI: 10.1007/s00216-011-5686-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/18/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Beta endorphin (β-END) is recognised as one of the most significant endogenous neuropeptides, responsible for a wide range of biological activities in the body. However, within the body β-END is exposed to hydrolysis by a variety of enzymes. In this study, we investigated the metabolism and fragmentation pattern of β-END in rat inflamed tissue, in rat serum and in trypsin solution. β-END (1-31)-rat was incubated at 37 °C in each matrix for different incubation times. The resultant fragments were separated using a C4 column and detected by mass spectrometry using total ion current mode. Structural information for the fragments was elucidated using tandem mass spectrometry. Incubation of β-END (1-31)-rat in trypsin solution and in rat serum resulted in 8 and 13 fragments, respectively. Incubation in inflamed rat paw tissue resulted in 22 fragments at pH 7.4 and 26 fragments at pH 5.5. Some of these fragments were common to both pH values. The degradation of β-END (1-31)-rat in inflamed tissue at pH 5.5 was faster than that at pH 7.4. Secondary fragmentation of some larger primary fragments was also observed in this study.
Collapse
Affiliation(s)
- H M D R Herath
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
14
|
Capuozzo E, Pecci L, Giovannitti F, Baseggio Conrado A, Fontana M. Oxidative and nitrative modifications of enkephalins by human neutrophils: effect of nitroenkephalin on leukocyte functional responses. Amino Acids 2011; 43:875-84. [DOI: 10.1007/s00726-011-1147-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 11/03/2011] [Indexed: 11/25/2022]
|
15
|
Kim EH, Ryu DH, Hwang S. The expression of corticotropin-releasing factor and its receptors in the spinal cord and dorsal root ganglion in a rat model of neuropathic pain. Anat Cell Biol 2011; 44:60-8. [PMID: 21519550 PMCID: PMC3080009 DOI: 10.5115/acb.2011.44.1.60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/28/2011] [Accepted: 03/14/2011] [Indexed: 01/15/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is a peptide involved in the activation of the hypothalamic-pituitary-adrenal (HPA) axis. CRF is distributed not only along the HPA axis but also throughout pain-relevant anatomical sites. CRF elicits potent antinociception at the three main levels of pain transmissions: namely, the brain, spinal cord, and peripheral sensory neurons. The widespread distribution of CRF receptors 1 and 2 in the brain offers several targets wherein CRF could alter pain, some of which may be independent of the HPA axis. In this study, we assessed the expression of CRF and its receptors, CRF receptor type (CRFR)1 and CRFR2, in the spinal dorsal horn and dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by spinal nerve injury (SNI). CRF was expressed in a few DRG neurons and primary afferent fibers in the dorsal horns of naїve rats, and the CRF-positive neurons in DRG and fibers in the spinal dorsal horn were found to have increased after SNI. CRFR1 was not expressed in DRG or the dorsal horn and CRFR2 was expressed weakly in the small neurons in DRG in the naїve rats. After SNI, CRFR1 was expressed in the activated microglia in the ipsilateral dorsal horn, and immunoreaction for CRFR2 was increased in the contralateral DRG following SNI. Consequently, it has been suggested that the increased expression of CRF and CRFR2 in DRG neurons and primary afferent fibers in dorsal horn, and CRFR1 in the activated microglia, may be involved in the mediation of stress responses as well as in microglial activation in the neuropathic pain state following SNI.
Collapse
Affiliation(s)
- Eun Hyun Kim
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | |
Collapse
|
16
|
Lewandowski W, Jacobson A, Palmieri PA, Alexander T, Zeller R. Biological mechanisms related to the effectiveness of guided imagery for chronic pain. Biol Res Nurs 2010; 13:364-75. [PMID: 21112919 DOI: 10.1177/1099800410386475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Specific aims of this pilot study were to (a) determine the effect of a guided imagery (GI) intervention over an 8-week period on pain and pain disability in a sample of persons with chronic noncancer pain (CNCP) and (b) analyze the mediating effects of neuroendocrine and neuroimmune functioning on the effectiveness of GI on outcome variables. A simple interrupted time-series design (12-week period) was used. GI was introduced at Week 4 and used daily by 25 participants for the remaining 8 weeks. Measures of pain and pain disability were obtained at the beginning of the study period and at six repeated 2-week intervals. Measures of hypothalamic-pituitary-adrenal (HPA) axis activation (plasma cortisol), immune-mediated analgesia (lymphocyte subset counts and proliferation), and immune-mediated hyperalgesia (interleukin-1β) were obtained at the beginning of the study and at Week 11. Usual pain levels were lower after the introduction of GI at Week 4 (Wilks' λ = 52.31; df = 2, 22; p = .000). Pain disability levels were lower after the introduction of GI at Week 4 (Wilks' λ = 5.98; df = 6, 18; p = .001). Correlation coefficients between change scores of dependent variables and mediating variables were not significant. GI was effective in reducing pain intensity and pain disability over an 8-week period; however, the results did not support the expected effects of decreased HPA axis activation, improved immune-mediated analgesia, and reduced immune-mediated hyperalgesia in mediating these outcomes. These findings may be related to procedural and theoretical issues and limitations related to the study design.
Collapse
|
17
|
Capuano A, De Corato A, Treglia M, Tringali G, Currò D, Dello Russo C, Navarra P. Peripheral antinociceptive effects of low doses of naloxone in an in vivo and in vitro model of trigeminal nociception. Neuropharmacology 2009; 58:784-92. [PMID: 20036676 DOI: 10.1016/j.neuropharm.2009.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022]
Abstract
Naloxone has been used to antagonize opioid effects for many years, even though at low doses it can exert antinociceptive effects. This 'paradoxical' analgesia has been detected after systemic administration of naloxone given alone or in combination with opioid drugs. In the present study, we investigated possible peripheral antinociceptive effects of low doses of naloxone using both an in vivo and in vitro model of trigeminal nociception. Low doses of naloxone injected locally into the rat wiskerpad elicited antinociceptive activity in the rat orofacial formalin test. The block of primary afferents with local administration of capsaicin suggested that naloxone acts both directly on sensory neurons and indirectly, by modulating the inflammatory component of the second phase of formalin test. Naloxone analgesia is maintained in rats made tolerant to the mu-receptor agonist DAMGO, suggesting the involvement of delta- and kappa-opioid receptors. Subsequently, the effects of very low doses of naloxone were tested in primary cultures of rat trigeminal neurons activated with bradykinin, in order to elucidate the mechanisms of action underlying naloxone antinociceptive effects. Naloxone inhibited bradykinin-evoked CGRP release in two different experimental paradigms, i.e. primed and unprimed cultures, acting at the level of delta- and kappa-opioids receptors. These results suggest that low doses of naloxone can directly modulate the activation of the trigeminal neurons by modulating the activity of specific opioid receptors, and this effect may be clinically relevant in combined therapies where an increased analgesic effect is sought through the potentiation of peripheral mechanisms.
Collapse
Affiliation(s)
- Alessandro Capuano
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Immunotherapy in the critically ill is an appealing notion because of the apparent abnormal immune and inflammatory responses seen in so many patients. The administration of a medication that could alter immune responses and decrease mortality in patients with sepsis could represent a ‘magic bullet’. Various approaches have been tried over the last 20 yr: steroids; anti-endotoxin or anti-cytokine antibodies; cytokine receptor antagonists; and other agents with immune-modulating side-effects. However, in some respects, research along these lines has been unsuccessful or disappointing at best. The current state of knowledge is summarized with particular reference to sepsis and the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- N R Webster
- Anaesthesia and Intensive Care, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
19
|
Rowan MP, Ruparel NB, Patwardhan AM, Berg KA, Clarke WP, Hargreaves KM. Peripheral delta opioid receptors require priming for functional competence in vivo. Eur J Pharmacol 2009; 602:283-7. [PMID: 19063879 PMCID: PMC2635024 DOI: 10.1016/j.ejphar.2008.11.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/28/2008] [Accepted: 11/17/2008] [Indexed: 01/13/2023]
Abstract
Although centrally acting opioid analgesics produce profound antinociception under basal conditions, the antinociceptive properties of peripherally restricted opioid analgesics are generally only detectable after inflammation or injection of inflammatory mediators. Despite considerable research, the cellular mechanisms regulating the functional competence of peripheral opioid receptor systems for inhibition of nociception remain unclear. Recent work has demonstrated that brief pre-treatment (priming) with bradykinin, arachidonic acid, protease-activated receptor-2 agonists, or direct activators of protein kinase C (PKC) are capable of inducing the functional competence of the opioid receptor system in cultures of primary sensory neurons in vitro. Here we report that the peripheral delta opioid receptor system also requires PKC-dependent priming to inhibit prostaglandin E(2) (PGE(2))-induced thermal allodynia in the rat. Peripheral hindpaw injection of [D-Pen(2,5)]-enkephalin (DPDPE), a selective delta opioid receptor agonist, did not alter PGE(2)-induced thermal allodynia. However, following priming (15 min) with bradykinin or arachidonic acid, DPDPE produced a significant reduction in allodynia that was antagonist reversible, peripherally restricted, and exhibited a typical dose-response relationship. Furthermore, the bradykinin priming effect was blocked by the PKC inhibitors, bisindolylmaleimide I and chelerythrine. Collectively, these data support prior in vitro findings that, although present on primary sensory neurons, peripheral opioid receptor systems are functionally inactive under basal conditions and require activation of a PKC- and arachidonic acid-dependent signaling pathway to develop functional competence in vivo.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Arachidonic Acid/pharmacology
- Bradykinin/pharmacology
- Dinoprostone/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Male
- Peripheral Nervous System/drug effects
- Peripheral Nervous System/metabolism
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matthew P. Rowan
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| | - Nikita B. Ruparel
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| | - Amol M. Patwardhan
- Department of Endodontics, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| | - Kelly A. Berg
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| | - William P. Clarke
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| | - Kenneth M. Hargreaves
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
- Department of Endodontics, University of Texas Health Science Center, San Antonio, TX, 78229-3900 USA
| |
Collapse
|
20
|
Hernández L, Romero A, Almela P, García-Nogales P, Laorden ML, Puig MM. Tolerance to the antinociceptive effects of peripherally administered opioids. Brain Res 2009; 1248:31-9. [DOI: 10.1016/j.brainres.2008.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
21
|
Matters GL, Harms JF, McGovern C, Fitzpatrick L, Parikh A, Nilo N, Smith JP. The Opioid Antagonist Naltrexone Improves Murine Inflammatory Bowel Disease. J Immunotoxicol 2008; 5:179-87. [DOI: 10.1080/15476910802131469] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Wang J, Zhang LC, Lv YW, Ji Y, Yan XJ, Xue JP. Involvement of the nitric oxide-cyclic GMP-protein kinase G-K+ channel pathway in the antihyperalgesic effects of bovine lactoferrin in a model of neuropathic pain. Brain Res 2008; 1209:1-7. [PMID: 18406400 DOI: 10.1016/j.brainres.2008.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/15/2008] [Accepted: 03/04/2008] [Indexed: 11/28/2022]
Abstract
The possible involvement of the nitric oxide (NO)-cyclic GMP (cGMP)-protein kinase G (PKG) pathway on bovine lactoferrin (BLF)-induced spinal antihyperalgesic activity was elucidated in sciatic nerve injured rats. Intrathecal BLF reduced thermal hyperalgesia in a dose-dependent manner. Pretreatment with NG-L-nitro-arginine methyl ester (L-NAME, non-specific inhibitor of NO synthase), 7-nitroindazole (7-NI, neuronal NO synthase inhibitor), 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, guanylyl-cyclase inhibitor), (9S, 10R, 12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2, 9-dimethyl-1-oxo-9, 12-epoxy-1H-diindolo-[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (KT-5823, specific PKG inhibitor) or glybenclamide (ATP-sensitive K+ channel blocker), but not NG-D-nitro-arginine methyl ester (D-NAME, an inactive enantiomer of l-NAME), d-Phe-Cys-Tyr-d-Trp-Orn-Thr-NH2 (CTOP, selective mu-opioid receptor antagonist) or naloxone (nonselective opioid receptor antagonist) prevented BLF-induced antihyperalgesia. Data suggest that BLF-induced spinal antihyperalgesia could be due to activation of the NO-cGMP-PKG-K+ channel pathway and it is not mediated by mu-opioid receptor in a model of neuropathic pain.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anesthesiology, The First Affiliated Hospital, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Miguel Asai MA, Lilian Mayagoitia LM, David García DG, Gilberto Matamoros-Trejo GMT, Marcela Valdés-Tovar MVT, Phillipe Leff PL. Rat brain opioid peptides-circadian rhythm is under control of melatonin. Neuropeptides 2007; 41:389-97. [PMID: 17988732 DOI: 10.1016/j.npep.2007.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 11/17/2022]
Abstract
Several experiments have revealed an Endogenous Opioid System (EOS)-circadian rhythm. The brain-borne hormone, melatonin (MEL) has been shown to regulate the organism photoperiodic activity and may be implicated in the EOS-circadian rhythm. To explore this hypothesis, we studied the effect of functional pinealectomy on the EOS-circadian rhythm by measuring the immunoreactive content of Met-Enkephalin, Leu-Enkephalin and Synenkephalin in both hypothalamus and hippocampus of the rat brain, using standard radioimmunoassay procedures. Experimental animals exposed to white fluorescent light (WFL) for 15days (<50lux), displayed a disruption of the EOS-circadian rhythm, showing that absence of MEL induced a significant decrease of tissue content of enkephalin peptides at 01:00h during the dark-phase of the 24-h circadian rhythm, when compared to control rats. Functional pinealectomized rats exposed to 4 or 6h period of darkness (used to revert the effects induced by the absence of melatonin) significantly increased the tissue content of ME-IR and LE-IR, when compared to both controls and non-exposed WFL-treated rats. In addition, subcutaneous administration of exogenous melatonin (10, 100, 150, 300, 600microg/kg), in WFL-treated animals produced significant dose-dependent increases of ME-IR in both brain regions tested. Finally, luzindole (melatonin receptor antagonist) administration, was not able to prevent the enkephalin tissue increase, induced with the MEL administration (150microg/kg). This data suggest that MEL not only regulates the EOS-circadian rhythm, but also appears to modulate their synthesis in the rat brain from their respective neurons.
Collapse
Affiliation(s)
- M A Miguel Asai
- Laboratorio de Análisis Químicos, Instituto Nacional de Psiquiatría, Calzada México-Xochimilco #101, Col. San Lorenzo Huipulco, C.P. 14370, México D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
24
|
Carson MJ, Lo DD. Perspective is everything: an irreverent discussion of CNS-immune system interactions as viewed from different scientific traditions. Brain Behav Immun 2007; 21:367-73. [PMID: 17234380 PMCID: PMC2626194 DOI: 10.1016/j.bbi.2006.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 01/27/2023] Open
Abstract
The immune system is a host defense system comprised of both innate mechanisms able to rapidly recognize and respond to conserved pathogen associated molecular patterns (PAMPs) as well as adaptive mechanisms able to respond to a wide variety of non-conserved and conserved pathogen associated molecules. In vitro and in vivo studies have demonstrated that the kinetics and type of immune response triggered by pathogenic insults is a function of both the nature of the insult and the subsequent cross-regulatory interactions between the responding immune cells. In this context, the potential immunomodulatory influences of the nervous system have been often viewed as exerting minimal modulatory effects and thus of being largely irrelevant in the development of immune responses. Here, using a Saturday Night Live (SNL)-styled point:counterpoint format, we discuss whether and to what extent the nervous system can shape the responses of the immune system. Finally, we examine whether primary degenerative disorders of the CNS are likely to lead to alterations in immune function.
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, The University of California, Riverside, CA 92521-0121, USA.
| | | |
Collapse
|
25
|
Salemi S, Aeschlimann A, Wollina U, Gay RE, Michel BA, Gay S, Sprott H. Up-regulation of δ-opioid receptors and κ-opioid receptors in the skin of fibromyalgia patients. ACTA ACUST UNITED AC 2007; 56:2464-6. [PMID: 17599756 DOI: 10.1002/art.22735] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Souzan Salemi
- University Hospital and University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Pain is an undesirable potential consequence of many of the procedures conducted on animals in the course of scientific research, and in most cases it is unnecessary. The US Congress, the public, and laboratory animal medical professionals have indicated that pain should be prevented or minimized in laboratory animals, yet there is ample evidence to suggest that unalleviated pain is still a problem for some laboratory animals. This evidence is circumstantial to some extent but has its basis in problematic issues of pain control in both veterinary and human medicine. The author attempts to identify specific barriers to reduction of pain in laboratory animals. She then seeks to determine the relative importance of each obstacle and to develop approaches to overcoming each obstacle.
Collapse
Affiliation(s)
- Alicia Z Karas
- Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Rd., North Grafton, MA 01536, USA.
| |
Collapse
|
27
|
Oeltjenbruns J, Schäfer M. [Potential applications and significance of peripheral opioid analgesia]. Schmerz 2006; 19:447-52, 454-5. [PMID: 16133300 DOI: 10.1007/s00482-005-0431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, the local application of analgesic substances has attracted much interest and has become increasingly relevant in daily clinical practice. The lack of the well-known therapy-limiting central side effects of systemically administered opioids is a clear advantage of "peripheral opioid analgesia". Important prerequisites for the occurrence of peripheral analgesic effects of opioids are good accessibility of the painful site, presence of clinically relevant pain, signs of a local inflammation, exclusion of a fast systemic absorption, and adequately potent analgesic substances. This review gives an outline of recent experience with various clinical applications of "peripheral opioid analgesia".
Collapse
Affiliation(s)
- J Oeltjenbruns
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité, Campus Benjamin Franklin, Universitätsmedizin, Berlin
| | | |
Collapse
|
28
|
Bickler SW. Tropical enteropathy protects against Western diseases in environments of poor sanitation. Med Hypotheses 2006; 67:146-50. [PMID: 16545527 DOI: 10.1016/j.mehy.2006.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/28/2022]
Abstract
This hypothesis suggests that tropical enteropathy protects against Western diseases in environments of poor sanitation, and that the absence of tropical enteropathy contributes to the increased incidence of Western diseases in settings of improved sanitation. The hypothesis is supported by four observations: (1) The prevalence of tropical enteropathy is inversely related to the incidence of Western diseases, (2) The bowel is a major immune and neuroendocrine organ, and inflammation of the gut results in profound local and systemic changes, (3) Tropical enteropathy can account for the subtle clinical differences observed between individuals living in third world environments and industrialized societies, and (4) The concept that tropical enteropathy protects against Western diseases in environments of poor sanitation is consistent with the observations upon which the "Hygiene and Fetal Origins Hypotheses" are based. Identifying tropical enteropathy as a mechanism that protects against Western diseases in environments of poor sanitation creates a new testable hypothesis for some of the most common non-communicable diseases of industrialized societies.
Collapse
Affiliation(s)
- Stephen W Bickler
- Division of Pediatric Surgery, Department of Surgery, University of California, San Diego Medical Center, 200 West Arbor Drive, San Diego, CA 92103-8401, United States.
| |
Collapse
|
29
|
Andjelkov N, Elvenes J, Figenschau Y, Bjorkoy G, Knutsen G, Seternes T, Johansen O. Detection of mRNA transcripts of truncated opiate precursor (POMC) in human cartilage. Cell Biochem Funct 2006; 24:229-35. [PMID: 15898126 DOI: 10.1002/cbf.1226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, we have investigated the presence of pro-opiomelanocortin C-terminal fragment derived-peptides in human articular cartilage and cultured chondrocytes. beta-Lipotropin and beta-endorphin were monitored in different cell cultures and biopsies using different techniques. Biopsies were taken from patients undergoing total knee arthroplasty due to osteoarthritis. Both fresh tissue sections and chondrocytes cultured in monolayer were used in the study. Immunohistochemistry, immunocytochemistry, reverse transcriptase-polymerase chain reaction and qualitative Western blots were carried out. The results of the reverse transcriptase-polymerase chain reaction showed transcription of a truncated-form of mRNA for pro-opiomelanocortin in native cartilage and cultured chondrocytes. There was no detection of endogenous production of beta-lipotropin or beta-endorphin in human articular chondrocytes, either in situ or in vitro. Whether pro-opiomelanocortin-derived peptides of non-cartilaginous origin are present in articular cartilage itself still remains unclear.
Collapse
Affiliation(s)
- Nenad Andjelkov
- Department of Orthopedic Surgery, University Hospital of North-Norway, Tromsoe, 9038 Norway. nenad@
| | | | | | | | | | | | | |
Collapse
|
30
|
Salemi S, Aeschlimann A, Reisch N, Jüngel A, Gay RE, Heppner FL, Michel BA, Gay S, Sprott H. Detection of kappa and delta opioid receptors in skin--outside the nervous system. Biochem Biophys Res Commun 2005; 338:1012-7. [PMID: 16263089 DOI: 10.1016/j.bbrc.2005.10.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 10/07/2005] [Indexed: 12/22/2022]
Abstract
Opioid receptors (OR) are widely expressed in the central nervous system (CNS). Opioid antinociception might be initiated by activation of OR outside the CNS, indicating targeting of peripheral OR could be useful in the treatment of chronic pain. This study was designed to detect OR in skin tissues of healthy volunteers at both mRNA and protein levels. Skin samples from 10 healthy individuals were investigated. Total isolated RNAs were reverse transcribed, amplified and quantified by real-time PCR. Tissue and skin fibroblast OR protein was detected by immunohistochemistry, Western blot, and immunofluorescence. All skin tissue samples expressed delta- (DOR) and kappa-OR (KOR) mRNAs. Using immunohistochemistry, DOR and KOR were localized in skin fibroblast-like and mononuclear cells. Skin fibroblasts in culture expressed DOR and KOR mRNA. Using immunofluorescence, both DOR and KOR proteins were expressed predominantly on the cell membrane with minor staining in the cytoplasm. We suggest that enhanced expression of DOR and KOR in skin justifies the exploration of selective novel delta and kappa agonists for local pain treatment.
Collapse
Affiliation(s)
- Souzan Salemi
- Center of Experimental Rheumatology, Department of Rheumatology, Institute of Physical Medicine, University Hospital, Gloriastrasse 25, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Uetsuki N, Segawa H, Mayahara T, Fukuda K. The role of CRF1 receptors for sympathetic nervous response to laparotomy in anesthetized rats. Brain Res 2005; 1044:107-15. [PMID: 15862795 DOI: 10.1016/j.brainres.2005.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 02/27/2005] [Accepted: 03/01/2005] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing factor (CRF) is released in response to various types of stressors and mediates endocrine, autonomic, immune, and behavioral responses to stress through interaction with CRF1 and CRF2 receptors. To investigate the role of CRF1 receptors in physiological responses to surgical stress, we analyzed the effects of two different non-peptide selective CRF1 receptor antagonists (JTC-017 and CP-154,526) and a peptide non-selective CRF receptor antagonist (astressin) on laparotomy-induced sympathetic nervous responses in isoflurane-anesthetized rats. JTC-017, CP-154,526, and astressin similarly suppressed plasma ACTH elevation induced by laparotomy. JTC-017 and CP-154,526 significantly augmented plasma noradrenaline and adrenaline responses to laparotomy, while astressin showed no effect on these responses. Laparotomy-induced maximum increases in mean blood pressure and heart rate were augmented by JTC-017, but were not affected by astressin. The results suggested for the first time that there was a pathway to attenuate sympathetic nervous response to surgical stress through CRF1 receptors in the central nervous system.
Collapse
Affiliation(s)
- Nobuo Uetsuki
- Department of Anesthesia, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
32
|
Narayana Raju KVS, Ashok Kumar D, Arutselvan N, Thejomoorthy P, Puvanakrishnan R. Antinociceptive and antipyretic effects of a derivatized tetrapeptide from lactoferrin in rats. Peptides 2005; 26:615-9. [PMID: 15752576 DOI: 10.1016/j.peptides.2004.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 11/16/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
PEP1261, a tetrapeptide derivative used in this study, corresponds to residues 39-42 of human lactoferrin. The parent protein lactoferrin is known to exhibit antinociceptive activity and it regulates many aspects of inflammation. This study is aimed to evaluate the antinociceptive and antipyretic activities of PEP1261 in rats. PEP1261 exhibits a significant dose dependent antinociceptive activity with optimal effect at 40 mg/kg body weight (b.w.) (i.p.) in both tail-flick model and acetic acid induced writhing in rats. PEP1261 at the doses of 20 and 40 mg/kg b.w. (i.p.) is also observed to exhibit notable antipyretic effect in lipopolysaccharide-induced pyrexia in rats. In conclusion, the results suggest that PEP1261 possesses antinociceptive and antipyretic activities better than the control peptide KRDS.
Collapse
Affiliation(s)
- K V S Narayana Raju
- Department of Pharmacology and Toxicology, Madras Veterinary College, Vepery, Chennai 600007, India
| | | | | | | | | |
Collapse
|
33
|
Abstract
Peripheral opioid analgesia is undoubtedly of clinical relevance, especially considering that systemic opioid therapy often is hampered by central side effects. Despite some clinical studies that do not show peripheral opioid-mediated pain control, mostly because of methodologic shortcomings, studies evaluating inflammatory pain conditions show clear evidence and the number and the sites of applications are increasing. The intention of this paper is to give insight into the recent experience with the clinical applications of peripheral opioid analgesia.
Collapse
Affiliation(s)
- Jochen Oeltjenbruns
- Department of Anaesthesiology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | |
Collapse
|
34
|
Bender T, Polner K, Barna I, Géher P, Boke M, Haris A. Effect of plasmapheresis on serum beta-endorphin levels. Blood Purif 2005; 23:141-3. [PMID: 15668524 DOI: 10.1159/000083587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effects of plasmapheresis on serum beta-endorphin (BE) levels. METHOD The serum BE levels of 12 patients with various autoimmune or hematological disorders were monitored during plasmapheresis therapy. RESULTS BE levels increased after the initial session in 8 of 12 patients; in the remaining 4 patients no change (n = 2) or a decline (n = 2) in BE levels was found. However, no further changes were observed during subsequent therapy. During the last session, an elevation in the BE level was detected in 5 patients, with no change in 1 and a decrease in BE level in another 5 patients. CONCLUSION Our findings suggest that although plasmapheresis results in an elevation in serum BE levels initially, this change does not persist during subsequent sessions.
Collapse
Affiliation(s)
- Tamás Bender
- Polyclinic, Hospitaller Brothers of St. John of God, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
35
|
Ghia JE, Crenner F, Metz-Boutigue MH, Aunis D, Angel F. Effects of a chromogranin-derived peptide (CgA 47-66) in the writhing nociceptive response induced by acetic acid in rats. ACTA ACUST UNITED AC 2005; 119:199-207. [PMID: 15120481 DOI: 10.1016/j.regpep.2004.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 01/16/2004] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
Chromogranin A (CgA) is an acidic protein identified within a large variety of endocrine cells. Colocalized with catecholamines in chromaffin cells, CgA is a prohormone precursor of small biologically active peptides. Vasostatin (CgA 1-76) is the most conserved fragment of CgA and chromogranin A 47-66 peptide (CgA 47-66) possesses potent antimicrobial activities. The aim of this study was to test the hypothesis that CgA 47-66 may be involved in mechanisms modulating nociception. Thus, we used acetic acid (AA) which produces a delayed inflammatory response and episodes of abdominal writhing, a marker of pain, when injected intraperitoneally (i.p.) to rats. Administration (i.p.) of CgA 47-66 induced specific opposite dose-dependent effects depending on concentration. That is, CgA 47-66 below 0.5 mg/kg produced antinociceptive effects, whereas at 2 mg/kg it produced a marked pronociceptive effect. The latter effect was blocked by diltiazem and indomethacin. CgA 47-66-induced antinociceptive effects on AA-induced responses were reversed when the corticotropin-releasing factor (CRF) antagonist alpha-helical CRF 9-41 was i.p. injected to animals prior to AA and CgA 47-66 administration. The administration of i.p. calcitonin gene-related peptide (CGRP) or substance P (SP) evoked dose-dependent abdominal writhing; this effect was abolished when CgA 47-66 was injected. The present data suggest, for the first time, that a fragment of CgA, CgA 47-66, possesses potent antinociceptive effects at low doses. Although the mechanism triggered by this peptide is unknown, CRF receptors are likely to be involved.
Collapse
Affiliation(s)
- Jean-Eric Ghia
- INSERM Unit 575, Hôpital Civil Pavillon Poincaré, 1 place de l'Hôpital, 67091 Strasbourg, France
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Graff GR, Stark JM, Grueber R. Nebulized Fentanyl for Palliation of Dyspnea in a Cystic Fibrosis Patient. Respiration 2004; 71:646-9. [PMID: 15627879 DOI: 10.1159/000081769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 11/10/2003] [Indexed: 11/19/2022] Open
Abstract
Dyspnea, the subjective symptom feeling of breathlessness, is a common symptom in terminally ill patients with cystic fibrosis (CF). The palliation of the dyspnea is a reasonable goal to improve patient comfort as the progression of the disease worsens. We report the successful use of inhaled fentanyl for 3 days in a 17-year-old female with terminal CF lung disease, as measured by improved oxygenation and a reduction in the modified Borg score, and the subjective feeling of less air hunger reported by parents and patient.
Collapse
Affiliation(s)
- Gavin R Graff
- Department of Pediatrics, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033-0850, USA.
| | | | | |
Collapse
|
38
|
Entschladen F, Drell TL, Palm D, Bastian P, Potthoff S, Zänker KS, Lang K. A comparative review on leukocyte and tumor cell migration with regard to the regulation by serpentine receptor ligands. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/sita.200400036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS. Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 2004; 5:254-8. [PMID: 15050959 DOI: 10.1016/s1470-2045(04)01431-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer starts as a localised disease, which, if detected early, can often be treated successfully by removal of the primary tumour. A pernicious progression is the invasion of tumour cells into surrounding tissues, resulting in development of distant metastases. Because active migration of tumour cells is a prerequisite for tumour-cell invasion and metastasis, a pressing goal in tumour biology has been the elucidation of factors regulating the migratory activity of these cells. The most prominent regulatory factors are ligands to serpentine receptors-eg, chemokines and neurotransmitters. Many types of neurotransmitter receptors are expressed on tumour cells, supporting the theory that psychosocial factors are involved in the progression of cancer. Understanding how such receptors regulate migration and the availability of specific receptor antagonists could open up new avenues for chemoprevention of tumour-cell migration and metastatic development.
Collapse
Affiliation(s)
- Frank Entschladen
- Signal Transduction in Cell Migration Group at the Institute for Immunology, Witten/Herdecke University, Witten, Germany.
| | | | | | | | | |
Collapse
|
40
|
Lang K, Drell TL, Niggemann B, Zänker KS, Entschladen F. Neurotransmitters regulate the migration and cytotoxicity in natural killer cells. Immunol Lett 2004; 90:165-72. [PMID: 14687720 DOI: 10.1016/j.imlet.2003.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural killer (NK) cells and cytotoxic T lymphocytes (CTL), the functional coordination of which are governed by various signal substances, are crucial in the body's defense of tumor and virus-infected cells. We investigated the role of various neurotransmitters and hormones on the regulation of functional parameters, including NK cell cytotoxicity, and the migration of NK cells and CTL within a three-dimensional collagen lattice. Using peripheral blood CTL and NK cells, we show that the neurotransmitters endorphin, histamine and substance P increase NK cell cytotoxicity, while norepinephrine inhibits cytotoxicity. Moreover, substance P reduces migratory activity, while norepinephrine increases NK cell and CTL migration. Furthermore, all three steroid hormones which were investigated, namely cortisone, testosterone, and estradiol, had regulatory influence on both cytotoxicity and migration of NK cells. These results further specify the functional basis of the complex interconnection between the immune and neuro-endocrine systems.
Collapse
Affiliation(s)
- Kerstin Lang
- Institute of Immunology, Witten/Herdecke University, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
41
|
Hermanussen S, Do M, Cabot PJ. Reduction of ??-Endorphin-Containing Immune Cells in Inflamed Paw Tissue Corresponds with a Reduction in Immune-Derived Antinociception: Reversible by Donor Activated Lymphocytes. Anesth Analg 2004; 98:723-9, table of contents. [PMID: 14980927 DOI: 10.1213/01.ane.0000099369.23397.d7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The functional integrity of the immune system is essential for peripheral antinociception. Previous studies have demonstrated that immune cells elicit potent antinociception in inflamed tissues and that corticotropin-releasing factor-induced antinociception is significantly inhibited in animals that have undergone cyclosporin A (CsA)-induced immunosuppression. In this study, we examined the effect of a single bolus of CsA on inflammatory nociception. CsA-treated rats had substantially increased nociception compared with nonimmunosuppressed rats, consistent with a reduction in circulating and infiltrating lymphocytes. Furthermore, CsA-treated rats had inhibition of corticotropin-releasing factor-induced immune-derived antinociception, which was dose-dependently reversed by IV injection of concanavalin A-activated donor lymphocytes (1.0-7.0 x 10(6) cells/0.1 mL). In conclusion, our findings provided further evidence that opioid-containing immune cells are essential for peripheral analgesia. It is evident from these findings that control of inflammatory pain relies heavily on a functioning immune system. IMPLICATIONS The immune system not only contributes to inflammation, but also provides localized analgesia. A depleted immune system results in a reduction of immune-derived analgesia and a potentiation of inflammatory pain. Donor activated lymphocytes reverse these effects, highlighting the importance of a functional immune system in inflammatory pain.
Collapse
|
42
|
Hayashida KI, Takeuchi T, Harada E. Lactoferrin enhances peripheral opioid-mediated antinociception via nitric oxide in rats. Eur J Pharmacol 2004; 484:175-81. [PMID: 14744601 DOI: 10.1016/j.ejphar.2003.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactoferrin (LF) is a multifunctional protein found in various biological fluids. However, the peripheral action of lactoferrin remains unknown. In this study, peripherally applied bovine lactoferrin showed antinociceptive effect that was reversed by a mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH(2) (CTOP), or by a nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), but not by an inactive enantiomer of L-NAME, N(G)-nitro-D-arginine methyl ester (D-NAME), during phase 1 and phase 2 in the rat formalin test. Peripheral coadministration of a micro-opioid receptor agonist, morphine, with subeffective dose of bovine lactoferrin produced a potentiated antinociceptive effect compared to that of morphine alone during both phases in the formalin test. This potentiated antinociception by morphine with bovine lactoferrin was reversed by CTOP or by L-NAME. These results suggest that bovine lactoferrin exerts an antinociceptive activity via potentiation of the peripheral micro-opioidergic system, and that nitric oxide (NO) is involved in this potentiation.
Collapse
Affiliation(s)
- Ken-ichiro Hayashida
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan
| | | | | |
Collapse
|
43
|
Ikeda H, Kusudo K, Ryu PD, Murase K. Effects of corticotropin-releasing factor on plasticity of optically recorded neuronal activity in the substantia gelatinosa of rat spinal cord slices. Pain 2003; 106:197-207. [PMID: 14581128 DOI: 10.1016/j.pain.2003.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effects of corticotropin-releasing factor (CRF) on plasticity of optically recorded neuronal activity in the substantia gelatinosa (lamina II) of 12-18-day-old rat spinal cord slices stained with a voltage-sensitive dye. Single-pulse test stimulation to the dorsal root that activated A and C fibres evoked prolonged (>100 ms) light-absorption change in the lamina II. This response represents the gross membrane potential change of all elements along the slice depth. After conditioning high-frequency stimulation of A-fibre-activating strength, test stimulus elicited less neuronal activity [-27+/-1% (7), (average+/-SE (n)), P<0.01 (*) at 45-60 min after conditioning]. When CRF (1 microM, 10 min) was applied during conditioning, the neuronal activity was facilitated rather than suppressed [+20+/-3% (5), P<0.05]. CRF alone exhibited insignificant effect [-5+/-1% (4), P=0.2]. In the presence of the inhibitory amino acid antagonists bicuculline (1 microM) and strychnine (0.3 microM) in the perfusate, in contrast, the conditioning facilitated it [+27+/-1% (12)*], and CRF treatment during conditioning inhibited the facilitation dose-dependently [0.1 microM: +18+/-2% (5)*, 1 microM: +13+/-1% (7)*]. Although interneuronal actions might contribute, these results suggest that CRF may have dual effects on excitatory synaptic transmission within the lamina II depending upon cellular conditions: a conversion from the induction of long-term depression to long-term potentiation (LTP), and inhibition of LTP induction. Since the LTP is thought to be responsible at least in part for the persistent pain, CRF could regulate the induction.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Fukui University, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | | | | | | |
Collapse
|
44
|
Menzebach A, Hirsch J, Hempelmann G, Welters ID. Effects of endogenous and synthetic opioid peptides on neutrophil function in vitro. Br J Anaesth 2003; 91:546-50. [PMID: 14504158 DOI: 10.1093/bja/aeg219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Opioid peptides released from immunocytes during inflammation and stress in critically ill patients are associated with an altered immune response. Moreover, concentrations of opioid peptides are increased in peripheral blood and at the sites of inflammatory reactions. METHODS Using flow cytometric assay of whole human blood, we investigated direct effects of endogenous and synthetic opioid peptides on surface expression of complement receptors CD35 and CD11b/CD18 and Fcã receptor III CD16, and superoxide anion generation of neutrophils. RESULTS The endogenous opioid peptides beta-endorphin(1-31) and met-enkephalin, representing the N-terminal fragment of beta-endorphin(1-31), and the synthetic delta opioid receptor agonists D-Ala(2)-D-Leu(5)-enkephalin and D-Pen(2)-enkephalin produced concentration-dependent stimulation of neutrophil activity. Incubation with met-enkephalin 10(-7) M or beta-endorphin(1-31) 10(-7) M led to an increase in receptor expression of up to 10% (met-enkephalin) and 15% (beta-endorphin(1-31)). After incubation with D-Ala(2)-D-Leu(5)-enkephalin or D-Pen(2/5)-enkephalin, receptor expression was increased by up to 30%. This correlated with concentration-dependent stimulation of the production of reactive oxygen intermediates, as shown by an increase of up to 40% in oxidative burst activity. All effects were abolished after preincubation with naloxone or with the selective delta opioid antagonist naltrindole, whereas the selective micro receptor antagonist d-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) showed only partial inhibitory effects. CONCLUSIONS Our data suggest a delta opioid receptor-mediated stimulatory effect on neutrophil function. beta-Endorphin(27-31), the C-terminal fragment of beta-endorphin(1-31), did not alter neutrophil function, indicating that beta-endorphin(1-31) mediates its effect on neutrophils via the N-terminal fragment. This study may contribute to a better understanding of neuroimmune interaction.
Collapse
Affiliation(s)
- A Menzebach
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Giessen, Germany.
| | | | | | | |
Collapse
|
45
|
Hayashida KI, Takeuchi T, Shimizu H, Ando K, Harada E. Novel function of bovine milk-derived lactoferrin on antinociception mediated by mu-opioid receptor in the rat spinal cord. Brain Res 2003; 965:239-45. [PMID: 12591142 DOI: 10.1016/s0006-8993(02)04207-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactoferrin (LF) is a multifunctional protein that is found in milk, neutrophils, and other biological fluids. Although LF and the LF receptor have been identified in the central nervous system (CNS), the physiological role of LF remains unknown. We found that bovine milk-derived LF (BLF) reduces nociception in various pain models, as shown by the formalin test, hot plate test, and acetic acid writhing test in rats. Intraperitoneal (i.p.) administration of BLF significantly inhibited nociception in these pain models. These antinociceptive effects were also confirmed in BLF-fed rats. The antinociceptive effects of BLF were blocked by naloxone treatment, even though prostaglandin E(2) (PGE(2)) production in the ascites fluid that accumulated during the writhing test was not affected by BLF. Intrathecal (i.t.) application of BLF caused marked antinociceptive effects that were reversed by co-administration of a specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH(2) (CTOP), or by naloxone during the formalin test. We conclude that LF possesses mu-opioid receptor-mediated antinociceptive activity in the spinal cord.
Collapse
Affiliation(s)
- Ken-ichiro Hayashida
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan
| | | | | | | | | |
Collapse
|
46
|
Rogers TJ, Peterson PK. Opioid G protein-coupled receptors: signals at the crossroads of inflammation. Trends Immunol 2003; 24:116-21. [PMID: 12615205 DOI: 10.1016/s1471-4906(03)00003-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Thomas J Rogers
- Dept of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
47
|
Shi Y, Devadas S, Greeneltch KM, Yin D, Allan Mufson R, Zhou JN. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology. Brain Behav Immun 2003; 17 Suppl 1:S18-26. [PMID: 12615182 DOI: 10.1016/s0889-1591(02)00062-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yufang Shi
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 661 Hoes Lane, Piscataway 08854, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
49
|
Abstract
OBJECTIVE To shed light on nebulized morphine, a new treatment for dyspnea in children with terminal lung disease. METHODS A clinical case study was conducted on a patient in a tertiary care medical center. RESULTS Nebulized morphine was administered in incremental doses ranging from 2.5 mg to 12.5 mg in a 10-year-old, 20-kg boy with end-stage cystic fibrosis. Before the nebulized morphine treatments were started, a dose of nebulized lidocaine failed to provide the patient with any relief. After each dose of morphine, the following parameters were recorded: visual analog "dyspnea" scores, vital signs, venous blood gases, and blood levels of morphine. The nebulized morphine was found to have a modest effect on the patient's dyspnea, with no significant differences found between the varying doses. Venous carbon dioxide tension levels increased <4 mm Hg for all doses except 12.5 mg, for which there was a 9-mm Hg increase. Systemic blood levels of morphine were <10 ng/mL at all doses. The nebulized morphine did not cause any significant changes in blood pressure or heart rate for doses <12.5 mg. CONCLUSIONS Inhaled morphine was associated with a mild, beneficial effect on dyspnea, with minimal differences found between the lowest and highest doses. This "ceiling" effect may be the result of saturation of opioid receptors in the lung, the variable bioavailability of inhaled morphine, or a placebo response. More studies are needed to determine what, if any, the optimum dose of nebulized morphine is for children.
Collapse
Affiliation(s)
- Steven P Cohen
- Pain Management Center, Department of Anesthesiology, Walter Reed Army Medical Center, Washington, DC, USA.
| | | |
Collapse
|
50
|
Kummer C, Netto ES, Marshall JC. The Immunomodulatory Effects of Anesthetic and Analgesic Agents. Intensive Care Med 2002. [DOI: 10.1007/978-1-4757-5551-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|