1
|
Roy P, Tomassoni D, Martinelli I, Bellitto V, Nittari G, Amenta F, Tayebati SK. Protective effects of the R-(+)-thioctic acid treatment: possible anti-inflammatory activity on heart of hypertensive rats. BMC Complement Med Ther 2024; 24:281. [PMID: 39048980 PMCID: PMC11267948 DOI: 10.1186/s12906-024-04547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In cardiovascular disease, high blood pressure is associated with oxidative stress, promoting endothelial dysfunction, vascular remodeling, and inflammation. Clinical trials are discordant that the most effective treatment in the management of hypertension seems to be the administration of anti-hypertensive drugs with antioxidant properties. The study aims to evaluate the effects of the eutomer of thioctic acid on oxidative stress and inflammation in the heart of spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. METHODS To study the oxidative status, the malondialdehyde and 4-hydroxynonenal concentration, protein oxidation were measured in the heart. Morphological analysis were performed. Immunohistochemistry and Western blot were done for alpha-smooth muscle actin and transforming growth factor beta to assess fibrosis; cytokines and nuclear factor kappaB to assess inflammatory processes. RESULTS Spontaneously hypertensive rats were characterized by hypertension with increased malondialdehyde levels in the heart. OxyBlot in the heart of spontaneously hypertensive rats showed an increase in proteins' oxidative status. Cardiomyocyte hypertrophy and fibrosis in the ventricles were associated with an increased expression of alpha-smooth muscle actin and pro-inflammatory cytokines, reduced by the eutomer of thioctic acid supplementation. CONCLUSIONS Based on this evidence, eutomer of thioctic acid could represent an appropriate antioxidant molecule to reduce oxidative stress and prevent inflammatory processes on the cardiomyocytes and cardiac vascular endothelium.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, 62032, MC, Italy
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Vincenzo Bellitto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Giulio Nittari
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy.
| |
Collapse
|
2
|
Mohammed SAD, Liu H, Baldi S, Wang Y, Chen P, Lu F, Liu S. Antihypertensive, antioxidant, and renal protective impact of integrated GJD with captopril in spontaneously hypertensive rats. Sci Rep 2023; 13:10944. [PMID: 37414816 PMCID: PMC10326066 DOI: 10.1038/s41598-023-38020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Hypertension is the most prevalent chronic disease World-wide, and the leading preventable risk factor for cardiovascular disease (CVD). Few patients accomplish the objective of decreasing blood pressure and avoiding hypertensive target organ damage after treatments with antihypertensive agents which opens the door for other treatments, such as herbal-and antihypertensive combination therapy. Captopril (CAP), as a-pril which inhibits angiotensin converting enzyme has long been used in the management of hypertension and CVD. Gedan Jiangya Decoction (GJD) is known for antihypertensive effects in prior studies. The research is aimed to determine whether GJD in combination with captopril has antihypertensive, kidney protective, antioxidant, and vasoactive effects in spontaneously hypertensive rats (SHR). Regular measurements of systolic and diastolic blood pressure (SBP and DBP), and body weight were monitored weekly. H&E staining was utilized to examine histopathology. The combined effects were studied using ELISA, immunohistochemistry, and qRT-PCR. Significant reductions in SBP, DBP, aortic wall thickness, and improvement in renal tissue were observed following GJD + CAP treatment, with increased serum levels of NO, SOD, GSH-Px, and CAT and decreases in Ang II, ET-1, and MDA. Similarly, GJD + CAP treatment of SHR's significantly decreased ET-1 and AGTR1 mRNA and protein expression while increasing eNOS mRNA and protein expression in thoracic aorta and kidney tissue. In conclusion, the present investigation found that GJD + CAP treatment decreases SHR blood pressure, improves aorta remodeling and renal protection, and that this effect could be attributable, in part, due to antioxidant and vascular tone improvement.
Collapse
Affiliation(s)
- Shadi A D Mohammed
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
- School of Pharmacy, Lebanese International University, 18644, Sana'a, Yemen
| | - Hanxing Liu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Salem Baldi
- Research Center of Molecular Diagnostics and Sequencing, Axbio Biotechnology (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
3
|
Maternal High-Fat Diet and Offspring Hypertension. Int J Mol Sci 2022; 23:ijms23158179. [PMID: 35897755 PMCID: PMC9332200 DOI: 10.3390/ijms23158179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.
Collapse
|
4
|
Tain YL, Hsu CN. Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy. Antioxidants (Basel) 2022; 11:511. [PMID: 35326161 PMCID: PMC8944751 DOI: 10.3390/antiox11030511] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022] Open
Abstract
Hypertension remains the leading cause of disease burden worldwide. Hypertension can originate in the early stages of life. A growing body of evidence suggests that oxidative stress, which is characterized as a reactive oxygen species (ROS)/nitric oxide (NO) disequilibrium, has a pivotal role in the hypertension of developmental origins. Results from animal studies support the idea that early-life oxidative stress causes developmental programming in prime blood pressure (BP)-controlled organs such as the brain, kidneys, heart, and blood vessels, leading to hypertension in adult offspring. Conversely, perinatal use of antioxidants can counteract oxidative stress and therefore lower BP. This review discusses the interaction between oxidative stress and developmental programming in hypertension. It will also discuss evidence from animal models, how oxidative stress connects with other core mechanisms, and the potential of antioxidant therapy as a novel preventive strategy to prevent the hypertension of developmental origins.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Liebert A, Seyedsadjadi N, Pang V, Litscher G, Kiat H. Evaluation of Gender Differences in Response to Photobiomodulation Therapy, Including Laser Acupuncture: A Narrative Review and Implication to Precision Medicine. Photobiomodul Photomed Laser Surg 2022; 40:78-87. [PMID: 34964662 DOI: 10.1089/photob.2021.0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,Research and Governance, Adventist Hospital Group, Wahroonga, Australia.,SYMBYX Pty Ltd., Artarmon, Australia
| | - Neda Seyedsadjadi
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Gerhard Litscher
- Traditional Chinese Medicine, Research Center Graz, Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, and Research Unit for Complementary and Integrative Laser Medicine, Medical University of Graz, Graz, Austria
| | - Hosen Kiat
- Cardiac Health Institute, Sydney, Australia.,Faculty of Medicine, University of NSW, Kensington, Australia.,Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Australia
| |
Collapse
|
6
|
Oxidative Stress Induced by Reactive Oxygen Species (ROS) and NADPH Oxidase 4 (NOX4) in the Pathogenesis of the Fibrotic Process in Systemic Sclerosis: A Promising Therapeutic Target. J Clin Med 2021; 10:jcm10204791. [PMID: 34682914 PMCID: PMC8539594 DOI: 10.3390/jcm10204791] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous clinical and research investigations conducted during the last two decades have implicated excessive oxidative stress caused by high levels of reactive oxygen species (ROS) in the development of the severe and frequently progressive fibrotic process in Systemic Sclerosis (SSc). The role of excessive oxidative stress in SSc pathogenesis has been supported by the demonstration of increased levels of numerous biomarkers, indicative of cellular and molecular oxidative damage in serum, plasma, and other biological fluids from SSc patients, and by the demonstration of elevated production of ROS by various cell types involved in the SSc fibrotic process. However, the precise mechanisms mediating oxidative stress development in SSc and its pathogenetic effects have not been fully elucidated. The participation of the NADPH oxidase NOX4, has been suggested and experimentally supported by the demonstration that SSc dermal fibroblasts display constitutively increased NOX4 expression and that reduction or abrogation of NOX4 effects decreased ROS production and the expression of genes encoding fibrotic proteins. Furthermore, NOX4-stimulated ROS production may be involved in the development of certain endothelial and vascular abnormalities and may even participate in the generation of SSc-specific autoantibodies. Collectively, these observations suggest NOX4 as a novel therapeutic target for SSc.
Collapse
|
7
|
Nox2 Upregulation and p38α MAPK Activation in Right Ventricular Hypertrophy of Rats Exposed to Long-Term Chronic Intermittent Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21228576. [PMID: 33202984 PMCID: PMC7698046 DOI: 10.3390/ijms21228576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.
Collapse
|
8
|
Gao D, Wang S, Lin Y, Sun Z. In vivo AAV delivery of glutathione reductase gene attenuates anti-aging gene klotho deficiency-induced kidney damage. Redox Biol 2020; 37:101692. [PMID: 32863229 PMCID: PMC7476318 DOI: 10.1016/j.redox.2020.101692] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Klotho is an aging-suppressor gene which leads to accelerated aging when disrupted. This study was designed to investigate whether glutathione reductase (GR), a critical intracellular antioxidant enzyme, is involved in the pathogenesis of kidney damages associated with accelerated aging in Klotho-haplodeficient (KL+/-) mice. METHODS AND RESULTS Klotho-haplodeficient (KL+/-) mice and WT mice were used. We found that Klotho haplodeficiency impaired kidney function as evidenced by significant increases in plasma urea and creatinine and a decrease in urinary creatinine in KL+/- mice. The expression and activity of GR was decreased significantly in renal tubular epithelial cells of KL+/- mice, suggesting that Klotho deficiency downregulated GR. We constructed adeno-associated virus 2 (AAV2) carrying GR full-length cDNA (AAV-GR). Interestingly, in vivo AAV-GR delivery significantly improved Klotho deficiency-induced renal functional impairment and structural remodeling. Furthermore, in vivo expression of GR rescued the downregulation of the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio, which subsequently diminished oxidative damages in kidneys, as evidenced by significant decreases in renal 4-HNE expression and urinary 8-isoprostane levels in KL mice. CONCLUSION This study provides the first evidence that Klotho deficiency-induced kidney damage may be partly attributed to downregulation of GR expression. In vivo delivery of AAV-GR may be a promising therapeutic approach for aging-related kidney damage.
Collapse
Affiliation(s)
- Diansa Gao
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shirley Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
9
|
Prakash J, Venkataprasanna KSK, Prema D, Sahabudeen SM, Debashree Banita S, Venkatasubbu GD. Investigation on photo-induced mechanistic activity of GO/TiO2 hybrid nanocomposite against wound pathogens. Toxicol Mech Methods 2020; 30:508-525. [DOI: 10.1080/15376516.2020.1765061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jayabal Prakash
- Department of Nanotechnology, SRM Institute of Science and Technology, Kaatankulathur, Tamil Nadu, India
| | | | - Darmalingam Prema
- Department of Nanotechnology, SRM Institute of Science and Technology, Kaatankulathur, Tamil Nadu, India
| | - Sheik Mohideen Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kaatankulathur, Tamil Nadu, India
| | | | | |
Collapse
|
10
|
Zhang CF, Zhao FY, Xu SL, Liu J, Xing XQ, Yang J. Autophagy in pulmonary hypertension: Emerging roles and therapeutic implications. J Cell Physiol 2019; 234:16755-16767. [PMID: 30932199 DOI: 10.1002/jcp.28531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 02/05/2023]
Abstract
Autophagy is an important mechanism for cellular self-digestion and basal homeostasis. This gene- and modulator-regulated pathway is conserved in cells. Recently, several studies have shown that autophagic dysfunction is associated with pulmonary hypertension (PH). However, the relationship between autophagy and PH remains controversial. In this review, we mainly introduce the effects of autophagy-related genes and some regulatory molecules on PH and the relationship between autophagy and PH under the conditions of hypoxia, monocrotaline injection, thromboembolic stress, oxidative stress, and other drugs and toxins. The effects of other autophagy-related drugs, such as chloroquine, 3-methyladenine, rapamycin, and other potential therapeutic drugs and targets, in PH are also described.
Collapse
Affiliation(s)
- Chun-Fang Zhang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Fang-Yun Zhao
- Department of Pharmacy, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Shuang-Lan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jie Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Jiao Yang
- First Department of Respiratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Sebastian A, Cordain L, Frassetto L, Banerjee T, Morris RC. Postulating the major environmental condition resulting in the expression of essential hypertension and its associated cardiovascular diseases: Dietary imprudence in daily selection of foods in respect of their potassium and sodium content resulting in oxidative stress-induced dysfunction of the vascular endothelium, vascular smooth muscle, and perivascular tissues. Med Hypotheses 2018; 119:110-119. [PMID: 30122481 DOI: 10.1016/j.mehy.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/29/2018] [Accepted: 08/04/2018] [Indexed: 01/05/2023]
Abstract
We hypothesize that the major environmental determinant of the expression of essential hypertension in America and other Westernized countries is dietary imprudence in respect of the consumption of daily combinations of foods containing suboptimal amounts of potassium and blood pressure-lowering phytochemicals, and supraphysiological amounts of sodium. We offer as premise that Americans on average consume suboptimal amounts of potassium and blood pressure-lowering phytochemicals, and physiologically excessive amounts of sodium, and that such dietary imprudence leads to essential hypertension through oxidative stress-induced vascular endothelial and smooth muscle dysfunction. Such dysfunctions restrict nitric oxide bioavailability, impairing endothelial cell-mediated relaxation of the underlying vascular smooth muscle, initiating and maintaining inappropriately increased peripheral and renal vascular resistance. The biochemical steps from oxidative stress to vascular endothelial dysfunction and its pernicious cardiovascular consequences are well established and generally accepted. The unique aspect of our hypothesis resides in the contention that Americans' habitual consumption of foods resulting in suboptimal dietary intake of potassium and supraphysiological intake of sodium result in oxidative stress, the degree of which, we suggest, will correlate with the degree of deviation of potassium and sodium intake from optimal. Because suboptimal intakes of potassium reflect suboptimal intakes of fruits and vegetables, associated contributors to oxidative stress include suboptimal intakes of magnesium, nitrate, polyphenols, carotenoids, and other phytochemical antioxidants for which fruits and vegetables contain abundant amounts. Currently Americans consume potassium-to-sodium in molar ratios of less than or close to 1.0 and the Institute of Medicine (IOM) recommends a molar ratio of 1.2. Ancestral diets to which we are physiologically adapted range from molar ratios of 5.0 to 10.0 or higher. Accordingly, we suggest that the average American is usually afflicted with oxidative stress-induced vascular endothelial dysfunction, and therefore the standards for normal blood pressure and pre-hypertension often reflect a degree of clinically significant hypertension. In this article, we provide support for those contentions, and indicate the findings that the hypothesis predicts.
Collapse
Affiliation(s)
- Anthony Sebastian
- Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA.
| | - Loren Cordain
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Lynda Frassetto
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Tanushree Banerjee
- University of California, San Francisco, School of Medicine, Department of Medicine, San Francisco, CA, USA
| | - R Curtis Morris
- Division of Nephrology, Department of Medicine, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Awad MA, Aldosari SR, Abid MR. Genetic Alterations in Oxidant and Anti-Oxidant Enzymes in the Vascular System. Front Cardiovasc Med 2018; 5:107. [PMID: 30140678 PMCID: PMC6095034 DOI: 10.3389/fcvm.2018.00107] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases (CVD) are one of the prime causes of mortality worldwide. Experimental animal models have become a valuable tool to investigate and further advance our knowledge on etiology, pathophysiology and intervention. They also provide a great opportunity to understand the contribution of different genes and effector molecules in the pathogenesis and development of diseases at the sub-cellular levels. High levels of reactive oxygen species (ROS) have been associated with the progression of CVD such as ischemic heart disease (IHD), myocardial infarction, hypertension, atherosclerosis, aortic aneurysm, aortic dissection and others. On the contrary, low levels of antioxidants were associated with exacerbated cardiovascular event. Major focus of this review is on vascular pathogenesis that leads to CVD, with special emphasis on the roles of oxidant/antioxidant enzymes in health and disease progression in vascular cells including vascular endothelium. The major oxidant enzymes that have been implicated with the progression of CVD include NADPH Oxidase, nitric oxide synthase, monoamine oxidase, and xanthine oxidoreductase. The major antioxidant enzymes that have been attributed to normalizing the levels of oxidative stress include superoxide dismutases, catalase and glutathione peroxidases (GPx), and thioredoxin. Cardiovascular phenotypes of major oxidants and antioxidants knockout and transgenic animal models are discussed here.
Collapse
Affiliation(s)
- Maan A Awad
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Sarah R Aldosari
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
13
|
Fan LM, Cahill-Smith S, Geng L, Du J, Brooks G, Li JM. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med 2017; 108:940-951. [PMID: 28499911 PMCID: PMC5489050 DOI: 10.1016/j.freeradbiomed.2017.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/21/2022]
Abstract
Oxidative stress attributable to the activation of a Nox2-containing NADPH oxidase is involved in the development of vascular diseases and in aging. However, the mechanism of Nox2 activation in normal aging remains unclear. In this study, we used age-matched wild-type (WT) and Nox2 knockout (KO) mice at 3-4 months (young); 11-12 months (middle-aged) and 21-22 months (aging) to investigate age-related metabolic disorders, Nox2 activation and endothelial dysfunction. Compared to young mice, middle-aged and aging WT mice had significant hyperglycaemia, hyperinsulinaemia, increased systemic oxidative stress and higher blood pressure. Endothelium-dependent vessel relaxation to acetylcholine was significantly impaired in WT aging aortas, and this was accompanied by increased Nox2 and ICAM-1 expressions, MAPK activation and decreased insulin receptor expression and signaling. However, these aging-associated disorders were significantly reduced or absent in Nox2KO aging mice. The effect of metabolic disorder on Nox2 activation and endothelial dysfunction was further confirmed using high-fat diet-induced obesity and insulin resistance in middle-aged WT mice treated with apocynin (a Nox2 inhibitor). In vitro experiments showed that in response to high glucose plus high insulin challenge, WT coronary microvascular endothelial cells increased significantly the levels of Nox2 expression, activation of stress signaling pathways and the cells were senescent, e.g. increased p53 and β-galactosidase activity. However, these changes were absent in Nox2KO cells. In conclusion, Nox2 activation in response to aging-associated hyperglycaemia and hyperinsulinaemia plays a key role in the oxidative damage of vascular function. Inhibition or knockout of Nox2 preserves endothelial function and improves global metabolism in old age.
Collapse
Affiliation(s)
- Lampson M Fan
- Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Li Geng
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Junjie Du
- Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Gavin Brooks
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Jian-Mei Li
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK.
| |
Collapse
|
14
|
How gene polymorphisms can influence clinical response and toxicity following R-CHOP therapy in patients with diffuse large B cell lymphoma. Blood Rev 2017; 31:235-249. [DOI: 10.1016/j.blre.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 12/07/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022]
|
15
|
Kigawa Y, Miyazaki T, Lei XF, Kim-Kaneyama JR, Miyazaki A. Functional Heterogeneity of Nadph Oxidases in Atherosclerotic and Aneurysmal Diseases. J Atheroscler Thromb 2016; 24:1-13. [PMID: 27476665 PMCID: PMC5225127 DOI: 10.5551/jat.33431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NADPH oxidases (NOX) are enzymes that catalyze the production of reactive oxygen species (ROS). Four species of NOX catalytic homologs (NOX1, NOX2, NOX4, and NOX5) are reportedly expressed in vascular tissues. The pro-atherogenic roles of NOX1, NOX2, and their organizer protein p47phox were manifested, and it was noted that the hydrogen peroxide-generating enzyme NOX4 possesses atheroprotective effects. Loss of NOX1 or p47phox appears to ameliorate murine aortic dissection and subsequent aneurysmal diseases; in contrast, the ablation of NOX2 exacerbates the aneurysmal diseases. It is possible that the loss of NOX2 activates inflammatory cascades in macrophages in the lesions. Roles of NOX5 in vascular functions are currently undetermined, owing to the absence of this enzyme in rodents and the limitation of the experimental procedure. Thus, it is possible that the NOX family of enzymes exhibits heterogeneity in the atherosclerotic diseases. In this aspect, subtype-selective NOX inhibitor may be promising when NOX systems serve as a molecular target for atherosclerotic and aneurysmal diseases.
Collapse
Affiliation(s)
- Yasuyoshi Kigawa
- Division of Endocrinology and Metabolism, Showa University Fujigaoka Hospital
| | | | | | | | | |
Collapse
|
16
|
Dhaunsi GS, Alsaeid M, Akhtar S. Phytanic acid activates NADPH oxidase through transactivation of epidermal growth factor receptor in vascular smooth muscle cells. Lipids Health Dis 2016; 15:105. [PMID: 27287039 PMCID: PMC4902935 DOI: 10.1186/s12944-016-0273-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytanic acid (PA) has been implicated in development of cancer and its defective metabolism is known to cause life-threatening conditions, such as Refsum disease, in children. To explore molecular mechanisms of phytanic acid-induced cellular pathology, we investigated its effect on NADPH oxidase (NOX) and epidermal growth factor receptor (EGFR) in rat aortic smooth muscle cells (RASMC). METHODS Smooth muscle cells were isolated from rat aortae using enzymic digestion with collagenase and elastase. Cultured RASMC were treated with varying concentrations (0.5-10 μg/ml) of phytanic acid in the presence/absence of fetal bovine serum (FBS) and/or EGFR inhibitor, AG1478. Following treatment with experimental agents, NOX activity was assayed in RASMC cultures by luminescence method. Gene expression of NOX-1 and p47phox was assessed using RT-PCR. NOX-1, p47phox and, total EGFR protein and its phosphorylated form were measured by Western blotting. RESULTS Treatment of RASMC with supraphysiological concentrations (>2.5 μg/ml) of PA significantly (p < 0.01) increased the NOX activity. PA also significantly increased gene/protein expression of NOX-1 and p47phox whereas p22phox and p67phox remained unaffected. Interestingly, PA (2.5-10 μg/ml) markedly (2-3 folds) increased the total and phosphorylated EGFR. Treatment of cells with EGFR inhibitor, AG1478, significantly blocked the PA-induced enhancement of NOX activity. CONCLUSIONS Our findings that PA transactivates EGFR and induces NOX activity in vascular smooth muscle cells provide new insights into molecular mechanisms of PA's role in cancer and Refsum disease.
Collapse
Affiliation(s)
- Gursev S Dhaunsi
- Departments of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
| | - Mayra Alsaeid
- Departments of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Saghir Akhtar
- Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
17
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
18
|
Ischemia-Reperfusion Injury in Fatty Liver Is Mediated by Activated NADPH Oxidase 2 in Rats. Transplantation 2016; 100:791-800. [DOI: 10.1097/tp.0000000000001130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Ryan MJ, Coleman TT, Sasser JM, Pittman KM, Hankins MW, Stec DE. Vascular smooth muscle-specific deletion of the leptin receptor attenuates leptin-induced alterations in vascular relaxation. Am J Physiol Regul Integr Comp Physiol 2016; 310:R960-7. [PMID: 26936780 DOI: 10.1152/ajpregu.00336.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
Abstract
Obesity is a risk factor for cardiovascular disease and is associated with increased plasma levels of the adipose-derived hormone leptin. Vascular smooth muscle cells (VSMC) express leptin receptors (LepR); however, their physiological role is unclear. We hypothesized that leptin, at levels to mimic morbid obesity, impairs vascular relaxation. To test this, we used control and VSM-LepR knockout mice (VSM-LepR KO) created with a tamoxifen-inducible specific Cre recombinase to delete the LepR gene in VSMC. Control (10-12 wk old) and VSM-LepR KO (10-12 wk old) mice were fed a diet containing tamoxifen (50 mg/kg) for 6 wk, after which vascular reactivity was studied in isolated carotid arteries using an organ chamber bath. Vessels were incubated with leptin (100 ng/ml) or vehicle (0.1 mM Tris·HCl) for 30 min. Leptin treatment resulted in significant impairment of vessel relaxation to the endothelial-specific agonist acetylcholine (ACh). When these experiments were repeated in the presence of the superoxide scavenger tempol, relaxation responses to ACh were restored. VSM-LepR deletion resulted in a significant attenuation of leptin-mediated impaired ACh-induced relaxation. These data show that leptin directly impairs vascular relaxation via a VSM-LepR-mediated mechanism, suggesting a potential pathogenic role for leptin to increase cardiovascular risk during obesity.
Collapse
Affiliation(s)
- Michael J Ryan
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - T Taylor Coleman
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Katarina M Pittman
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - Michael W Hankins
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, Jackson, Mississippi; and
| |
Collapse
|
20
|
Zhou H, Chen M, Zhu Y, Wang B, Liu XN, Zuo Z, Tang FY. Polymorphisms in NADPH oxidase CYBA gene modify the risk of ESRD in patients with chronic glomerulonephritis. Ren Fail 2015; 38:262-7. [PMID: 26627442 DOI: 10.3109/0886022x.2015.1117905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
End-stage renal disease (ESRD) was defined as start of renal replacement therapy or death due to kidney disease. However, death due to acute kidney injury was not included. It typically occurs when chronic renal failure progresses to a point where the kidneys are permanently functioning at less than 10% of their capacity. Oxidative stress (OS) plays a crucial role in ESRD. Nicotinamide adenine dinucleotide phosphate (NADPH) is one of the most important enzymes during oxidative stress. Cytochrome b light chain (CYBA), encoded by a polymorphic gene, which is a critical component of the nicotinamide adenine dinucleotide (NADH)/NADPH oxidase system and plays an important role in electron transport and superoxide anion production, is located on chromosome band 16q24 and has six exons spanning almost 7.76 kb of genomic DNA. CYBA gene polymorphisms can influence the activity of NADPH oxidase. To evaluate the association between CYBA gene polymorphisms and ESRD, we genotyped five CYBA polymorphisms using TaqMan allelic discrimination assay on DNA samples from 306 healthy controls and 332 patients with ESRD. Our results suggested that rs1049255 polymorphism of CYBA modified the risk of ESRD (p = 0.019; OR = 0.625; 95%CI = 0.424-0.921). GG genotype and G allele might be a protective factor against the risk of ESRD, especially in patients with chronic glomerulonephritis.
Collapse
Affiliation(s)
- Hui Zhou
- a Department of Nephrology , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| | - Min Chen
- a Department of Nephrology , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| | - Ying Zhu
- a Department of Nephrology , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| | - Bing Wang
- b Department of Clinical Laboratory , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| | - Xiao-ning Liu
- b Department of Clinical Laboratory , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| | - Zhi Zuo
- c Department of Cardiology , Zhongda Hospital Affiliated to Southeast University , Nanjing , Jiangsu , China
| | - Feng-Ying Tang
- a Department of Nephrology , Huai'an First People's Hospital, Nanjing Medical University , Huaian , Jiangsu , China
| |
Collapse
|
21
|
Kim GH, Kim JE, Rhie SJ, Yoon S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp Neurobiol 2015; 24:325-40. [PMID: 26713080 PMCID: PMC4688332 DOI: 10.5607/en.2015.24.4.325] [Citation(s) in RCA: 916] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined.
Collapse
Affiliation(s)
- Geon Ha Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul 03760, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sandy Jeong Rhie
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea. ; College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
22
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
23
|
Low-dose estrogen is as effective as high-dose treatment in rats with postmenopausal hypertension. J Cardiovasc Pharmacol 2014; 63:144-51. [PMID: 24157955 DOI: 10.1097/fjc.0000000000000034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: This study was conducted to test the hypothesis that 17β-estradiol therapy improves redox balance by decreasing reactive oxygen species production and increasing nitric oxide (NO) bioavailability, favoring Akt pathway activation and resulting in a better autonomic vascular control. Ovariectomized female Wistar rats were divided into 4 groups: (1) vehicle (VL) and animals treated with a pellet of 17β-estradiol for 21 days; (2) low dose (LE; 0.05 mg); (3) medium dose (ME; 0.2 mg); and (4) high dose (HE; 0.5 mg). Arterial pressure and its sympathetic nervous system modulation were evaluated by spectral analysis. Nitric oxide synthase and NADPH oxidase (Nox) activities, H2O2 concentration, redox status (GSH/GSSG), protein expression of Trx-1 and p-Akt/Akt were evaluated in the aorta, whereas NO metabolites were measured in the serum. Estrogen-treated groups showed a significant decrease in arterial pressure and sympathetic vascular drive. Redox status was significantly improved and NADPH oxidase and H2O2 were decreased in all estrogen-treated groups. Estrogen also induced an enhancement in NO metabolites, nitric oxide synthase activity, and Akt phosphorylation. This study demonstrated that estrogen treatment to ovariectomized rats induced cardioprotection, which was evidenced by reduced blood pressure variability and vascular sympathetic drive. These effects were associated with an improved redox balance and Akt activation, resulting in an enhanced NO bioavailability.
Collapse
|
24
|
González J, Valls N, Brito R, Rodrigo R. Essential hypertension and oxidative stress: New insights. World J Cardiol 2014; 6:353-366. [PMID: 24976907 PMCID: PMC4072825 DOI: 10.4330/wjc.v6.i6.353] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/01/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023] Open
Abstract
Essential hypertension is a highly prevalent pathological condition that is considered as one of the most relevant cardiovascular risk factors and is an important cause of morbidity and mortality around the world. Despite the fact that mechanisms underlying hypertension are not yet fully elucidated, a large amount of evidence shows that oxidative stress plays a central role in its pathophysiology. Oxidative stress can be defined as an imbalance between oxidant agents, such as superoxide anion, and antioxidant molecules, and leads to a decrease in nitric oxide bioavailability, which is the main factor responsible for maintaining the vascular tone. Several vasoconstrictor peptides, such as angiotensin II, endothelin-1 and urotensin II, act through their receptors to stimulate the production of reactive oxygen species, by activating enzymes like NADPH oxidase and xanthine oxidase. The knowledge of the mechanism described above has allowed generating new therapeutic strategies against hypertension based on the use of antioxidants agents, including vitamin C and E, N-Acetylcysteine, polyphenols and selenium, among others. These substances have different therapeutic targets, but all represent antioxidant reinforcement. Several clinical trials using antioxidants have been made. The aim of the present review is to provide new insights about the key role of oxidative stress in the pathophysiology of essential hypertension and new clinical attempts to demonstrate the usefulness of antioxidant therapy in the treatment of hypertension.
Collapse
|
25
|
Garab D, Fet N, Szabó A, Tolba RH, Boros M, Hartmann P. Remote ischemic preconditioning differentially affects NADPH oxidase isoforms during hepatic ischemia–reperfusion. Life Sci 2014; 105:14-21. [DOI: 10.1016/j.lfs.2014.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/07/2014] [Indexed: 01/21/2023]
|
26
|
Pye C, Elsherbiny NM, Ibrahim AS, Liou GI, Chadli A, Al-Shabrawey M, Elmarakby AA. Adenosine kinase inhibition protects the kidney against streptozotocin-induced diabetes through anti-inflammatory and anti-oxidant mechanisms. Pharmacol Res 2014; 85:45-54. [PMID: 24841126 DOI: 10.1016/j.phrs.2014.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022]
Abstract
Adenosine provides anti-inflammatory effects in cardiovascular disease via the activation of adenosine A2A receptors; however, the physiological effect of adenosine could be limited due to its phosphorylation by adenosine kinase. We hypothesized that inhibition of adenosine kinase exacerbates extracellular adenosine levels to reduce renal inflammation and injury in streptozotocin-induced diabetes. Diabetes was induced in male C57BL/6 mice by daily injection of streptozotocin (50mg/kg/day, i.p. for 5 days). Control and diabetic mice were then treated with the adenosine kinase inhibitor ABT702 (1.5mg/kg, i.p. two times a week for 8 weeks, n=7-8/group) or the vehicle (5% DMSO). ABT702 treatment reduced blood glucose level in diabetic mice (∼20%; P<0.05). ABT702 also reduced albuminuria and markers of glomerular injury, nephrinuria and podocalyxin excretion levels, in diabetic mice. Renal NADPH oxidase activity and urinary thiobarbituric acid reactive substances (TBARS) excretion, indices of oxidative stress, were also elevated in diabetic mice and ABT702 significantly reduced these changes. ABT702 increased renal endothelial nitric oxide synthase expression (eNOS) and nitrate/nitrite excretion levels in diabetic mice. In addition, the diabetic mice displayed an increase in renal macrophage infiltration, in association with increased renal NFκB activation. Importantly, treatment with ABT702 significantly reduced all these inflammatory parameters (P<0.05). Furthermore, ABT702 decreased glomerular permeability and inflammation and restored the decrease in glomerular occludin expression in vitro in high glucose treated human glomerular endothelial cells. Collectively, the results suggest that the reno-protective effects of ABT702 could be attributed to the reduction in renal inflammation and oxidative stress in diabetic mice.
Collapse
Affiliation(s)
- Chelsey Pye
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, United States
| | - Nehal M Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed S Ibrahim
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, United States; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gregory I Liou
- Department of Ophthalmology, Georgia Regents University, Augusta, GA 30912, United States
| | - Ahmed Chadli
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Georgia Regents University, Augusta, GA 30912, United States
| | - Mohamed Al-Shabrawey
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, United States
| | - Ahmed A Elmarakby
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, United States; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
27
|
Enhancing vascular relaxing effects of nitric oxide-donor ruthenium complexes. Future Med Chem 2014; 6:825-38. [DOI: 10.4155/fmc.14.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ruthenium-derived complexes have emerged as new nitric oxide (NO) donors that may help circumvent the NO deficiency that impairs vasodilation. NO in vessels can be produced by the endothelial cells and/or released by NO donors. NO interacts with soluble guanylyl-cyclase to produce cGMP to activate the kinase-G pathway. As a result, conductance arteries, veins and resistance arteries dilate, whereas the cytosolic Ca2+ levels in the smooth muscle cells decrease. NO also reacts with oxygen or the superoxide anion, to generate reactive oxygen species that modulate NO-induced vasodilation. In this article, we focus on NO production by NO synthase and discuss the vascular changes taking place during hypertension originating from endothelial dysfunction. We will describe how the NO released from ruthenium-derived complexes enhances the vascular effects arising from failed NO generation or lack of NO bioavailability. In addition, how ruthenium-derived NO donors induce the hypotensive effect by vasodilation is also discussed.
Collapse
|
28
|
Gray SP, Jha JC, Di Marco E, Jandeleit-Dahm KA. NAD(P)H oxidase isoforms as therapeutic targets for diabetic complications. Expert Rev Endocrinol Metab 2014; 9:111-122. [PMID: 30743754 DOI: 10.1586/17446651.2014.887984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of macro- and microvascular complications is accelerated in diabetic patients. While some therapeutic regimes have helped in delaying progression of complications, none have yet been able to halt the progression and prevent vascular disease, highlighting the need to identify new therapeutic targets. Increased oxidative stress derived from the NADPH oxidase (Nox) family has recently been identified to play an important role in the pathophysiology of vascular disease. In recent years, specific Nox isoforms have been implicated in contributing to the development of atherosclerosis of major vessels, as well as damage of the small vessels within the kidney and the eye. With the use of novel Nox inhibitors, it has been demonstrated that these complications can be attenuated, indicating that targeting Nox derived oxidative stress holds potential as a new therapeutic strategy.
Collapse
Affiliation(s)
| | - Jay C Jha
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Elyse Di Marco
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Karin Am Jandeleit-Dahm
- a Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Zhang J, Chen J, Yang J, Xu C, Ding J, Yang J, Guo Q, Hu Q, Jiang H. Sodium ferulate inhibits neointimal hyperplasia in rat balloon injury model. PLoS One 2014; 9:e87561. [PMID: 24489938 PMCID: PMC3906191 DOI: 10.1371/journal.pone.0087561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022] Open
Abstract
Background/Aim Neointimal formation after vessel injury is a complex process involving multiple cellular and molecular processes. Inhibition of intimal hyperplasia plays an important role in preventing proliferative vascular diseases, such as restenosis. In this study, we intended to identify whether sodium ferulate could inhibit neointimal formation and further explore potential mechanisms involved. Methods Cultured vascular smooth muscle cells (VSMCs) isolated from rat thoracic aorta were pre-treated with 200 µmol/L sodium ferulate for 1 hour and then stimulated with 1 µmol/L angiotensin II (Ang II) for 1 hour or 10% serum for 48 hours. Male Sprague-Dawley rats subjected to balloon catheter insertion were administrated with 200 mg/kg sodium ferulate (or saline) for 7 days before sacrificed. Results In presence of sodium ferulate, VSMCs exhibited decreased proliferation and migration, suppressed intracellular reactive oxidative species production and NADPH oxidase activity, increased SOD activation and down-regulated p38 phosphorylation compared to Ang II-stimulated alone. Meanwhile, VSMCs treated with sodium ferulate showed significantly increased protein expression of smooth muscle α-actin and smooth muscle myosin heavy chain protein. The components of Notch pathway, including nuclear Notch-1 protein, Jagged-1, Hey-1 and Hey-2 mRNA, as well as total β-catenin protein and Cyclin D1 mRNA of Wnt signaling, were all significantly decreased by sodium ferulate in cells under serum stimulation. The levels of serum 8-iso-PGF2α and arterial collagen formation in vessel wall were decreased, while the expression of contractile markers was increased in sodium ferulate treated rats. A decline of neointimal area, as well as lower ratio of intimal to medial area was observed in sodium ferulate group. Conclusion Sodium ferulate attenuated neointimal hyperplasia through suppressing oxidative stress and phenotypic switching of VSMCs.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Angiotensin II/physiology
- Animals
- Carotid Arteries/drug effects
- Carotid Arteries/pathology
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/etiology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Coumaric Acids/pharmacology
- Drug Evaluation, Preclinical
- Hyperplasia/prevention & control
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Neointima/drug therapy
- Neointima/etiology
- Oxidative Stress/drug effects
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China
| | - Qing Guo
- Department of Ophthalmology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- * E-mail:
| |
Collapse
|
30
|
Abstract
General use and popularity of over-the-counter supplemental antioxidants have rapidly spread all over the world and are believed to promote cardiovascular health and wellbeing. However, there is a paucity of information and lack of proof that physiological and above-physiological levels of oxidants do harm at the cellular and organismal levels. Instead, several reports demonstrated that reduction in Reactive Oxygen Species (ROS) did not improve vascular function. Interestingly, recent studies show that increased ROS levels play protective role in vascular endothelium and may improve coronary endothelial function. In the current review, we introduce the concept that increased ROS levels, often seen in association with cardiovascular disease, probably is an endothelial-way or ‘oxidative response’ to cope with vascular pathology.
Collapse
Affiliation(s)
- M Ruhul Abid
- Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA
| | - Frank W Sellke
- Cardiovascular Research Center, Department of Surgery, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA
| |
Collapse
|
31
|
Ali F, Ismail A, Kersten S. Molecular mechanisms underlying the potential antiobesity-related diseases effect of cocoa polyphenols. Mol Nutr Food Res 2013; 58:33-48. [DOI: 10.1002/mnfr.201300277] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Faisal Ali
- Department of Nutrition and Dietetics; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor Malaysia
- Halal Products Research Institute; Universiti Putra Malaysia; Selangor Malaysia
| | - Sander Kersten
- Metabolism and Genomics Group; Division of Human Nutrition; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
32
|
Shafique E, Choy WC, Liu Y, Feng J, Cordeiro B, Lyra A, Arafah M, Yassin-Kassab A, Zanetti AVD, Clements RT, Bianchi C, Benjamin LE, Sellke FW, Abid MR. Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging (Albany NY) 2013; 5:515-30. [PMID: 24018842 PMCID: PMC3765580 DOI: 10.18632/aging.100569] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-associated decline in cardiovascular function is believed to occur from the deleterious effects of reactive oxygen species (ROS). However, failure of recent clinical trials using antioxidants in patients with cardiovascular disease, and the recent findings showing paradoxical role for NADPH oxidase-derived ROS in endothelial function challenge this long-held notion against ROS. Here, we examine the effects of endothelium-specific conditional increase in ROS on coronary endothelial function. We have generated a novel binary (Tet-ON/OFF) conditional transgenic mouse (Tet-Nox2:VE-Cad-tTA) that induces endothelial cell (EC)-specific overexpression of Nox2/gp91 (NADPH oxidase) and 1.8±0.42-fold increase in EC-ROS upon tetracycline withdrawal (Tet-OFF). We examined ROS effects on EC signaling and function. First, we demonstrate that endothelium-dependent coronary vasodilation was significantly improved in Tet-OFF Nox2 compared to Tet-ON (control) littermates. Using EC isolated from mouse heart, we show that endogenous ROS increased eNOS activation and nitric oxide (NO) synthesis through activation of the survival kinase AMPK. Coronary vasodilation in Tet-OFF Nox2 animals was CaMKKβ-AMPK-dependent. Finally, we demonstrate that AMPK activation induced autophagy and thus, protected ECs from oxidant-induced cell death. Together, these findings suggest that increased ROS levels, often associated with cardiovascular conditions in advanced age, play a protective role in endothelial homeostasis by inducing AMPK-eNOS axis.
Collapse
Affiliation(s)
- Ehtesham Shafique
- Cardiovascular Research Center, Division of Cardiothoracic Surgery, Department of Surgery, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim JE, Ryu HJ, Kang TC. Status epilepticus induces vasogenic edema via tumor necrosis factor-α/ endothelin-1-mediated two different pathways. PLoS One 2013; 8:e74458. [PMID: 24040253 PMCID: PMC3764062 DOI: 10.1371/journal.pone.0074458] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
Status epilepticus (SE) induces vasogenic edema in the piriform cortex with disruptions of the blood-brain barrier (BBB). However, the mechanisms of vasogenic edema formation following SE are still unknown. Here we investigated the endothelin B (ETB) receptor-mediated pathway of SE-induced vasogenic edema. Following SE, the release of tumor necrosis factor-α (TNF-α) stimulated endothelin-1 (ET-1) release and expression in neurons and endothelial cells. In addition, TNF-α-induced ET-1 increased BBB permeability via ETB receptor-mediated endothelial nitric oxide synthase (eNOS) activation in endothelial cells. ETB receptor activation also increased intracellular reactive oxygen species by NADPH oxidase production in astrocytes. These findings suggest that SE results in BBB dysfunctions via endothelial-astroglial interactions through the TNF-α-ET-1-eNOS/NADPH oxidase pathway, and that these ETB receptor-mediated interactions may be an effective therapeutic strategy for vasogenic edema in various neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
| | - Hea Jin Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
35
|
Rafikova O, Rafikov R, Kumar S, Sharma S, Aggarwal S, Schneider F, Jonigk D, Black SM, Tofovic SP. Bosentan inhibits oxidative and nitrosative stress and rescues occlusive pulmonary hypertension. Free Radic Biol Med 2013; 56:28-43. [PMID: 23200808 PMCID: PMC3749888 DOI: 10.1016/j.freeradbiomed.2012.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/17/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PH) is a fatal disease marked by excessive pulmonary vascular cell proliferation. Patients with idiopathic PH express endothelin-1 (ET-1) at high levels in their lungs. As the activation of both types of ET-1 receptor (ETA and ETB) leads to increased generation of superoxide and hydrogen peroxide, this may contribute to the severe oxidative stress found in PH patients. As a number of pathways may induce oxidative stress, the particular role of ET-1 remains unclear. The aim of this study was to determine whether inhibition of ET-1 signaling could reduce pulmonary oxidative stress and attenuate the progression of disease in rats with occlusive-angioproliferative PH induced by a single dose of SU5416 (200 mg/kg) and subsequent exposure to hypoxia for 21 days. Using this regimen, animals developed severe PH as evidenced by a progressive increase in right-ventricle (RV) peak systolic pressure (RVPSP), severe RV hypertrophy, and pulmonary endothelial and smooth muscle cell proliferation, resulting in plexiform vasculopathy. PH rats also had increased oxidative stress, correlating with endothelial nitric oxide synthase uncoupling and NADPH oxidase activation, leading to enhanced protein nitration and increases in markers of vascular remodeling. Treatment with the combined ET receptor antagonist bosentan (250 mg/kg/day; day 10 to 21) prevented further increase in RVPSP and RV hypertrophy, decreased ETA/ETB protein levels, reduced oxidative stress and protein nitration, and resulted in marked attenuation of pulmonary vascular cell proliferation. We conclude that inhibition of ET-1 signaling significantly attenuates the oxidative and nitrosative stress associated with PH and prevents its progression.
Collapse
Affiliation(s)
- Olga Rafikova
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Ruslan Rafikov
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Sanjiv Kumar
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Saurabh Aggarwal
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Frank Schneider
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Stephen M. Black
- Pulmonary Vascular Disease Program, Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Stevan P. Tofovic
- Center for Clinical Pharmacology and Vascular Medicine Institute, Department of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
36
|
Song P, Zou MH. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 2012; 52:1607-19. [PMID: 22357101 PMCID: PMC3341493 DOI: 10.1016/j.freeradbiomed.2012.01.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are ubiquitously produced in cardiovascular systems. Under physiological conditions, ROS/RNS function as signaling molecules that are essential in maintaining cardiovascular function. Aberrant concentrations of ROS/RNS have been demonstrated in cardiovascular diseases owing to increased production or decreased scavenging, which have been considered common pathways for the initiation and progression of cardiovascular diseases such as atherosclerosis, hypertension, (re)stenosis, and congestive heart failure. NAD(P)H oxidases are primary sources of ROS and can be induced or activated by all known cardiovascular risk factors. Stresses, hormones, vasoactive agents, and cytokines via different signaling cascades control the expression and activity of these enzymes and of their regulatory subunits. But the molecular mechanisms by which NAD(P)H oxidase is regulated in cardiovascular systems remain poorly characterized. Investigations by us and others suggest that adenosine monophosphate-activated protein kinase (AMPK), as an energy sensor and modulator, is highly sensitive to ROS/RNS. We have also obtained convincing evidence that AMPK is a physiological suppressor of NAD(P)H oxidase in multiple cardiovascular cell systems. In this review, we summarize our current understanding of how AMPK functions as a physiological repressor of NAD(P)H oxidase.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- To whom correspondence should be addressed: Ming-Hui Zou, M.D., Ph.D., Department of Medicine, University of Oklahoma Health Science Center, 941 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA, Phone: 405-271-3974, Fax: 405-271-3973,
| |
Collapse
|
37
|
Inflammation and oxidative stress in obesity-related glomerulopathy. Int J Nephrol 2012; 2012:608397. [PMID: 22567283 PMCID: PMC3332212 DOI: 10.1155/2012/608397] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/06/2012] [Indexed: 01/17/2023] Open
Abstract
Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and subsequent deregulation of cell function in renal glomeruli that leads to pathological changes. Oxidative stress is also associated with obesity-related renal diseases and may trigger the initiation or progression of renal damage in obesity. In this paper, we focus on inflammation and oxidative stress in the progression of obesity-related glomerulopathy and possible interventions to prevent kidney injury in obesity.
Collapse
|
38
|
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10:453-71. [PMID: 21629295 PMCID: PMC3361719 DOI: 10.1038/nrd3403] [Citation(s) in RCA: 690] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NADPH oxidases are a family of enzymes that generate reactive oxygen species (ROS). The NOX1 (NADPH oxidase 1) and NOX2 oxidases are the major sources of ROS in the artery wall in conditions such as hypertension, hypercholesterolaemia, diabetes and ageing, and so they are important contributors to the oxidative stress, endothelial dysfunction and vascular inflammation that underlies arterial remodelling and atherogenesis. In this Review, we advance the concept that compared to the use of conventional antioxidants, inhibiting NOX1 and NOX2 oxidases is a superior approach for combating oxidative stress. We briefly describe some common and emerging putative NADPH oxidase inhibitors. In addition, we highlight the crucial role of the NADPH oxidase regulatory subunit, p47phox, in the activity of vascular NOX1 and NOX2 oxidases, and suggest how a better understanding of its specific molecular interactions may enable the development of novel isoform-selective drugs to prevent or treat cardiovascular diseases.
Collapse
Affiliation(s)
- Grant R Drummond
- Vascular Biology & Immunopharmacology Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
39
|
Park HS, Cho K, Park YJ, Lee T. Chronic nicotine exposure attenuates proangiogenic activity on human umbilical vein endothelial cells. J Cardiovasc Pharmacol 2011; 57:287-93. [PMID: 21383590 DOI: 10.1097/fjc.0b013e318206b5d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pathogenic mechanism of nicotine, a major product of smoking, on vascular endothelial cells is not well defined yet. The purpose of this study was to determine whether chronic exposure to nicotine alters angiogenic activity in human umbilical vein endothelial cells and to identify a potential role for endothelial nitric oxide synthase (eNOS) expression. Our study demonstrated that acute nicotine treatment enhanced nitric oxide release, eNOS activation, and proangiogenic activity. However, chronic nicotine exposure impaired proangiogenic function (decreased cell migration and tubular structure formation) in human umbilical vein endothelial cells compared with acute exposure, but sustained the antiapoptotic effect. These findings seem to be related to eNOS gene expression and nitric oxide production, which may be involved in the pathophysiology of chronic nicotine addicts.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
40
|
Schreck C, O'Connor PM. NAD(P)H oxidase and renal epithelial ion transport. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1023-9. [PMID: 21270341 DOI: 10.1152/ajpregu.00618.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na(+) and K(+) transport. Finally, we will review the relationship between tubular H(+) efflux and NADPH oxidase activity.
Collapse
|
41
|
Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res 2011; 34:431-40. [PMID: 21228777 DOI: 10.1038/hr.2010.264] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Renal Pathophysiology Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
42
|
Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010; 285:40104-13. [PMID: 20940302 PMCID: PMC3000993 DOI: 10.1074/jbc.m110.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.
Collapse
Affiliation(s)
- Sapna Thakur
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010; 15:50-63. [PMID: 20500986 DOI: 10.1179/174329210x12650506623401] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Elevated reactive oxygen species (ROS) formation in the vascular wall is a key feature of cardiovascular diseases and a likely contributor to oxidative stress, endothelial dysfunction and vascular inflammation. The NADPH oxidases are a family of ROS generating enzymes, of which four members (Nox1, Nox2, Nox4 and Nox5) are expressed in blood vessels. Numerous studies have demonstrated that expression and activity of at least two isoforms of NADPH oxidase - Nox1 and Nox2 - are up-regulated in animal models of hypertension, diabetes and atherosclerosis. However, these observations are merely suggestive of a role for NADPH oxidases in vessel pathology and by no means establish cause and effect. Furthermore, questions surrounding the specificity of current pharmacological inhibitors of NADPH oxidase mean that findings obtained with these compounds must be viewed with caution. Here, we review the literature on studies utilising genetically-modified mouse strains to investigate the roles of NADPH oxidases in experimental models of vascular disease. While several studies on transgenic over-expressing or knockout mice support roles for Nox1- and/or Nox2-containing oxidases as sources of excessive vascular ROS production and causes of endothelial dysfunction in hypertension, atherosclerosis and diabetes, there are still no published reports on the effects of genetic modification of Nox4 or Nox5 in vascular or indeed any other contexts. Further understanding of the roles of specific isoforms of NADPH oxidase in vascular (patho)physiology should provide direction for future programs aimed at developing selective inhibitors of these enzymes as novel therapeutics in cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Rivera
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Hoffmann M, Schirmer MA, Tzvetkov MV, Kreuz M, Ziepert M, Wojnowski L, Kube D, Pfreundschuh M, Trümper L, Loeffler M, Brockmöller J. A functional polymorphism in the NAD(P)H oxidase subunit CYBA is related to gene expression, enzyme activity, and outcome in non-Hodgkin lymphoma. Cancer Res 2010; 70:2328-38. [PMID: 20215507 DOI: 10.1158/0008-5472.can-09-2388] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NAD(P)H oxidase is a major endogenous source of reactive oxygen species (ROS). ROS may not only be involved in carcinogenesis but also in efficacy of chemotherapeutic agents like doxorubicin. By a comprehensive genotyping approach covering 48 genetic polymorphisms (single-nucleotide polymorphisms) in five subunits of phagocytic NAD(P)H oxidase, we asked whether they affect gene expression, enzymatic activity, and outcome of CHO(E)P chemotherapy. A highly consistent effect was observed for the CYBA 640A>G variant. In peripheral blood granulocytes of 125 healthy volunteers, the G allele of 640A>G was associated with lower NAD(P)H oxidase activity (P = 0.006). Moreover, the G allele was associated with lower mRNA and protein expression (both P = 0.02). Of clinical importance, the outcome of patients suffering from non-Hodgkin lymphoma and treated with CHO(E)P regimen was dependent on the CYBA 640A>G polymorphism. In an exploratory study (n = 401), carriers of 640GG had an event-free survival (EFS) risk ratio of 1.95 [95% confidence interval (95% CI), 1.31-2.90; P = 0.001] compared with 640AA. In a confirmatory set (n = 477), the risk ratios were 1.53 (1.04-2.25, P = 0.03). The complete set of 878 patients showed a relative risk of 1.72 (1.30-2.26) and 1.59 (1.14-2.21) for EFS and overall survival, respectively. Further molecular-biological experiments showed lower expression and reduced stability of transcripts with the G allele in lymphoblastoid cell lines. Transfection of allele-specific plasmids into HEK293 cells elicited lower activity for the G allele in a luciferase reporter gene construct. Thus, CYBA 640A>G was shown to be a functional polymorphism with possible consequences for patients receiving CHO(E)P chemotherapy and might have further implications for other ROS-mediated modalities.
Collapse
Affiliation(s)
- Marion Hoffmann
- Department of Clinical Pharmacology and Department of Hematology and Oncology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
High-fructose diet elevates myocardial superoxide generation in mice in the absence of cardiac hypertrophy. Nutrition 2009; 26:842-8. [PMID: 19932004 DOI: 10.1016/j.nut.2009.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Dietary fructose intake has increased considerably in recent decades and this has been paralleled by an increase in the incidence of insulin resistance, especially in children and adolescents. The impact of a high-fructose diet on the myocardium is not fully understood. The aims of this study were to characterize the murine metabolic and cardiac phenotypes associated with a high-fructose diet and to determine whether this diet imparts differential effects with age. METHODS Juvenile (4 wk) and adult (14 wk) C57Bl/6 mice were fed a 60% fructose diet or isoenergetic control (starch) diet for 6 wk. RESULTS At completion of the dietary intervention (at ages 10 and 20 wk), fructose-fed mice were normotensive; hyperinsulinemia and cardiac hypertrophy were not evident. Interestingly, fructose-fed mice exhibited lower blood glucose levels (10 wk: 4.81+/-0.28 versus 5.42+/-0.31 mmol/L; 20 wk: 4.88+/-0.30 versus 5.96+/-0.42 mmol/L, P<0.05) compared with controls. Nicotinamide adenosine dinucleotide phosphate-driven myocardial superoxide production was significantly increased in fructose-fed mice at both ages (by approximately 29% of control at 10 wk of age and 16% at 20 wk, P<0.01). No increase in aortic superoxide production was observed. Fructose feeding did not alter gene expression of the antioxidant thioredoxin-2, suggesting an imbalance between myocardial reactive oxygen species generation and antioxidant induction. CONCLUSION These findings indicate that increased myocardial superoxide production may represent an early and primary cardiac pathologic response to the metabolic challenge of excess dietary fructose in juveniles and adults that can be detected in the absence of cardiac hypertrophy and hypertension.
Collapse
|
46
|
Judkins CP, Diep H, Broughton BRS, Mast AE, Hooker EU, Miller AA, Selemidis S, Dusting GJ, Sobey CG, Drummond GR. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol 2009; 298:H24-32. [PMID: 19837950 DOI: 10.1152/ajpheart.00799.2009] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Nox family NADPH oxidases are reactive oxygen species (ROS)-generating enzymes that are strongly implicated in atherogenesis. However, no studies have examined which Nox isoform(s) are involved. Here we investigated the role of the Nox2-containing NADPH oxidase in atherogenesis in apolipoprotein E-null (ApoE(-/-)) mice. Wild-type (C57Bl6/J), ApoE(-/-), and Nox2(-/y)/ApoE(-/-) mice were maintained on a high-fat (21%) diet from 5 wk of age until they were 12 or 19 wk old. Mice were euthanized and their aortas removed for measurement of Nox2 expression (Western blot analysis and immunohistochemistry), ROS production (L012-enhanced chemiluminescence), nitric oxide (NO) bioavailability (contractions to N(omega)-nitro-L-arginine), and atherosclerotic plaque development along the aorta and in the aortic sinus. Nox2 expression was upregulated in the aortic endothelium of ApoE(-/-) mice before the appearance of lesions, and this was associated with elevated ROS levels. Within developing plaques, macrophages were also a prominent source of Nox2. The absence of Nox2 in Nox2(-/y)/ApoE(-/-) double-knockout mice had minimal effects on plasma lipids or lesion development in the aortic sinus in animals up to 19 wk of age. However, an en face examination of the aorta from the arch to the iliac bifurcation revealed a 50% reduction in lesion area in Nox2(-/y)/ApoE(-/-) versus ApoE(-/-) mice, and this was associated with a marked decrease in aortic ROS production and an increased NO bioavailability. In conclusion, this is the first demonstration of a role for Nox2-NADPH oxidase in vascular ROS production, reduced NO bioavailability, and early lesion development in ApoE(-/-) mice, highlighting this Nox isoform as a potential target for future therapies for atherosclerosis.
Collapse
Affiliation(s)
- Courtney P Judkins
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Wang Y, Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension 2009; 54:810-7. [PMID: 19635988 DOI: 10.1161/hypertensionaha.109.134320] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Klotho is a recently discovered antiaging gene. The objective of this study was to test the hypothesis that klotho gene delivery attenuates the progression of spontaneous hypertension and renal damage in spontaneous hypertensive rats (SHRs). An adeno-associated virus (AAV) carrying mouse klotho full-length cDNA (AAV.mKL) was constructed for in vivo expression of klotho. Four groups of male SHRs and 1 group of sex- and age-matched Wistar-Kyoto rats (5 rats per group) were used. Blood pressure was measured twice in all of the animals before gene delivery. Four groups of SHRs received an IV injection of AAV.mKL, AAV.LacZ, AAV.GFP, and PBS, respectively. The Wistar-Kyoto group received PBS and served as a control. AAV.mKL stopped the further increase in blood pressure in SHRs, whereas blood pressures continued to increase in other SHR groups. One single dose of AAV.mKL prevented the progression of spontaneous hypertension for at least 12 weeks (length of the study). Klotho expression and production were suppressed in SHRs, which were reverted by AAV.mKL. AAV.mKL increased plasma interleukin 10 levels but decreased Nox2 expression, NADPH oxidase activity, and superoxide production in kidneys and aortas in SHRs. AAV.mKL abolished renal tubular atrophy and dilation, tubular deposition of proteinaceous material, glomerular collapse, and collagen deposition seen in SHRs, indicating that klotho gene delivery attenuated renal damage. Therefore, the suppressed klotho expression may play a role in the progression of spontaneous hypertension and renal damage in SHRs. AAV delivery of klotho may offer a new approach for the long-term control of hypertension and for renoprotection.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, 940 S.L. Young Blvd., Oklahoma City, OK 73126-0901, USA
| | | |
Collapse
|
49
|
Proteasome inhibition prevents experimentally-induced endothelial dysfunction. Life Sci 2009; 84:929-34. [DOI: 10.1016/j.lfs.2009.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/09/2009] [Accepted: 04/17/2009] [Indexed: 11/20/2022]
|
50
|
Selemidis S. Suppressing NADPH oxidase-dependent oxidative stress in the vasculature with nitric oxide donors. Clin Exp Pharmacol Physiol 2009; 35:1395-401. [PMID: 18954334 DOI: 10.1111/j.1440-1681.2008.05055.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Reactive oxygen species produced in the vasculature, including superoxide anion, contribute to the pathogenesis of cardiovascular disease states, such as atherosclerosis. A critical source of superoxide is vascular NADPH oxidase and upregulation of this enzyme brings about the oxidative stress underlying atherosclerosis. Excessive superoxide in arteries directly inactivates endothelium-derived nitric oxide (NO), compromising its vasoprotective effects. 2. Given that a reduction in NO bioavailability is key in the pathophysiology of atherosclerosis, replacement of NO by exogenously administered NO donors may restore the deficit in NO during disease. Although the organic nitrate family of NO donors is often the first choice for the acute management of symptoms of atherosclerosis and angina pectoris, most of the compounds in this class are unsuitable for long-term therapy because they cause oxidative stress by activation and upregulation of vascular NADPH oxidase and induce tolerance to subsequent nitrate treatment and endogenous NO. These problems of nitrates have not only limited their therapeutic exploitation, but have also stifled interest in newer-generation NO donors. 3. Recent evidence indicates that, in stark contrast with the organic nitrates, the newer-age diazeniumdiolate NONOate class of NO donors suppress vascular NADPH oxidase-dependent superoxide production and are less likely to induce tolerance, making them more suitable for suppression of oxidative stress in atherosclerosis. 4. Here, it is hypothesized that NONOates provide a novel means of suppressing NADPH oxidase-dependent oxidative stress to restore vascular NO levels to prevent, and even reverse, atherosclerosis.
Collapse
Affiliation(s)
- Stavros Selemidis
- Department of Pharmacology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|