1
|
Matsunaga Y, Qadota H, Ghazal N, Lesanpezeshki L, Dorendorf T, Moody JC, Ahier A, Matheny CJ, Vanapalli SA, Zuryn S, Mayans O, Kwong JQ, Benian GM. Protein kinase 2 of the giant sarcomeric protein UNC-89 regulates mitochondrial morphology and function. Commun Biol 2024; 7:1342. [PMID: 39420071 PMCID: PMC11487192 DOI: 10.1038/s42003-024-07042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
UNC-89 is a giant sarcomeric M-line protein required for sarcomere organization and optimal muscle function. UNC-89 contains two protein kinase domains, PK1 and PK2, separated by an elastic region. Here we show that PK2 is a canonical kinase expected to be catalytically active. C. elegans expressing UNC-89 with a lysine to alanine (KtoA) mutation to inactivate PK2 have normally organized sarcomeres and SR, and normal muscle function. PK2 KtoA mutants have fragmented mitochondria, correlated with more mitochondrially-associated DRP-1. PK2 KtoA mutants have increased ATP levels, increased glycolysis and altered levels of electron transport chain complexes. Muscle mitochondria show increased complex I and decreased complex II basal respiration, each of which cannot be uncoupled. This suggests that mutant mitochondria are already uncoupled, possibly resulting from an increased level of the uncoupling protein, UCP-4. Our results suggest signaling from sarcomeres to mitochondria, to help match energy requirements with energy production.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Nasab Ghazal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | | - Till Dorendorf
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Olga Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Matheny CJ, Qadota H, Bailey AO, Valdebenito-Silva S, Oberhauser AF, Benian GM. The myosin chaperone UNC-45 has an important role in maintaining the structure and function of muscle sarcomeres during adult aging. Mol Biol Cell 2024; 35:ar98. [PMID: 38809582 PMCID: PMC11244168 DOI: 10.1091/mbc.e23-12-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
C. elegans undergo age-dependent declines in muscle organization and function, similar to human sarcopenia. The chaperone UNC-45 is required to fold myosin heads after translation and is likely used for refolding after thermally- or chemically-induced unfolding. UNC-45's TPR region binds HSP-90 and its UCS domain binds myosin heads. We observe early onset sarcopenia when UNC-45 is reduced at the beginning of adulthood. There is sequential decline of HSP-90, UNC-45, and MHC B myosin. A mutation in age-1 delays sarcopenia and loss of HSP-90, UNC-45, and myosin. UNC-45 undergoes age-dependent phosphorylation, and mass spectrometry reveals phosphorylation of six serines and two threonines, seven of which occur in the UCS domain. Additional expression of UNC-45 results in maintenance of MHC B myosin and suppression of A-band disorganization in old animals. Our results suggest that increased expression or activity of UNC-45 might be a strategy for prevention or treatment of sarcopenia.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Aaron O. Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550
| | | | - Andres F. Oberhauser
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77550
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
3
|
Qadota H, McPherson A, Corbitt R, Dackowski EK, Matsunaga Y, Oberhauser AF, Benian GM. Genetic analysis suggests a surface of PAT-4 (ILK) that interacts with UNC-112 (kindlin). G3 (BETHESDA, MD.) 2022; 12:jkac117. [PMID: 35536217 PMCID: PMC9258589 DOI: 10.1093/g3journal/jkac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Integrin plays a crucial role in the attachment of cells to the extracellular matrix. Integrin recruits many proteins intracellularly, including a 4-protein complex (kindlin, ILK, PINCH, and parvin). Caenorhabditis elegans muscle provides an excellent model to study integrin adhesion complexes. In Caenorhabditis elegans, UNC-112 (kindlin) binds to the cytoplasmic tail of PAT-3 (β-integrin) and to PAT-4 (ILK). We previously reported that PAT-4 binding to UNC-112 is essential for the binding of UNC-112 to PAT-3. Although there are crystal structures for ILK and a kindlin, there is no co-crystal structure available. To understand the molecular interaction between PAT-4 and UNC-112, we took a genetic approach. First, using a yeast 2-hybrid method, we isolated mutant PAT-4 proteins that cannot bind to UNC-112 and then isolated suppressor mutant UNC-112 proteins that restore interaction with mutant PAT-4 proteins. Second, we demonstrated that these mutant PAT-4 proteins cannot localize to attachment structures in nematode muscle, but upon co-expression of an UNC-112 suppressor mutant protein, mutant PAT-4 proteins could localize to attachment structures. Third, overexpression of a PAT-4 mutant results in the disorganization of adhesion plaques at muscle cell boundaries and co-expression of the UNC-112 suppressor mutant protein alleviates this defect. Thus, we demonstrate that UNC-112 binding to PAT-4 is required for the localization and function of PAT-4 in integrin adhesion complexes in vivo. The missense mutations were mapped onto homology models of PAT-4 and UNC-112, and taking into account previously isolated mutations, we suggest a surface of PAT-4 that binds to UNC-112.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Annie McPherson
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Rachel Corbitt
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Porto D, Matsunaga Y, Franke B, Williams RM, Qadota H, Mayans O, Benian GM, Lu H. Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans. eLife 2021; 10:e66862. [PMID: 34569929 PMCID: PMC8523150 DOI: 10.7554/elife.66862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic Caenorhabditis elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signaling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g., zebrafish).
Collapse
Affiliation(s)
- Daniel Porto
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
| | - Yohei Matsunaga
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Barbara Franke
- Department of Biology, University of KonstanzKonstanzGermany
| | - Rhys M Williams
- Department of Biology, University of KonstanzKonstanzGermany
| | - Hiroshi Qadota
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Olga Mayans
- Department of Biology, University of KonstanzKonstanzGermany
| | - Guy M Benian
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Hang Lu
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
5
|
Moody JC, Qadota H, Reedy AR, Okafor CD, Shanmugan N, Matsunaga Y, Christian CJ, Ortlund EA, Benian GM. The Rho-GEF PIX-1 directs assembly or stability of lateral attachment structures between muscle cells. Nat Commun 2020; 11:5010. [PMID: 33024114 PMCID: PMC7538588 DOI: 10.1038/s41467-020-18852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/15/2020] [Indexed: 01/11/2023] Open
Abstract
PIX proteins are guanine nucleotide exchange factors (GEFs) that activate Rac and Cdc42, and are known to have numerous functions in various cell types. Here, we show that a PIX protein has an important function in muscle. From a genetic screen in C. elegans, we found that pix-1 is required for the assembly of integrin adhesion complexes (IACs) at borders between muscle cells, and is required for locomotion of the animal. A pix-1 null mutant has a reduced level of activated Rac in muscle. PIX-1 localizes to IACs at muscle cell boundaries, M-lines and dense bodies. Mutations in genes encoding proteins at known steps of the PIX signaling pathway show defects at muscle cell boundaries. A missense mutation in a highly conserved residue in the RacGEF domain results in normal levels of PIX-1 protein, but a reduced level of activated Rac in muscle, and abnormal IACs at muscle cell boundaries.
Collapse
Affiliation(s)
- Jasmine C Moody
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - April R Reedy
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - C Denise Okafor
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Niveda Shanmugan
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA
| | | | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Aburaya S, Yamauchi Y, Hashimoto T, Minakuchi H, Aoki W, Ueda M. Neuronal subclass-selective proteomic analysis in Caenorhabditis elegans. Sci Rep 2020; 10:13840. [PMID: 32792517 PMCID: PMC7426821 DOI: 10.1038/s41598-020-70692-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Neurons are categorised into many subclasses, and each subclass displays different morphology, expression patterns, connectivity and function. Changes in protein synthesis are critical for neuronal function. Therefore, analysing protein expression patterns in individual neuronal subclass will elucidate molecular mechanisms for memory and other functions. In this study, we used neuronal subclass-selective proteomic analysis with cell-selective bio-orthogonal non-canonical amino acid tagging. We selected Caenorhabditis elegans as a model organism because it shows diverse neuronal functions and simple neural circuitry. We performed proteomic analysis of all neurons or AFD subclass neurons that regulate thermotaxis in C. elegans. Mutant phenylalanyl tRNA synthetase (MuPheRS) was selectively expressed in all neurons or AFD subclass neurons, and azido-phenylalanine was incorporated into proteins in cells of interest. Azide-labelled proteins were enriched and proteomic analysis was performed. We identified 4,412 and 1,834 proteins from strains producing MuPheRS in all neurons and AFD subclass neurons, respectively. F23B2.10 (RING-type domain-containing protein) was identified only in neuronal cell-enriched proteomic analysis. We expressed GFP under the control of the 5' regulatory region of F23B2.10 and found GFP expression in neurons. We expect that more single-neuron specific proteomic data will clarify how protein composition and abundance affect characteristics of neuronal subclasses.
Collapse
Affiliation(s)
- Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuji Yamauchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Hashimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- JST, Precursory Research for Embryonic Science and Technology (PREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- JST, Core Research for Evolutionary Science and Technology (CREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Kyoto Integrated Science and Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, 600-8813, Japan.
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- JST, Core Research for Evolutionary Science and Technology (CREST), 7 Goban-cho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Kyoto Integrated Science and Technology Bio-Analysis Center, 134 Chudoji Minamimachi, Simogyo-ku, Kyoto, 600-8813, Japan
| |
Collapse
|
7
|
Hamaguchi T, Sato K, Vicente CSL, Hasegawa K. Nematicidal actions of the marigold exudate α-terthienyl: oxidative stress-inducing compound penetrates nematode hypodermis. Biol Open 2019; 8:bio038646. [PMID: 30926596 PMCID: PMC6504006 DOI: 10.1242/bio.038646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
α-terthienyl is an allelochemical derived from the roots of marigold (Tagetes spp.), which is used to suppress plant parasitic nematodes. We investigated the nematicidal activity of α-terthienyl against the model organism Caenorhabditis elegans and the root-knot nematode, Meloidogyne incognita. As reported previously, α-terthienyl action was much higher after photoactivation, but was still effective against C. elegans dauer larvae and M. incognita second stage juveniles, even without photoactivation. Expression induction of two major enzymes, glutathione S-transferase (GST) and superoxide dismutase (SOD), was restricted in C. elegans hypodermis following treatment with α-terthienyl. The susceptibility of nematodes to α-terthienyl changed when the expression of GST and SOD was induced or suppressed. From these results, under dark conditions (without photoactivation), α-terthienyl is an oxidative stress-inducing chemical that effectively penetrates the nematode hypodermis and exerts nematicidal activity, suggesting high potential for its use as a practicable nematode control agent in agriculture.
Collapse
Affiliation(s)
- Takahiro Hamaguchi
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Kazuki Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Cláudia S L Vicente
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
- NemaLab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
8
|
Kagawa-Nagamura Y, Gengyo-Ando K, Ohkura M, Nakai J. Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans. ZOOLOGICAL LETTERS 2018; 4:19. [PMID: 30065850 PMCID: PMC6062986 DOI: 10.1186/s40851-018-0103-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tyramine, known as a "trace amine" in mammals, modulates a wide range of behavior in invertebrates; however, the underlying cellular and circuit mechanisms are not well understood. In the nematode Caenorhabditis elegans (C. elegans), tyramine affects key behaviors, including foraging, feeding, and escape responses. The touch-evoked backward escape response is often coupled with a sharp omega turn that allows the animal to navigate away in the opposite direction. Previous studies have showed that a metabotropic tyramine receptor, SER-2, in GABAergic body motor neurons controls deep body bending in omega turns. In this study, we focused on the role of tyramine in GABAergic head motor neurons. Our goal is to understand the mechanism by which tyraminergic signaling alters neural circuit activity to control escape behavior. RESULTS Using calcium imaging in freely moving C. elegans, we found that GABAergic RME motor neurons in the head had high calcium levels during forward locomotion but low calcium levels during spontaneous and evoked backward locomotion. This calcium decrease was also observed during the omega turn. Mutant analyses showed that tbh-1 mutants lacking only octopamine had normal calcium responses, whereas tdc-1 mutants lacking both tyramine and octopamine did not exhibit the calcium decrease in RME. This neuromodulation was mediated by SER-2. Moreover, tyraminergic RIM neuron activity was negatively correlated with RME activity in the directional switch from forward to backward locomotion. These results indicate that tyramine released from RIM inhibits RME via SER-2 signaling. The omega turn is initiated by a sharp head bend when the animal reinitiates forward movement. Interestingly, ser-2 mutants exhibited shallow head bends and often failed to execute deep-angle omega turns. The behavioral defect and the abnormal calcium response in ser-2 mutants could be rescued by SER-2 expression in RME. These results suggest that tyraminergic inhibition of RME is involved in the control of omega turns. CONCLUSION We demonstrate that endogenous tyramine downregulates calcium levels in GABAergic RME motor neurons in the head via the tyramine receptor SER-2 during backward locomotion and omega turns. Our data suggest that this neuromodulation allows deep head bending during omega turns and plays a role in the escape behavior in C. elegans.
Collapse
Affiliation(s)
- Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Keiko Gengyo-Ando
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| | - Masamichi Ohkura
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570 Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| |
Collapse
|
9
|
Miyasaka T, Shinzaki Y, Yoshimura S, Yoshina S, Kage-Nakadai E, Mitani S, Ihara Y. Imbalanced Expression of Tau and Tubulin Induces Neuronal Dysfunction in C. elegans Models of Tauopathy. Front Neurosci 2018; 12:415. [PMID: 29973863 PMCID: PMC6019497 DOI: 10.3389/fnins.2018.00415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Tauopathy is a type of dementia defined by the accumulation of filamentous tau inclusions in neural cells. Most types of dementia in the elderly, including Alzheimer's disease, are tauopathies. Although it is believed that tau protein abnormalities and/or the loss of its functions results in neurodegeneration and dementia, the mechanism of tauopathy remains obscure. Loss of microtubules and/or tubulin is a known consequence of tau accumulating in neurons in Alzheimer's disease. In other words, there is an excess level of tau relative to tubulin in tauopathy neurons. To test whether this imbalance of tau and tubulin expression results in the neurotoxicity of tau, we developed several transgenic C. elegans lines that express human tau at various levels in pan-neurons. These worms showed behavioral abnormalities in a tau expression-dependent manner. The knockdown of a tubulin-specific chaperon, or a subset of tubulin, led to enhanced tau toxicity even in low-expressing tau-transgenic worms that showed no abnormal behaviors. In addition, the suppression of tau expression in tubulin knockdown worms rescued neuronal dysfunction. Thus, not only the overexpression of tau but also a reduction in tubulin can trigger the neurotoxicity of tau. Tau expressed in worms was also highly phosphorylated and largely bound to tubulin dimers rather than microtubules. Relative amount of tubulin-unbound tau was increased in high-expressing tau-transgenic worms showing tau toxicity. We further demonstrated that tau aggregation was inhibited by co-incubation of purified tubulin in vitro, meaning sufficient amounts of tubulin can protect against the formation of tau inclusions. These results suggest that the expression ratio of tau to tubulin may be a determinant of the tauopathy cascade.
Collapse
Affiliation(s)
- Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuki Shinzaki
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Satomi Yoshimura
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Sawako Yoshina
- Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
- Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
10
|
Tanji T, Shiraishi H, Nishikori K, Aoyama R, Ohashi K, Maeda M, Ohashi-Kobayashi A. Molecular dissection of Caenorhabditis elegans ATP-binding cassette transporter protein HAF-4 to investigate its subcellular localization and dimerization. Biochem Biophys Res Commun 2017; 490:78-83. [PMID: 28427936 DOI: 10.1016/j.bbrc.2017.04.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/15/2017] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half-type ATP-binding cassette (ABC) transporter proteins, which are highly homologous to the human peptide transporter protein, transporter associated with antigen processing-like (TAPL, ABCB9). TAPL forms homodimers and localizes to lysosomes, whereas HAF-4 and HAF-9 form heterodimers and localize to intestine-specific non-acidified organelles. Both TAPL and HAF-4/HAF-9 are predicted to have four amino-terminal transmembrane helices [transmembrane domain 0 (TMD0)] additional to the six transmembrane helices that form the canonical core domain of ABC transporters with a cytosolic ABC region. TAPL requires its amino-terminal domain for localization to lysosomes; however, molecular mechanisms underlying HAF-4 and HAF-9 localization to their target organelles had not been elucidated. Here, we demonstrate that the mechanisms underlying HAF-4 localization differ from those underlying TAPL localization. Using transgenic C. elegans expressing mutant HAF-4 proteins labeled with green fluorescent protein, we reveal that the TMD0 of HAF-4 was not sufficient for proper localization of the protein. The mutant HAF-4, which lacked TMD0, localized to intracellular organelles similarly to the wild-type protein and functioned normally in the biogenesis of its localizing organelles, indicating that the TMD0 of HAF-4 is dispensable for both its localization and function.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Reiko Aoyama
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | - Kazuaki Ohashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masatomo Maeda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa, Iwate 028-3694, Japan; Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Farboud B. Targeted genome editing in Caenorhabditis elegans using CRISPR/Cas9. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28810059 DOI: 10.1002/wdev.287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/04/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
Utilization of programmable nucleases to generate DNA lesions at precise endogenous sequences has transformed the ability to edit genomes from microbes to plants and animals. This is especially true in organisms that previously lacked the means to engineer precise genomic changes, like Caenorhabditis elegans. C. elegans is a 1 mm long free-living, nonparasitic, nematode worm, which is easily cultivated in a laboratory. Its detailed genetic map and relatively compact genome (~100 megabases) helped make it the first metazoan to have its entire genome sequenced. With detailed sequence information came development of numerous molecular tools to dissect gene function. Initially absent from this toolbox, however, were methods to make precise edits at chosen endogenous loci. Adapting site-specific nucleases for use in C. elegans, revolutionized studies of C. elegans biology. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and then CRISPR-associated protein 9 (Cas9) were used to target specific endogenous DNA sequences to make double-strand DNA breaks (DSBs). Precise changes could be engineered by providing repair templates targeting the DSB in trans. The ease of programming Cas9 to bind and cleave DNA sequences with few limitations has led to its widespread use in C. elegans research and sped the development of strategies to facilitate mutant recovery. Numerous innovative CRISPR/Cas9 methodologies are now primed for use in C. elegans. WIREs Dev Biol 2017, 6:e287. doi: 10.1002/wdev.287 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Behnom Farboud
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
12
|
Gengyo-Ando K, Kagawa-Nagamura Y, Ohkura M, Fei X, Chen M, Hashimoto K, Nakai J. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. J Neurosci Methods 2017; 286:56-68. [PMID: 28506879 DOI: 10.1016/j.jneumeth.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Real-time recording and manipulation of neural activity in freely behaving animals can greatly advance our understanding of how neural circuits regulate behavior. Ca2+ imaging and optogenetic manipulation with optical probes are key technologies for this purpose. However, integrating the two optical approaches with behavioral analysis has been technically challenging. NEW METHOD Here, we developed a new imaging system, ICaST (Integrated platform for Ca2+ imaging, Stimulation, and Tracking), which combines an automatic worm tracking system and a fast-scanning laser confocal microscope, to image neurons of interest in freely behaving C. elegans. We optimized different excitation wavelengths for the concurrent use of channelrhodopsin-2 and G-CaMP, a green fluorescent protein (GFP)-based, genetically encoded Ca2+ indicator. RESULTS Using ICaST in conjunction with an improved G-CaMP7, we successfully achieved long-term tracking and Ca2+ imaging of the AVA backward command interneurons while tracking the head of a moving animal. We also performed all-optical manipulation and simultaneous recording of Ca2+ dynamics from GABAergic motor neurons in conjunction with behavior monitoring. COMPARISON WITH EXISTING METHOD(S) Our system differs from conventional systems in that it does not require fluorescent markers for tracking and can track any part of the worm's body via bright-field imaging at high magnification. Consequently, this approach enables the long-term imaging of activity from neurons or nerve processes of interest with high spatiotemporal resolution. CONCLUSION Our imaging system is a powerful tool for studying the neural circuit mechanisms of C. elegans behavior and has potential for use in other small animals.
Collapse
|
13
|
MITANI S. Comprehensive functional genomics using Caenorhabditis elegans as a model organism. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:561-577. [PMID: 29021508 PMCID: PMC5743858 DOI: 10.2183/pjab.93.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
We have been working on functional genomics using C. elegans as a model organism. We first used cell-type specific markers and preexisting mutants to investigate how genotype-phenotype causal relationships are regulated. With the aid of transgenic methods, we analyzed various biological processes in C. elegans. We have developed efficient methods to isolate gene knockout strains. Thousands of strains isolated this way are used by many researchers and have revealed many biological mechanisms. We have also developed methods to examine the functions of genes in a comprehensive manner by integrating transgenes into chromosomes, designing conditional knockouts, and creating balancers for lethal mutations. A combination of these biological resources and techniques will be useful to understand the functions of genes in C. elegans, which has many genes that are orthologous to those of higher organisms including humans.
Collapse
Affiliation(s)
- Shohei MITANI
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
14
|
Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S. Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans. Traffic 2016; 17:1197-1213. [PMID: 27558849 DOI: 10.1111/tra.12430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
Sec1/Munc-18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps-33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps-33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS-33.1 resulted in embryonic lethality. By contrast, vps-33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm-specific organelle. The endocytosis defect in the vps-33.1 mutant was not restored by the expression of VPS-33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS-33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS-33.2 has tissue/organelle specific functions in C. elegans.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan. .,Brain and Body System Science Institute, Saitama University, Saitama, Japan. .,Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Muneyoshi Otori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Kage-Nakadai E, Ohta A, Ujisawa T, Sun S, Nishikawa Y, Kuhara A, Mitani S. Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance. Genes Cells 2016; 21:936-48. [PMID: 27402188 DOI: 10.1111/gtc.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/11/2016] [Indexed: 02/01/2023]
Abstract
The Caenorhabditis elegans (C. elegans) amphid sensory organ contains only 4 glia-like cells and 24 sensory neurons, providing a simple model for analyzing glia or neuron-glia interactions. To better characterize glial development and function, we carried out RNA interference screening for transcription factors that regulate the expression of an amphid sheath glial cell marker and identified pros-1, which encodes a homeodomain transcription factor homologous to Drosophila prospero/mammalian Prox1, as a positive regulator. The functional PROS-1::EGFP fusion protein was localized in the nuclei of the glia and the excretory cell but not in the amphid sensory neurons. pros-1 deletion mutants exhibited larval lethality, and rescue experiments showed that pros-1 and human Prox1 transgenes were able to rescue the larval lethal phenotype, suggesting that pros-1 is a functional homologue of mammalian Prox1, at least partially. We further found that the structure and functions of sensory neurons, such as the morphology of sensory endings, sensory behavior and sensory-mediated cold tolerance, appeared to be affected by the pros-1 RNAi. Together, our results show that the C. elegans PROS-1 is a transcriptional regulator in the glia but is involved not only in sensory behavior but also in sensory-mediated physiological tolerance.
Collapse
Affiliation(s)
- Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan.,Graduate School of Human Life Science, Osaka City University, Osaka, 558-8585, Japan
| | - Akane Ohta
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, and Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan
| | - Tomoyo Ujisawa
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, and Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan
| | - Simo Sun
- Graduate School of Human Life Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yoshikazu Nishikawa
- Graduate School of Human Life Science, Osaka City University, Osaka, 558-8585, Japan
| | - Atsushi Kuhara
- Laboratory of Molecular and Cellular Regulation, Faculty of Science and Engineering, and Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.
| |
Collapse
|
16
|
Qadota H, Mayans O, Matsunaga Y, McMurry JL, Wilson KJ, Kwon GE, Stanford R, Deehan K, Tinley TL, Ngwa VM, Benian GM. The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in Caenorhabditis elegans muscle. Mol Biol Cell 2016; 27:1606-20. [PMID: 27009202 PMCID: PMC4865318 DOI: 10.1091/mbc.e15-09-0675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 11/11/2022] Open
Abstract
UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89's SH3 domain and residues 294-376 of paramyosin and has a KD of ∼1.1 μM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89's SH3 is α-helical and lacks prolines. Homology modeling of UNC-89's SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a "skip residue," which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Olga Mayans
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Jonathan L McMurry
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Kristy J Wilson
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Grace E Kwon
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Rachel Stanford
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Kevin Deehan
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Tina L Tinley
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Verra M Ngwa
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
17
|
Yoshina S, Suehiro Y, Kage-Nakadai E, Mitani S. Locus-specific integration of extrachromosomal transgenes in C. elegans with the CRISPR/Cas9 system. Biochem Biophys Rep 2016; 5:70-76. [PMID: 28955808 PMCID: PMC5600330 DOI: 10.1016/j.bbrep.2015.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/14/2015] [Accepted: 11/18/2015] [Indexed: 12/02/2022] Open
Abstract
We established a method to generate integration from extrachromosomal arrays with the CRISPR/Cas9 system. Multi-copy transgenes were integrated into the defined loci of chromosomes by this method, while a multi-copy transgene is integrated into random loci by previous methods, such as UV- and gamma-irradiation. The effects of a combination of sgRNAs, which define the cleavage sites in extrachromosomes and chromosomes, and the copy number of potential cleavable sequences were examined. The relative copy number of cleavable sequences in extrachromosomes affects the frequency of fertile F1 transgenic animals. The expression levels of the reporter gene were almost proportional to the copy numbers of the integrated sequences at the same integration site. The technique is applicable to the transgenic strains abundantly stored and shared among the C. elegans community, particularly when researchers use sgRNAs against common plasmid sequences such as β-lactamase.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Japan
| |
Collapse
|
18
|
Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A. Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biol 2016; 17:4. [PMID: 26817689 PMCID: PMC4729119 DOI: 10.1186/s12860-015-0076-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intestinal cells of Caenorhabditis elegans are filled with heterogeneous granular organelles that are associated with specific organ functions. The best studied of these organelles are lipid droplets and acidified gut granules associated with GLO-1, a homolog of the small GTPase Rab38. In this study, we characterized a subset of the intestinal granules in which HAF-4 and HAF-9 localize on the membrane. HAF-4 and HAF-9 are ATP-binding cassette (ABC) transporter proteins that are homologous to the mammalian lysosomal peptide transporter TAPL (transporter associated with antigen processing-like, ABCB9). RESULTS Using transgenic worms expressing fluorescent protein-tagged marker proteins, we demonstrated that the HAF-4- and HAF-9-localizing organelles are not lipid droplets and do not participate in yolk protein transport. They were also ruled out as GLO-1-positive acidified gut granules. Furthermore, we clarified that the late endosomal protein RAB-7 localizes to the HAF-4- and HAF-9-localizing organelles and is required for their biogenesis. CONCLUSIONS Our results indicate that the HAF-4- and HAF-9-localizing organelles are distinct intestinal organelles associated with the endocytic pathway.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Syoko Haga
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yuki Kanno
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yusuke Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Mai Takaya
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Present address: Saitama University Brain Science Institute, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
19
|
Miyasaka T, Xie C, Yoshimura S, Shinzaki Y, Yoshina S, Kage-Nakadai E, Mitani S, Ihara Y. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol Aging 2015; 39:69-81. [PMID: 26923403 DOI: 10.1016/j.neurobiolaging.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
Abstract
Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau.
Collapse
Affiliation(s)
- Tomohiro Miyasaka
- Faculty of Medical and Life Sciences, Department of Neuropathology, Doshisha University, Kyotanabe-shi, Kyoto, Japan.
| | - Ce Xie
- Faculty of Medical and Life Sciences, Department of Neuropathology, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Satomi Yoshimura
- Faculty of Medical and Life Sciences, Department of Neuropathology, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Shinzaki
- Faculty of Medical and Life Sciences, Department of Neuropathology, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan; Advanced Research Institute for Natural Science and Technology, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yasuo Ihara
- Faculty of Medical and Life Sciences, Department of Neuropathology, Doshisha University, Kyotanabe-shi, Kyoto, Japan; Laboratory for Cognition and Aging, Graduate School of Brain Sciences, Doshisha University, Kizugawa-shi, Kyoto, Japan
| |
Collapse
|
20
|
Rompay LV, Borghgraef C, Beets I, Caers J, Temmerman L. New genetic regulators question relevance of abundant yolk protein production in C. elegans. Sci Rep 2015; 5:16381. [PMID: 26553710 PMCID: PMC4639837 DOI: 10.1038/srep16381] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
Vitellogenesis or maternal yolk formation is considered critical to the reproduction of egg-laying animals. In invertebrates, however, most of its regulatory genes are still unknown. Via a combined mapping and whole-genome sequencing strategy, we performed a forward genetic screen to isolate novel regulators of yolk production in the nematode model system Caenorhabditis elegans. In addition to isolating new alleles of rab-35, rab-10 and M04F3.2, we identified five mutant alleles corresponding to three novel regulatory genes potently suppressing the expression of a GFP-based yolk reporter. We confirmed that mutations in vrp-1, ceh-60 and lrp-2 disrupt endogenous yolk protein synthesis at the transcriptional and translational level. In contrast to current beliefs, our discovered set of mutants with strongly reduced yolk proteins did not show serious reproduction defects. This raises questions as to whether yolk proteins per se are needed for ultimate reproductive success.
Collapse
Affiliation(s)
- Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Charline Borghgraef
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Murayama Y, Ogura T, Yamanaka K. Characterization of C-terminal adaptors, UFD-2 and UFD-3, of CDC-48 on the polyglutamine aggregation in C. elegans. Biochem Biophys Res Commun 2015; 459:154-60. [PMID: 25721663 DOI: 10.1016/j.bbrc.2015.02.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/30/2023]
Abstract
CDC-48 (also called VCP or p97 in mammals and Cdc48p in yeast) is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities including modulation of protein complexes and protein aggregates. UFD-2 and UFD-3, C-terminal adaptors for CDC-48, reportedly bind to CDC-48 in a mutually exclusive manner and they may modulate the fate of substrates for CDC-48. However, their cellular functions have not yet been elucidated. In this study, we found that CDC-48 preferentially interacts with UFD-3 in Caenorhabditis elegans. We also found that the number of polyglutamine (polyQ) aggregates was reduced in the ufd-3 deletion mutant but not in the ufd-2 deletion mutant. Furthermore, the lifespan and motility of the ufd-3 deletion mutant, where polyQ40::GFP was expressed, were greatly decreased. Taken together, we propose that UFD-3 may promote the formation of polyQ aggregates to reduce the polyQ toxicity in C. elegans.
Collapse
Affiliation(s)
- Yuki Murayama
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kunitoshi Yamanaka
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
22
|
Hamashima K, Mori M, Andachi Y, Tomita M, Kohara Y, Kanai A. Analysis of genetic code ambiguity arising from nematode-specific misacylated tRNAs. PLoS One 2015; 10:e0116981. [PMID: 25602944 PMCID: PMC4300185 DOI: 10.1371/journal.pone.0116981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022] Open
Abstract
The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs). However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs) are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNA(Gly) (CCC) and nev-tRNA(Ile) (UAU), which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG) codon and isoleucine (AUA) codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3' end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome.
Collapse
Affiliation(s)
- Kiyofumi Hamashima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Yoshiki Andachi
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Japan
- Department of Genetics, SOKENDAI, Mishima, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| |
Collapse
|
23
|
Kage-Nakadai E, Imae R, Suehiro Y, Yoshina S, Hori S, Mitani S. A conditional knockout toolkit for Caenorhabditis elegans based on the Cre/loxP recombination. PLoS One 2014; 9:e114680. [PMID: 25474529 PMCID: PMC4256423 DOI: 10.1371/journal.pone.0114680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022] Open
Abstract
Conditional knockout (cKO) based on site-specific recombination (SSR) technology is a powerful approach for estimating gene functions in a spatially and temporally specific manner in many model animals. In Caenorhabditis elegans (C. elegans), spatial- and temporal-specific gene functions have been largely determined by mosaic analyses, rescue experiments and feeding RNAi methods. To develop a systematic and stable cKO system in C. elegans, we generated Cre recombinase expression vectors that are driven by various tissue-specific or heat-shock promoters. Validation using Cre-mediated fluorescence protein inactivation or activation systems demonstrated successful Cre-dependent loxP excision. We established a collection of multi-copy Cre transgenic strains for each evaluated vector. To evaluate our Cre/loxP-based cKO system, we generated sid-1 deletion mutants harboring floxed sid-1 single-copy integration (SCI) using ultraviolet trimethylpsoralen (UV/TMP) methods. sid-1 mutants that were rescued by the floxed sid-1 SCI were then crossed with the Pdpy-7::Cre strain for cKO in the hypodermis. The sid-1 cKO animals were resistant to bli-3 RNAi, which causes the Bli-phenotyple in the hypodermis, but they were sensitive to unc-22 RNAi, which leads to twitching of the body wall muscle. Our system, which is based on the combination of a transgenic Cre collection, pre-existing deletion mutants, and UV/TMP SCI methods, provided a systematic approach for cKO in C. elegans.
Collapse
Affiliation(s)
- Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Sayaka Hori
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Chan KKM, Seetharaman A, Bagg R, Selman G, Zhang Y, Kim J, Roy PJ. EVA-1 functions as an UNC-40 Co-receptor to enhance attraction to the MADD-4 guidance cue in Caenorhabditis elegans. PLoS Genet 2014; 10:e1004521. [PMID: 25122090 PMCID: PMC4133157 DOI: 10.1371/journal.pgen.1004521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 01/28/2023] Open
Abstract
We recently discovered a secreted and diffusible midline cue called MADD-4 (an ADAMTSL) that guides migrations along the dorsoventral axis of the nematode Caenorhabditis elegans. We showed that the transmembrane receptor, UNC-40 (DCC), whose canonical ligand is the UNC-6 (netrin) guidance cue, is required for extension towards MADD-4. Here, we demonstrate that MADD-4 interacts with an EVA-1/UNC-40 co-receptor complex to attract cell extensions. EVA-1 is a conserved transmembrane protein with predicted galactose-binding lectin domains. EVA-1 functions in the same pathway as MADD-4, physically interacts with both MADD-4 and UNC-40, and enhances UNC-40's sensitivity to the MADD-4 cue. This enhancement is especially important in the presence of UNC-6. In EVA-1's absence, UNC-6 interferes with UNC-40's responsiveness to MADD-4; in UNC-6's absence, UNC-40's responsiveness to MADD-4 is less dependent on EVA-1. By enabling UNC-40 to respond to MADD-4 in the presence of UNC-6, EVA-1 may increase the precision by which UNC-40-directed processes can reach their MADD-4-expressing targets within a field of the UNC-6 guidance cue.
Collapse
Affiliation(s)
- Kevin Ka Ming Chan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ashwin Seetharaman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Guillermo Selman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Yuqian Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Joowan Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Qadota H, Luo Y, Matsunaga Y, Park AS, Gernert KM, Benian GM. Suppressor mutations suggest a surface on PAT-4 (Integrin-linked Kinase) that interacts with UNC-112 (Kindlin). J Biol Chem 2014; 289:14252-62. [PMID: 24692564 PMCID: PMC4022890 DOI: 10.1074/jbc.m114.556308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/20/2014] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans striated muscle cells attach to basement membrane and transmit the force of muscle contraction through integrin adhesion complexes. The cytoplasmic tail of β-integrin (PAT-3) is associated with a conserved four-protein complex that includes UNC-112 (kindlin), PAT-4 (integrin-linked kinase), PAT-6 (α-parvin/actopaxin), and UNC-97 (PINCH). The proper localization of UNC-112 to muscle integrin adhesion sites requires PAT-4. A recent report (Qadota, H., Moerman, D. G., and Benian, G. M. (2012) A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (kindlin) to integrin adhesion sites. J. Biol. Chem. 287, 28537-28551) suggests a possible molecular mechanism for this requirement: that UNC-112 exists in closed inactive and open active conformations, and conversion to the open active form is promoted by binding to PAT-4 (ILK). Previously, we also reported identification of a single missense mutation in UNC-112, D382V, which abolishes both binding to PAT-4 and normal localization to integrin adhesion sites in vivo. In this report, we describe isolation and characterization of PAT-4 missense mutations that permit binding with UNC-112 D382V and place nine affected residues on a homology model of PAT-4. These nine residues cluster in two regions on the surface of PAT-4, do not overlap the likely binding surface for PAT-6 (α-parvin), and therefore may reside along the interaction surface of PAT-4 for UNC-112 (kindlin). We also show that one of these PAT-4 mutations restores the ability of UNC-112 D382V to localize to integrin adhesions and participate in complex formation.
Collapse
Affiliation(s)
- Hiroshi Qadota
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| | - Yating Luo
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| | - Yohei Matsunaga
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| | - Angela S Park
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| | - Kim M Gernert
- the Biomolecular Computing Resource, Emory University, Atlanta, Georgia 30322
| | - Guy M Benian
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
26
|
Kage-Nakadai E, Imae R, Yoshina S, Mitani S. Methods for single/low-copy integration by ultraviolet and trimethylpsoralen treatment in Caenorhabditis elegans. Methods 2014; 68:397-402. [PMID: 24613935 DOI: 10.1016/j.ymeth.2014.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
Single/low-copy transgene integration is essential for avoiding overexpression, ectopic expression and gene silencing in the germline. Here, we present an overview of a method that uses ultraviolet and trimethylpsoralen (UV/TMP) to generate single/low-copy gene integrations in Caenorhabditis elegans. Single/low-copy transgenes from extrachromosomal arrays are integrated into the genome using positive selection based on temperature sensitivity with a vps-45 rescue fragment and negative selection based on benzimidazole sensitivity with a ben-1 rescue fragment. The copy number of the integrated transgenes is determined using quantitative PCR. Our UV/TMP integration method, which is based on familiar extrachromosomal transgenics, provides a simple approach for generating single/low-copy gene integrations.
Collapse
Affiliation(s)
- Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan; The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Rieko Imae
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| |
Collapse
|
27
|
Xie C, Miyasaka T, Yoshimura S, Hatsuta H, Yoshina S, Kage-Nakadai E, Mitani S, Murayama S, Ihara Y. The homologous carboxyl-terminal domains of microtubule-associated protein 2 and TAU induce neuronal dysfunction and have differential fates in the evolution of neurofibrillary tangles. PLoS One 2014; 9:e89796. [PMID: 24587039 PMCID: PMC3934940 DOI: 10.1371/journal.pone.0089796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/25/2014] [Indexed: 01/11/2023] Open
Abstract
Microtubule-associated protein 2 (MAP2) and Tau are abundant neuronal microtubule-associated proteins. Both proteins have highly homologous carboxyl-terminal sequences that function as microtubule-binding domains. Whereas Tau is widely accepted as a pathoetiological factor in human tauopathies, including Alzheimer's disease (AD), it is not known whether there is a relationship between MAP2 and tauopathy. To better understand the pathological roles of MAP2 and Tau, we compared their behaviors in transgenic Caenorhabditis elegans in which MAP2 or Tau was expressed pan-neuronally. Both MAP2 and Tau elicited severe neuronal dysfunction and neuritic abnormalities, despite the absence of detergent-insoluble aggregates in worm neurons. Biochemical analysis revealed that the expressed MAP2 or Tau in worms was highly phosphorylated and did not bind to microtubules. Newly raised antibodies to MAP2 that effectively distinguished between the highly homologous carboxyl-terminal sequences of MAP2 and Tau showed that MAP2 was not involved in the growth process of neurofibrillary tangles in the AD brain. These results indicate that Tau and MAP2 have different fates in the inclusion formation and raise the possibility that MAP2 plays a significant role in neurotoxicity in the AD brain despite the absence of MAP2-aggregates.
Collapse
Affiliation(s)
- Ce Xie
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Tomohiro Miyasaka
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Satomi Yoshimura
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Hiroyuki Hatsuta
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Yasuo Ihara
- Department of Neuropathology, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| |
Collapse
|
28
|
Kowalski JR, Dube H, Touroutine D, Rush KM, Goodwin PR, Carozza M, Didier Z, Francis MM, Juo P. The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Mol Cell Neurosci 2014; 58:62-75. [PMID: 24321454 PMCID: PMC4036811 DOI: 10.1016/j.mcn.2013.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/23/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Regulation of both excitatory and inhibitory synaptic transmission is critical for proper nervous system function. Aberrant synaptic signaling, including altered excitatory to inhibitory balance, is observed in numerous neurological diseases. The ubiquitin enzyme system controls the abundance of many synaptic proteins and thus plays a key role in regulating synaptic transmission. The Anaphase-Promoting Complex (APC) is a multi-subunit ubiquitin ligase that was originally discovered as a key regulator of protein turnover during the cell cycle. More recently, the APC has been shown to function in postmitotic neurons, where it regulates diverse processes such as synapse development and synaptic transmission at glutamatergic synapses. Here we report that the APC regulates synaptic GABA signaling by acting in motor neurons to control the balance of excitatory (acetylcholine) to inhibitory (GABA) transmission at the Caenorhabditis elegans neuromuscular junction (NMJ). Loss-of-function mutants in multiple APC subunits have increased muscle excitation at the NMJ; this phenotype is rescued by expression of the missing subunit in GABA neurons. Quantitative imaging and electrophysiological analyses indicate that APC mutants have decreased GABA release but normal cholinergic transmission. Consistent with this, APC mutants exhibit convulsions in a seizure assay sensitive to reductions in GABA signaling. Previous studies in other systems showed that the APC can negatively regulate the levels of the active zone protein SYD-2 Liprin-α. Similarly, we found that SYD-2 accumulates in APC mutants at GABAergic presynaptic sites. Finally, we found that the APC subunit EMB-27 CDC16 can localize to presynapses in GABA neurons. Together, our data suggest a model in which the APC acts at GABAergic presynapses to promote GABA release and inhibit muscle excitation. These findings are the first evidence that the APC regulates transmission at inhibitory synapses and have implications for understanding nervous system pathologies, such as epilepsy, that are characterized by misregulated GABA signaling.
Collapse
Affiliation(s)
- Jennifer R Kowalski
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Hitesh Dube
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Denis Touroutine
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Kristen M Rush
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Patricia R Goodwin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Marc Carozza
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Zachary Didier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208 USA.
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
29
|
Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9 in Caenorhabditis elegans. Biochem J 2013; 452:467-75. [PMID: 23458156 DOI: 10.1042/bj20130115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans HAF-4 and HAF-9 are half ABC (ATP-binding-cassette) transporters that are highly homologous to the human lysosomal peptide transporter TAPL [TAP (transporter associated with antigen processing)-like; ABCB9]. We reported previously that both HAF-4 and HAF-9 localize to the membrane of a subset of intestinal organelles, and are required for the formation of these organelles and other physiological aspects. In the present paper, we report the genetic and physical interactions between HAF-4 and HAF-9. Overexpression of HAF-4 and HAF-9 did not rescue the intestinal organelle defect of the haf-9 and haf-4 deletion mutants respectively, indicating that they cannot substitute for each other. Double haf-4 and haf-9 mutants do not exhibit more severe phenotypes than the single mutants, suggesting their co-operative function. Immunoprecipitation experiments demonstrated their physical interaction. The results of the present study suggest that HAF-4 and HAF-9 form a heterodimer. Furthermore, Western blot analysis of the deletion mutants and RNAi (RNA interference) knockdown experiments in GFP (green fluorescent protein)-tagged HAF-4 or HAF-9 transgenic worms suggest that HAF-4-HAF-9 heterodimer formation is required for their stabilization. The findings provide a clue as to how ABC transporters adopt a stable functional form.
Collapse
|
30
|
Sasaki A, Nakae I, Nagasawa M, Hashimoto K, Abe F, Saito K, Fukuyama M, Gengyo-Ando K, Mitani S, Katada T, Kontani K. Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in Caenorhabditis elegans. Mol Biol Cell 2013; 24:1584-92. [PMID: 23485564 PMCID: PMC3655818 DOI: 10.1091/mbc.e12-08-0628] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/19/2013] [Accepted: 03/07/2013] [Indexed: 12/29/2022] Open
Abstract
Efficient clearance of apoptotic cells by phagocytes is important for development, tissue homeostasis, and the prevention of autoimmune responses. Phagosomes containing apoptotic cells undergo acidification and mature from Rab5-positive early to Rab7-positive late stages. Phagosomes finally fuse with lysosomes to form phagolysosomes, which degrade apoptotic cells; however, the molecular mechanism underlying phagosome-lysosome fusion is not fully understood. Here we show that the Caenorhabditis elegans Arf-like small GTPase Arl8 (ARL-8) is involved in phagolysosome formation and is required for the efficient removal of apoptotic cells. Loss of function of arl-8 results in the accumulation of apoptotic germ cells. Both the engulfment of the apoptotic cells by surrounding somatic sheath cells and the phagosomal maturation from RAB-5- to RAB-7-positive stages occur in arl-8 mutants. However, the phagosomes fail to fuse with lysosomes in the arl-8 mutants, leading to the accumulation of RAB-7-positive phagosomes and the delayed degradation of apoptotic cells. ARL-8 localizes primarily to lysosomes and physically interacts with the homotypic fusion and protein sorting complex component VPS-41. Collectively our findings reveal that ARL-8 facilitates apoptotic cell removal in vivo by mediating phagosome-lysosome fusion during phagocytosis.
Collapse
Affiliation(s)
- Ayaka Sasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isei Nakae
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Maya Nagasawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiko Abe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kota Saito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kontani
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Qadota H, Moerman DG, Benian GM. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites. J Biol Chem 2012; 287:28537-51. [PMID: 22761445 PMCID: PMC3436513 DOI: 10.1074/jbc.m112.354852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/11/2012] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans muscle cells attach to basement membrane through adhesion plaques. PAT-3 (β-integrin), UNC-112 (kindlin), and PAT-4 (integrin-linked kinase) are associated with these structures. Genetic analysis indicated that PAT-4 is required for UNC-112 to be properly localized. We investigated the molecular basis of this requirement. We show that the cytoplasmic tail of PAT-3 binds to full-length UNC-112 and that the N- and C-terminal halves of UNC-112 bind to each other. We demonstrate competition between the UNC-112 C-terminal half and PAT-4 for binding to the UNC-112 N-terminal half. The D382V mutation results in lack of binding to PAT-4 and lack of localization to adhesion structures. T346A or E349K mutations, which abolish interaction of the N- and C-terminal halves, permit D382V UNC-112 to localize to adhesion structures. The following model is proposed. UNC-112 exists in closed inactive and open active conformations, and upon binding of PAT-4 to the UNC-112 N-terminal half, UNC-112 is converted into the open state, able to bind to PAT-3.
Collapse
Affiliation(s)
- Hiroshi Qadota
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
- the Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donald G. Moerman
- the Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guy M. Benian
- From the Department of Pathology, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
32
|
Wilson KJ, Qadota H, Mains PE, Benian GM. UNC-89 (obscurin) binds to MEL-26, a BTB-domain protein, and affects the function of MEI-1 (katanin) in striated muscle of Caenorhabditis elegans. Mol Biol Cell 2012; 23:2623-34. [PMID: 22621901 PMCID: PMC3395652 DOI: 10.1091/mbc.e12-01-0055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.
Collapse
Affiliation(s)
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322
| | - Paul E. Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, GA 30322
| |
Collapse
|
33
|
Kage-Nakadai E, Kobuna H, Funatsu O, Otori M, Gengyo-Ando K, Yoshina S, Hori S, Mitani S. Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method. BMC Biotechnol 2012; 12:1. [PMID: 22217006 PMCID: PMC3262153 DOI: 10.1186/1472-6750-12-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/05/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transgenic strains of Caenorhabditis elegans are typically generated by injecting DNA into the germline to form multi-copy extrachromosomal arrays. These transgenes are semi-stable and their expression is silenced in the germline. Mos1 transposon or microparticle bombardment methods have been developed to create single- or low-copy chromosomal integrated lines. Here we report an alternative method using ultraviolet trimethylpsoralen (UV/TMP) to generate single/low-copy gene integrations. RESULTS We successfully integrated low-copy transgenes from extrachromosomal arrays using positive selection based on temperature sensitivity with a vps-45 rescue fragment and negative selection based on benzimidazole sensitivity with a ben-1 rescue fragment. We confirmed that the integrants express transgenes in the germline. Quantitative PCR revealed that strains generated by this method contain single- or low-copy transgenes. Moreover, positive selection marker genes flanked by LoxP sites were excised by Cre recombinase mRNA microinjection, demonstrating Cre-mediated chromosomal excision for the first time in C. elegans. CONCLUSION Our UV/TMP integration method, based on familiar extrachromosomal transgenics, provides a useful approach for generating single/low-copy gene integrations.
Collapse
Affiliation(s)
- Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Hiroyuki Kobuna
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Osamu Funatsu
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Muneyoshi Otori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Saitama University Brain Science Institute, Saitama, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
34
|
Predicting mutation outcome from early stochastic variation in genetic interaction partners. Nature 2011; 480:250-3. [PMID: 22158248 DOI: 10.1038/nature10665] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022]
Abstract
Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.
Collapse
|
35
|
Kishikawa JI, Fujikawa M, Imamura H, Yasuda K, Noji H, Ishii N, Mitani S, Yokoyama K. MRT letter: Expression of ATP sensor protein in Caenorhabditis elegans. Microsc Res Tech 2011; 75:15-9. [PMID: 22038755 DOI: 10.1002/jemt.21103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/08/2011] [Indexed: 11/08/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is the major energy currency and is involved in many biological processes. The ATP-monitoring system for cells in animals can be helpful to study the relationship between energy metabolism and biological processes. The fluorescent ATP biosensor ATeam (ATP indicator based on Epsilon subunit for Analytical Measurements), which has been reported to monitor ATP levels in cultured cells on the basis of fluorescence resonance energy transfer (FRET), was introduced into nematodes by microinjection and UV-irradiation method. To confirm whether ATeam functions as an ATP sensor in nematode cells, the authors measured FRET of ATeam in cells of transgenic nematode. The ATeam was expressed in target cells in nematode. In vulva cells, ATP levels in the cytosol were higher than those in mitochondria. ATeam also sensed ATP level change in cultured cells from the transgenic nematode. These experiments indicated that ATeam is available for detection of changes in ATP levels in nematode cells.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Qadota H, Miyauchi T, Nahabedian JF, Stirman JN, Lu H, Amano M, Benian GM, Kaibuchi K. PKN-1, a homologue of mammalian PKN, is involved in the regulation of muscle contraction and force transmission in C. elegans. J Mol Biol 2011; 407:222-31. [PMID: 21277858 PMCID: PMC3086710 DOI: 10.1016/j.jmb.2011.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/22/2022]
Abstract
To examine the in vivo functions of protein kinase N (PKN), one of the effectors of Rho small guanosine triphosphatases (GTPases), we used the nematode Caenorhabditis elegans as a genetic model system. We identified a C. elegans homologue (pkn-1) of mammalian PKN and confirmed direct binding to C. elegans Rho small GTPases. Using a green fluorescent protein reporter, we showed that pkn-1 is mainly expressed in various muscles and is localized at dense bodies and M lines. Overexpression of the PKN-1 kinase domain and loss-of-function mutations by genomic deletion of pkn-1 resulted in a loopy Unc phenotype, which has been reported in many mutants of neuronal genes. The results of mosaic analysis and body wall muscle-specific expression of the PKN-1 kinase domain suggests that this loopy phenotype is due to the expression of PKN-1 in body wall muscle. The genomic deletion of pkn-1 also showed a defect in force transmission. These results suggest that PKN-1 functions as a regulator of muscle contraction-relaxation and as a component of the force transmission mechanism.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Division of Signal Transduction, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Albeg A, Smith C, Chatzigeorgiou M, Feitelson DG, Hall DH, Schafer WR, Miller DM, Treinin M. C. elegans multi-dendritic sensory neurons: morphology and function. Mol Cell Neurosci 2011; 46:308-17. [PMID: 20971193 PMCID: PMC3018541 DOI: 10.1016/j.mcn.2010.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022] Open
Abstract
PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to mammalian nociceptors. To better understand the function of these neurons we generated strains lacking them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD--whose thin branches project across the body-wall muscles--may have a role in proprioception, as ablation of PVD leads to defective posture. Moreover, movement-dependent calcium transients are seen in PVD, a response that requires MEC-10, a subunit of the mechanosensory DEG/ENaC channel that is also required for maintaining wild-type posture. Hence, PVD senses both noxious and innocuous signals to regulate C. elegans behavior, and thus combines the functions of multiple mammalian somatosensory neurons. Finally, strong mechanical stimulation leads to inhibition of egg-laying, and this response also depends on PVD and FLP neurons. Based on all these results we suggest that noxious signals perceived by PVD and FLP promote an escape behavior consisting of increased speed, reduced pauses and reversals, and inhibition of egg-laying.
Collapse
Affiliation(s)
- Adi Albeg
- Department of Medical Neurobiology, Institute for Medical Research – Israel-Canada, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| | - Cody Smith
- Department of Cell and Developmental Biology and Program in Neuroscience, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Marios Chatzigeorgiou
- Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge UK
| | - Dror G. Feitelson
- Department of Computer Science, Hebrew University, Jerusalem 91904, Israel
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - William R. Schafer
- Cell Biology Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge UK
| | - David M. Miller
- Department of Cell and Developmental Biology and Program in Neuroscience, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Millet Treinin
- Department of Medical Neurobiology, Institute for Medical Research – Israel-Canada, Hebrew University – Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
38
|
Moulder GL, Cremona GH, Duerr J, Stirman JN, Fields SD, Martin W, Qadota H, Benian GM, Lu H, Barstead RJ. α-actinin is required for the proper assembly of Z-disk/focal-adhesion-like structures and for efficient locomotion in Caenorhabditis elegans. J Mol Biol 2010; 403:516-28. [PMID: 20850453 PMCID: PMC3440862 DOI: 10.1016/j.jmb.2010.08.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/10/2010] [Accepted: 08/30/2010] [Indexed: 11/22/2022]
Abstract
The actin binding protein α-actinin is a major component of focal adhesions found in vertebrate cells and of focal-adhesion-like structures found in the body wall muscle of the nematode Caenorhabditis elegans. To study its in vivo function in this genetic model system, we isolated a strain carrying a deletion of the single C. elegans α-actinin gene. We assessed the cytological organization of other C. elegans focal adhesion proteins and the ultrastructure of the mutant. The mutant does not have normal dense bodies, as observed by electron microscopy; however, these dense-body-like structures still contain the focal adhesion proteins integrin, talin, and vinculin, as observed by immunofluorescence microscopy. Actin is found in normal-appearing I-bands, but with abnormal accumulations near muscle cell membranes. Although swimming in water appeared grossly normal, use of automated methods for tracking the locomotion of individual worms revealed a defect in bending. We propose that the reduced motility of α-actinin null is due to abnormal dense bodies that are less able to transmit the forces generated by actin/myosin interactions.
Collapse
Affiliation(s)
- Gary L. Moulder
- Department of Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Gina H. Cremona
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Janet Duerr
- Department of Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Jeffrey N. Stirman
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Stephen D. Fields
- Department of Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Wendy Martin
- Department of Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, Georgia 30322
| | - Guy M. Benian
- Department of Pathology, Emory University, Atlanta, Georgia 30322
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100
| | - Robert J. Barstead
- Department of Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| |
Collapse
|
39
|
Kuroyanagi H, Ohno G, Sakane H, Maruoka H, Hagiwara M. Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 2010; 5:1495-517. [PMID: 20725066 DOI: 10.1038/nprot.2010.107] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transgenic multicolor fluorescence reporters enable the visualization of alternative splicing patterns at a single-cell resolution in living organisms and facilitate further genetic analyses to identify cis-elements and trans-acting factors involved in splicing regulation. In this paper, we describe a method of generating fluorescence alternative splicing reporters for the nematode Caenorhabditis elegans. We describe strategies for designing minigene reporters and methods for constructing them; DNA fragments ('modules', such as promoter/3' cassettes, a genomic fragment of interest and a fluorescent protein cassette) that exist in separate vectors are assembled using site-directed recombination. We also describe strategies and methods for mutant screening and single-nucleotide polymorphism mapping using fluorescence reporters. This is the first detailed description of the design and construction of fluorescence alternative splicing reporters for C. elegans and their use in subsequent genetic analyses. It takes 2-4 months to construct minigenes and generate extrachromosomal lines for visualizing spatiotemporal distribution of alternative splicing events in vivo. Identification of regulators by integration of transgenes, mutant screening and mapping of the responsible genes takes a further 6-12 months. The fluorescence-reporter construction described here can also be applied to the vertebrate cell culture system.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Laboratory of Gene Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
40
|
Hasegawa K, Miwa J. Genetic and cellular characterization of Caenorhabditis elegans mutants abnormal in the regulation of many phase II enzymes. PLoS One 2010; 5:e11194. [PMID: 20585349 PMCID: PMC2887452 DOI: 10.1371/journal.pone.0011194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The phase II detoxification enzymes execute a major protective role against xenobiotics as well as endogenous toxicants. To understand how xenobiotics regulate phase II enzyme expression, acrylamide was selected as a model xenobiotic chemical, as it induces a large number and a variety of phase II enzymes, including numerous glutathione S-transferases (GSTs) in Caenorhabditis elegans. METHODOLOGY/PRINCIPAL FINDINGS To begin dissecting genetically xenobiotics response pathways (xrep), 24 independent mutants of C. elegans that exhibited abnormal GST expression or regulation against acrylamide were isolated by screening about 3.5x10(5) genomes of gst::gfp transgenic strains mutagenized with ethyl methanesulfonate (EMS). Complementation testing assigned the mutants to four different genes, named xrep-1, -2, -3, and -4. One of the genes, xrep-1, encodes WDR-23, a nematode homologue of WD repeat-containing protein WDR23. Loss-of-function mutations in xrep-1 mutants resulted in constitutive expression of many GSTs and other phase II enzymes in the absence of acrylamide, and the wild-type xrep-1 allele carried on a DNA construct successfully cured the mutant phenotype of the constitutive enzyme expression. CONCLUSIONS/SIGNIFICANCE Genetic and cellular characterization of xrep-1 mutants suggest that a large number of GSTs and other phase II enzymes induced by acrylamide are under negative regulation by XREP-1 (WDR-23), which is likely to be a functional equivalent of mammalian Keap1 and a regulator of SKN-1, a C. elegans analogue of cap-n-collar Nrf2 (nuclear factor erythroid 2-related factor 2).
Collapse
Affiliation(s)
- Koichi Hasegawa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Johji Miwa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
41
|
Hasegawa K, Miwa S, Tsutsumiuchi K, Miwa J. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor. PLoS One 2010; 5:e9267. [PMID: 20174640 PMCID: PMC2822842 DOI: 10.1371/journal.pone.0009267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 01/26/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs), which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. METHODOLOGY/PRINCIPAL FINDINGS We have tested this hypothesis by choosing allyl isothiocyanate (AITC), a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. CONCLUSIONS/SIGNIFICANCE We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.
Collapse
Affiliation(s)
- Koichi Hasegawa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Satsuki Miwa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Kaname Tsutsumiuchi
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Johji Miwa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
42
|
Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M. Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol Biol Cell 2009; 20:2979-90. [PMID: 19403699 PMCID: PMC2695804 DOI: 10.1091/mbc.e08-09-0912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.
Collapse
Affiliation(s)
- Hiromi Kawai
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Mitsuo Yamada
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Iijima
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Kezuka
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Ohashi-Kobayashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Biala Y, Liewald JF, Ben-Ami HC, Gottschalk A, Treinin M. The conserved RIC-3 coiled-coil domain mediates receptor-specific interactions with nicotinic acetylcholine receptors. Mol Biol Cell 2009; 20:1419-27. [PMID: 19116311 PMCID: PMC2649256 DOI: 10.1091/mbc.e08-08-0851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/25/2008] [Accepted: 12/22/2008] [Indexed: 01/23/2023] Open
Abstract
RIC-3 belongs to a conserved family of proteins influencing nicotinic acetylcholine receptor (nAChR) maturation. RIC-3 proteins are integral membrane proteins residing in the endoplasmic reticulum (ER), and containing a C-terminal coiled-coil domain (CC-I). Conservation of CC-I in all RIC-3 family members indicates its importance; however, previous studies could not show its function. To examine the role of CC-I, we studied effects of its deletion on Caenorhabditis elegans nAChRs in vivo. Presence of CC-I promoted maturation of particular nAChRs expressed in body-wall muscle, whereas it was not required for other nAChR subtypes expressed in neurons or pharyngeal muscles. This effect is receptor-specific, because it could be reproduced after heterologous expression. Consistently, coimmunoprecipitation analysis showed that CC-I enhances the interaction of RIC-3 with a nAChR that requires CC-I in vivo; thus CC-I appears to enhance affinity of RIC-3 to specific nAChRs. However, we found that this function of CC-I is redundant with functions of sequences downstream to CC-I, potentially a second coiled-coil. Alternative splicing in both vertebrates and invertebrates generates RIC-3 transcripts that lack the entire C-terminus, or only CC-I. Thus, our results suggest that RIC-3 alternative splicing enables subtype specific regulation of nAChR maturation.
Collapse
Affiliation(s)
- Yoav Biala
- *Department of Physiology, Hebrew University, Hadassah Medical School, Jerusalem, 91120, Israel; and
| | - Jana F. Liewald
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biochemistry, Biocenter N210/220 and
| | - Hagit Cohen Ben-Ami
- *Department of Physiology, Hebrew University, Hadassah Medical School, Jerusalem, 91120, Israel; and
| | - Alexander Gottschalk
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biochemistry, Biocenter N210/220 and
- Cluster of Excellence Frankfurt-Macromolecular Complexes (CEF-MC), Johann Wolfgang Goethe-University Frankfurt, D-60438 Frankfurt, Germany
| | - Millet Treinin
- *Department of Physiology, Hebrew University, Hadassah Medical School, Jerusalem, 91120, Israel; and
| |
Collapse
|
44
|
Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren CH, Kato T, Mitani S, Iwatsubo T. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 2008; 17:2997-3009. [PMID: 18617532 DOI: 10.1093/hmg/ddn198] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations or multiplications in alpha-synuclein gene cause familial forms of Parkinson disease or dementia with Lewy bodies (LB), and the deposition of wild-type alpha-synuclein as LB occurs as a hallmark lesion of these disorders, collectively referred to as synucleinopathies, implicating alpha-synuclein in the pathogenesis of synucleinopathy. To identify modifier genes of alpha-synuclein-induced neurotoxicity, we conducted an RNAi screen in transgenic C. elegans (Tg worms) that overexpress human alpha-synuclein in a pan-neuronal manner. To enhance the RNAi effect in neurons, we crossed alpha-synuclein Tg worms with an RNAi-enhanced mutant eri-1 strain. We tested RNAi of 1673 genes related to nervous system or synaptic functions, and identified 10 genes that, upon knockdown, caused severe growth/motor abnormalities selectively in alpha-synuclein Tg worms. Among these were four genes (i.e. apa-2, aps-2, eps-8 and rab-7) related to the endocytic pathway, including two subunits of AP-2 complex. Consistent with the results by RNAi, crossing alpha-synuclein Tg worms with an aps-2 mutant resulted in severe growth arrest and motor dysfunction. alpha-Synuclein Tg worms displayed a decreased touch sensitivity upon RNAi of genes involved in synaptic vesicle endocytosis, and they also showed impaired neuromuscular transmission, suggesting that overexpression of alpha-synuclein caused a failure in uptake or recycling of synaptic vesicles. Furthermore, knockdown of apa-2, an AP-2 subunit, caused an accumulation of phosphorylated alpha-synuclein in neuronal cell bodies, mimicking synucleinopathy. Collectively, these findings raise a novel pathogenic link between endocytic pathway and alpha-synuclein-induced neurotoxicity in synucleinopathy.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ohno G, Hagiwara M, Kuroyanagi H. STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev 2008; 22:360-74. [PMID: 18230701 PMCID: PMC2216695 DOI: 10.1101/gad.1620608] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
Abstract
Alternative splicing of pre-mRNAs greatly contributes to the spatiotemporal diversity of gene expression in metazoans. However, the molecular basis of developmental regulation and the precise sequence of alternative pre-mRNA processing in vivo are poorly understood. In the present study, we focus on the developmental switching of the mutually exclusive alternative splicing of the let-2 gene of Caenorhabditis elegans from the exon 9 form in embryos to the exon 10 form in adults. By visualizing the usage of the let-2 mutually exclusive exons through differential expression of green fluorescent protein (GFP) and red fluorescent protein (RFP), we isolated several switching-defective mutants and identified the alternative splicing defective-2 (asd-2) gene, encoding a novel member of the evolutionarily conserved STAR (signal transduction activators of RNA) family of RNA-binding proteins. Comparison of the amounts of partially spliced let-2 RNAs in synchronized wild-type and asd-2 mutant worms suggested that either of the introns downstream from the let-2 mutually exclusive exons is removed prior to the removal of the upstream ones, and that asd-2 promotes biased excision of intron 10 in the late larval stages. We propose that the developmental switching between alternative sequences of intron removal determines the ratio between the mature let-2 mRNA isoforms.
Collapse
Affiliation(s)
- Genta Ohno
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masatoshi Hagiwara
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
46
|
Ichibangase T, Saimaru H, Takamura N, Kuwahara T, Koyama A, Iwatsubo T, Imai K. Proteomics ofCaenorhabditis elegans over-expressing humanα-synuclein analyzed by fluorogenic derivatization–liquid chromatography/tandem mass spectrometry: identification of actin and several ribosomal proteins as negative markers at early Parkinson's disease stages. Biomed Chromatogr 2008; 22:232-4. [DOI: 10.1002/bmc.931] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Hasegawa K, Miwa S, Isomura K, Tsutsumiuchi K, Taniguchi H, Miwa J. Acrylamide-Responsive Genes in the Nematode Caenorhabditis elegans. Toxicol Sci 2007; 101:215-25. [DOI: 10.1093/toxsci/kfm276] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Kagoshima H, Nimmo R, Saad N, Tanaka J, Miwa Y, Mitani S, Kohara Y, Woollard A. TheC. elegansCBFβ homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development 2007; 134:3905-15. [DOI: 10.1242/dev.008276] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this report, we investigate the C. elegans CBFβ homologue,BRO-1. bro-1 mutants have a similar male-specific sensory ray loss phenotype to rnt-1 (the C. elegans homologue of the mammalian CBFβ-interacting Runx factors), caused by failed cell divisions in the seam lineages. Our studies indicate that BRO-1 and RNT-1 form a cell proliferation-promoting complex, and that BRO-1 increases both the affinity and specificity of RNT-1-DNA interactions. Overexpression of bro-1,like rnt-1, leads to an expansion of seam cell number and co-overexpression of bro-1 and rnt-1 results in massive seam cell hyperplasia. Finally, we find that BRO-1 appears to act independently of RNT-1 in certain situations. These studies provide new insights into the function and regulation of this important cancer-associated DNA-binding complex in stem cells and support the view that Runx/CBFβ factors have oncogenic potential.
Collapse
Affiliation(s)
- Hiroshi Kagoshima
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8560,Japan
| | - Rachael Nimmo
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicole Saad
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Junko Tanaka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba,Tsukuba 305-8577, Japan
| | - Yoshihiro Miwa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba,Tsukuba 305-8577, Japan
- Precursory Research and Embryonic Science and Technology (PRESTO), JST,Okazaki 444-8585, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine,Tokyo 162-8666, Japan
| | - Yuji Kohara
- Genome Biology Laboratory, National Institute of Genetics, Mishima 411-8560,Japan
| | - Alison Woollard
- Genetics Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
49
|
Qadota H, Inoue M, Hikita T, Köppen M, Hardin JD, Amano M, Moerman DG, Kaibuchi K. Establishment of a tissue-specific RNAi system in C. elegans. Gene 2007; 400:166-73. [PMID: 17681718 PMCID: PMC3086655 DOI: 10.1016/j.gene.2007.06.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 11/24/2022]
Abstract
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Division of Signal Transduction, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Asakura T, Ogura KI, Goshima Y. UNC-6 expression by the vulval precursor cells of Caenorhabditis elegans is required for the complex axon guidance of the HSN neurons. Dev Biol 2007; 304:800-10. [PMID: 17320069 DOI: 10.1016/j.ydbio.2007.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/06/2007] [Accepted: 01/21/2007] [Indexed: 10/23/2022]
Abstract
Netrin is an evolutionarily conserved axon guidance molecule that has both axonal attraction and repulsion activities. In Caenorhabditis elegans, Netrin/UNC-6 is secreted by ventral cells, attracting some axons ventrally and repelling some axons, which extend dorsally. One axon guided by UNC-6 is that of the HSN neuron. The axon guidance process for HSN neurons is complex, consisting of ventral growth, dorsal growth, branching, second ventral growth, fasciculation with ventral nerve cords, and then anterior growth. The vulval precursor cells (VPC) and the PVP and PVQ neurons are required for the HSN axon guidance; however, the molecular mechanisms involved are completely unknown. In this study, we found that the VPC strongly expressed UNC-6 during HSN axon growth. Silencing of UNC-6 expression in only the VPC, using a novel tissue-specific RNAi technique, resulted in abnormal HSN axon guidance. The expression of Netrin/UNC-6 by only the VPC in unc-6 null mutants partially rescued the HSN ventral axon guidance. Furthermore, the expression of Netrin/UNC-6 by the VPC and the ventral nerve cord (VNC) in unc-6 null mutants restored the complex HSN axon guidance. These results suggest that UNC-6 expressed by the VPC and the VNC cooperatively regulates the complex HSN axon guidance.
Collapse
Affiliation(s)
- Taro Asakura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|